[go: up one dir, main page]

CN114861345A - Design method and device of blade extension device and electronic equipment - Google Patents

Design method and device of blade extension device and electronic equipment Download PDF

Info

Publication number
CN114861345A
CN114861345A CN202210416054.0A CN202210416054A CN114861345A CN 114861345 A CN114861345 A CN 114861345A CN 202210416054 A CN202210416054 A CN 202210416054A CN 114861345 A CN114861345 A CN 114861345A
Authority
CN
China
Prior art keywords
blade
blade extension
section
parameters
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210416054.0A
Other languages
Chinese (zh)
Inventor
张林伟
虞小兵
蔡安民
林伟荣
陈浩
彭阁
李力森
李媛
金强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Hubei New Energy Co ltd
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Hubei New Energy Co ltd
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Hubei New Energy Co ltd, Huaneng Clean Energy Research Institute filed Critical Huaneng Hubei New Energy Co ltd
Priority to CN202210416054.0A priority Critical patent/CN114861345A/en
Publication of CN114861345A publication Critical patent/CN114861345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The application discloses a design method and a device of a blade extension device and electronic equipment, wherein the method and the device are applied to the electronic equipment; and (3) taking the annual energy generation capacity lifting amount as a target function, adopting a particle swarm multivariate parameter algorithm, and carrying out self-optimization calculation on a plurality of extension section parameters of each section position of the blade extension section based on the parameters in the CP-lambda corresponding relation curve, so as to obtain aerodynamic shape parameters such as chord length, torsion angle, relative thickness, airfoil model and the like of each section of the blade extension section. Through the scheme, the design of the blade extension device can be realized.

Description

一种叶片延长装置的设计方法、装置和电子设备Design method, device and electronic device of a blade extension device

技术领域technical field

本申请涉及风电技术领域,更具体地说,涉及一种叶片延长装置的设计方法、装置和电子设备。The present application relates to the technical field of wind power, and more particularly, to a design method, device and electronic equipment for a blade extension device.

背景技术Background technique

叶片作为风电机组捕获风能的主要部件,其气动性能的优劣直接决定了风能转化效率的高低。在亚声速流场中,叶片翼型的特殊设计形式使得其在旋转过程中,由于压力面和吸力面的压力差使得气流在尾缘和叶尖位置形成复杂的三维效应,即高强度螺旋状发生并扩散的叶尖脱落涡,同时伴随产生的诱导阻力使得叶片阻力增大,从而造成风轮扭矩和功率的损失。As the main components of wind turbines to capture wind energy, the aerodynamic performance of blades directly determines the efficiency of wind energy conversion. In the subsonic flow field, the special design form of the blade airfoil makes the air flow form a complex three-dimensional effect at the trailing edge and blade tip position due to the pressure difference between the pressure surface and the suction surface during the rotation process, that is, a high-strength helical shape. The generated and diffused tip shedding vortices, along with the induced drag, increase the blade drag, resulting in loss of rotor torque and power.

在风能利用和风电机组设计技术的发展过程中,早期风电机组由于技术相对落后,对风力机设计边界条件认识不足,为了避免出现安全事故,往往在设计时采用较高的安全系数。此外随着越来越多的风电场的开发利用,早期风电场受周边风电场遮挡影响,导致风速存在不同程度的下降趋势,因此风电场的收益也随之减少。In the development process of wind energy utilization and wind turbine design technology, early wind turbines have insufficient understanding of wind turbine design boundary conditions due to relatively backward technology. In order to avoid safety accidents, higher safety factors are often used in design. In addition, with the development and utilization of more and more wind farms, the early wind farms are affected by the shielding of surrounding wind farms, resulting in a downward trend in wind speed to varying degrees, so the benefits of wind farms also decrease.

为了有效解决上述由于风速降低以及机组发电性能与风资源特点不匹配的不足,可以通过增加风轮直径、即通过叶尖延长的方式达到提质增效的目的,并且,叶片延长还可以改善叶尖脱落涡,起到降低诱导阻力的作用,从而实现机组发电性能的提升,但目前还没有一种方案能够实现叶片延长装置的设计。In order to effectively solve the above-mentioned deficiencies due to the reduction of wind speed and the mismatch between the power generation performance of the unit and the characteristics of wind resources, the purpose of improving quality and efficiency can be achieved by increasing the diameter of the wind rotor, that is, by extending the blade tip. The tip shedding vortex plays a role in reducing the induced resistance, thereby improving the power generation performance of the unit. However, there is no solution that can realize the design of the blade extension device.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请提供一种叶片延长装置的设计方法、装置和电子设备,用于实现叶片延长装置的设计。In view of this, the present application provides a design method, device and electronic device of a blade extension device, which are used to realize the design of the blade extension device.

为了实现上述目的,现提出的方案如下:In order to achieve the above purpose, the proposed scheme is as follows:

一种叶片延长装置的设计方法,应用于电子设备,所述叶片延长装置包括叶片延长节,所述设计方法包括步骤:A design method of a blade extension device, applied to electronic equipment, the blade extension device includes a blade extension section, and the design method includes the steps:

采用修正BEM理论计算出增加叶片延长节后的CP~λ对应关系曲线;Using the modified BEM theory to calculate the CP~λ corresponding curve after adding the blade extension;

以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。Taking the increase in annual power generation as the objective function, using the particle swarm multi-parameter algorithm, and based on the parameters in the CP~λ corresponding relationship curve, the parameters of each section of the blade extension section are automatically carried out. Optimization calculation.

可选的,所述多个延长节参数包括半径、弦长、扭角和相对厚度。Optionally, the plurality of extended section parameters include radius, chord length, twist angle and relative thickness.

可选的,所述采用修正BEM理论方法计算叶片延长节的CP~λ对应关系曲线,包括步骤:Optionally, the calculation of the CP-λ corresponding relationship curve of the blade extension section by the modified BEM theoretical method includes the steps:

选定与特定叶片模型相同的气动外形参数;Select the same aerodynamic shape parameters as the specific blade model;

对所述叶片延长节的每个截面采用修正BEM理论,迭代计算每个所述截面在每个叶尖速比下的入流角、叶尖损失、叶根损失、轴向诱导因子和切向诱导因子,对应的函数关系式分别为:Using the modified BEM theory for each section of the blade extension section, iteratively calculate the inflow angle, tip loss, blade root loss, axial induction factor and tangential induction of each section at each tip speed ratio factor, and the corresponding functional relationships are:

Figure BDA0003606040940000021
Figure BDA0003606040940000021

Figure BDA0003606040940000022
Figure BDA0003606040940000022

Figure BDA0003606040940000023
Figure BDA0003606040940000023

Figure BDA0003606040940000024
Figure BDA0003606040940000024

Figure BDA0003606040940000025
Figure BDA0003606040940000025

式中:R表示叶片半径;f_loss表示含误差系数的Prandtl叶尖修正系数;△r为误差系数;rhub表示轮毂半径;H表示轴向诱导因子修正系数;F=F_loss·H_loss;In the formula: R is the blade radius; f_loss is the Prandtl tip correction coefficient with error coefficient; △r is the error coefficient; r hub is the hub radius; H is the axial induction factor correction coefficient; F=F_loss·H_loss;

对每个所述截面在每个所述叶尖速比下的入流角、叶尖损失、叶根损失、轴向诱导因子和切向诱导因子进行积分计算,根据计算结果构建所述CP~λ对应关系曲线。Integrate and calculate the inflow angle, tip loss, blade root loss, axial induction factor and tangential induction factor of each of the sections under each of the blade tip speed ratios, and construct the CP ~ λ according to the calculation results Correspondence curve.

可选的,所述误差系数△r的范围为0.01~0.2。Optionally, the error coefficient Δr ranges from 0.01 to 0.2.

可选的,所述以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,包括步骤:Optionally, the annual power generation improvement is used as the objective function, the particle swarm multi-parameter algorithm is used, and based on the parameters in the CP-λ corresponding relationship curve, the multi-section position of each section position of the blade extension section is determined. A self-optimization calculation is performed on the parameters of the extended section, including the steps:

选定所述叶片延长和叶片延长节的起始位置、设计目标长度、设计截面步长;Selecting the starting position of the blade extension and the blade extension section, the design target length, and the design section step size;

计算所述叶片延长节延长后的近似最佳λext-opt Calculate the approximate optimal λ ext-opt after extension of the blade extension

Figure BDA0003606040940000031
Figure BDA0003606040940000031

计算所述叶片延长节对应各截面位置的理论最佳扭角θtheory Calculate the theoretical optimal twist angle θ theory of the blade extension section corresponding to each section position

Figure BDA0003606040940000032
Figure BDA0003606040940000032

Figure BDA0003606040940000033
Figure BDA0003606040940000033

αstart表示原叶片长度下Xstart在稳态风速Vin(切入风速)~Vrate(达到额定转速时对应风速)下的气动攻角平均值αstart α start represents the average aerodynamic angle of attack α start of X start at the steady-state wind speed Vin (cut-in wind speed) ~ Vrate (the corresponding wind speed when the rated speed is reached) under the original blade length

采用多项式拟合方法迭代拟合计算所述叶片延长节各弦长的曲线A polynomial fitting method is used to iteratively fit and calculate the curve of each chord length of the blade extension section

y=k1xn+k2xn-1+...knx+k0 y=k 1 x n +k 2 x n-1 +...k n x+k 0

在不同翼型型号下,通过粒子群自寻优PSO算法,对所述叶片延长节的弦长、扭角、翼型相对厚度进行自寻优计算Under different airfoil models, the chord length, twist angle and relative thickness of the airfoil of the blade extension section are self-optimized by the particle swarm self-optimization PSO algorithm.

vi=ωvi1rand()(pbesti-xi)+ω2rand()(gbesti-xi)v i =ωv i1 rand()(pbest i -x i )+ω 2 rand()(gbest i -x i )

xi=xi+vi x i = x i +v i

式中:vi表示粒子速度,ω1和ω2表示学习因子,ω1=ω2=1~2,rand()表示0~1的随机数,i表示粒子群总数,xi表示粒子当前位置,pbesti和gbesti表示粒子迭代过程中的两个极值,ω表示惯性因子,ω=0.4~0.9;In the formula: v i represents the particle velocity, ω 1 and ω 2 represent the learning factor, ω 12 =1~2, rand() represents a random number from 0 to 1, i represents the total number of particle swarms, and xi represents the current particle size. position, pbest i and gbest i represent the two extreme values in the particle iterative process, ω represents the inertia factor, ω=0.4~0.9;

可选的,所述叶片延长装置还包括叶片延长小翼,所述设计方法还包括步骤:Optionally, the blade extension device further includes a blade extension winglet, and the design method further includes the steps of:

选定所述叶片延长小翼的起始位置;selecting the starting position of the blade to extend the winglet;

以所述起始位置为基础,计算所述叶片延长小翼的气动外形参数。Based on the starting position, the aerodynamic shape parameters of the blade extension winglet are calculated.

可选的,所述气动外形参数包括前缘后掠角、后缘后掠角、翼梢弦长、翼根弦长、梢根比、翼根弦向起始位置、前缘修型贝塞尔曲线参数、小翼翼展长度,外倾角,折弯半径和安装角。Optionally, the aerodynamic shape parameters include leading edge sweep angle, trailing edge sweep angle, wing tip chord length, wing root chord length, tip root ratio, wing root chord direction starting position, and leading edge modified Bessel. Curve parameters, winglet span length, camber angle, bend radius and installation angle.

一种叶片延长装置的设计装置,应用于电子设备,所述叶片延长装置包括叶片延长节,所述设计装置包括:A design device for a blade extension device, applied to electronic equipment, the blade extension device includes a blade extension section, and the design device includes:

第一计算模块,用于采用修正BEM理论计算出叶片延长节后的CP~λ对应关系曲线;The first calculation module is used to calculate the corresponding relationship curve of CP to λ after the blade is extended by using the modified BEM theory;

第二计算模块,用于以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。The second calculation module is used for taking the increase in annual power generation as the objective function, adopting the particle swarm multi-parameter algorithm, and based on the parameters in the corresponding relationship curve of CP to λ, for each section position of the blade extension section. Self-optimization calculation is performed for multiple extension section parameters.

可选的,所述多个延长节参数包括半径、弦长、扭角和相对厚度。Optionally, the plurality of extended section parameters include radius, chord length, twist angle and relative thickness.

可选的,所述叶片延长装置还包括叶片延长小翼,所述设计装置还包括:Optionally, the blade extension device further includes a blade extension winglet, and the design device further includes:

位置选定模块,用于选定所述叶片延长小翼的起始位置;a position selection module for selecting the starting position of the blade extension winglet;

第三计算模块,用于以所述起始位置为基础,计算所述叶片延长小翼的气动外形参数。The third calculation module is configured to calculate the aerodynamic shape parameters of the blade extension winglet based on the starting position.

可选的,所述气动外形参数包括前缘后掠角、后缘后掠角、翼梢弦长、翼根弦长、梢根比、翼根弦向起始位置、前缘修型贝塞尔曲线参数、小翼翼展长度,外倾角,折弯半径和安装角。Optionally, the aerodynamic shape parameters include leading edge sweep angle, trailing edge sweep angle, wing tip chord length, wing root chord length, tip root ratio, wing root chord direction starting position, and leading edge modified Bessel. Curve parameters, winglet span length, camber angle, bend radius and installation angle.

一种电子设备,包括至少一个处理器和与所述处理器连接的存储器,其中:An electronic device comprising at least one processor and a memory connected to the processor, wherein:

所述存储器用于存储计算机程序或指令;the memory is used to store computer programs or instructions;

所述处理器用于执行所述计算机程序或指令,以使所述电子设备实现如上所述的叶片延长装置的设计方法。The processor is used for executing the computer program or instructions, so that the electronic device implements the above-mentioned design method of the blade extension device.

从上述的技术方案可以看出,本申请公开了一种叶片延长装置的设计方法、装置和电子设备,该方法和装置应用于电子设备,该叶片延长装置包括叶片延长节,本设计方法和装置具体为采用修正BEM理论计算叶片延长节的CP~λ对应关系曲线;以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于CP~λ对应关系曲线中的参数,对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,从而得到叶片延长节各截面弦长、扭角、相对厚度、翼型型号等气动外形参数。通过上述方案可以实现对叶片延长装置的设计。As can be seen from the above technical solutions, the present application discloses a design method, device and electronic equipment for a blade extension device, the method and device are applied to electronic equipment, the blade extension device includes a blade extension section, the design method and device of the present invention Specifically, the modified BEM theory is used to calculate the CP ~ λ corresponding relationship curve of the blade extension; the annual power generation increase is used as the objective function, the particle swarm multi-parameter algorithm is used, and based on the parameters in the CP ~ λ corresponding relationship curve, the blade is extended. The self-optimization calculation is carried out for the parameters of multiple extension sections at each section position of the section, so as to obtain the aerodynamic shape parameters such as the chord length, twist angle, relative thickness, and airfoil type of each section of the blade extension section. Through the above solution, the design of the blade extension device can be realized.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1为本申请实施例的一种叶片延长装置的设计方法的流程图;1 is a flowchart of a design method of a blade extension device according to an embodiment of the application;

图2为本申请实施例的另一种叶片延长装置的设计方法的流程图;2 is a flowchart of another design method of a blade extension device according to an embodiment of the application;

图3a为本申请实施例的叶片主体和叶片延长节的示意图;3a is a schematic diagram of a blade body and a blade extension section according to an embodiment of the application;

图3b为本申请实施例的叶片主体与叶片延长节的连接部的示意图;Fig. 3b is a schematic diagram of the connection part between the blade body and the blade extension section according to the embodiment of the application;

图3c为本申请实施例的叶片延长小翼的示意图;3c is a schematic diagram of a blade extension winglet according to an embodiment of the application;

图4为本申请实施例的一种叶片延长装置的设计装置的框图;4 is a block diagram of a design device of a blade extension device according to an embodiment of the application;

图5为本申请实施例的另一种叶片延长装置的设计方法的框图;5 is a block diagram of another design method of a blade extension device according to an embodiment of the application;

图6为本申请实施例的一种电子设备的框图。FIG. 6 is a block diagram of an electronic device according to an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.

实施例一Example 1

图1为本申请实施例的一种叶片延长装置的设计方法的流程图。FIG. 1 is a flowchart of a design method of a blade extension device according to an embodiment of the present application.

如图1所示,本实施例提供的设计方法应用于电子设备,该电子设备可以理解为具有数据计算和信息处理能力的计算机或服务器,该设计方法用于对风电机组的叶片的延长装置的各项参数进行计算,得到该叶片延长装置的制造参数。该叶片延长装置包括叶片延长节,具体该叶片延长节的设计方法包括如下步骤:As shown in FIG. 1 , the design method provided in this embodiment is applied to electronic equipment, which can be understood as a computer or server with data calculation and information processing capabilities, and the design method is used for the extension device of the blade of the wind turbine. Various parameters are calculated to obtain the manufacturing parameters of the blade extension device. The blade extension device includes a blade extension section. Specifically, the design method of the blade extension section includes the following steps:

S1、采用修正BEM理论计算出叶片延长节后的CP~λ对应关系曲线。S1. Use the modified BEM theory to calculate the CP ~ λ corresponding relationship curve after the blade is extended.

采用此方法计算对应关系曲线,以保证计算出的Cp值与商业软件GH Bladed计算结果误差1%,并使对应的最佳叶尖速比λopt相等。该技术步骤具体如下:This method is used to calculate the corresponding relationship curve, so as to ensure that the calculated Cp value has an error of 1% with the calculation result of the commercial software GH Bladed, and to make the corresponding optimum tip speed ratio λ opt equal. The technical steps are as follows:

首先,采用与GH Bladed或其他商业软件的叶片模型的相同气动外形参数,这里的气动外形参数包括各截面半径位置r、弦长c、扭角θ、相对厚度T、翼型气动参数(攻角AOA与升力系数Cl、阻力系数Cd和弯矩系数Cm对应关系);First, the same aerodynamic shape parameters as those of the blade model of GH Bladed or other commercial software are used. The aerodynamic shape parameters here include the radius position r of each section, the chord length c, the torsion angle θ, the relative thickness T, and the airfoil aerodynamic parameters (angle of attack). AOA corresponds to lift coefficient Cl, drag coefficient Cd and bending moment coefficient Cm);

然后,对每个截面采用修正BEM理论,迭代计算每个λ下的入流角φ、叶尖损失F_loss、叶根损失H_loss、轴向诱导因子a和切向诱导因子b,对应的函数关系式分别为Then, the modified BEM theory is used for each section to iteratively calculate the inflow angle φ, tip loss F_loss, blade root loss H_loss, axial induction factor a and tangential induction factor b under each λ, and the corresponding functional relationships are respectively for

Figure BDA0003606040940000061
Figure BDA0003606040940000061

Figure BDA0003606040940000062
Figure BDA0003606040940000062

Figure BDA0003606040940000063
Figure BDA0003606040940000063

Figure BDA0003606040940000064
Figure BDA0003606040940000064

Figure BDA0003606040940000065
Figure BDA0003606040940000065

式中:R表示叶片半径;f_loss表示含误差系数的Prandtl叶尖修正系数;△r误差系数0.01~0.2;rhub表示轮毂半径;H表示轴向诱导因子修正系数;F=F_loss·H_loss。In the formula: R represents the blade radius; f_loss represents the Prandtl tip correction coefficient with error coefficient; △r error coefficient is 0.01 to 0.2; r hub represents the hub radius; H represents the axial induction factor correction factor;

各截面在每个叶尖速比λ下的轴向诱导因子和切向诱导因子的迭代过程如下:The iterative process of the axial induction factor and tangential induction factor of each section at each tip speed ratio λ is as follows:

1)假定轴向诱导因子a=0和切向诱导因子b=0;1) Assume that the axial induction factor a=0 and the tangential induction factor b=0;

2)依据公式(1)计算截面入流角φ;2) Calculate the cross-section inflow angle φ according to formula (1);

3)依据公式(4)和(5)计算轴向诱导因子a1和切向诱导因子b13) Calculate the axial induction factor a1 and the tangential induction factor b1 according to formulas (4) and (5)

4)若|a1-a|>容许误差△a或者|b1-b|>容许误差△b,返回步骤1)继续迭代,直至满足容许误差要求。4) If |a1-a|>allowable error △a or |b1-b|>allowable error △b, return to step 1) and continue to iterate until the allowable error requirements are met.

最后,对每个截面的Cp-λ函数关系进行积分,求出Cpmax,保证Cpmax与GH Bladed或者其他商业软件计算出的最佳Cp’误差小于1%,且对应的最佳叶尖速比λopt相同。Cp计算表达式见公式(6)所示。Finally, integrate the Cp-λ function relationship of each section to obtain Cp max , to ensure that the error between Cp max and the optimal Cp' calculated by GH Bladed or other commercial software is less than 1%, and the corresponding optimal tip speed Same as λ opt . The calculation expression of Cp is shown in formula (6).

Figure BDA0003606040940000071
Figure BDA0003606040940000071

S2、对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。S2. Perform self-optimization calculation on a plurality of extension section parameters at each section position of the blade extension section.

具体来说,以年发电量AEP提升量△AEP为目标函数,采用粒子群多元参数算法,对叶片延长节的各延长节截面位置半径rext、各截面位置弦长cext、扭角θext、相对厚度Text进行自寻优计算。具体实施步骤如下所示:Specifically, using the annual power generation AEP lift △AEP as the objective function, the particle swarm multi-parameter algorithm is used to calculate the section position radius r ext of each extension section of the blade extension section, the chord length c ext of each section position, and the torsion angle θ ext . , The relative thickness Text performs self-optimization calculation. The specific implementation steps are as follows:

选定叶片延长和叶片延长节的起始位置Xstart、设计目标长度Xend和设计截面步长bin=0.2m~1m。Select the starting position X start of the blade extension and blade extension section, the design target length X end and the design section step size bin=0.2m~1m.

计算叶片延长节的近似最佳λext-opt Calculate the approximate optimal λ ext-opt for the blade extension

Figure BDA0003606040940000072
Figure BDA0003606040940000072

计算叶片延长节对应各截面位置的理论最佳扭角θtheory Calculate the theoretical optimal twist angle θ theory corresponding to each section position of the blade extension

Figure BDA0003606040940000073
Figure BDA0003606040940000073

Figure BDA0003606040940000074
Figure BDA0003606040940000074

αstart表示原叶片长度下Xstart在稳态风速Vin(切入风速)~Vrate(达到额定转速时对应风速)下的气动攻角平均值αstart α start represents the average aerodynamic angle of attack α start of X start at the steady-state wind speed Vin (cut-in wind speed) ~ Vrate (the corresponding wind speed when the rated speed is reached) under the original blade length

采用多项式拟合方法迭代拟合计算延长后叶片各弦长的曲线The curve of each chord length of the extended blade is calculated by iterative fitting using the polynomial fitting method

y=k1xn+k2xn-1+...knx+k0 (10)y=k 1 x n +k 2 x n-1 +...k n x+k 0 (10)

迭代方法:Iteration method:

1)给定Xend初始弦长cend 1) Given X end initial chord length c end

2)被拟合弦长曲线的起始点为最大弦长cmax,终点为cend 2) The starting point of the fitted chord length curve is the maximum chord length c max , and the end point is c end

3)采用公式(10)进行曲线拟合,循环n=1,2,3…3) Use formula (10) for curve fitting, cycle n=1,2,3…

4)计算每个n循环的拟合曲线和被拟合曲线的相关性Rcoeff 4) Calculate the correlation R coeff between the fitted curve and the fitted curve for each n cycle

5)当Rcoeff≥R1时,R1=0.95~0.99,对应的n作为粒子群寻优弦长粒子循环迭代的下边界弦长曲线多项式阶数5) When R coeff ≥ R 1 , R 1 =0.95~0.99, the corresponding n is used as the polynomial order of the lower boundary chord length curve of the particle swarm optimization chord length particle loop iteration

6)当Rcoeff≤R2时,R1=0.99~1,对应的n作为粒子群寻优弦长粒子循环迭代的下边界弦长曲线多项式阶数6) When R coeff ≤ R 2 , R 1 =0.99~1, and the corresponding n is the polynomial order of the lower boundary chord length curve of the particle swarm optimization chord length particle loop iteration

7)若6)多项式曲线计算出的延长后叶片各弦长采用步骤1方法计算出的最佳Cpext-max小于未延长前的叶片Cpmax,增加cend值,重新进行循环,直至满足为止。7) If 6) the chord length of the extended blade calculated by the polynomial curve, the optimal Cp ext-max calculated by the method in step 1 is less than the Cp max of the blade before extension, increase the c end value, and repeat the cycle until it is satisfied .

8)循环结束。8) The cycle ends.

针对不同翼型型号,通过粒子群自寻优PSO算法,对叶片延长节的弦长、扭角、翼型相对厚度进行自寻优计算,迭代计算出的叶片延长节各截面弦长、扭角、相对厚度、翼型型号作为叶片延长设计的气动外形参数。For different airfoil models, the particle swarm self-optimization PSO algorithm is used to perform self-optimization calculations on the chord length, twist angle and relative thickness of the blade extension section. The iteratively calculated chord length and torsion angle of each section of the blade extension section , relative thickness, and airfoil type are used as aerodynamic shape parameters for blade extension design.

vi=ωvi1rand()(pbesti-xi)+ω2rand()(gbesti-xi) (11)v i =ωv i1 rand()(pbest i -x i )+ω 2 rand()(gbest i -x i ) (11)

xi=xi+vi (12)x i = x i +v i (12)

式中:vi表示粒子速度;ω1和ω2表示学习因子,ω1=ω2=1~2;rand()表示0~1的随机数;i表示粒子群总数;xi表示粒子当前位置;pbesti和gbesti表示粒子迭代过程中的两个极值;ω表示惯性因子,ω=0.4~0.9In the formula: v i represents the particle velocity; ω 1 and ω 2 represent the learning factor, ω 12 =1~2; rand() represents a random number from 0 to 1; i represents the total number of particle swarms; x i represents the current particle size position; pbest i and gbest i represent the two extreme values in the particle iterative process; ω represents the inertia factor, ω=0.4~0.9

翼型型号选择风力机常用翼型,DU系列、RISO系列、NACA系列、FFA系列、S系列及其变形体,相对厚度范围16%~18%。The airfoil type selects the airfoils commonly used in wind turbines, DU series, RISO series, NACA series, FFA series, S series and their variants, with a relative thickness range of 16% to 18%.

粒子群规模particle_num=30~100,迭代次数iteration_num=10~50,寻优目标为最佳AEP。The particle swarm scale particle_num=30~100, the iteration number iteration_num=10~50, and the optimization goal is the best AEP.

粒子群自寻优PSO算法中,各粒子边界条件设置:In the particle swarm self-optimization PSO algorithm, the boundary conditions of each particle are set as follows:

1)弦长上下边界见2-61) See 2-6 for the upper and lower boundaries of the chord length

2)扭角上边界为θtheory±Twist_Error,Twist_Error=1~2deg2) The upper boundary of the twist angle is θ theory ±Twist_Error, Twist_Error=1~2deg

3)翼型相对厚度上边界为Xstart对应厚度,下边界为翼型型号中最小的相对厚度。3) The upper boundary of the relative thickness of the airfoil is the thickness corresponding to X start , and the lower boundary is the smallest relative thickness in the airfoil model.

若叶片延长后的整机载荷超出设计载荷或者延长后的发电量提升量不满足要求,调整Xend,重新执行后续的计算。If the whole machine load after the blade is extended exceeds the design load or the power generation increase after the extension does not meet the requirements, adjust X end and re-execute the subsequent calculation.

从上述技术方案可以看出,本实施例提供了一种叶片延长装置的设计方法,该方法应用于电子设备,该叶片延长装置包括叶片延长节,本设计方法具体为采用修正BEM理论计算叶片延长节的CP~λ对应关系曲线;以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于CP~λ对应关系曲线中的参数,对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,从而得到叶片延长节各截面弦长、扭角、相对厚度、翼型型号等气动外形参数。通过上述方案可以实现对叶片延长装置的设计。It can be seen from the above technical solutions that this embodiment provides a design method for a blade extension device, which is applied to electronic equipment, and the blade extension device includes a blade extension section. The design method specifically uses the modified BEM theory to calculate the blade extension The CP~λ corresponding relationship curve of the blade section; the annual power generation improvement is used as the objective function, the particle swarm multi-parameter algorithm is used, and based on the parameters in the CP~λ corresponding relationship curve, the multi-section position of each section position of the blade extension section is calculated. The parameters of the extension section are self-optimized and calculated, so as to obtain the aerodynamic shape parameters such as the chord length, twist angle, relative thickness, and airfoil type of each section of the blade extension section. Through the above solution, the design of the blade extension device can be realized.

鉴于该叶片延长装置还包括叶片延长小翼,因此,在本申请的一个具体实施方式中,还包括如下步骤,以实现对叶片延长小翼的设计,如图2所示。Since the blade extension device further includes a blade extension winglet, therefore, in a specific embodiment of the present application, the following steps are further included to realize the design of the blade extension winglet, as shown in FIG. 2 .

S3、选定叶片延长小翼的起始位置。S3. Select the starting position of the blade to extend the winglet.

在上面计算出的叶片延长节的基础上,确定叶尖小翼的沿叶片展向的起始位置rstart,rstart的选择依据为:On the basis of the blade extension section calculated above, determine the starting position r start of the blade tip winglet along the blade span. The selection of r start is based on:

1)通过专业商业软件如GH Bladed、Simpack、Ansys CFX/Fluent或开源软件如Fast,或基于修正的BEM理论、升力线理论、促动线模型等空气动力学模型,自编迭代程序计算叶片气动性能计算△AEP满足设计目标要求;1) Through professional commercial software such as GH Bladed, Simpack, Ansys CFX/Fluent or open source software such as Fast, or based on modified BEM theory, lift line theory, actuation line model and other aerodynamic models, self-compiled iterative programs to calculate blade aerodynamics Performance calculation △AEP meets the design target requirements;

2)按照2-3给出的半径长度bin减少步骤2中叶片半径,即反向减小设计,按照上面所描述的方式计算对应的△AEPi,当

Figure BDA0003606040940000091
时,以此时的截面位置rstart为小翼的起始位置。2) Reduce the blade radius in step 2 according to the radius length bin given in 2-3, that is, reduce the design in reverse, and calculate the corresponding ΔAEP i according to the method described above, when
Figure BDA0003606040940000091
, take the section position rstart at this time as the starting position of the winglet.

叶片延长小翼的气动外形的关键参数包括前缘后掠角γ1,后缘后掠角γ2,翼梢弦长c2,翼根弦长c1,梢根比

Figure BDA0003606040940000092
翼根弦向起始位置x,前缘修型贝塞尔曲线参数s1、s2、小翼翼展长度Ltip,外倾角τ,折弯半径Rt1、Rt2、以及安装角Aset。分别如图3a、3b和3c所示。The key parameters of the aerodynamic profile of the blade extended winglet include the leading edge sweep angle γ 1 , the trailing edge sweep angle γ 2 , the tip chord length c 2 , the wing root chord length c 1 , the tip-to-root ratio
Figure BDA0003606040940000092
Root chordwise starting position x, leading edge modified Bezier curve parameters s1, s2, winglet span length Ltip, camber angle τ, bending radii Rt 1 , Rt 2 , and installation angle A set . These are shown in Figures 3a, 3b and 3c, respectively.

S4、基于起始位置计算叶片延长小翼的气动外形参数。S4. Calculate the aerodynamic shape parameters of the blade extension winglet based on the starting position.

选定叶尖延长小翼的翼型,选择原则1:小翼翼型取上表面平坦,后缘有一定弯度的系列翼型,翼型厚度小于16%,系列翼型包括不限于DU系列、S系列、NACA 4系列、5系列、6系列,Wortmann FX系列、FFA系列及其变形体,如后缘修型等。Select the airfoil of the blade tip extended winglet, selection principle 1: the airfoil of the winglet is a series of airfoils with a flat upper surface and a certain camber on the trailing edge, and the thickness of the airfoil is less than 16%. The series of airfoils include but are not limited to DU series, S series, NACA 4 series, 5 series, 6 series, Wortmann FX series, FFA series and their variants, such as trailing edge trim, etc.

小翼翼展长度Ltip≥Xend-rstart、梢根比y≥0.2、外倾角τ∈(0°,90°)、安装角Aset∈(-2°,5°)、前缘后掠角

Figure BDA0003606040940000093
后缘后掠角γ2∈(0°,γ1)Winglet span length Ltip≥X end -r start , tip-to-root ratio y≥0.2, camber angle τ ∈ (0°, 90°), installation angle A set ∈ (-2°, 5°), leading edge sweep angle
Figure BDA0003606040940000093
Trailing edge sweep angle γ 2 ∈(0°,γ 1 )

确定翼根弦向起始位置x∈(x1,x2),x1和x2Determine the root chordwise starting positions x∈(x 1 ,x 2 ), x 1 and x 2 .

方法一:x1=0,x2=rstart所用翼型的最大厚度处;方法二:通过CFD仿真确定x1和x2的值,x1为切入风速Vin、并网转速

Figure BDA0003606040940000101
为边界条件时,rstart位置气流下洗起始位置,x2为额定风速Vrate、额定转速
Figure BDA0003606040940000102
为边界条件时,rstart位置气流下洗起始位置。此时rstart为叶尖。Method 1: x 1 =0, x 2 = the maximum thickness of the airfoil used by r start ; Method 2: Determine the values of x 1 and x 2 through CFD simulation, x 1 is the cut-in wind speed Vin, the grid-connected speed
Figure BDA0003606040940000101
When it is the boundary condition, the r start position is the starting position of the airflow downwash, and x 2 is the rated wind speed Vrate and the rated speed.
Figure BDA0003606040940000102
When it is the boundary condition, the airflow downwash starting position at the r start position. At this time, r start is the tip of the blade.

由于小翼的气动外形参数中,Ltip、y、τ、x是决定影响小翼诱导阻力的重要参数,因此优先确定上述4个参数,确定后,再优化前缘后掠角、后缘后掠角、安装角、翼根折弯半径、前缘修型贝塞尔参数。Since Ltip, y, τ, and x are important parameters that determine the induced drag of the winglet among the aerodynamic shape parameters of the winglet, the above four parameters are determined first. After the determination, the leading edge sweep angle and the trailing edge sweep are optimized. Angle, installation angle, wing root bending radius, leading edge trim Bezier parameters.

采用涡格法VLM对叶片小翼的气动力进行计算,步骤包括:The vortex lattice method VLM is used to calculate the aerodynamic force of the blade wing. The steps include:

1)对Ltip、y、τ、x不同组合,给出小翼的气动外形1) For different combinations of Ltip, y, τ, and x, the aerodynamic shape of the winglet is given

2)进行网格划分,对叶片小翼和叶片主体或叶片延长节各截面组成部分进行表面划分;2) Perform mesh division, and perform surface division on each section component of the blade winglet, the blade main body or the blade extension section;

3)对攻角范围属于(-2°,10°)内的攻角下,叶片小翼和叶片主体或叶片延长节组成的整体,进行气动性能计算;3) Calculate the aerodynamic performance of the whole composed of the blade winglet and the blade main body or the blade extension section under the attack angle range of (-2°, 10°);

4)以仿真结果中,最佳升阻比作为判定条件,确定最优的Ltip、y、τ、x组合;4) In the simulation results, the optimal lift-to-drag ratio is used as the judgment condition to determine the optimal combination of Ltip, y, τ, and x;

5)基于上面的Ltip、y、τ、x组合,迭代计算前缘后掠角、后缘后掠角、安装角、前缘修型贝塞尔参数90°<s1<180°、90°<s2<180°。5) Based on the above combinations of Ltip, y, τ, and x, iteratively calculate the leading edge sweep angle, trailing edge sweep angle, installation angle, and leading edge modified Bessel parameters 90°<s1<180°, 90°< s2<180°.

通过上面的方案还可以实现小翼弯向压力面和吸力面的设计。Through the above scheme, the design of the winglet bending to the pressure surface and the suction surface can also be realized.

通过后续的方案,可以实现对叶片延长装置全部部件的设计。Through the following solutions, the design of all the components of the blade extension device can be realized.

实施例二Embodiment 2

图4为本申请实施例的一种叶片延长装置的设计装置的框图。FIG. 4 is a block diagram of a design device of a blade extension device according to an embodiment of the present application.

如图4所示,本实施例提供的设计装置应用于电子设备,该电子设备可以理解为具有数据计算和信息处理能力的计算机或服务器,该设计装置用于对风电机组的叶片的延长装置的各项参数进行计算,得到该叶片延长装置的制造参数。该叶片延长装置包括叶片延长节,具体该叶片延长节的设计装置包括第一计算模块10和第二计算模块20。As shown in FIG. 4 , the design device provided in this embodiment is applied to electronic equipment, which can be understood as a computer or server with data computing and information processing capabilities, and the design device is used to extend the blade of the wind turbine. Various parameters are calculated to obtain the manufacturing parameters of the blade extension device. The blade extension device includes a blade extension section. Specifically, the design device for the blade extension section includes a first calculation module 10 and a second calculation module 20 .

第一计算模块用于采用修正BEM理论计算出增加叶片延长节后的CP~λ对应关系曲线。The first calculation module is used to calculate the CP-λ corresponding relationship curve after adding the blade extension section by using the modified BEM theory.

采用此方法计算对应关系曲线,以保证计算出的Cp值与商业软件GH Bladed计算结果误差1%,并使对应的最佳叶尖速比λopt相等。该该模块的计算过程如下:This method is used to calculate the corresponding relationship curve, so as to ensure that the calculated Cp value has an error of 1% with the calculation result of the commercial software GH Bladed, and to make the corresponding optimum tip speed ratio λ opt equal. The calculation process of this module is as follows:

首先,采用与GH Bladed或其他商业软件的叶片模型的相同气动外形参数,这里的气动外形参数包括各截面半径位置r、弦长c、扭角θ、相对厚度T、翼型气动参数(攻角AOA与升力系数Cl、阻力系数Cd和弯矩系数Cm对应关系);First, the same aerodynamic shape parameters as those of the blade model of GH Bladed or other commercial software are used. The aerodynamic shape parameters here include the radius position r of each section, the chord length c, the torsion angle θ, the relative thickness T, and the airfoil aerodynamic parameters (angle of attack). AOA corresponds to lift coefficient Cl, drag coefficient Cd and bending moment coefficient Cm);

然后,对每个截面采用修正BEM理论,迭代计算每个λ下的入流角φ、叶尖损失F_loss、叶根损失H_loss、轴向诱导因子a和切向诱导因子b,对应的函数关系式分别为Then, the modified BEM theory is used for each section to iteratively calculate the inflow angle φ, tip loss F_loss, blade root loss H_loss, axial induction factor a and tangential induction factor b under each λ, and the corresponding functional relationships are respectively for

Figure BDA0003606040940000111
Figure BDA0003606040940000111

Figure BDA0003606040940000112
Figure BDA0003606040940000112

Figure BDA0003606040940000113
Figure BDA0003606040940000113

Figure BDA0003606040940000114
Figure BDA0003606040940000114

Figure BDA0003606040940000115
Figure BDA0003606040940000115

式中:R表示叶片半径;f_loss表示含误差系数的Prandtl叶尖修正系数;△r误差系数0.01~0.2;rhub表示轮毂半径;H表示轴向诱导因子修正系数;F=F_loss·H_loss。In the formula: R represents the blade radius; f_loss represents the Prandtl tip correction coefficient with error coefficient; △r error coefficient is 0.01 to 0.2; r hub represents the hub radius; H represents the axial induction factor correction factor;

各截面在每个叶尖速比λ下的轴向诱导因子和切向诱导因子的迭代过程如下:The iterative process of the axial induction factor and tangential induction factor of each section at each tip speed ratio λ is as follows:

5)假定轴向诱导因子a=0和切向诱导因子b=0;5) Assume that the axial induction factor a=0 and the tangential induction factor b=0;

6)依据公式(1)计算截面入流角φ;6) Calculate the cross-section inflow angle φ according to formula (1);

7)依据公式(4)和(5)计算轴向诱导因子a1和切向诱导因子b17) Calculate the axial induction factor a1 and the tangential induction factor b1 according to formulas (4) and (5)

8)若|a1-a|>容许误差△a或者|b1-b|>容许误差△b,返回步骤1)继续迭代,直至满足容许误差要求。8) If |a1-a|>allowable error △a or |b1-b|>allowable error △b, return to step 1) and continue to iterate until the allowable error requirements are met.

最后,对每个截面的Cp-λ函数关系进行积分,求出Cpmax,保证Cpmax与GH Bladed或者其他商业软件计算出的最佳Cp’误差小于1%,且对应的最佳叶尖速比λopt相同。Cp计算表达式见公式(6)所示。Finally, integrate the Cp-λ function relationship of each section to obtain Cp max , to ensure that the error between Cp max and the optimal Cp' calculated by GH Bladed or other commercial software is less than 1%, and the corresponding optimal tip speed Same as λ opt . The calculation expression of Cp is shown in formula (6).

Figure BDA0003606040940000121
Figure BDA0003606040940000121

第二计算模块用于对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。The second calculation module is used to perform self-optimization calculation on a plurality of extension node parameters of each section position of the blade extension node.

具体来说,以年发电量AEP提升量△AEP为目标函数,采用粒子群多元参数算法,对叶片延长节的各延长节截面位置半径rext、各截面位置弦长cext、扭角θext、相对厚度Text进行自寻优计算。该模块的计算过程如下:Specifically, using the annual power generation AEP lift △AEP as the objective function, the particle swarm multi-parameter algorithm is used to calculate the section position radius r ext of each extension section of the blade extension section, the chord length c ext of each section position, and the torsion angle θ ext . , The relative thickness Text performs self-optimization calculation. The calculation process of this module is as follows:

选定叶片延长和叶片延长节的起始位置Xstart、设计目标长度Xend和设计截面步长bin=0.2m~1m。Select the starting position X start of the blade extension and blade extension section, the design target length X end and the design section step size bin=0.2m~1m.

计算叶片延长节的近似最佳λext-opt Calculate the approximate optimal λ ext-opt for the blade extension

Figure BDA0003606040940000122
Figure BDA0003606040940000122

计算叶片延长节对应各截面位置的理论最佳扭角θtheory Calculate the theoretical optimal twist angle θ theory corresponding to each section position of the blade extension

Figure BDA0003606040940000123
Figure BDA0003606040940000123

Figure BDA0003606040940000124
Figure BDA0003606040940000124

αstart表示原叶片长度下Xstart在稳态风速Vin(切入风速)~Vrate(达到额定转速时对应风速)下的气动攻角平均值αstart α start represents the average aerodynamic angle of attack α start of X start at the steady-state wind speed Vin (cut-in wind speed) ~ Vrate (the corresponding wind speed when the rated speed is reached) under the original blade length

采用多项式拟合方法迭代拟合计算延长后叶片各弦长的曲线The curve of each chord length of the extended blade is calculated by iterative fitting using the polynomial fitting method

y=k1xn+k2xn-1+...knx+k0 (10)y=k 1 x n +k 2 x n-1 +...k n x+k 0 (10)

迭代方法:Iteration method:

9)给定Xend初始弦长cend 9) Given X end initial chord length c end

10)被拟合弦长曲线的起始点为最大弦长cmax,终点为cend 10) The starting point of the fitted chord length curve is the maximum chord length c max , and the end point is c end

11)采用公式(10)进行曲线拟合,循环n=1,2,3…11) Use formula (10) for curve fitting, loop n=1,2,3…

12)计算每个n循环的拟合曲线和被拟合曲线的相关性Rcoeff 12) Calculate the correlation R coeff between the fitted curve and the fitted curve for each n cycle

13)当Rcoeff≥R1时,R1=0.95~0.99,对应的n作为粒子群寻优弦长粒子循环迭代的下边界弦长曲线多项式阶数13) When R coeff ≥ R 1 , R 1 =0.95~0.99, and the corresponding n is used as the polynomial order of the lower boundary chord-length curve of the particle swarm optimization chord-length particle loop iteration

14)当Rcoeff≤R2时,R1=0.99~1,对应的n作为粒子群寻优弦长粒子循环迭代的下边界弦长曲线多项式阶数14) When R coeff ≤ R 2 , R 1 =0.99~1, and the corresponding n is the polynomial order of the lower boundary chord length curve of the particle swarm optimization chord length particle loop iteration

15)若6)多项式曲线计算出的延长后叶片各弦长采用步骤1方法计算出的最佳Cpext-max小于未延长前的叶片Cpmax,增加cend值,重新进行循环,直至满足为止。15) If 6) the chord length of the extended blade calculated by the polynomial curve, the optimal Cp ext-max calculated by the method in step 1 is less than the Cp max of the blade before extension, increase the c end value, and repeat the cycle until it is satisfied .

16)循环结束。16) The loop ends.

针对不同翼型型号,通过粒子群自寻优PSO算法,对叶片延长节的弦长、扭角、翼型相对厚度进行自寻优计算,迭代计算出的叶片延长节各截面弦长、扭角、相对厚度、翼型型号作为叶片延长设计的气动外形参数。For different airfoil models, the particle swarm self-optimization PSO algorithm is used to perform self-optimization calculations on the chord length, twist angle and relative thickness of the blade extension section. The iteratively calculated chord length and torsion angle of each section of the blade extension section , relative thickness, and airfoil type are used as aerodynamic shape parameters for blade extension design.

vi=ωvi1rand()(pbesti-xi)+ω2rand()(gbesti-xi) (11)v i =ωv i1 rand()(pbest i -x i )+ω 2 rand()(gbest i -x i ) (11)

xi=xi+vi (12)x i = x i +v i (12)

式中:vi表示粒子速度;ω1和ω2表示学习因子,ω1=ω2=1~2;rand()表示0~1的随机数;i表示粒子群总数;xi表示粒子当前位置;pbesti和gbesti表示粒子迭代过程中的两个极值;ω表示惯性因子,ω=0.4~0.9In the formula: v i represents the particle velocity; ω 1 and ω 2 represent the learning factor, ω 12 =1~2; rand() represents a random number from 0 to 1; i represents the total number of particle swarms; x i represents the current particle size position; pbest i and gbest i represent the two extreme values in the particle iterative process; ω represents the inertia factor, ω=0.4~0.9

翼型型号选择风力机常用翼型,DU系列、RISO系列、NACA系列、FFA系列、S系列及其变形体,相对厚度范围16%~18%。The airfoil type selects the airfoils commonly used in wind turbines, DU series, RISO series, NACA series, FFA series, S series and their variants, with a relative thickness range of 16% to 18%.

粒子群规模particle_num=30~100,迭代次数iteration_num=10~50,寻优目标为最佳AEP。The particle swarm scale particle_num=30~100, the iteration number iteration_num=10~50, and the optimization goal is the best AEP.

粒子群自寻优PSO算法中,各粒子边界条件设置:In the particle swarm self-optimization PSO algorithm, the boundary conditions of each particle are set as follows:

4)弦长上下边界见2-64) See 2-6 for the upper and lower boundaries of the chord length

5)扭角上边界为θtheory±Twist_Error,Twist_Error=1~2deg5) The upper boundary of the twist angle is θ theory ±Twist_Error, Twist_Error=1~2deg

6)翼型相对厚度上边界为Xstart对应厚度,下边界为翼型型号中最小的相对厚度。6) The upper boundary of the relative thickness of the airfoil is the thickness corresponding to X start , and the lower boundary is the smallest relative thickness in the airfoil model.

若叶片延长后的整机载荷超出设计载荷或者延长后的发电量提升量不满足要求,调整Xend,重新执行后续的计算。If the whole machine load after the blade is extended exceeds the design load or the power generation increase after the extension does not meet the requirements, adjust X end and re-execute the subsequent calculation.

从上述技术方案可以看出,本实施例提供了一种叶片延长装置的设计装置,该装置应用于电子设备,该叶片延长装置包括叶片延长节,本设计方法具体为采用修正BEM理论计算叶片延长节的CP~λ对应关系曲线;以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于CP~λ对应关系曲线中的参数,对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,从而得到叶片延长节各截面弦长、扭角、相对厚度、翼型型号等气动外形参数。通过上述方案可以实现对叶片延长装置的设计。It can be seen from the above technical solutions that this embodiment provides a design device for a blade extension device, which is applied to electronic equipment, and the blade extension device includes a blade extension section. The CP~λ corresponding relationship curve of the blade section; the annual power generation improvement is used as the objective function, the particle swarm multi-parameter algorithm is used, and based on the parameters in the CP~λ corresponding relationship curve, the multi-section position of each section position of the blade extension section is calculated. The parameters of the extension section are self-optimized and calculated, so as to obtain the aerodynamic shape parameters such as the chord length, twist angle, relative thickness, and airfoil type of each section of the blade extension section. Through the above solution, the design of the blade extension device can be realized.

鉴于该叶片延长装置还包括叶片延长小翼,因此,在本申请的一个具体实施方式中,还包括位置选定模块30和第三计算模块40,以实现对叶片延长小翼的设计,如图2所示。Since the blade extension device also includes a blade extension winglet, in a specific embodiment of the present application, it also includes a position selection module 30 and a third calculation module 40, so as to realize the design of the blade extension winglet, as shown in Fig. 2 shown.

位置选定模块用于选定叶片延长小翼的起始位置。The position selection module is used to select the starting position of the blade extension winglet.

在上面计算出的叶片延长节的基础上,确定叶尖小翼的沿叶片展向的起始位置rstart,rstart的选择依据为:On the basis of the blade extension section calculated above, determine the starting position r start of the blade tip winglet along the blade span. The selection of r start is based on:

3)通过专业商业软件如GH Bladed、Simpack、Ansys CFX/Fluent或开源软件如Fast,或基于修正的BEM理论、升力线理论、促动线模型等空气动力学模型,自编迭代程序计算叶片气动性能计算△AEP满足设计目标要求;3) Through professional commercial software such as GH Bladed, Simpack, Ansys CFX/Fluent or open source software such as Fast, or based on modified BEM theory, lift line theory, actuation line model and other aerodynamic models, self-compiled iterative programs to calculate blade aerodynamics Performance calculation △AEP meets the design target requirements;

4)按照2-3给出的半径长度bin减少步骤2中叶片半径,即反向减小设计,按照上面所描述的方式计算对应的△AEPi,当

Figure BDA0003606040940000141
时,以此时的截面位置rstart为小翼的起始位置。4) Reduce the blade radius in step 2 according to the radius length bin given in 2-3, that is, reduce the design in reverse, and calculate the corresponding ΔAEP i according to the method described above, when
Figure BDA0003606040940000141
, take the section position rstart at this time as the starting position of the winglet.

叶片延长小翼的气动外形的关键参数包括前缘后掠角γ1,后缘后掠角γ2,翼梢弦长c2,翼根弦长c1,梢根比

Figure BDA0003606040940000142
翼根弦向起始位置x,前缘修型贝塞尔曲线参数s1、s2、小翼翼展长度Ltip,外倾角τ,折弯半径Rt1、Rt2、以及安装角Aset。分别如图3a、3b和3c所示。The key parameters of the aerodynamic profile of the blade extended winglet include the leading edge sweep angle γ 1 , the trailing edge sweep angle γ 2 , the tip chord length c 2 , the wing root chord length c 1 , the tip-to-root ratio
Figure BDA0003606040940000142
Root chordwise starting position x, leading edge modified Bezier curve parameters s1, s2, winglet span length Ltip, camber angle τ, bending radii Rt 1 , Rt 2 , and installation angle A set . These are shown in Figures 3a, 3b and 3c, respectively.

第三计算模块用于基于起始位置计算叶片延长小翼的气动外形参数。The third calculation module is used for calculating the aerodynamic shape parameters of the blade extension winglet based on the starting position.

选定叶尖延长小翼的翼型,选择原则1:小翼翼型取上表面平坦,后缘有一定弯度的系列翼型,翼型厚度小于16%,系列翼型包括不限于NACA 4系列、5系列、6系列,WortmannFX系列、FFA系列及其变形体,如后缘修型等。Select the airfoil of the blade tip extended winglet, selection principle 1: the airfoil of the winglet is a series of airfoils with a flat upper surface and a certain camber on the trailing edge, and the thickness of the airfoil is less than 16%. The series of airfoils include but are not limited to NACA 4 series, 5 series, 6 series, WortmannFX series, FFA series and their variants, such as trailing edge trim, etc.

小翼翼展长度Ltip≥Xend-rstart、梢根比y≥0.2、外倾角τ∈(0°,90°)、安装角Aset∈(-2°,5°)、前缘后掠角

Figure BDA0003606040940000143
后缘后掠角γ2∈(0°,γ1)Winglet span length Ltip≥X end -r start , tip-to-root ratio y≥0.2, camber angle τ ∈ (0°, 90°), installation angle A set ∈ (-2°, 5°), leading edge sweep angle
Figure BDA0003606040940000143
Trailing edge sweep angle γ 2 ∈(0°,γ 1 )

确定翼根弦向起始位置x∈(x1,x2),x1和x2Determine the root chordwise starting positions x∈(x 1 ,x 2 ), x 1 and x 2 .

方法一:x1=0,x2=rstart所用翼型的最大厚度处;方法二:通过CFD仿真确定x1和x2的值,x1为切入风速Vin、并网转速

Figure BDA0003606040940000151
为边界条件时,rstart位置气流下洗起始位置,x2为额定风速Vrate、额定转速
Figure BDA0003606040940000152
为边界条件时,rstart位置气流下洗起始位置。此时rstart为叶尖。Method 1: x 1 =0, x 2 = the maximum thickness of the airfoil used by r start ; Method 2: Determine the values of x 1 and x 2 through CFD simulation, x 1 is the cut-in wind speed Vin, the grid-connected speed
Figure BDA0003606040940000151
When it is the boundary condition, the r start position is the starting position of the airflow downwash, and x 2 is the rated wind speed Vrate and the rated speed.
Figure BDA0003606040940000152
When it is the boundary condition, the airflow downwash starting position at the r start position. At this time, r start is the tip of the blade.

由于小翼的气动外形参数中,Ltip、y、τ、x是决定影响小翼诱导阻力的重要参数,因此优先确定上述4个参数,确定后,再优化前缘后掠角、后缘后掠角、安装角、翼根折弯半径、前缘修型贝塞尔参数。Since Ltip, y, τ, and x are important parameters that determine the induced drag of the winglet among the aerodynamic shape parameters of the winglet, the above four parameters are determined first. After the determination, the leading edge sweep angle and the trailing edge sweep are optimized. Angle, installation angle, wing root bending radius, leading edge trim Bezier parameters.

采用涡格法VLM对叶片小翼的气动力进行计算,步骤包括:The vortex lattice method VLM is used to calculate the aerodynamic force of the blade wing. The steps include:

1)对Ltip、y、τ、x不同组合,给出小翼的气动外形1) For different combinations of Ltip, y, τ, and x, the aerodynamic shape of the winglet is given

2)进行网格划分,对叶片小翼和叶片主体或叶片延长节各截面组成部分进行表面划分;2) Perform mesh division, and perform surface division on each section component of the blade winglet, the blade main body or the blade extension section;

3)对攻角范围属于(-2°,10°)内的攻角下,叶片小翼和叶片主体或叶片延长节组成的整体,进行气动性能计算;3) Calculate the aerodynamic performance of the whole composed of the blade winglet and the blade main body or the blade extension section under the attack angle range of (-2°, 10°);

4)以仿真结果中,最佳升阻比作为判定条件,确定最优的Ltip、y、τ、x组合;4) In the simulation results, the optimal lift-to-drag ratio is used as the judgment condition to determine the optimal combination of Ltip, y, τ, and x;

5)基于上面的Ltip、y、τ、x组合,迭代计算前缘后掠角、后缘后掠角、安装角、前缘修型贝塞尔参数90°<s1<180°、90°<s2<180°。5) Based on the above combinations of Ltip, y, τ, and x, iteratively calculate the leading edge sweep angle, trailing edge sweep angle, installation angle, and leading edge modified Bessel parameters 90°<s1<180°, 90°< s2<180°.

通过上面的方案还可以实现小翼弯向压力面和吸力面的设计。Through the above scheme, the design of the winglet bending to the pressure surface and the suction surface can also be realized.

通过后续的方案,可以实现对叶片延长装置全部部件的设计。Through the following solutions, the design of all the components of the blade extension device can be realized.

实施例三Embodiment 3

本实施例提供了一种电子设备,该电子设备可以理解为据有数据计算和信息处理能力的计算机或服务器,该电子设备包括至少一个处理器101和存储器102,两者通过数据总线103实现连接,该存储器用于存储计算机程序或指令,该处理器用于执行相应计算机程序或指令,以使该电子设备实现实施例一种所提供的叶片延长装置的设计方法。This embodiment provides an electronic device, which can be understood as a computer or a server with data computing and information processing capabilities, the electronic device includes at least one processor 101 and a memory 102, which are connected through a data bus 103 , the memory is used to store computer programs or instructions, and the processor is used to execute the corresponding computer programs or instructions, so that the electronic device implements the design method of the blade extension device provided in the embodiment.

该叶片延长装置包括叶片延长节,本设计方法具体为采用修正BEM理论计算叶片延长节的CP~λ对应关系曲线;以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于CP~λ对应关系曲线中的参数,对叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,从而得到叶片延长节各截面弦长、扭角、相对厚度、翼型型号等气动外形参数。通过上述方案可以实现对叶片延长装置的设计。The blade extension device includes a blade extension section. The design method is to use the modified BEM theory to calculate the CP-λ corresponding relationship curve of the blade extension section; take the annual power generation increase as the objective function, adopt the particle swarm multi-parameter algorithm, and based on CP ~λ corresponds to the parameters in the relationship curve, and performs self-optimization calculation on the parameters of multiple extension sections at each section position of the blade extension section, so as to obtain the chord length, twist angle, relative thickness, airfoil type, etc. of each section of the blade extension section. Aerodynamic shape parameters. Through the above solution, the design of the blade extension device can be realized.

本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other.

本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。It should be understood by those skilled in the art that the embodiments of the embodiments of the present invention may be provided as a method, an apparatus, or a computer program product. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present invention may take the form of a computer program product implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, and the like.

本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。Embodiments of the present invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that causes the instructions to be executed by the processor of the computer or other programmable data processing terminal equipment Means are created for implementing the functions specified in the flow or flows of the flowcharts and/or the blocks or blocks of the block diagrams.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operational steps are performed on the computer or other programmable terminal equipment to produce a computer-implemented process, thereby executing on the computer or other programmable terminal equipment The instructions executed on the above provide steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。While preferred embodiments of the embodiments of the present invention have been described, additional changes and modifications to these embodiments may be made by those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiments as well as all changes and modifications that fall within the scope of the embodiments of the present invention.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or terminal device that includes a list of elements includes not only those elements, but also a non-exclusive list of elements. other elements, or also include elements inherent to such a process, method, article or terminal equipment. Without further limitation, an element defined by the phrase "comprises a..." does not preclude the presence of additional identical elements in the process, method, article, or terminal device that includes the element.

以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The technical solutions provided by the present invention have been described in detail above, and specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; At the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific embodiments and application scope. To sum up, the content of this specification should not be construed as a limitation of the present invention.

Claims (12)

1.一种叶片延长装置的设计方法,应用于电子设备,其特征在于,所述叶片延长装置包括叶片延长节,所述设计方法包括步骤:1. A design method of a blade extension device, applied to electronic equipment, is characterized in that, the blade extension device comprises a blade extension section, and the design method comprises the steps: 采用修正BEM理论计算出增加叶片延长节后的CP~λ对应关系曲线;Using the modified BEM theory to calculate the CP~λ corresponding relationship curve after adding the blade extension; 以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。Taking the increase in annual power generation as the objective function, using the particle swarm multi-parameter algorithm, and based on the parameters in the CP ~ λ corresponding relationship curve, the parameters of each section of the blade extension section are automatically carried out. Optimization calculation. 2.如权利要求1所述的设计方法,其特征在于,所述多个延长节参数包括半径、弦长、扭角和相对厚度。2. The design method of claim 1, wherein the plurality of elongation parameters include radius, chord length, twist angle, and relative thickness. 3.如权利要求1所述的设计方法,其特征在于,所述采用修正BEM理论方法计算叶片延长节的CP~λ对应关系曲线,包括步骤:3. The design method according to claim 1, wherein the calculation of the CP-λ corresponding relationship curve of the blade extension section by the modified BEM theory method comprises the steps of: 选定与特定叶片模型相同的气动外形参数;Select the same aerodynamic shape parameters as the specific blade model; 对所述叶片延长节的每个截面采用修正BEM理论,迭代计算每个所述截面在每个叶尖速比下的入流角、叶尖损失、叶根损失、轴向诱导因子和切向诱导因子,对应的函数关系式分别为:Using the modified BEM theory for each section of the blade extension section, iteratively calculate the inflow angle, tip loss, blade root loss, axial induction factor and tangential induction of each section at each tip speed ratio factor, and the corresponding functional relationships are:
Figure FDA0003606040930000011
Figure FDA0003606040930000011
Figure FDA0003606040930000012
Figure FDA0003606040930000012
Figure FDA0003606040930000013
Figure FDA0003606040930000013
Figure FDA0003606040930000014
Figure FDA0003606040930000014
Figure FDA0003606040930000015
Figure FDA0003606040930000015
式中:R表示叶片半径;f_loss表示含误差系数的Prandtl叶尖修正系数;△r为误差系数;rhub表示轮毂半径;H表示轴向诱导因子修正系数;F=F_loss·H_loss;In the formula: R is the blade radius; f_loss is the Prandtl tip correction coefficient with error coefficient; △r is the error coefficient; r hub is the hub radius; H is the axial induction factor correction coefficient; F=F_loss·H_loss; 对每个所述截面在每个所述叶尖速比下的入流角、叶尖损失、叶根损失、轴向诱导因子和切向诱导因子进行积分计算,根据计算结果构建所述CP~λ对应关系曲线。Integrate and calculate the inflow angle, tip loss, blade root loss, axial induction factor and tangential induction factor of each of the sections under each of the blade tip speed ratios, and construct the CP~λ according to the calculation results Correspondence curve.
4.如权利要求3所述的设计方法,其特征在于,所述误差系数△r的范围为0.01~0.2。4 . The design method according to claim 3 , wherein the error coefficient Δr ranges from 0.01 to 0.2. 5 . 5.如权利要求1所述的设计方法,其特征在于,所述以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算,包括步骤:5 . The design method according to claim 1 , wherein the improvement in annual power generation is taken as the objective function, the particle swarm multi-parameter algorithm is used, and based on the parameters in the CP-λ corresponding relationship curve, the The self-optimization calculation is performed on a plurality of extension section parameters of each section position of the blade extension section, including the steps: 选定所述叶片延长和叶片延长节的起始位置、设计目标长度、设计截面步长;Selecting the starting position of the blade extension and the blade extension section, the design target length, and the design section step size; 计算所述叶片延长节延长后的近似最佳λext-opt Calculate the approximate optimal λ ext-opt after the extension of the blade extension
Figure FDA0003606040930000021
Figure FDA0003606040930000021
计算所述叶片延长节对应各截面位置的理论最佳扭角θtheory Calculate the theoretical optimal twist angle θ theory of the blade extension section corresponding to each section position
Figure FDA0003606040930000022
Figure FDA0003606040930000022
Figure FDA0003606040930000023
Figure FDA0003606040930000023
αstart表示原叶片长度下Xstart在稳态风速Vin(切入风速)~Vrate(达到额定转速时对应风速)下的气动攻角平均值αstart α start represents the average aerodynamic angle of attack α start of X start at the steady-state wind speed Vin (cut-in wind speed) ~ Vrate (corresponding wind speed when the rated speed is reached) under the original blade length 采用多项式拟合方法迭代拟合计算所述叶片延长节各弦长的曲线A polynomial fitting method is used to iteratively fit and calculate the curve of each chord length of the blade extension section y=k1xn+k2xn-1+...knx+k0 y=k 1 x n +k 2 x n-1 +...k n x+k 0 在不同翼型型号下,通过粒子群自寻优PSO算法,对所述叶片延长节的弦长、扭角、翼型相对厚度进行自寻优计算Under different airfoil models, the chord length, twist angle and relative thickness of the airfoil of the blade extension section are self-optimized by the particle swarm self-optimization PSO algorithm. vi=ωvi1rand()(pbesti-xi)+ω2rand()(gbesti-xi)v i =ωv i1 rand()(pbest i -x i )+ω 2 rand()(gbest i -x i ) xi=xi+vi x i = x i +v i 式中:vi表示粒子速度,ω1和ω2表示学习因子,ω1=ω2=1~2,rand()表示0~1的随机数,i表示粒子群总数,xi表示粒子当前位置,pbesti和gbesti表示粒子迭代过程中的两个极值,ω表示惯性因子,ω=0.4~0.9。In the formula: v i represents the particle velocity, ω 1 and ω 2 represent the learning factor, ω 12 =1~2, rand() represents a random number from 0 to 1, i represents the total number of particle swarms, and xi represents the current particle size. position, pbest i and gbest i represent the two extreme values in the particle iterative process, ω represents the inertia factor, ω=0.4~0.9.
6.如权利要求1~5任一项所述的设计方法,其特征在于,所述叶片延长装置还包括叶片延长小翼,所述设计方法还包括步骤:6. The design method according to any one of claims 1 to 5, wherein the blade extension device further comprises a blade extension winglet, and the design method further comprises the steps of: 选定所述叶片延长小翼的起始位置;selecting the starting position of the blade to extend the winglet; 以所述起始位置为基础,计算所述叶片延长小翼的气动外形参数。Based on the starting position, the aerodynamic shape parameters of the blade extension winglet are calculated. 7.如权利要求6所述的设计方法,其特征在于,所述气动外形参数包括前缘后掠角、后缘后掠角、翼梢弦长、翼根弦长、梢根比、翼根弦向起始位置、前缘修型贝塞尔曲线参数、小翼翼展长度,外倾角,折弯半径和安装角。7. The design method according to claim 6, wherein the aerodynamic shape parameters include leading edge sweep angle, trailing edge sweep angle, wing tip chord length, wing root chord length, tip root ratio, wing root Chordal starting position, leading edge modified Bezier curve parameters, winglet span length, camber angle, bend radius and installation angle. 8.一种叶片延长装置的设计装置,应用于电子设备,其特征在于,所述叶片延长装置包括叶片延长节,所述设计装置包括:8. A design device for a blade extension device, which is applied to electronic equipment, wherein the blade extension device comprises a blade extension section, and the design device comprises: 第一计算模块,用于采用修正BEM理论计算出增加叶片延长节后的CP~λ对应关系曲线;The first calculation module is used to calculate the CP-λ corresponding relationship curve after adding the blade extension section by using the modified BEM theory; 第二计算模块,用于以年发电量提升量为目标函数,采用粒子群多元参数算法,并基于所述CP~λ对应关系曲线中的参数,对所述叶片延长节的每个截面位置的多个延长节参数进行自寻优计算。The second calculation module is used for taking the increase in annual power generation as the objective function, using the particle swarm multi-parameter algorithm, and based on the parameters in the corresponding relationship curve of CP to λ, to determine the position of each section of the blade extension section. Self-optimization calculation is performed for multiple extension section parameters. 9.如权利要求8所述的设计装置,其特征在于,所述多个延长节参数包括半径、弦长、扭角和相对厚度。9. The design apparatus of claim 8, wherein the plurality of elongation parameters include radius, chord length, twist angle, and relative thickness. 10.如权利要求8或9所述的设计装置,其特征在于,所述叶片延长装置还包括叶片延长小翼,所述设计装置还包括:10. The design device according to claim 8 or 9, wherein the blade extension device further comprises a blade extension winglet, and the design device further comprises: 位置选定模块,用于选定所述叶片延长小翼的起始位置;a position selection module for selecting the starting position of the blade extension winglet; 第三计算模块,用于以所述起始位置为基础,计算所述叶片延长小翼的气动外形参数。The third calculation module is configured to calculate the aerodynamic shape parameters of the blade extension winglet based on the starting position. 11.如权利要求10所述的设计装置,其特征在于,所述气动外形参数包括前缘后掠角、后缘后掠角、翼梢弦长、翼根弦长、梢根比、翼根弦向起始位置、前缘修型贝塞尔曲线参数、小翼翼展长度,外倾角,折弯半径和安装角。11. The design device according to claim 10, wherein the aerodynamic shape parameters include leading edge sweep angle, trailing edge sweep angle, wing tip chord, wing root chord, tip root ratio, wing root Chordal starting position, leading edge modified Bezier curve parameters, winglet span length, camber angle, bend radius and installation angle. 12.一种电子设备,其特征在于,包括至少一个处理器和与所述处理器连接的存储器,其中:12. An electronic device, comprising at least one processor and a memory connected to the processor, wherein: 所述存储器用于存储计算机程序或指令;the memory is used to store computer programs or instructions; 所述处理器用于执行所述计算机程序或指令,以使所述电子设备实现如权利要求1~7任一项所述的叶片延长装置的设计方法。The processor is configured to execute the computer program or instructions, so that the electronic device implements the design method of the blade extension device according to any one of claims 1 to 7 .
CN202210416054.0A 2022-04-20 2022-04-20 Design method and device of blade extension device and electronic equipment Pending CN114861345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210416054.0A CN114861345A (en) 2022-04-20 2022-04-20 Design method and device of blade extension device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210416054.0A CN114861345A (en) 2022-04-20 2022-04-20 Design method and device of blade extension device and electronic equipment

Publications (1)

Publication Number Publication Date
CN114861345A true CN114861345A (en) 2022-08-05

Family

ID=82630804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210416054.0A Pending CN114861345A (en) 2022-04-20 2022-04-20 Design method and device of blade extension device and electronic equipment

Country Status (1)

Country Link
CN (1) CN114861345A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051647A1 (en) * 2008-11-10 2010-05-14 Organoworld Inc. Turbine annular axial rotor
CN104364517A (en) * 2012-03-13 2015-02-18 柯尔顿控股有限公司 Twisted blade root

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051647A1 (en) * 2008-11-10 2010-05-14 Organoworld Inc. Turbine annular axial rotor
CN104364517A (en) * 2012-03-13 2015-02-18 柯尔顿控股有限公司 Twisted blade root
US20150159493A1 (en) * 2012-03-13 2015-06-11 Corten Holding Bv Twisted blade root

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUAN YUAN;JIONG TANG;: "风机捕集能量和降低负荷使用的先进控制方法", ENGINEERING, no. 04, 15 August 2017 (2017-08-15) *
叶昭良;王晓东;康顺;: "水平轴风力机偏航气动性能分析", 工程热物理学报, no. 05, 15 May 2018 (2018-05-15) *
胡燕平;戴巨川;刘德顺;: "大型风力机叶片研究现状与发展趋势", 机械工程学报, no. 20, 20 October 2013 (2013-10-20) *

Similar Documents

Publication Publication Date Title
CN104408260B (en) A kind of tidal current energy water turbine vane airfoil profile method for designing
CN110110427B (en) Pneumatic shape design method for high-power wind turbine blade
CN102322407B (en) Aerodynamic configuration collaborative design method for wind turbine blade
CN106919749B (en) Low-noise wind turbine blade design method and low-noise wind turbine blade
CN113742861B (en) Blade model optimization design method suitable for wind tunnel test of wind driven generator
CN103277245B (en) Large-thickness blunt-trailing-edge wind-power airfoil profiles and a design method thereof
CN109145506B (en) Optimal design method for outer side wing profile of wind turbine with high aerodynamic performance and low noise level
CN109902384B (en) A pre-bending and pre-twisting design method for wind turbine flexible blades based on aeroelastic model
CN101615216B (en) Method for carrying out streamline-form thickening on airfoil shape tailing edge
CN104405596B (en) Wind turbine generator system low-wind-speed airfoil section family
CN111209638B (en) Aerodynamic design method of low wind speed wind turbine blades based on deviation correction of operating angle of attack
CN101876291B (en) Wind turbine blade airfoil family
CN101458735A (en) Aerofoil with high lift-drag ratio
CN106677979A (en) Coupling optimization method for blade aerodynamic configuration and main engine operation characteristics of wind turbine
CN103711655B (en) The blunt trailing edge pneumatic equipment blades made of a kind of heavy thickness
CN104863799A (en) Method for designing wind turbine airfoil by using Bessel function curve
Wang et al. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects
CN105868470A (en) Wind turbine wing shape and blade appearance parameter integrated design method
CN106777525B (en) The aerodynamic design method of wind turbine considering the static and dynamic influence of the design tip speed ratio rotor
CN114658595B (en) A wind turbine blade with leading edge extension power enhancement device and design method thereof
CN203362391U (en) Wind turbine blade with tip vane
CN207064139U (en) Wind generator set blade
CN114861345A (en) Design method and device of blade extension device and electronic equipment
CN106227985A (en) Marine tidal-current energy trunnion axis hydraulic turbine blade airfoil family method for designing
CN109325274B (en) Wind turbine wind wheel aerodynamic performance evaluation method based on three-factor fitting integration method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination