CN114864615A - Method for manufacturing image sensor - Google Patents
Method for manufacturing image sensor Download PDFInfo
- Publication number
- CN114864615A CN114864615A CN202210646189.6A CN202210646189A CN114864615A CN 114864615 A CN114864615 A CN 114864615A CN 202210646189 A CN202210646189 A CN 202210646189A CN 114864615 A CN114864615 A CN 114864615A
- Authority
- CN
- China
- Prior art keywords
- region
- silicon nitride
- logic
- layer
- nitride layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000010410 layer Substances 0.000 claims abstract description 253
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 118
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 109
- 238000002955 isolation Methods 0.000 claims abstract description 57
- 238000005468 ion implantation Methods 0.000 claims abstract description 55
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 55
- 239000011241 protective layer Substances 0.000 claims abstract description 54
- 239000000758 substrate Substances 0.000 claims abstract description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229920002120 photoresistant polymer Polymers 0.000 claims description 47
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229920005591 polysilicon Polymers 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000004380 ashing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- -1 boron ions Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/014—Manufacture or treatment of image sensors covered by group H10F39/12 of CMOS image sensors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/028—Manufacture or treatment of image sensors covered by group H10F39/12 performed after manufacture of the image sensors, e.g. annealing, gettering of impurities, short-circuit elimination or recrystallisation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于集成电路制造技术领域,具体涉及一种图像传感器的制作方法。The invention belongs to the technical field of integrated circuit manufacturing, and in particular relates to a manufacturing method of an image sensor.
背景技术Background technique
CMOS图像传感器是一种将光学图像转换成电信号的半导体器件。CMOS图像传感器集成在金属氧化物半导体材料上,被广泛应用于数码相机、照相手机、数码摄像机、医疗用摄像装置(例如胃镜)、车用摄像装置等领域之中。A CMOS image sensor is a semiconductor device that converts optical images into electrical signals. CMOS image sensors are integrated on metal oxide semiconductor materials and are widely used in digital cameras, camera phones, digital video cameras, medical imaging devices (eg gastroscopes), and automotive imaging devices.
CMOS图像传感器通常包括像素区和外围逻辑区,对CMOS图像传感器而言,用于感光的像素区的特性直接决定了最终图像传感器的性能。图像传感器的性能参数包括量子效率、暗电流、动态范围和信噪比等。因此,像素区的制作至关重要,常规工艺在进行逻辑区加工时,像素区会完全裸露出来,或者在像素区表面只有一薄层氧化硅层保护。逻辑区制程带来的污染和物理损伤会不可避免地对像素区造成影响,从而形成像素缺陷(例如坏点,噪声等)。A CMOS image sensor usually includes a pixel area and a peripheral logic area. For a CMOS image sensor, the characteristics of the pixel area used for light-sensing directly determine the performance of the final image sensor. The performance parameters of image sensors include quantum efficiency, dark current, dynamic range, and signal-to-noise ratio. Therefore, the fabrication of the pixel area is very important. When the logic area is processed in a conventional process, the pixel area will be completely exposed, or only a thin layer of silicon oxide will protect the surface of the pixel area. The contamination and physical damage brought by the logic area process will inevitably affect the pixel area, thereby forming pixel defects (such as dead pixels, noise, etc.).
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种图像传感器的制作方法,降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。The purpose of the present invention is to provide a manufacturing method of an image sensor, which can reduce the pollution and physical damage to the pixel area caused by the logic area processing process, and improve the quality of the image sensor.
本发明提供一种图像传感器的制作方法,包括:The present invention provides a method for manufacturing an image sensor, comprising:
提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;
去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region;
执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;
去除覆盖所述像素区的氮化硅层;removing the silicon nitride layer covering the pixel area;
执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.
进一步的,形成所述浅沟槽隔离之后,还包括:Further, after forming the shallow trench isolation, the method further includes:
形成第一保护层,所述第一保护层覆盖所述氮化硅层和所述浅沟槽隔离的表面;forming a first protective layer, the first protective layer covering the silicon nitride layer and the surface of the shallow trench isolation;
在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述第一保护层,并保留覆盖所述像素区的所述第一保护层。In the step of removing the silicon nitride layer covering the logic region, the first protection layer covering the logic region is also removed, and the first protection layer covering the pixel region remains.
进一步的,所述第一保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。Further, the first protective layer includes at least one of a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and a polysilicon layer.
进一步的,形成所述浅沟槽隔离之后,还包括:Further, after forming the shallow trench isolation, the method further includes:
形成隔离层,所述隔离层覆盖所述氮化硅层和所述浅沟槽隔离的表面,所述隔离层的材质包括氧化硅层和/或氮氧化硅层;forming an isolation layer, the isolation layer covers the surface of the silicon nitride layer and the shallow trench isolation, and the material of the isolation layer includes a silicon oxide layer and/or a silicon oxynitride layer;
在去除覆盖所述逻辑区的氮化硅层的步骤中,还去除覆盖所述逻辑区的所述隔离层,并保留覆盖所述像素区的所述隔离层。In the step of removing the silicon nitride layer covering the logic region, the isolation layer covering the logic region is also removed, and the isolation layer covering the pixel region remains.
进一步的,去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层,具体包括:Further, removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region, specifically including:
形成第一光阻层,所述第一光阻层覆盖所述像素区,暴露出所述逻辑区;forming a first photoresist layer, the first photoresist layer covering the pixel region and exposing the logic region;
以所述第一光阻层为掩膜,干法或湿法刻蚀去除覆盖所述逻辑区的氮化硅层。Using the first photoresist layer as a mask, dry or wet etching is performed to remove the silicon nitride layer covering the logic region.
进一步的,所述逻辑区包括第一逻辑区和第二逻辑区;执行所述逻辑区的离子注入工艺,具体包括:Further, the logic region includes a first logic region and a second logic region; and performing an ion implantation process for the logic region specifically includes:
形成第二光阻层,所述第二光阻层覆盖所述像素区和所述第二逻辑区,暴露出所述第一逻辑区,以所述第二光阻层为掩膜,对所述第一逻辑区进行P型离子注入,在所述第一逻辑区形成P型阱区;去除所述第二光阻层;forming a second photoresist layer, the second photoresist layer covering the pixel area and the second logic area, exposing the first logic area, using the second photoresist layer as a mask, to performing P-type ion implantation on the first logic region to form a P-type well region in the first logic region; removing the second photoresist layer;
形成第三光阻层,所述第三光阻层覆盖所述像素区和所述第一逻辑区,暴露出所述第二逻辑区,以所述第三光阻层为掩膜,对所述第二逻辑区进行N型离子注入,在所述第二逻辑区形成N型阱区;去除所述第三光阻层。forming a third photoresist layer, the third photoresist layer covering the pixel area and the first logic area, exposing the second logic area, using the third photoresist layer as a mask, to N-type ion implantation is performed on the second logic region to form an N-type well region in the second logic region; and the third photoresist layer is removed.
进一步的,执行所述像素区的离子注入工艺,具体包括:对所述像素区进行P型离子注入,形成位于所述浅沟槽隔离一侧的P型阱区;Further, performing the ion implantation process in the pixel region specifically includes: performing P-type ion implantation on the pixel region to form a P-type well region on one side of the shallow trench isolation;
对所述像素区进行N型离子注入,形成位于所述浅沟槽隔离另一侧的光电二极管N区。N-type ion implantation is performed on the pixel region to form an N region of the photodiode on the other side of the shallow trench isolation.
进一步的,还包括:Further, it also includes:
在所述像素区和所述逻辑区形成对应不同晶体管的栅极;forming gates corresponding to different transistors in the pixel region and the logic region;
对所述栅极两侧的所述衬底中进行离子注入,形成对应各晶体管的源极和漏极,以及光电二极管表面P区。Ion implantation is performed into the substrate on both sides of the gate to form the source and drain corresponding to each transistor and the P region on the surface of the photodiode.
本发明还提供一种图像传感器的制作方法,依次包括如下步骤:The present invention also provides a manufacturing method of an image sensor, which sequentially includes the following steps:
提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;
去除覆盖所述逻辑区和所述像素区的所述氮化硅层;removing the silicon nitride layer covering the logic region and the pixel region;
形成第二保护层,所述第二保护层覆盖所述氧化硅层和所述浅沟槽隔离的表面;forming a second protective layer, the second protective layer covering the surface of the silicon oxide layer and the shallow trench isolation;
去除覆盖所述逻辑区的所述第二保护层,保留覆盖所述像素区的所述第二保护层;removing the second protective layer covering the logic region and retaining the second protective layer covering the pixel region;
执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;
去除覆盖所述像素区的第二保护层;removing the second protective layer covering the pixel area;
执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.
进一步的,所述第二保护层包括氮化硅层、氮化硅层-氧化硅层-氮化硅层的堆叠层,以及多晶硅层中的至少一种。Further, the second protective layer includes at least one of a silicon nitride layer, a stacked layer of a silicon nitride layer-silicon oxide layer-silicon nitride layer, and a polysilicon layer.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供一种图像传感器的制作方法,依次包括如下步骤:提供衬底,衬底包括像素区和逻辑区;在衬底的表面形成覆盖像素区和逻辑区的氧化硅层;形成覆盖氧化硅层的氮化硅层;在氮化硅层、氧化硅层和衬底中形成浅沟槽隔离;去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层;执行逻辑区的离子注入工艺;去除覆盖像素区的氮化硅层;执行像素区的离子注入工艺。本发明去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层,在逻辑区的离子注入工艺完成之后,再去除覆盖像素区的氮化硅层,利用像素区保留的氮化硅层作为保护层,从而有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。The invention provides a method for fabricating an image sensor, which sequentially includes the following steps: providing a substrate, the substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate; forming a silicon oxide covering forming a shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; removing the silicon nitride layer covering the logic area, leaving the silicon nitride layer covering the pixel area; performing the Ion implantation process; removing the silicon nitride layer covering the pixel area; performing an ion implantation process in the pixel area. In the present invention, the silicon nitride layer covering the logic region is removed, and the silicon nitride layer covering the pixel region is retained. After the ion implantation process in the logic region is completed, the silicon nitride layer covering the pixel region is removed, and the nitrided silicon nitride layer retained in the pixel region is used. The silicon layer is used as a protective layer, thereby effectively reducing the pollution and physical damage to the pixel area caused by the logic area processing process, and improving the quality of the image sensor.
附图说明Description of drawings
图1为本发明实施例的图像传感器制作方法流程示意图。FIG. 1 is a schematic flowchart of a method for fabricating an image sensor according to an embodiment of the present invention.
图2a至图9为本发明一种图像传感器的第一实施例制作方法各步骤示意图。2a to FIG. 9 are schematic diagrams of steps of a manufacturing method of an image sensor according to a first embodiment of the present invention.
图10为本发明一种图像传感器的电路示意图。FIG. 10 is a schematic circuit diagram of an image sensor of the present invention.
图11至图12为本发明一种图像传感器的第二实施例的制作方法示意图。11 to 12 are schematic diagrams of a manufacturing method of an image sensor according to a second embodiment of the present invention.
图13至图14为本发明另一种图像传感器制作方法示意图。13 to 14 are schematic diagrams of another method for fabricating an image sensor according to the present invention.
其中,附图标记如下:Among them, the reference numerals are as follows:
10-衬底;11-浅沟槽隔离;12-氧化硅层;13-氮化硅层;13a-像素区的氮化硅层;13b-逻辑区的氮化硅层;14-第一光阻层;15-第二光阻层;16-第三光阻层;17-第四光阻层;18-光电二极管N区;19-光电二极管表面P区(钉扎层);X-像素区;L-逻辑区;I-第一逻辑区;II-第二逻辑区;21-P型阱区;22-N型阱区;23-P型阱区;24-隔离层;31、32、33、34-栅极;25-第一保护层;45-第二保护层;41、43、44-源极;42、51、53、54-漏极。10-substrate; 11-shallow trench isolation; 12-silicon oxide layer; 13-silicon nitride layer; 13a-silicon nitride layer in pixel area; 13b-silicon nitride layer in logic area; 14-first light 15-second photoresist layer; 16-third photoresist layer; 17-fourth photoresist layer; 18-photodiode N region; 19-photodiode surface P region (pinning layer); X-pixel region; L-logic region; I-first logic region; II-second logic region; 21-P-type well region; 22-N-type well region; 23-P-type well region; 24-isolation layer; 31, 32 , 33, 34-gate; 25-first protective layer; 45-second protective layer; 41, 43, 44-source; 42, 51, 53, 54-drain.
具体实施方式Detailed ways
本发明实施例提供了一种图像传感器的制作方法。以下结合附图和具体实施例对本发明进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图均采用非常简化的形式且使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。Embodiments of the present invention provide a method for fabricating an image sensor. The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become more apparent from the following description. It should be noted that the accompanying drawings are in a very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
为了便于描述,本申请一些实施例可以使用诸如“在…上方”、“在…之下”、“顶部”、“下方”等空间相对术语,以描述如实施例各附图所示的一个元件或部件与另一个(或另一些)元件或部件之间的关系。应当理解的是,除了附图中描述的方位之外,空间相对术语还旨在包括装置在使用或操作中的不同方位。例如若附图中的装置被翻转,则被描述为在其它元件或部件“下方”或“之下”的元件或部件,随后将被定位为在其它元件或部件“上方”或“之上”。下文中的术语“第一”、“第二”、等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换。For the convenience of description, some embodiments of the present application may use spatially relative terms such as "above", "below", "top", "below", etc., to describe an element as shown in the drawings of the embodiments or the relationship of a component to another (or other) elements or components. It should be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" other elements or features would then be oriented "above" or "over" the other elements or features. The terms "first," "second," etc. hereinafter are used to distinguish between similar elements, and are not necessarily used to describe a particular order or temporal order. It is to be understood that these terms so used may be substituted under appropriate circumstances.
本发明实施例提供了一种图像传感器的制作方法,如图1所示,依次包括如下步骤:An embodiment of the present invention provides a method for manufacturing an image sensor, as shown in FIG. 1 , which sequentially includes the following steps:
步骤S1、提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;Step S1, providing a substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate; forming nitrogen covering the silicon oxide layer a silicon oxide layer; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;
步骤S2、去除覆盖所述逻辑区的氮化硅层,保留覆盖所述像素区的氮化硅层;Step S2, removing the silicon nitride layer covering the logic region, and retaining the silicon nitride layer covering the pixel region;
步骤S3、执行所述逻辑区的离子注入工艺;Step S3, performing the ion implantation process of the logic region;
步骤S4、去除覆盖所述像素区的氮化硅层;Step S4, removing the silicon nitride layer covering the pixel area;
步骤S5、执行所述像素区的离子注入工艺。Step S5, performing an ion implantation process in the pixel region.
图2a至图9为本发明第一实施例的图像传感器制作方法各步骤示意图。图10为本发明实施例的图像传感器的电路示意图。下面结合图2至图10详细介绍本发明实施例的晶圆加工方法的各步骤。2a to 9 are schematic diagrams of steps of a method for fabricating an image sensor according to a first embodiment of the present invention. FIG. 10 is a schematic circuit diagram of an image sensor according to an embodiment of the present invention. The steps of the wafer processing method according to the embodiment of the present invention will be described in detail below with reference to FIG. 2 to FIG. 10 .
图2a为本发明第一实施例的图像传感器的俯视示意图;图2b为对应图2a中AA’处的剖面示意图。如图2a和图2b所示,提供衬底10,所述衬底10包括像素区X和逻辑区L,示例性的,所述逻辑区L环绕所述像素区X。所述衬底10的表面形成有覆盖所述像素区X和所述逻辑区L的氧化硅层12,所述氧化硅层12的表面形成有氮化硅层13,对应的,氮化硅层13包括像素区的氮化硅层13a和逻辑区的氮化硅层13b。刻蚀氮化硅层13、氧化硅层12以及部分厚度的衬底10形成沟槽,在沟槽中填充氧化物形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平。Fig. 2a is a schematic top view of the image sensor according to the first embodiment of the present invention; Fig. 2b is a schematic cross-sectional view corresponding to AA' in Fig. 2a. As shown in FIGS. 2a and 2b, a
如图3a所示,形成第一光阻层14,所述第一光阻层14覆盖所述像素区X,暴露出所述逻辑区L。以所述第一光阻层14为掩膜,干法或湿法刻蚀去除覆盖所述逻辑区的氮化硅层13b,例如可采用热磷酸(H3PO4)湿法刻蚀去除位于所述逻辑区的氮化硅层13b。其他示例中,可采用含有氟气和氧气的混合气体的反应性离子刻蚀干法刻蚀去除逻辑区的氮化硅层13b。其他实例中,形成第一光阻层14之前,也可根据实际需要对氮化硅层13进行整体减薄,例如在氮化硅层13厚度较厚的情况下,减薄到合适厚度便于刻蚀工艺进行。As shown in FIG. 3 a , a
如图3a和图3b所示,可选择的,化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,还可形成隔离层24,隔离层24覆盖氮化硅层13和浅沟槽隔离(STI)11的上表面,接着在隔离层24上再形成第一光阻层14,以所述第一光阻层14为掩膜,去除位于所述逻辑区的氮化硅层13b。在一示例中,隔离层24可通过重新生长的一层氧化硅层或者氮氧化硅层形成;在另一示例中,隔离层24可通过对氮化硅层13表面进行氧化形成。隔离层24起到氮化硅层13与第一光阻层14之间的隔离作用和光刻过程中的抗反射作用。刻蚀去除覆盖所述逻辑区的隔离层24和氮化硅层13b。As shown in FIG. 3a and FIG. 3b, optionally, after chemical mechanical polishing (CMP) makes the upper surface of the shallow trench isolation (STI) 11 and the
如图3a和图4所示,采用灰化工艺去除所述第一光阻层14,并进行湿法清洗以去除灰化和/或刻蚀工艺形成的颗粒杂质或残留物。As shown in FIG. 3 a and FIG. 4 , the
如图5所示,逻辑区L可形成NMOS管和PMOS管,NMOS管形成于P型阱区,PMOS管形成于N型阱区。逻辑区L包括第一逻辑区I和第二逻辑区II。第一逻辑区I例如用于形成P型阱区,第二逻辑区例如用于形成N型阱区。在其他实例中,第一逻辑区也可用于形成N型阱区,第二逻辑区可用于形成P型阱区,根据实际需要配置。形成第二光阻层15,第二光阻层15覆盖像素区X和逻辑区的第二逻辑区II,暴露出逻辑区的第一逻辑区I。以第二光阻层15为掩膜,对第一逻辑区I进行离子注入,例如注入高能硼离子形成P型阱区21,用于制造NMOS管,之后灰化工艺去除第二光阻层15。As shown in FIG. 5 , an NMOS transistor and a PMOS transistor can be formed in the logic region L, the NMOS transistor is formed in the P-type well region, and the PMOS transistor is formed in the N-type well region. The logic area L includes a first logic area I and a second logic area II. The first logic region I is used to form a P-type well region, for example, and the second logic region is used to form an N-type well region, for example. In other examples, the first logic region can also be used to form an N-type well region, and the second logic region can be used to form a P-type well region, which can be configured according to actual needs. A
如图6所示,形成第三光阻层16,第三光阻层16覆盖像素区X和逻辑区的第一逻辑区I,暴露出逻辑区的第二逻辑区II。以第三光阻层16为掩膜,对第二逻辑区II进行离子注入,例如注入N型离子形成N型阱区22,用于制造PMOS管;所述N型离子可以是砷离子或磷离子,但不局限于此。之后灰化工艺去除第三光阻层16。As shown in FIG. 6 , a
如图7所示,去除像素区的氮化硅层13a,可采用湿法或干法工艺去除,例如刻采用热磷酸(H3PO4)湿法刻蚀去除像素区的氮化硅层13a。其他示例中,可采用含有氟气和氧气的混合气体的反应性离子刻蚀干法刻蚀去除像素区的氮化硅层13a。As shown in FIG. 7 , to remove the
如图8所示,执行所述像素区的离子注入工艺。具体的,形成第四光阻层17,第四光阻层17覆盖逻辑区L和像素区X的部分区域。以第四光阻层17为掩膜,对像素区X进行离子注入,例如对所述像素区进行P型离子注入,形成位于所述浅沟槽隔离11一侧的P型阱区23。对所述像素区进行N型离子注入,形成位于所述浅沟槽隔离11另一侧的光电二极管N区18。As shown in FIG. 8, the ion implantation process of the pixel region is performed. Specifically, a
如图9所示,形成栅极和源漏极,具体的,形成位于氧化硅层12上的栅极层,栅极层例如为多晶硅层。采用光刻工艺将栅极层形成不同晶体管的栅极(例如31、32、33、34)。对栅极两侧的源漏区进行离子注入,形成对应晶体管的源极和漏极。例如对像素区X进行N型离子注入(掺杂),形成的源极41、漏极51,以及漏极42。对像素区X进行P型离子注入(掺杂)形成光电二极管表面P区(钉扎层)19。栅极31、源极41和漏极51构成像素区X的NMOS管。示例性的,对逻辑区的第一逻辑区I进行N型离子注入,形成源极43、漏极53;栅极33、源极43和漏极53例如构成第一逻辑区I的NMOS管。对逻辑区的第二逻辑区II进行P型离子注入,形成源极44、漏极54;栅极34、源极44和漏极54例如构成第二逻辑区II的PMOS管。其他示例中,也可在第一逻辑区I形成PMOS管,在第二逻辑区II形成NMOS管,根据实际需要配置。As shown in FIG. 9 , a gate electrode and a source and drain electrode are formed. Specifically, a gate electrode layer on the
如图9和图10所示,像素区X包括位于衬底10中的多个晶体管,图9仅示出了部分晶体管。其中,像素区中的多个晶体管包括由像素区的衬底中的N型掺杂层形成的晶体管。像素区中可以包括光电二极管PD和多种类型的晶体管,多种类型的晶体管例如传输晶体管TX、复位晶体管RST、源极跟随晶体管SF、行选择晶体管RS、转换增益控制晶体管等等。光电二极管PD可为掩埋型光电二极管。As shown in FIG. 9 and FIG. 10 , the pixel area X includes a plurality of transistors located in the
在操作过程中,光电二极管PD产生的光电荷在曝光过程中响应于入射光。传输晶体管TX连接到传输信号,该信号控制传输晶体管TX传输光电二极管PD中累积的电荷到浮动扩散区域(FD),浮动扩散区域(FD)亦即漏极42。图9中的栅极32、漏极42和光电二极管N区18构成图10中的传输晶体管TX,光电二极管N区18即为传输晶体管TX的源极。传输晶体管TX可以为MOSFET(金属氧化物半导体场效应晶体管)。复位晶体管RST连接到VDD和浮动扩散区域(亦即漏极42)之间,响应于复位信号以复位像素电路,例如放电或充电浮动扩散区域和光电二极管PD到当前电压。浮动扩散区域(FD)连接到源极跟随晶体管SF。源极跟随晶体管SF连接到VDD和行选择晶体管RS之间,放大信号以响应浮动扩散区域(亦即漏极42)的电位。行选择晶体管RS从源极跟随晶体管SF连接像素电路输出到读出列,或位线BIT,响应于行选择控制信号。During operation, the photocharges generated by the photodiode PD are responsive to incident light during exposure. The transfer transistor TX is connected to a transfer signal which controls the transfer transistor TX to transfer the charge accumulated in the photodiode PD to the floating diffusion region (FD), ie the drain 42 . The
入射光使得光电二极管PD内产生电荷。当光电二极管PD内的光产生电子逐渐累加,它的电压增加(电子是负电荷)。光电二极管PD的电压或电荷表示在曝光期间入射到光电二极管PD的强度。电荷通过传输晶体管TX从光电二极管PD传输到浮动扩散区域(亦即漏极42),使得浮动扩散区域的电压在曝光期间通过累加在光电二极管PD上的光生电子成比例地降低。Incident light causes charges to be generated in the photodiode PD. As the light-generated electrons in the photodiode PD gradually accumulate, its voltage increases (the electrons are negatively charged). The voltage or charge of the photodiode PD represents the intensity incident on the photodiode PD during exposure. Charge is transferred from photodiode PD to the floating diffusion region (ie, drain 42 ) through transfer transistor TX, so that the voltage of the floating diffusion region decreases proportionally during exposure by photogenerated electrons accumulated on photodiode PD.
图11至图12为本发明第二实施例的图像传感器制作方法示意图。第二实施例中,结合图2b和图11所示,衬底10表面依次形成有氧化硅层12和氮化硅层13;衬底10上形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,还可形成第一保护层25,第一保护层25覆盖氮化硅层13和浅沟槽隔离(STI)11的表面。第一保护层25可包括氮化硅层(Si3N4)、氮化硅层-氧化硅层-氮化硅层(Si3N4-SiO2-Si3N4)的堆叠层,以及多晶硅层中的至少一种。如图12所示,形成第五光阻层19,第五光阻层19覆盖所述像素区X的第一保护层25,暴露出所述逻辑区L。以第五光阻层19为掩膜,刻蚀去除位于所述逻辑区L的第一保护层25和氮化硅层13b,可采用干法或湿法工艺去除。例如采用热磷酸(H3PO4)湿法刻蚀去除位于所述逻辑区的第一保护层25和氮化硅层13b。接着,像素区X有第一保护层25和氮化硅层13a共同作为保护层,执行所述逻辑区L的离子注入工艺;逻辑区L的离子注入包括例如IO(输入和/或输出)器件和核心器件的N阱、P阱以及沟道区等多次光刻-离子注入的循环。接着,去除覆盖所述像素区X的第一保护层25和氮化硅层13a。执行所述像素区X的离子注入工艺,像素区X的离子注入包括感光区和组成像素单元的各晶体管阱区、沟道区的光刻-离子注入的循环。之后再形成器件的栅极以及源漏区。第二实施例中,第一保护层25和像素区的氮化硅层13a共同保护像素区X,从而增强对像素区的保护以进一步减小逻辑区加工工艺对像素区的污染和损伤,提升图像传感器的质量。11 to 12 are schematic diagrams of a method for fabricating an image sensor according to a second embodiment of the present invention. In the second embodiment, as shown in FIG. 2 b and FIG. 11 , a
本发明还提供另一种图像传感器的制作方法,依次包括如下步骤:The present invention also provides another manufacturing method of an image sensor, which includes the following steps in sequence:
提供衬底,所述衬底包括像素区和逻辑区;在所述衬底的表面形成覆盖所述像素区和所述逻辑区的氧化硅层;形成覆盖所述氧化硅层的氮化硅层;在所述氮化硅层、所述氧化硅层和所述衬底中形成浅沟槽隔离;a substrate is provided, the substrate includes a pixel area and a logic area; a silicon oxide layer covering the pixel area and the logic area is formed on the surface of the substrate; a silicon nitride layer covering the silicon oxide layer is formed ; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate;
去除覆盖所述逻辑区和所述像素区的氮化硅层;removing the silicon nitride layer covering the logic region and the pixel region;
形成第二保护层,所述第二保护层覆盖所述氧化硅层和所述浅沟槽隔离的表面;forming a second protective layer, the second protective layer covering the surface of the silicon oxide layer and the shallow trench isolation;
去除覆盖所述逻辑区的第二保护层,保留覆盖所述像素区的第二保护层;removing the second protective layer covering the logic region and retaining the second protective layer covering the pixel region;
执行所述逻辑区的离子注入工艺;performing an ion implantation process for the logic region;
去除覆盖所述像素区的第二保护层;removing the second protective layer covering the pixel area;
执行所述像素区的离子注入工艺。An ion implantation process for the pixel region is performed.
图13至图14为本发明另一种图像传感器制作方法示意图。结合图2b和图13所示,衬底10表面依次形成有氧化硅层12和氮化硅层13;刻蚀氮化硅层13、氧化硅层12以及部分厚度的衬底10形成沟槽,在沟槽中填充氧化物形成浅沟槽隔离(STI)11,进行化学机械研磨(CMP)使浅沟槽隔离(STI)11和氮化硅层13的上表面齐平之后,去除覆盖所述逻辑区X和所述像素区L的氮化硅层13。如图14所示,重新形成第二保护层45,第二保护层45覆盖氧化硅层12和浅沟槽隔离(STI)11的表面,通过化学机械研磨(CMP)使第二保护层45的顶面齐平,第二保护层45CMP后的顶面高于浅沟槽隔离(STI)11的顶面,亦即第二保护层45将浅沟槽隔离(STI)11的顶部包住。第二保护层45可包括氮化硅层(Si3N4)、氮化硅层-氧化硅层-氮化硅层(Si3N4-SiO2-Si3N4)的堆叠层,以及多晶硅层中的至少一种。13 to 14 are schematic diagrams of another method for fabricating an image sensor according to the present invention. 2b and 13, a
经过刻蚀工艺形成STI的沟槽以及化学机械研磨(CMP)工艺,原始形成的氮化硅层13的厚度均匀性和质量都会下降,通过去除氮化硅层13,重新形成第二保护层45,可以保证第二保护层45良好的质量和均匀性,而且可以把沟槽隔离(STI)11的顶部包住增强抗污染能力。其他示例中,也可将氧化硅层12去除,重新再生长一层氧化硅层,同理,经过刻蚀工艺形成STI的沟槽工艺过程中,氧化硅层12可能遭受一定损伤,重新再生长一层氧化硅层以保证衬底10表面的氧化硅层的质量。Through the etching process to form the STI trench and the chemical mechanical polishing (CMP) process, the thickness uniformity and quality of the originally formed
接着,去除覆盖所述逻辑区L的第二保护层45,保留覆盖所述像素区X的第二保护层45;执行所述逻辑区L的离子注入工艺;去除覆盖所述像素区的第二保护层45;执行所述像素区X的离子注入工艺。Next, the second
本发明实施例通过去除覆盖所述逻辑区和所述像素区的氮化硅层,重新形成第二保护层,可以保证第二保护层良好的质量和均匀性;去除覆盖所述逻辑区的第二保护层,保留覆盖所述像素区的第二保护层;执行所述逻辑区的离子注入工艺过程中,像素区有第二保护层的保护,有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。In the embodiment of the present invention, by removing the silicon nitride layer covering the logic region and the pixel region, and forming a second protective layer again, the good quality and uniformity of the second protective layer can be ensured; Two protective layers, retaining the second protective layer covering the pixel area; during the ion implantation process of the logic area, the pixel area is protected by the second protective layer, which effectively reduces the pollution and pollution of the logic area processing process to the pixel area. Physical damage to improve the quality of the image sensor.
综上所述,本发明提供一种图像传感器的制作方法,依次包括如下步骤:提供衬底,衬底包括像素区和逻辑区;在衬底的表面形成覆盖像素区和逻辑区的氧化硅层;形成覆盖氧化硅层的氮化硅层;在氮化硅层、氧化硅层和衬底中形成浅沟槽隔离;去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层;执行逻辑区的离子注入工艺;去除覆盖像素区的氮化硅层;执行像素区的离子注入工艺。本发明去除覆盖逻辑区的氮化硅层,保留覆盖像素区的氮化硅层,在逻辑区的离子注入工艺完成之后,再去除覆盖像素区的氮化硅层,利用像素区保留的氮化硅层作为保护层,从而有效降低逻辑区加工制程对像素区的污染和物理损伤,提升图像传感器的质量。In summary, the present invention provides a method for fabricating an image sensor, which sequentially includes the following steps: providing a substrate, the substrate including a pixel region and a logic region; forming a silicon oxide layer covering the pixel region and the logic region on the surface of the substrate forming a silicon nitride layer covering the silicon oxide layer; forming shallow trench isolation in the silicon nitride layer, the silicon oxide layer and the substrate; removing the silicon nitride layer covering the logic region and retaining the silicon nitride layer covering the pixel region ; Perform an ion implantation process in the logic region; remove the silicon nitride layer covering the pixel region; perform an ion implantation process in the pixel region. In the present invention, the silicon nitride layer covering the logic region is removed, and the silicon nitride layer covering the pixel region is retained. After the ion implantation process in the logic region is completed, the silicon nitride layer covering the pixel region is removed, and the nitrided silicon nitride layer retained in the pixel region is used. The silicon layer is used as a protective layer, thereby effectively reducing the pollution and physical damage to the pixel area caused by the logic area processing process, and improving the quality of the image sensor.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于与实施例公开的器件相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. As for the method disclosed in the embodiment, since it corresponds to the device disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
上述描述仅是对本发明较佳实施例的描述,并非对本发明权利范围的任何限定,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the rights of the present invention. Any person skilled in the art can use the methods and technical contents disclosed above to improve the present invention without departing from the spirit and scope of the present invention. The technical solutions are subject to possible changes and modifications. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention belong to the technical solutions of the present invention. protected range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210646189.6A CN114864615A (en) | 2022-06-08 | 2022-06-08 | Method for manufacturing image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210646189.6A CN114864615A (en) | 2022-06-08 | 2022-06-08 | Method for manufacturing image sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114864615A true CN114864615A (en) | 2022-08-05 |
Family
ID=82624727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210646189.6A Pending CN114864615A (en) | 2022-06-08 | 2022-06-08 | Method for manufacturing image sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114864615A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117276299A (en) * | 2023-11-21 | 2023-12-22 | 粤芯半导体技术股份有限公司 | A CIS device structure and its manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070029463A1 (en) * | 2005-08-05 | 2007-02-08 | Byung-Jun Park | Image sensor and method of manufacturing the same |
US20080160722A1 (en) * | 2006-12-27 | 2008-07-03 | Dongbu Hitek Co., Ltd. | Method for manufacturing semiconductor device |
CN101645420A (en) * | 2008-08-04 | 2010-02-10 | 中芯国际集成电路制造(上海)有限公司 | CMOS image sensor and forming method thereof, and method for forming semiconductor devices |
KR20110060745A (en) * | 2009-11-30 | 2011-06-08 | 주식회사 하이닉스반도체 | Semiconductor Device Manufacturing Method for Pinhole Prevention |
CN104716098A (en) * | 2013-12-12 | 2015-06-17 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing flash memory |
CN109979943A (en) * | 2017-12-28 | 2019-07-05 | 联华电子股份有限公司 | Semiconductor element and its manufacturing method |
CN110970346A (en) * | 2018-09-29 | 2020-04-07 | 长鑫存储技术有限公司 | Semiconductor structure and preparation method |
-
2022
- 2022-06-08 CN CN202210646189.6A patent/CN114864615A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070029463A1 (en) * | 2005-08-05 | 2007-02-08 | Byung-Jun Park | Image sensor and method of manufacturing the same |
US20080160722A1 (en) * | 2006-12-27 | 2008-07-03 | Dongbu Hitek Co., Ltd. | Method for manufacturing semiconductor device |
CN101645420A (en) * | 2008-08-04 | 2010-02-10 | 中芯国际集成电路制造(上海)有限公司 | CMOS image sensor and forming method thereof, and method for forming semiconductor devices |
KR20110060745A (en) * | 2009-11-30 | 2011-06-08 | 주식회사 하이닉스반도체 | Semiconductor Device Manufacturing Method for Pinhole Prevention |
CN104716098A (en) * | 2013-12-12 | 2015-06-17 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing flash memory |
CN109979943A (en) * | 2017-12-28 | 2019-07-05 | 联华电子股份有限公司 | Semiconductor element and its manufacturing method |
CN110970346A (en) * | 2018-09-29 | 2020-04-07 | 长鑫存储技术有限公司 | Semiconductor structure and preparation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117276299A (en) * | 2023-11-21 | 2023-12-22 | 粤芯半导体技术股份有限公司 | A CIS device structure and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101617045B1 (en) | Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus | |
US7910426B2 (en) | Pixel and imager device having high-k dielectrics in isolation structures | |
US7855407B2 (en) | CMOS image sensor and method for manufacturing the same | |
JP5188441B2 (en) | Photoelectric conversion device and imaging system | |
US7579638B2 (en) | Solid-state image pickup device and manufacturing method thereof | |
TWI870262B (en) | Image sensor and method for forming the same | |
WO2014002361A1 (en) | Solid-state image pick-up device and method for producing same | |
TW202203445A (en) | Transistors having increased effective channel width | |
JP2010212536A (en) | Method of manufacturing solid-state imaging device | |
US7611918B2 (en) | CMOS image sensor and method for fabricating the same | |
US20060138470A1 (en) | CMOS image sensor and method for fabricating the same | |
US8071417B2 (en) | Image sensor and fabrication method thereof | |
CN114864615A (en) | Method for manufacturing image sensor | |
US7432543B2 (en) | Image sensor pixel having photodiode with indium pinning layer | |
US20070145443A1 (en) | CMOS Image Sensor and Method of Manufacturing the Same | |
US20070069259A1 (en) | CMOS image sensor and method of manufacturing the same | |
US20070145444A1 (en) | CMOS Image Sensor and Method for Manufacturing the Same | |
US20060001062A1 (en) | Method for fabricating CMOS image sensor | |
JP4763242B2 (en) | Solid-state imaging device and manufacturing method thereof | |
US7598135B2 (en) | Method for fabricating CMOS image sensor | |
US7459332B2 (en) | CMOS image sensor and method for manufacturing the same | |
JP2005347740A (en) | Photoelectric converter and imaging system | |
JP4115446B2 (en) | Manufacturing method of CMOS image sensor | |
JP2007141937A (en) | Solid-state imaging device, semiconductor device and method of manufacturing the same | |
CN101834191B (en) | Solid-state imaging device, electronic device, and method for manufacturing solid-state imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |