[go: up one dir, main page]

CN114864615A - Method for manufacturing image sensor - Google Patents

Method for manufacturing image sensor Download PDF

Info

Publication number
CN114864615A
CN114864615A CN202210646189.6A CN202210646189A CN114864615A CN 114864615 A CN114864615 A CN 114864615A CN 202210646189 A CN202210646189 A CN 202210646189A CN 114864615 A CN114864615 A CN 114864615A
Authority
CN
China
Prior art keywords
region
silicon nitride
logic
layer
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210646189.6A
Other languages
Chinese (zh)
Inventor
林率兵
董立群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howay Integrated Circuit Chengdu Co ltd
Original Assignee
Howay Integrated Circuit Chengdu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howay Integrated Circuit Chengdu Co ltd filed Critical Howay Integrated Circuit Chengdu Co ltd
Priority to CN202210646189.6A priority Critical patent/CN114864615A/en
Publication of CN114864615A publication Critical patent/CN114864615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/014Manufacture or treatment of image sensors covered by group H10F39/12 of CMOS image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/028Manufacture or treatment of image sensors covered by group H10F39/12 performed after manufacture of the image sensors, e.g. annealing, gettering of impurities, short-circuit elimination or recrystallisation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The invention provides a manufacturing method of an image sensor, which sequentially comprises the following steps: providing a substrate, wherein the substrate comprises a pixel area and a logic area; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate; forming a silicon nitride layer covering the silicon oxide layer; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; removing the silicon nitride layer covering the logic area and reserving the silicon nitride layer covering the pixel area; performing an ion implantation process of the logic region; removing the silicon nitride layer covering the pixel region; and performing an ion implantation process of the pixel region. The method removes the silicon nitride layer covering the logic area, reserves the silicon nitride layer covering the pixel area, removes the silicon nitride layer covering the pixel area after the ion implantation process of the logic area is completed, and utilizes the silicon nitride layer reserved in the pixel area as a protective layer, thereby effectively reducing the pollution and physical damage of the processing procedure of the logic area to the pixel area and improving the quality of the image sensor.

Description

图像传感器的制作方法How to make an image sensor

技术领域technical field

本发明属于集成电路制造技术领域,具体涉及一种图像传感器的制作方法。The invention belongs to the technical field of integrated circuit manufacturing, and in particular relates to a manufacturing method of an image sensor.

背景技术Background technique

CMOS图像传感器是一种将光学图像转换成电信号的半导体器件。CMOS图像传感器集成在金属氧化物半导体材料上,被广泛应用于数码相机、照相手机、数码摄像机、医疗用摄像装置(例如胃镜)、车用摄像装置等领域之中。A CMOS image sensor is a semiconductor device that converts optical images into electrical signals. CMOS image sensors are integrated on metal oxide semiconductor materials and are widely used in digital cameras, camera phones, digital video cameras, medical imaging devices (eg gastroscopes), and automotive imaging devices.

CMOS图像传感器通常包括像素区和外围逻辑区,对CMOS图像传感器而言,用于感光的像素区的特性直接决定了最终图像传感器的性能。图像传感器的性能参数包括量子效率、暗电流、动态范围和信噪比等。因此,像素区的制作至关重要,常规工艺在进行逻辑区加工时,像素区会完全裸露出来,或者在像素区表面只有一薄层氧化硅层保护。逻辑区制程带来的污染和物理损伤会不可避免地对像素区造成影响,从而形成像素缺陷(例如坏点,噪声等)。A CMOS image sensor usually includes a pixel area and a peripheral logic area. For a CMOS image sensor, the characteristics of the pixel area used for light-sensing directly determine the performance of the final image sensor. The performance parameters of image sensors include quantum efficiency, dark current, dynamic range, and signal-to-noise ratio. Therefore, the fabrication of the pixel area is very important. When the logic area is processed in a conventional process, the pixel area will be completely exposed, or only a thin layer of silicon oxide will protect the surface of the pixel area. The contamination and physical damage brought by the logic area process will inevitably affect the pixel area, thereby forming pixel defects (such as dead pixels, noise, etc.).

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种图像传感器的制作方法,降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。The purpose of the present invention is to provide a manufacturing method of an image sensor, which can reduce the pollution and physical damage to the pixel area caused by the logic area processing process, and improve the quality of the image sensor.

本发明提供一种图像传感器的制作方法,包括:The present invention provides a method for manufacturing an image sensor, comprising:

提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;

去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region;

执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;

去除覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the pixel area;

执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.

进一步的,形成所述浅沟槽隔离之后,还包括:Further, after forming the shallow trench isolation, the method further includes:

形成第一保护层,所述第一保护层覆盖所述氮化硅层和所述浅沟槽隔离的表面;forming a first protective layer, the first protective layer covering the silicon nitride layer and the surface of the shallow trench isolation;

在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述第一保护层,并保留覆盖所述像素区的所述第一保护层。In the step of removing the silicon nitride layer covering the logic region, the first protection layer covering the logic region is also removed, and the first protection layer covering the pixel region remains.

进一步的,所述第一保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。Further, the first protective layer includes at least one of a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and a polysilicon layer.

进一步的,形成所述浅沟槽隔离之后,还包括:Further, after forming the shallow trench isolation, the method further includes:

形成隔离层,所述隔离层覆盖所述氮化硅层和所述浅沟槽隔离的表面,所述隔离层的材质包括氧化硅层和/或氮氧化硅层;forming an isolation layer, the isolation layer covers the surface of the silicon nitride layer and the shallow trench isolation, and the material of the isolation layer includes a silicon oxide layer and/or a silicon oxynitride layer;

在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述隔离层,并保留覆盖所述像素区的所述隔离层。In the step of removing the silicon nitride layer covering the logic region, the isolation layer covering the logic region is also removed, and the isolation layer covering the pixel region remains.

进一步的,去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层,具体包括:Further, removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region, specifically including:

形成第一光阻层,所述第一光阻层覆盖所述像素区,暴露出所述逻辑区;forming a first photoresist layer, the first photoresist layer covering the pixel region and exposing the logic region;

以所述第一光阻层为掩膜,干法或湿法刻蚀去除覆盖所述逻辑区的氮化硅层。Using the first photoresist layer as a mask, dry or wet etching is performed to remove the silicon nitride layer covering the logic region.

进一步的,所述逻辑区包括第一逻辑区和第二逻辑区;执行所述逻辑区的离子注入工艺,具体包括:Further, the logic region includes a first logic region and a second logic region; and performing an ion implantation process for the logic region specifically includes:

形成第二光阻层,所述第二光阻层覆盖所述像素区和所述第二逻辑区,暴露出所述第一逻辑区,以所述第二光阻层为掩膜,对所述第一逻辑区进行P型离子注入,在所述第一逻辑区形成P型阱区;去除所述第二光阻层;forming a second photoresist layer, the second photoresist layer covering the pixel area and the second logic area, exposing the first logic area, using the second photoresist layer as a mask, to performing P-type ion implantation on the first logic region to form a P-type well region in the first logic region; removing the second photoresist layer;

形成第三光阻层,所述第三光阻层覆盖所述像素区和所述第一逻辑区,暴露出所述第二逻辑区,以所述第三光阻层为掩膜,对所述第二逻辑区进行N型离子注入,在所述第二逻辑区形成N型阱区;去除所述第三光阻层。forming a third photoresist layer, the third photoresist layer covering the pixel area and the first logic area, exposing the second logic area, using the third photoresist layer as a mask, to N-type ion implantation is performed on the second logic region to form an N-type well region in the second logic region; and the third photoresist layer is removed.

进一步的,执行所述像素区的离子注入工艺,具体包括:对所述像素区进行P型离子注入,形成位于所述浅沟槽隔离一侧的P型阱区;Further, performing the ion implantation process in the pixel region specifically includes: performing P-type ion implantation on the pixel region to form a P-type well region on one side of the shallow trench isolation;

对所述像素区进行N型离子注入,形成位于所述浅沟槽隔离另一侧的光电二极管N区。N-type ion implantation is performed on the pixel region to form an N region of the photodiode on the other side of the shallow trench isolation.

进一步的,还包括:Further, it also includes:

在所述像素区和所述逻辑区形成对应不同晶体管的栅极;forming gates corresponding to different transistors in the pixel region and the logic region;

对所述栅极两侧的所述衬底中进行离子注入,形成对应各晶体管的源极和漏极,以及光电二极管表面P区。Ion implantation is performed into the substrate on both sides of the gate to form the source and drain corresponding to each transistor and the P region on the surface of the photodiode.

本发明还提供一种图像传感器的制作方法,依次包括如下步骤:The present invention also provides a manufacturing method of an image sensor, which sequentially includes the following steps:

提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;

去除覆盖所述逻辑区和所述像素区的所述氮化硅层;removing the silicon nitride layer covering the logic region and the pixel region;

形成第二保护层,所述第二保护层覆盖所述氧化硅层和所述浅沟槽隔离的表面;forming a second protective layer, the second protective layer covering the surface of the silicon oxide layer and the shallow trench isolation;

去除覆盖所述逻辑区的所述第二保护层,保留覆盖所述像素区的所述第二保护层;removing the second protective layer covering the logic region and retaining the second protective layer covering the pixel region;

执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;

去除覆盖所述像素区的第二保护层;removing the second protective layer covering the pixel area;

执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.

进一步的,所述第二保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。Further, the second protective layer includes at least one of a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and a polysilicon layer.

与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明提供一种图像传感器的制作方法,依次包括如下步骤:提供衬底,衬底包括像素区和逻辑区;在衬底的表面形成覆盖像素区和逻辑区的氧化硅层;形成覆盖氧化硅层的氮化硅层;在氮化硅层、氧化硅层和衬底中形成浅沟槽隔离;去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层;执行逻辑区的离子注入工艺;去除覆盖像素区的氮化硅层;执行像素区的离子注入工艺。本发明去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层,在逻辑区的离子注入工艺完成之后,再去除覆盖像素区的氮化硅层,利用像素区保留的氮化硅层作为保护层,从而有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。The invention provides a method for fabricating an image sensor, which sequentially includes the following steps: providing a substrate, the substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate; forming a silicon oxide covering forming a shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; removing the silicon nitride layer covering the logic area, leaving the silicon nitride layer covering the pixel area; performing the Ion implantation process; removing the silicon nitride layer covering the pixel area; performing an ion implantation process in the pixel area. In the present invention, the silicon nitride layer covering the logic region is removed, and the silicon nitride layer covering the pixel region is retained. After the ion implantation process in the logic region is completed, the silicon nitride layer covering the pixel region is removed, and the nitrided silicon nitride layer retained in the pixel region is used. The silicon layer is used as a protective layer, thereby effectively reducing the pollution and physical damage to the pixel area caused by the logic area processing process, and improving the quality of the image sensor.

附图说明Description of drawings

图1为本发明实施例的图像传感器制作方法流程示意图。FIG. 1 is a schematic flowchart of a method for fabricating an image sensor according to an embodiment of the present invention.

图2a至图9为本发明一种图像传感器的第一实施例制作方法各步骤示意图。2a to FIG. 9 are schematic diagrams of steps of a manufacturing method of an image sensor according to a first embodiment of the present invention.

图10为本发明一种图像传感器的电路示意图。FIG. 10 is a schematic circuit diagram of an image sensor of the present invention.

图11至图12为本发明一种图像传感器的第二实施例的制作方法示意图。11 to 12 are schematic diagrams of a manufacturing method of an image sensor according to a second embodiment of the present invention.

图13至图14为本发明另一种图像传感器制作方法示意图。13 to 14 are schematic diagrams of another method for fabricating an image sensor according to the present invention.

其中,附图标记如下:Among them, the reference numerals are as follows:

10-衬底;11-浅沟槽隔离;12-氧化硅层;13-氮化硅层;13a-像素区的氮化硅层;13b-逻辑区的氮化硅层;14-第一光阻层;15-第二光阻层;16-第三光阻层;17-第四光阻层;18-光电二极管N区;19-光电二极管表面P区(钉扎层);X-像素区;L-逻辑区;I-第一逻辑区;II-第二逻辑区;21-P型阱区;22-N型阱区;23-P型阱区;24-隔离层;31、32、33、34-栅极;25-第一保护层;45-第二保护层;41、43、44-源极;42、51、53、54-漏极。10-substrate; 11-shallow trench isolation; 12-silicon oxide layer; 13-silicon nitride layer; 13a-silicon nitride layer in pixel area; 13b-silicon nitride layer in logic area; 14-first light 15-second photoresist layer; 16-third photoresist layer; 17-fourth photoresist layer; 18-photodiode N region; 19-photodiode surface P region (pinning layer); X-pixel region; L-logic region; I-first logic region; II-second logic region; 21-P-type well region; 22-N-type well region; 23-P-type well region; 24-isolation layer; 31, 32 , 33, 34-gate; 25-first protective layer; 45-second protective layer; 41, 43, 44-source; 42, 51, 53, 54-drain.

具体实施方式Detailed ways

本发明实施例提供了一种图像传感器的制作方法。以下结合附图和具体实施例对本发明进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图均采用非常简化的形式且使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。Embodiments of the present invention provide a method for fabricating an image sensor. The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become more apparent from the following description. It should be noted that the accompanying drawings are in a very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.

为了便于描述,本申请一些实施例可以使用诸如“在…上方”、“在…之下”、“顶部”、“下方”等空间相对术语,以描述如实施例各附图所示的一个元件或部件与另一个(或另一些)元件或部件之间的关系。应当理解的是,除了附图中描述的方位之外,空间相对术语还旨在包括装置在使用或操作中的不同方位。例如若附图中的装置被翻转,则被描述为在其它元件或部件“下方”或“之下”的元件或部件,随后将被定位为在其它元件或部件“上方”或“之上”。下文中的术语“第一”、“第二”、等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换。For the convenience of description, some embodiments of the present application may use spatially relative terms such as "above", "below", "top", "below", etc., to describe an element as shown in the drawings of the embodiments or the relationship of a component to another (or other) elements or components. It should be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" other elements or features would then be oriented "above" or "over" the other elements or features. The terms "first," "second," etc. hereinafter are used to distinguish between similar elements, and are not necessarily used to describe a particular order or temporal order. It is to be understood that these terms so used may be substituted under appropriate circumstances.

本发明实施例提供了一种图像传感器的制作方法,如图1所示,依次包括如下步骤:An embodiment of the present invention provides a method for manufacturing an image sensor, as shown in FIG. 1 , which sequentially includes the following steps:

步骤S1、提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;Step S1, providing a substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate; forming nitrogen covering the silicon oxide layer a silicon oxide layer; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;

步骤S2、去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层;Step S2, removing the silicon nitride layer covering the logic region, and retaining the silicon nitride layer covering the pixel region;

步骤S3、执行所述逻辑区的离子注入工艺;Step S3, performing the ion implantation process of the logic region;

步骤S4、去除覆盖所述像素区的氮化硅层;Step S4, removing the silicon nitride layer covering the pixel area;

步骤S5、执行所述像素区的离子注入工艺。Step S5, performing an ion implantation process in the pixel region.

图2a至图9为本发明第一实施例的图像传感器制作方法各步骤示意图。图10为本发明实施例的图像传感器的电路示意图。下面结合图2至图10详细介绍本发明实施例的晶圆加工方法的各步骤。2a to 9 are schematic diagrams of steps of a method for fabricating an image sensor according to a first embodiment of the present invention. FIG. 10 is a schematic circuit diagram of an image sensor according to an embodiment of the present invention. The steps of the wafer processing method according to the embodiment of the present invention will be described in detail below with reference to FIG. 2 to FIG. 10 .

图2a为本发明第一实施例的图像传感器的俯视示意图;图2b为对应图2a中AA’处的剖面示意图。如图2a和图2b所示,提供衬底10,所述衬底10包括像素区X和逻辑区L,示例性的,所述逻辑区L环绕所述像素区X。所述衬底10的表面形成有覆盖所述像素区X和所述逻辑区L的氧化硅层12,所述氧化硅层12的表面形成有氮化硅层13,对应的,氮化硅层13包括像素区的氮化硅层13a和逻辑区的氮化硅层13b。刻蚀氮化硅层13、氧化硅层12以及部分厚度的衬底10形成沟槽,在沟槽中填充氧化物形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平。Fig. 2a is a schematic top view of the image sensor according to the first embodiment of the present invention; Fig. 2b is a schematic cross-sectional view corresponding to AA' in Fig. 2a. As shown in FIGS. 2a and 2b, a substrate 10 is provided, the substrate 10 includes a pixel area X and a logic area L, exemplarily, the logic area L surrounds the pixel area X. A silicon oxide layer 12 covering the pixel region X and the logic region L is formed on the surface of the substrate 10 , a silicon nitride layer 13 is formed on the surface of the silicon oxide layer 12 , correspondingly, a silicon nitride layer 13 includes a silicon nitride layer 13a in the pixel region and a silicon nitride layer 13b in the logic region. Etch the silicon nitride layer 13, the silicon oxide layer 12 and the substrate 10 with a partial thickness to form trenches, fill the trenches with oxide to form a shallow trench isolation (STI) 11, and perform chemical mechanical polishing (CMP) to make the shallow trenches The upper surfaces of trench isolation (STI) 11 and silicon nitride layer 13 are flush.

如图3a所示,形成第一光阻层14,所述第一光阻层14覆盖所述像素区X,暴露出所述逻辑区L。以所述第一光阻层14为掩膜,干法或湿法刻蚀去除覆盖所述逻辑区的氮化硅层13b,例如可采用热磷酸(H3PO4)湿法刻蚀去除位于所述逻辑区的氮化硅层13b。其他示例中,可采用含有氟气和氧气的混合气体的反应性离子刻蚀干法刻蚀去除逻辑区的氮化硅层13b。其他实例中,形成第一光阻层14之前,也可根据实际需要对氮化硅层13进行整体减薄,例如在氮化硅层13厚度较厚的情况下,减薄到合适厚度便于刻蚀工艺进行。As shown in FIG. 3 a , a first photoresist layer 14 is formed, the first photoresist layer 14 covers the pixel region X and exposes the logic region L. Using the first photoresist layer 14 as a mask, dry or wet etching is performed to remove the silicon nitride layer 13b covering the logic region. The silicon nitride layer 13b of the logic region. In other examples, the silicon nitride layer 13b of the logic region may be removed by dry etching using reactive ion etching with a mixed gas of fluorine gas and oxygen gas. In other examples, before forming the first photoresist layer 14, the overall thickness of the silicon nitride layer 13 can also be thinned according to actual needs. etching process.

如图3a和图3b所示,可选择的,化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,还可形成隔离层24,隔离层24覆盖氮化硅层13和浅沟槽隔离(STI)11的上表面,接着在隔离层24上再形成第一光阻层14,以所述第一光阻层14为掩膜,去除位于所述逻辑区的氮化硅层13b。在一示例中,隔离层24可通过重新生长的一层氧化硅层或者氮氧化硅层形成;在另一示例中,隔离层24可通过对氮化硅层13表面进行氧化形成。隔离层24起到氮化硅层13与第一光阻层14之间的隔离作用和光刻过程中的抗反射作用。刻蚀去除覆盖所述逻辑区的隔离层24和氮化硅层13b。As shown in FIG. 3a and FIG. 3b, optionally, after chemical mechanical polishing (CMP) makes the upper surface of the shallow trench isolation (STI) 11 and the silicon nitride layer 13 flush, an isolation layer 24 can also be formed, and the isolation layer 24 covers the upper surface of the silicon nitride layer 13 and the shallow trench isolation (STI) 11, and then a first photoresist layer 14 is formed on the isolation layer 24, and the first photoresist layer 14 is used as a mask to remove the The silicon nitride layer 13b of the logic region. In one example, the isolation layer 24 may be formed by a regrown silicon oxide layer or a silicon oxynitride layer; in another example, the isolation layer 24 may be formed by oxidizing the surface of the silicon nitride layer 13 . The isolation layer 24 plays an isolation role between the silicon nitride layer 13 and the first photoresist layer 14 and an anti-reflection role in the photolithography process. The isolation layer 24 and the silicon nitride layer 13b covering the logic regions are removed by etching.

如图3a和图4所示,采用灰化工艺去除所述第一光阻层14,并进行湿法清洗以去除灰化和/或刻蚀工艺形成的颗粒杂质或残留物。As shown in FIG. 3 a and FIG. 4 , the first photoresist layer 14 is removed by an ashing process, and wet cleaning is performed to remove particulate impurities or residues formed by the ashing and/or etching processes.

如图5所示,逻辑区L可形成NMOS管和PMOS管,NMOS管形成于P型阱区,PMOS管形成于N型阱区。逻辑区L包括第一逻辑区I和第二逻辑区II。第一逻辑区I例如用于形成P型阱区,第二逻辑区例如用于形成N型阱区。在其他实例中,第一逻辑区也可用于形成N型阱区,第二逻辑区可用于形成P型阱区,根据实际需要配置。形成第二光阻层15,第二光阻层15覆盖像素区X和逻辑区的第二逻辑区II,暴露出逻辑区的第一逻辑区I。以第二光阻层15为掩膜,对第一逻辑区I进行离子注入,例如注入高能硼离子形成P型阱区21,用于制造NMOS管,之后灰化工艺去除第二光阻层15。As shown in FIG. 5 , an NMOS transistor and a PMOS transistor can be formed in the logic region L, the NMOS transistor is formed in the P-type well region, and the PMOS transistor is formed in the N-type well region. The logic area L includes a first logic area I and a second logic area II. The first logic region I is used to form a P-type well region, for example, and the second logic region is used to form an N-type well region, for example. In other examples, the first logic region can also be used to form an N-type well region, and the second logic region can be used to form a P-type well region, which can be configured according to actual needs. A second photoresist layer 15 is formed, the second photoresist layer 15 covers the pixel area X and the second logic area II of the logic area, and exposes the first logic area I of the logic area. Using the second photoresist layer 15 as a mask, ion implantation is performed on the first logic region I, such as implanting high-energy boron ions to form a P-type well region 21, which is used to manufacture an NMOS transistor, and then the second photoresist layer 15 is removed by an ashing process. .

如图6所示,形成第三光阻层16,第三光阻层16覆盖像素区X和逻辑区的第一逻辑区I,暴露出逻辑区的第二逻辑区II。以第三光阻层16为掩膜,对第二逻辑区II进行离子注入,例如注入N型离子形成N型阱区22,用于制造PMOS管;所述N型离子可以是砷离子或磷离子,但不局限于此。之后灰化工艺去除第三光阻层16。As shown in FIG. 6 , a third photoresist layer 16 is formed. The third photoresist layer 16 covers the pixel area X and the first logic area I of the logic area, and exposes the second logic area II of the logic area. Using the third photoresist layer 16 as a mask, ion implantation is performed on the second logic region II, for example, N-type ions are implanted to form an N-type well region 22 for manufacturing a PMOS transistor; the N-type ions can be arsenic ions or phosphorus ions ions, but not limited to this. The third photoresist layer 16 is then removed by an ashing process.

如图7所示,去除像素区的氮化硅层13a,可采用湿法或干法工艺去除,例如刻采用热磷酸(H3PO4)湿法刻蚀去除像素区的氮化硅层13a。其他示例中,可采用含有氟气和氧气的混合气体的反应性离子刻蚀干法刻蚀去除像素区的氮化硅层13a。As shown in FIG. 7 , to remove the silicon nitride layer 13a in the pixel area, wet or dry processes can be used to remove, for example, hot phosphoric acid (H 3 PO 4 ) wet etching is used to remove the silicon nitride layer 13a in the pixel area. . In other examples, the silicon nitride layer 13a in the pixel region may be removed by dry etching using reactive ion etching containing a mixed gas of fluorine gas and oxygen gas.

如图8所示,执行所述像素区的离子注入工艺。具体的,形成第四光阻层17,第四光阻层17覆盖逻辑区L和像素区X的部分区域。以第四光阻层17为掩膜,对像素区X进行离子注入,例如对所述像素区进行P型离子注入,形成位于所述浅沟槽隔离11一侧的P型阱区23。对所述像素区进行N型离子注入,形成位于所述浅沟槽隔离11另一侧的光电二极管N区18。As shown in FIG. 8, the ion implantation process of the pixel region is performed. Specifically, a fourth photoresist layer 17 is formed, and the fourth photoresist layer 17 covers parts of the logic region L and the pixel region X. Using the fourth photoresist layer 17 as a mask, ion implantation is performed on the pixel region X, for example, P-type ion implantation is performed on the pixel region to form a P-type well region 23 on one side of the shallow trench isolation 11 . N-type ion implantation is performed on the pixel region to form a photodiode N region 18 on the other side of the shallow trench isolation 11 .

如图9所示,形成栅极和源漏极,具体的,形成位于氧化硅层12上的栅极层,栅极层例如为多晶硅层。采用光刻工艺将栅极层形成不同晶体管的栅极(例如31、32、33、34)。对栅极两侧的源漏区进行离子注入,形成对应晶体管的源极和漏极。例如对像素区X进行N型离子注入(掺杂),形成的源极41、漏极51,以及漏极42。对像素区X进行P型离子注入(掺杂)形成光电二极管表面P区(钉扎层)19。栅极31、源极41和漏极51构成像素区X的NMOS管。示例性的,对逻辑区的第一逻辑区I进行N型离子注入,形成源极43、漏极53;栅极33、源极43和漏极53例如构成第一逻辑区I的NMOS管。对逻辑区的第二逻辑区II进行P型离子注入,形成源极44、漏极54;栅极34、源极44和漏极54例如构成第二逻辑区II的PMOS管。其他示例中,也可在第一逻辑区I形成PMOS管,在第二逻辑区II形成NMOS管,根据实际需要配置。As shown in FIG. 9 , a gate electrode and a source and drain electrode are formed. Specifically, a gate electrode layer on the silicon oxide layer 12 is formed, and the gate electrode layer is, for example, a polysilicon layer. The gate layer is formed into gates of different transistors (eg 31 , 32 , 33 , 34 ) using a photolithography process. Ion implantation is performed on the source and drain regions on both sides of the gate to form the source and drain of the corresponding transistor. For example, N-type ion implantation (doping) is performed on the pixel region X to form a source electrode 41 , a drain electrode 51 , and a drain electrode 42 . P-type ion implantation (doping) is performed on the pixel region X to form a P region (pinning layer) 19 on the surface of the photodiode. The gate electrode 31 , the source electrode 41 and the drain electrode 51 constitute the NMOS transistor of the pixel region X. Exemplarily, N-type ion implantation is performed on the first logic region I of the logic region to form a source electrode 43 and a drain electrode 53; P-type ion implantation is performed on the second logic region II of the logic region to form a source electrode 44 and a drain electrode 54; the gate electrode 34, the source electrode 44 and the drain electrode 54 constitute, for example, a PMOS transistor of the second logic region II. In other examples, PMOS transistors may also be formed in the first logic region I, and NMOS transistors may be formed in the second logic region II, which are configured according to actual needs.

如图9和图10所示,像素区X包括位于衬底10中的多个晶体管,图9仅示出了部分晶体管。其中,像素区中的多个晶体管包括由像素区的衬底中的N型掺杂层形成的晶体管。像素区中可以包括光电二极管PD和多种类型的晶体管,多种类型的晶体管例如传输晶体管TX、复位晶体管RST、源极跟随晶体管SF、行选择晶体管RS、转换增益控制晶体管等等。光电二极管PD可为掩埋型光电二极管。As shown in FIG. 9 and FIG. 10 , the pixel area X includes a plurality of transistors located in the substrate 10 , and FIG. 9 only shows some of the transistors. Wherein, the plurality of transistors in the pixel region include transistors formed by an N-type doped layer in the substrate of the pixel region. The pixel region may include a photodiode PD and various types of transistors such as transfer transistor TX, reset transistor RST, source follower transistor SF, row select transistor RS, conversion gain control transistor, and the like. The photodiode PD may be a buried photodiode.

在操作过程中,光电二极管PD产生的光电荷在曝光过程中响应于入射光。传输晶体管TX连接到传输信号,该信号控制传输晶体管TX传输光电二极管PD中累积的电荷到浮动扩散区域(FD),浮动扩散区域(FD)亦即漏极42。图9中的栅极32、漏极42和光电二极管N区18构成图10中的传输晶体管TX,光电二极管N区18即为传输晶体管TX的源极。传输晶体管TX可以为MOSFET(金属氧化物半导体场效应晶体管)。复位晶体管RST连接到VDD和浮动扩散区域(亦即漏极42)之间,响应于复位信号以复位像素电路,例如放电或充电浮动扩散区域和光电二极管PD到当前电压。浮动扩散区域(FD)连接到源极跟随晶体管SF。源极跟随晶体管SF连接到VDD和行选择晶体管RS之间,放大信号以响应浮动扩散区域(亦即漏极42)的电位。行选择晶体管RS从源极跟随晶体管SF连接像素电路输出到读出列,或位线BIT,响应于行选择控制信号。During operation, the photocharges generated by the photodiode PD are responsive to incident light during exposure. The transfer transistor TX is connected to a transfer signal which controls the transfer transistor TX to transfer the charge accumulated in the photodiode PD to the floating diffusion region (FD), ie the drain 42 . The gate 32 , the drain 42 and the photodiode N region 18 in FIG. 9 constitute the transfer transistor TX in FIG. 10 , and the photodiode N region 18 is the source of the transfer transistor TX. The transfer transistor TX may be a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). A reset transistor RST is connected between VDD and the floating diffusion region (ie, drain 42) and is responsive to a reset signal to reset the pixel circuit, eg, discharge or charge the floating diffusion region and photodiode PD to the current voltage. The floating diffusion region (FD) is connected to the source follower transistor SF. The source follower transistor SF is connected between VDD and the row select transistor RS, amplifying the signal in response to the potential of the floating diffusion region (ie, drain 42). The row select transistor RS connects the pixel circuit output from the source follower transistor SF to the readout column, or bit line BIT, in response to the row select control signal.

入射光使得光电二极管PD内产生电荷。当光电二极管PD内的光产生电子逐渐累加,它的电压增加(电子是负电荷)。光电二极管PD的电压或电荷表示在曝光期间入射到光电二极管PD的强度。电荷通过传输晶体管TX从光电二极管PD传输到浮动扩散区域(亦即漏极42),使得浮动扩散区域的电压在曝光期间通过累加在光电二极管PD上的光生电子成比例地降低。Incident light causes charges to be generated in the photodiode PD. As the light-generated electrons in the photodiode PD gradually accumulate, its voltage increases (the electrons are negatively charged). The voltage or charge of the photodiode PD represents the intensity incident on the photodiode PD during exposure. Charge is transferred from photodiode PD to the floating diffusion region (ie, drain 42 ) through transfer transistor TX, so that the voltage of the floating diffusion region decreases proportionally during exposure by photogenerated electrons accumulated on photodiode PD.

图11至图12为本发明第二实施例的图像传感器制作方法示意图。第二实施例中,结合图2b和图11所示,衬底10表面依次形成有氧化硅层12和氮化硅层13;衬底10上形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,还可形成第一保护层25,第一保护层25覆盖氮化硅层13和浅沟槽隔离(STI)11的表面。第一保护层25可包括氮化硅层(Si3N4)、氮化硅层-氧化硅层-氮化硅层(Si3N4-SiO2-Si3N4)的堆叠层,以及多晶硅层中的至少一种。如图12所示,形成第五光阻层19,第五光阻层19覆盖所述像素区X的第一保护层25,暴露出所述逻辑区L。以第五光阻层19为掩膜,刻蚀去除位于所述逻辑区L的第一保护层25和氮化硅层13b,可采用干法或湿法工艺去除。例如采用热磷酸(H3PO4)湿法刻蚀去除位于所述逻辑区的第一保护层25和氮化硅层13b。接着,像素区X有第一保护层25和氮化硅层13a共同作为保护层,执行所述逻辑区L的离子注入工艺;逻辑区L的离子注入包括例如IO(输入和/或输出)器件和核心器件的N阱、P阱以及沟道区等多次光刻-离子注入的循环。接着,去除覆盖所述像素区X的第一保护层25和氮化硅层13a。执行所述像素区X的离子注入工艺,像素区X的离子注入包括感光区和组成像素单元的各晶体管阱区、沟道区的光刻-离子注入的循环。之后再形成器件的栅极以及源漏区。第二实施例中,第一保护层25和像素区的氮化硅层13a共同保护像素区X,从而增强对像素区的保护以进一步减小逻辑区加工工艺对像素区的污染和损伤,提升图像传感器的质量。11 to 12 are schematic diagrams of a method for fabricating an image sensor according to a second embodiment of the present invention. In the second embodiment, as shown in FIG. 2 b and FIG. 11 , a silicon oxide layer 12 and a silicon nitride layer 13 are sequentially formed on the surface of the substrate 10 ; a shallow trench isolation (STI) 11 is formed on the substrate 10 to perform chemical mechanical After grinding (CMP) to make the upper surfaces of the shallow trench isolation (STI) 11 and the silicon nitride layer 13 flush, a first protective layer 25 can also be formed, and the first protective layer 25 covers the silicon nitride layer 13 and the shallow trenches Surface of isolation (STI) 11. The first protective layer 25 may include a silicon nitride layer (Si 3 N 4 ), a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer (Si 3 N 4 -SiO 2 -Si 3 N 4 ), and at least one of the polysilicon layers. As shown in FIG. 12 , a fifth photoresist layer 19 is formed. The fifth photoresist layer 19 covers the first protective layer 25 of the pixel region X and exposes the logic region L. As shown in FIG. Using the fifth photoresist layer 19 as a mask, the first protective layer 25 and the silicon nitride layer 13b located in the logic region L are etched and removed, and can be removed by a dry method or a wet method. For example, the first protective layer 25 and the silicon nitride layer 13b located in the logic region are removed by wet etching with hot phosphoric acid (H 3 PO 4 ). Next, the pixel region X has the first protective layer 25 and the silicon nitride layer 13a together as a protective layer, and the ion implantation process of the logic region L is performed; the ion implantation of the logic region L includes, for example, IO (input and/or output) devices and multiple cycles of lithography-ion implantation in the N-well, P-well and channel regions of the core device. Next, the first protective layer 25 and the silicon nitride layer 13a covering the pixel region X are removed. The ion implantation process of the pixel region X is performed, and the ion implantation of the pixel region X includes a photolithography-ion implantation cycle of the photosensitive region and the well regions and channel regions of the transistors constituting the pixel unit. Then the gate and source and drain regions of the device are formed. In the second embodiment, the first protective layer 25 and the silicon nitride layer 13a of the pixel region jointly protect the pixel region X, thereby enhancing the protection of the pixel region to further reduce the contamination and damage to the pixel region caused by the logic region processing process, improving the The quality of the image sensor.

本发明还提供另一种图像传感器的制作方法,依次包括如下步骤:The present invention also provides another manufacturing method of an image sensor, which includes the following steps in sequence:

提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;

去除覆盖所述逻辑区和所述像素区的氮化硅层;removing the silicon nitride layer covering the logic region and the pixel region;

形成第二保护层,所述第二保护层覆盖所述氧化硅层和所述浅沟槽隔离的表面;forming a second protective layer, the second protective layer covering the surface of the silicon oxide layer and the shallow trench isolation;

去除覆盖所述逻辑区的第二保护层,保留覆盖所述像素区的第二保护层;removing the second protective layer covering the logic region and retaining the second protective layer covering the pixel region;

执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;

去除覆盖所述像素区的第二保护层;removing the second protective layer covering the pixel area;

执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.

图13至图14为本发明另一种图像传感器制作方法示意图。结合图2b和图13所示,衬底10表面依次形成有氧化硅层12和氮化硅层13;刻蚀氮化硅层13、氧化硅层12以及部分厚度的衬底10形成沟槽,在沟槽中填充氧化物形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,去除覆盖所述逻辑区X和所述像素区L的氮化硅层13。如图14所示,重新形成第二保护层45,第二保护层45覆盖氧化硅层12和浅沟槽隔离(STI)11的表面,通过化学机械研磨(CMP)使第二保护层45的顶面齐平,第二保护层45CMP后的顶面高于浅沟槽隔离(STI)11的顶面,亦即第二保护层45将浅沟槽隔离(STI)11的顶部包住。第二保护层45可包括氮化硅层(Si3N4)、氮化硅层-氧化硅层-氮化硅层(Si3N4-SiO2-Si3N4)的堆叠层,以及多晶硅层中的至少一种。13 to 14 are schematic diagrams of another method for fabricating an image sensor according to the present invention. 2b and 13, a silicon oxide layer 12 and a silicon nitride layer 13 are sequentially formed on the surface of the substrate 10; the silicon nitride layer 13, the silicon oxide layer 12 and the partially thick substrate 10 are etched to form trenches, Oxide is filled in the trench to form a shallow trench isolation (STI) 11, and chemical mechanical polishing (CMP) is performed to make the upper surface of the shallow trench isolation (STI) 11 and the silicon nitride layer 13 flush, and then the cover is removed. The logic region X and the silicon nitride layer 13 of the pixel region L. As shown in FIG. 14 , the second protective layer 45 is re-formed, and the second protective layer 45 covers the surface of the silicon oxide layer 12 and the shallow trench isolation (STI) 11 . The top surface is flush, and the top surface of the second protective layer 45 after CMP is higher than the top surface of the STI 11 , that is, the second protective layer 45 wraps the top of the STI 11 . The second protective layer 45 may include a silicon nitride layer (Si 3 N 4 ), a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer (Si 3 N 4 -SiO 2 -Si 3 N 4 ), and at least one of the polysilicon layers.

经过刻蚀工艺形成STI的沟槽以及化学机械研磨(CMP)工艺,原始形成的氮化硅层13的厚度均匀性和质量都会下降,通过去除氮化硅层13,重新形成第二保护层45,可以保证第二保护层45良好的质量和均匀性,而且可以把沟槽隔离(STI)11的顶部包住增强抗污染能力。其他示例中,也可将氧化硅层12去除,重新再生长一层氧化硅层,同理,经过刻蚀工艺形成STI的沟槽工艺过程中,氧化硅层12可能遭受一定损伤,重新再生长一层氧化硅层以保证衬底10表面的氧化硅层的质量。Through the etching process to form the STI trench and the chemical mechanical polishing (CMP) process, the thickness uniformity and quality of the originally formed silicon nitride layer 13 will decrease. By removing the silicon nitride layer 13, the second protective layer 45 is formed again. , the good quality and uniformity of the second protective layer 45 can be ensured, and the top of the trench isolation (STI) 11 can be wrapped to enhance the anti-pollution capability. In other examples, the silicon oxide layer 12 can also be removed, and a new silicon oxide layer can be grown again. Similarly, in the process of forming the STI trench through the etching process, the silicon oxide layer 12 may suffer certain damage and grow again. A silicon oxide layer is used to ensure the quality of the silicon oxide layer on the surface of the substrate 10 .

接着,去除覆盖所述逻辑区L的第二保护层45,保留覆盖所述像素区X的第二保护层45;执行所述逻辑区L的离子注入工艺;去除覆盖所述像素区的第二保护层45;执行所述像素区X的离子注入工艺。Next, the second protective layer 45 covering the logic region L is removed, and the second protective layer 45 covering the pixel region X is retained; the ion implantation process for the logic region L is performed; the second protective layer 45 covering the pixel region is removed protective layer 45 ; perform the ion implantation process of the pixel region X.

本发明实施例通过去除覆盖所述逻辑区和所述像素区的氮化硅层,重新形成第二保护层,可以保证第二保护层良好的质量和均匀性;去除覆盖所述逻辑区的第二保护层,保留覆盖所述像素区的第二保护层;执行所述逻辑区的离子注入工艺过程中,像素区有第二保护层的保护,有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。In the embodiment of the present invention, by removing the silicon nitride layer covering the logic region and the pixel region, and forming a second protective layer again, the good quality and uniformity of the second protective layer can be ensured; Two protective layers, retaining the second protective layer covering the pixel area; during the ion implantation process of the logic area, the pixel area is protected by the second protective layer, which effectively reduces the pollution and pollution of the logic area processing process to the pixel area. Physical damage to improve the quality of the image sensor.

综上所述,本发明提供一种图像传感器的制作方法,依次包括如下步骤:提供衬底,衬底包括像素区和逻辑区;在衬底的表面形成覆盖像素区和逻辑区的氧化硅层;形成覆盖氧化硅层的氮化硅层;在氮化硅层、氧化硅层和衬底中形成浅沟槽隔离;去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层;执行逻辑区的离子注入工艺;去除覆盖像素区的氮化硅层;执行像素区的离子注入工艺。本发明去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层,在逻辑区的离子注入工艺完成之后,再去除覆盖像素区的氮化硅层,利用像素区保留的氮化硅层作为保护层,从而有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。In summary, the present invention provides a method for fabricating an image sensor, which sequentially includes the following steps: providing a substrate, the substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate forming a silicon nitride layer covering the silicon oxide layer; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region ; Perform an ion implantation process in the logic region; remove the silicon nitride layer covering the pixel region; perform an ion implantation process in the pixel region. In the present invention, the silicon nitride layer covering the logic region is removed, and the silicon nitride layer covering the pixel region is retained. After the ion implantation process in the logic region is completed, the silicon nitride layer covering the pixel region is removed, and the nitrided silicon nitride layer retained in the pixel region is used. The silicon layer is used as a protective layer, thereby effectively reducing the pollution and physical damage to the pixel area caused by the logic area processing process, and improving the quality of the image sensor.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于与实施例公开的器件相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. As for the method disclosed in the embodiment, since it corresponds to the device disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

上述描述仅是对本发明较佳实施例的描述,并非对本发明权利范围的任何限定,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the rights of the present invention. Any person skilled in the art can use the methods and technical contents disclosed above to improve the present invention without departing from the spirit and scope of the present invention. The technical solutions are subject to possible changes and modifications. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention belong to the technical solutions of the present invention. protected range.

Claims (10)

1.一种图像传感器的制作方法,其特征在于,依次包括如下步骤:1. a manufacturing method of an image sensor, is characterized in that, comprises the following steps successively: 提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; 去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region; 执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region; 去除覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the pixel area; 执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed. 2.如权利要求1所述的图像传感器的制作方法,其特征在于,形成所述浅沟槽隔离之后,还包括:2. The method for fabricating an image sensor according to claim 1, wherein after forming the shallow trench isolation, the method further comprises: 形成第一保护层,所述第一保护层覆盖所述氮化硅层和所述浅沟槽隔离的表面;forming a first protective layer, the first protective layer covering the silicon nitride layer and the surface of the shallow trench isolation; 在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述第一保护层,并保留覆盖所述像素区的所述第一保护层。In the step of removing the silicon nitride layer covering the logic region, the first protection layer covering the logic region is also removed, and the first protection layer covering the pixel region remains. 3.如权利要求2所述的图像传感器的制作方法,其特征在于,所述第一保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。3. The method for fabricating an image sensor according to claim 2, wherein the first protective layer comprises a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and polysilicon at least one of the layers. 4.如权利要求1所述的图像传感器的制作方法,其特征在于,形成所述浅沟槽隔离之后,还包括:4. The method for fabricating an image sensor according to claim 1, wherein after forming the shallow trench isolation, the method further comprises: 形成隔离层,所述隔离层覆盖所述氮化硅层和所述浅沟槽隔离的表面,所述隔离层的材质包括氧化硅层和/或氮氧化硅层;forming an isolation layer, the isolation layer covers the surface of the silicon nitride layer and the shallow trench isolation, and the material of the isolation layer includes a silicon oxide layer and/or a silicon oxynitride layer; 在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述隔离层,并保留覆盖所述像素区的所述隔离层。In the step of removing the silicon nitride layer covering the logic region, the isolation layer covering the logic region is also removed, and the isolation layer covering the pixel region remains. 5.如权利要求1至4任意一项所述的图像传感器的制作方法,其特征在于,去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层,具体包括:5. The method for fabricating an image sensor according to any one of claims 1 to 4, wherein removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region, specifically comprising: : 形成第一光阻层,所述第一光阻层覆盖所述像素区,暴露出所述逻辑区;forming a first photoresist layer, the first photoresist layer covering the pixel region and exposing the logic region; 以所述第一光阻层为掩膜,干法或湿法刻蚀去除覆盖所述逻辑区的氮化硅层。Using the first photoresist layer as a mask, dry or wet etching is performed to remove the silicon nitride layer covering the logic region. 6.如权利要求1至4任意一项所述的图像传感器的制作方法,其特征在于,所述逻辑区包括第一逻辑区和第二逻辑区;执行所述逻辑区的离子注入工艺,具体包括:6. The method for fabricating an image sensor according to any one of claims 1 to 4, wherein the logic region comprises a first logic region and a second logic region; performing an ion implantation process for the logic region, specifically include: 形成第二光阻层,所述第二光阻层覆盖所述像素区和所述第二逻辑区,暴露出所述第一逻辑区,以所述第二光阻层为掩膜,对所述第一逻辑区进行P型离子注入,在所述第一逻辑区形成P型阱区;去除所述第二光阻层;forming a second photoresist layer, the second photoresist layer covering the pixel area and the second logic area, exposing the first logic area, using the second photoresist layer as a mask, to performing P-type ion implantation on the first logic region to form a P-type well region in the first logic region; removing the second photoresist layer; 形成第三光阻层,所述第三光阻层覆盖所述像素区和所述第一逻辑区,暴露出所述第二逻辑区,以所述第三光阻层为掩膜,对所述第二逻辑区进行N型离子注入,在所述第二逻辑区形成N型阱区;去除所述第三光阻层。forming a third photoresist layer, the third photoresist layer covering the pixel area and the first logic area, exposing the second logic area, using the third photoresist layer as a mask, to N-type ion implantation is performed on the second logic region to form an N-type well region in the second logic region; and the third photoresist layer is removed. 7.如权利要求1至4任意一项所述的图像传感器的制作方法,其特征在于,执行所述像素区的离子注入工艺,具体包括:7. The method for fabricating an image sensor according to any one of claims 1 to 4, wherein performing an ion implantation process in the pixel region specifically comprises: 对所述像素区进行P型离子注入,形成位于所述浅沟槽隔离一侧的P型阱区;performing P-type ion implantation on the pixel region to form a P-type well region on one side of the shallow trench isolation; 对所述像素区进行N型离子注入,形成位于所述浅沟槽隔离另一侧的光电二极管N区。N-type ion implantation is performed on the pixel region to form a photodiode N region on the other side of the shallow trench isolation. 8.如权利要求7所述的图像传感器的制作方法,其特征在于,还包括:8. The method for manufacturing an image sensor according to claim 7, further comprising: 在所述像素区和所述逻辑区形成对应不同晶体管的栅极;forming gates corresponding to different transistors in the pixel region and the logic region; 对所述栅极两侧的所述衬底中进行离子注入,形成对应各晶体管的源极和漏极,以及光电二极管表面P区。Ion implantation is performed into the substrate on both sides of the gate to form source and drain electrodes corresponding to each transistor and a P region on the surface of the photodiode. 9.一种图像传感器的制作方法,其特征在于,依次包括如下步骤:9. A method for making an image sensor, comprising the steps of: 提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; 去除覆盖所述逻辑区和所述像素区的所述氮化硅层;removing the silicon nitride layer covering the logic region and the pixel region; 形成第二保护层,所述第二保护层覆盖所述氧化硅层和所述浅沟槽隔离的表面;forming a second protective layer, the second protective layer covering the surface of the silicon oxide layer and the shallow trench isolation; 去除覆盖所述逻辑区的所述第二保护层,保留覆盖所述像素区的所述第二保护层;removing the second protective layer covering the logic region and retaining the second protective layer covering the pixel region; 执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region; 去除覆盖所述像素区的第二保护层;removing the second protective layer covering the pixel area; 执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed. 10.如权利要求9所述的图像传感器的制作方法,其特征在于,所述第二保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。10. The method for fabricating an image sensor according to claim 9, wherein the second protective layer comprises a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and polysilicon at least one of the layers.
CN202210646189.6A 2022-06-08 2022-06-08 Method for manufacturing image sensor Pending CN114864615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210646189.6A CN114864615A (en) 2022-06-08 2022-06-08 Method for manufacturing image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210646189.6A CN114864615A (en) 2022-06-08 2022-06-08 Method for manufacturing image sensor

Publications (1)

Publication Number Publication Date
CN114864615A true CN114864615A (en) 2022-08-05

Family

ID=82624727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210646189.6A Pending CN114864615A (en) 2022-06-08 2022-06-08 Method for manufacturing image sensor

Country Status (1)

Country Link
CN (1) CN114864615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276299A (en) * 2023-11-21 2023-12-22 粤芯半导体技术股份有限公司 A CIS device structure and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029463A1 (en) * 2005-08-05 2007-02-08 Byung-Jun Park Image sensor and method of manufacturing the same
US20080160722A1 (en) * 2006-12-27 2008-07-03 Dongbu Hitek Co., Ltd. Method for manufacturing semiconductor device
CN101645420A (en) * 2008-08-04 2010-02-10 中芯国际集成电路制造(上海)有限公司 CMOS image sensor and forming method thereof, and method for forming semiconductor devices
KR20110060745A (en) * 2009-11-30 2011-06-08 주식회사 하이닉스반도체 Semiconductor Device Manufacturing Method for Pinhole Prevention
CN104716098A (en) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 Method for manufacturing flash memory
CN109979943A (en) * 2017-12-28 2019-07-05 联华电子股份有限公司 Semiconductor element and its manufacturing method
CN110970346A (en) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 Semiconductor structure and preparation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029463A1 (en) * 2005-08-05 2007-02-08 Byung-Jun Park Image sensor and method of manufacturing the same
US20080160722A1 (en) * 2006-12-27 2008-07-03 Dongbu Hitek Co., Ltd. Method for manufacturing semiconductor device
CN101645420A (en) * 2008-08-04 2010-02-10 中芯国际集成电路制造(上海)有限公司 CMOS image sensor and forming method thereof, and method for forming semiconductor devices
KR20110060745A (en) * 2009-11-30 2011-06-08 주식회사 하이닉스반도체 Semiconductor Device Manufacturing Method for Pinhole Prevention
CN104716098A (en) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 Method for manufacturing flash memory
CN109979943A (en) * 2017-12-28 2019-07-05 联华电子股份有限公司 Semiconductor element and its manufacturing method
CN110970346A (en) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 Semiconductor structure and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276299A (en) * 2023-11-21 2023-12-22 粤芯半导体技术股份有限公司 A CIS device structure and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101617045B1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US7910426B2 (en) Pixel and imager device having high-k dielectrics in isolation structures
US7855407B2 (en) CMOS image sensor and method for manufacturing the same
JP5188441B2 (en) Photoelectric conversion device and imaging system
US7579638B2 (en) Solid-state image pickup device and manufacturing method thereof
TWI870262B (en) Image sensor and method for forming the same
WO2014002361A1 (en) Solid-state image pick-up device and method for producing same
TW202203445A (en) Transistors having increased effective channel width
JP2010212536A (en) Method of manufacturing solid-state imaging device
US7611918B2 (en) CMOS image sensor and method for fabricating the same
US20060138470A1 (en) CMOS image sensor and method for fabricating the same
US8071417B2 (en) Image sensor and fabrication method thereof
CN114864615A (en) Method for manufacturing image sensor
US7432543B2 (en) Image sensor pixel having photodiode with indium pinning layer
US20070145443A1 (en) CMOS Image Sensor and Method of Manufacturing the Same
US20070069259A1 (en) CMOS image sensor and method of manufacturing the same
US20070145444A1 (en) CMOS Image Sensor and Method for Manufacturing the Same
US20060001062A1 (en) Method for fabricating CMOS image sensor
JP4763242B2 (en) Solid-state imaging device and manufacturing method thereof
US7598135B2 (en) Method for fabricating CMOS image sensor
US7459332B2 (en) CMOS image sensor and method for manufacturing the same
JP2005347740A (en) Photoelectric converter and imaging system
JP4115446B2 (en) Manufacturing method of CMOS image sensor
JP2007141937A (en) Solid-state imaging device, semiconductor device and method of manufacturing the same
CN101834191B (en) Solid-state imaging device, electronic device, and method for manufacturing solid-state imaging device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination