[go: up one dir, main page]

CN114861123A - GLONASS satellite coordinate fitting method based on Hermite interpolation method - Google Patents

GLONASS satellite coordinate fitting method based on Hermite interpolation method Download PDF

Info

Publication number
CN114861123A
CN114861123A CN202210403479.8A CN202210403479A CN114861123A CN 114861123 A CN114861123 A CN 114861123A CN 202210403479 A CN202210403479 A CN 202210403479A CN 114861123 A CN114861123 A CN 114861123A
Authority
CN
China
Prior art keywords
satellite
sub
glonass
interpolation
state information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210403479.8A
Other languages
Chinese (zh)
Inventor
纪元法
张�杰
孙希延
付文涛
严素清
梁维彬
贾茜子
赵松克
白杨
伍建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210403479.8A priority Critical patent/CN114861123A/en
Publication of CN114861123A publication Critical patent/CN114861123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Complex Calculations (AREA)

Abstract

本发明涉及卫星导航技术领域,具体涉及一种基于Hermite插值法的GLONASS卫星坐标拟合方法,通过已知插值节点上的函数值及导数值,构造一个新的插值函数,使得插值函数与原函数的密合程度更好,大大减小了近似卫星坐标与真实卫星坐标的误差,能更好的与真实卫星运动模型所匹配,并有效提高了运算效率,缩短了积分时间。

Figure 202210403479

The invention relates to the technical field of satellite navigation, in particular to a GLONASS satellite coordinate fitting method based on the Hermite interpolation method. A new interpolation function is constructed by knowing the function value and the derivative value on the interpolation node, so that the interpolation function is the same as the original function. The degree of closeness is better, which greatly reduces the error between the approximate satellite coordinates and the real satellite coordinates, can better match the real satellite motion model, and effectively improves the computing efficiency and shortens the integration time.

Figure 202210403479

Description

基于Hermite插值法的GLONASS卫星坐标拟合方法GLONASS satellite coordinate fitting method based on Hermite interpolation method

技术领域technical field

本发明涉及卫星导航技术领域,尤其涉及一种基于Hermite插值法的 GLONASS卫星坐标拟合方法。The invention relates to the technical field of satellite navigation, in particular to a GLONASS satellite coordinate fitting method based on the Hermite interpolation method.

背景技术Background technique

卫星信号模拟器作为测试接收机性能指标的重要设备,不仅要能够随时随地的模拟生成卫星导航信号,更重要的是具备无限时运行的能力。而想要实现持续的生成卫星导航信号,就必须对卫星位置的递推算法加以研究。As an important device for testing receiver performance indicators, satellite signal simulators should not only be able to simulate and generate satellite navigation signals anytime and anywhere, but more importantly, have the ability to run indefinitely. In order to achieve continuous generation of satellite navigation signals, it is necessary to study the recursive algorithm of satellite positions.

GLONASS导航系统使用PZ-90大地坐标系,采用频分多址技术,即每颗卫星都使用不同的工作频率发射信号。由于GLONASS卫星播发的广播星历参数与GPS星历并不相同,所以并不能像GPS一样通过星历参数直接计算。The GLONASS navigation system uses the PZ-90 geodetic coordinate system and adopts frequency division multiple access technology, that is, each satellite uses a different operating frequency to transmit signals. Since the broadcast ephemeris parameters broadcast by the GLONASS satellite are not the same as the GPS ephemeris, it cannot be directly calculated by the ephemeris parameters like GPS.

目前,对于GLONASS卫星精确位置计算的常用方法是Runge-kutta轨道积分法,其采用固定积分步长的积分方法去计算GLONASS卫星下一时刻的卫星位置。当积分步长过长时,会造成计算时间大大延长,同时所计算出的GLONASS 卫星位置与真实情况相比误差较大。At present, the commonly used method for calculating the precise position of GLONASS satellites is the Runge-kutta orbit integration method, which uses an integration method with a fixed integration step to calculate the satellite position of the GLONASS satellite at the next moment. When the integration step is too long, the calculation time will be greatly prolonged, and the calculated GLONASS satellite position has a larger error compared with the real situation.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种基于Hermite插值法的GLONASS卫星坐标拟合方法,旨在解决当积分步长过长时,Runge-kutta轨道积分法会造成计算时间大大延长,同时计算出的GLONASS卫星位置与真实情况相比误差较大的问题。The object of the present invention is to provide a GLONASS satellite coordinate fitting method based on the Hermite interpolation method, aiming to solve the problem that when the integration step is too long, the Runge-kutta orbit integration method will cause the calculation time to be greatly prolonged, and the calculated GLONASS satellite The problem that the position has a large error compared with the real situation.

为实现上述目的,本发明提供了一种基于Hermite插值法的GLONASS卫星坐标拟合方法,包括如下步骤:To achieve the above object, the present invention provides a GLONASS satellite coordinate fitting method based on the Hermite interpolation method, comprising the following steps:

根据GLONASS卫星星历,建立卫星的轨道运动微分方程;According to the GLONASS satellite ephemeris, establish the satellite orbital motion differential equation;

根据参考时刻的卫星运动状态信息,对所述轨道运动微分方程积分,获得所述参考时刻的下一时刻的卫星运动状态信息;According to the satellite motion state information at the reference time, integrate the orbital motion differential equation to obtain the satellite motion state information at the next moment at the reference time;

将所述参考时刻的卫星运动状态信息和所述下一时刻的卫星运动状态信息作为Hermite插值法的两个插值节点,并对所述Hermite插值法进行推导,得到三阶插值公式;Taking the satellite motion state information of the reference moment and the satellite motion state information of the next moment as two interpolation nodes of the Hermite interpolation method, and deriving the Hermite interpolation method to obtain a third-order interpolation formula;

通过所述三阶插值公式近似得到任意时刻的所述卫星的位置。The position of the satellite at any moment is approximated by the third-order interpolation formula.

其中,所述参考时刻的卫星运动状态信息包括卫星位置、卫星速度和日月摄动加速度。Wherein, the satellite motion state information at the reference time includes satellite position, satellite velocity, and sun-moon perturbation acceleration.

其中,所述对所述轨道运动微分方程积分,包括:Wherein, the integral of the orbital motion differential equation includes:

采用四阶Runge-kutta轨道积分算法对所述轨道运动微分方程积分。The orbital motion differential equation is integrated using a fourth-order Runge-kutta orbital integration algorithm.

本发明的一种基于Hermite插值法的GLONASS卫星坐标拟合方法与现有技术相比,其有益效果在于:通过已知插值节点上的函数值及导数值,构造一个新的插值函数,使得插值函数与原函数的密合程度更好,大大减小了近似卫星坐标与真实卫星坐标的误差,能更好的与真实卫星运动模型所匹配,并有效提高了运算效率,缩短了积分时间。Compared with the prior art, the GLONASS satellite coordinate fitting method based on the Hermite interpolation method of the present invention has the beneficial effect of: constructing a new interpolation function by knowing the function value and the derivative value on the interpolation node, so that the interpolation The function and the original function have a better degree of closeness, which greatly reduces the error between the approximate satellite coordinates and the real satellite coordinates, can better match the real satellite motion model, and effectively improves the computing efficiency and shortens the integration time.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.

图1是本发明实施例的基于Hermite插值法的GLONASS卫星坐标拟合方法的步骤示意图。FIG. 1 is a schematic diagram of steps of a GLONASS satellite coordinate fitting method based on the Hermite interpolation method according to an embodiment of the present invention.

图2是本发明实施例的基于Hermite插值法的GLONASS轨道积分计算流程图。FIG. 2 is a flow chart of GLONASS orbit integral calculation based on Hermite interpolation method according to an embodiment of the present invention.

具体实施方式Detailed ways

请参阅图1和图2,图1是本发明实施例提供的一种基于Hermite插值法的 GLONASS卫星坐标拟合方法的步骤示意图。具体的,如图1所示,所述基于 Hermite插值法的GLONASS卫星坐标拟合方法可以包括以下步骤:Please refer to FIG. 1 and FIG. 2. FIG. 1 is a schematic diagram of steps of a method for fitting GLONASS satellite coordinates based on the Hermite interpolation method provided by an embodiment of the present invention. Specifically, as shown in Figure 1, the GLONASS satellite coordinate fitting method based on the Hermite interpolation method may include the following steps:

S101、根据GLONASS卫星星历,建立卫星的轨道运动微分方程。S101 , establishing an orbital motion differential equation of the satellite according to the GLONASS satellite ephemeris.

S102、根据参考时刻的卫星运动状态信息,对所述轨道运动微分方程积分,获得所述参考时刻的下一时刻的卫星运动状态信息。S102. Integrate the orbital motion differential equation according to the satellite motion state information at the reference time to obtain satellite motion state information at the next moment at the reference time.

S103、将所述参考时刻的卫星运动状态信息和所述下一时刻的卫星运动状态信息作为Hermite插值法的两个插值节点,并对所述Hermite插值法进行推导,得到三阶插值公式。S103. Use the satellite motion state information at the reference time and the satellite motion state information at the next time as two interpolation nodes of the Hermite interpolation method, and derive the Hermite interpolation method to obtain a third-order interpolation formula.

S104、通过所述三阶插值公式近似得到任意时刻的所述卫星的位置。S104, approximately obtain the position of the satellite at any time by using the third-order interpolation formula.

具体的,在GLONASS卫星星历中,对GLONASS卫星位置是以卫星在PZ-90 坐标系的运动向量的方式给出。GLONASS卫星星历的主要内容如下表所示:Specifically, in the GLONASS satellite ephemeris, the position of the GLONASS satellite is given in the form of the motion vector of the satellite in the PZ-90 coordinate system. The main contents of the GLONASS satellite ephemeris are shown in the following table:

说明illustrate 符号symbol 单位unit 参考时刻reference time t<sub>b</sub>t<sub>b</sub> ss 卫星钟偏移satellite clock offset τ<sub>n</sub>(t<sub>b</sub>),γ<sub>n</sub>(t<sub>b</sub>)τ<sub>n</sub>(t<sub>b</sub>),γ<sub>n</sub>(t<sub>b</sub>) ss 卫星位置satellite location x<sub>n</sub>(t<sub>b</sub>),y<sub>n</sub>(t<sub>b</sub>),z<sub>n</sub>(t<sub>b</sub>)x<sub>n</sub>(t<sub>b</sub>),y<sub>n</sub>(t<sub>b</sub>),z<sub>n</sub >(t<sub>b</sub>) mm 卫星速度satellite speed x'<sub>n</sub>(t<sub>b</sub>),y'<sub>n</sub>(t<sub>b</sub>),z'<sub>n</sub>(t<sub>b</sub>)x'<sub>n</sub>(t<sub>b</sub>),y'<sub>n</sub>(t<sub>b</sub>),z'<sub>n </sub>(t<sub>b</sub>) m/sm/s 日月摄动加速度sun-moon perturbation acceleration x”<sub>n</sub>(t<sub>b</sub>),y”<sub>n</sub>(t<sub>b</sub>),z”<sub>n</sub>(t<sub>b</sub>)x”<sub>n</sub>(t<sub>b</sub>),y”<sub>n</sub>(t<sub>b</sub>),z”<sub>n </sub>(t<sub>b</sub>) m/s<sup>2</sup>m/s<sup>2</sup>

表1 GLONASS星历主要内容Table 1 Main content of GLONASS ephemeris

由于GLONASS卫星星历每半小时更新一次,则星历拟合的有效区间为30 分钟。对GLONASS卫星进行受力分析,其受到的力包括地球的万有引力、地球非球形引力摄动、日月引力摄动、其他行星引力摄动、太阳辐射压力摄动、地球潮汐引力摄动等一系列的作用力。由于拟合的积分区间较短,为了简化卫星轨道运动的模型,可认为在短时间内卫星只受到地球引力、地球非球形引力和日月引力。对于地球非球形引力来说,高阶的摄动项系数影响极小,故在此忽略不计,仅考虑二阶以下的带谐系数。至于日月摄动项,卫星星历已给出,在误差允许的范围内,可认为日月摄动加速度为定值。综合以上,我们可在PZ-90 地心地固坐标系下建立GLONASS卫星的轨道运动方程。Since the GLONASS satellite ephemeris is updated every half an hour, the valid interval for ephemeris fitting is 30 minutes. The force analysis of the GLONASS satellite includes the universal gravitation of the earth, the aspherical gravitational perturbation of the earth, the gravitational perturbation of the sun and the moon, the gravitational perturbation of other planets, the perturbation of solar radiation pressure, the gravitational perturbation of the earth's tides, etc. of the force. Due to the short integration interval of fitting, in order to simplify the model of satellite orbital motion, it can be considered that the satellite is only affected by the earth's gravitational force, the earth's aspherical gravitational force and the sun-moon gravitational force in a short period of time. For the non-spherical gravitational force of the Earth, the high-order perturbation term coefficients have little influence, so they are ignored here, and only the harmonic coefficients below the second order are considered. As for the sun-moon perturbation item, the satellite ephemeris has been given, and within the allowable error range, the sun-moon perturbation acceleration can be considered as a fixed value. Based on the above, we can establish the orbital motion equation of the GLONASS satellite in the PZ-90 geocentric and geofixed coordinate system.

假设tb参考时刻,GLONASS卫星在PZ-90坐标系中的三维坐标为 x(tb),y(tb),z(tb),地球引力常数为GM,卫星到地球质心的矢径长度为r。Assuming the t b reference time, the three-dimensional coordinates of the GLONASS satellite in the PZ-90 coordinate system are x(t b ), y(t b ), z(t b ), the earth's gravitational constant is GM, and the vector radius from the satellite to the earth's center of mass The length is r.

矢径长度:Radial length:

Figure BDA0003600916680000031
Figure BDA0003600916680000031

地球中心引力使卫星获得的径向加速度为:The radial acceleration obtained by the satellite due to the gravity of the center of the earth is:

Figure BDA0003600916680000032
Figure BDA0003600916680000032

地球非球形引力对卫星产生的加速度为:The acceleration of the satellite caused by the non-spherical gravity of the earth is:

Figure BDA0003600916680000041
Figure BDA0003600916680000041

地球非球形引力对卫星产生的加速度为:The acceleration of the satellite caused by the non-spherical gravity of the earth is:

Figure BDA0003600916680000042
Figure BDA0003600916680000042

其中,ae是地球赤道半径,为6378136m,

Figure BDA0003600916680000043
为地球重力位二阶带谐系数,值为-0.00108263。日月引力摄动加速度为x'n(tb),y'n(tb),z'n(tb),假设地球自转的角速度为ω,考虑地球自转产生的加速度的影响。可得GLONASS卫星的轨道运动微分方程如下:Among them, a e is the radius of the Earth's equator, which is 6378136m,
Figure BDA0003600916680000043
is the second-order harmonic coefficient of the Earth's gravity potential, with a value of -0.00108263. The sun-moon gravitational perturbation acceleration is x' n (t b ), y' n (t b ), z' n (t b ), assuming that the angular velocity of the earth's rotation is ω, and the influence of the acceleration caused by the earth's rotation is considered. The differential equation of orbital motion of the available GLONASS satellite is as follows:

Figure BDA0003600916680000044
Figure BDA0003600916680000044

Figure BDA0003600916680000045
Figure BDA0003600916680000045

Figure BDA0003600916680000046
Figure BDA0003600916680000046

建立起GLONASS卫星的轨道运动微分方程后,根据参考时刻tb的卫星位置 xn(tb),yn(tb),zn(tb),卫星速度x'n(tb),y'n(tb),z'n(tb),日月摄动加速度 x”n(tb),y”n(tb),z”n(tb),选取积分步长为h,采用四阶Runge-kutta轨道积分算法进行一次数值积分,求取tb+h时刻的卫星运动状态。Runge-kutta轨道积分法的积分公式如下所示:After establishing the orbital motion differential equation of the GLONASS satellite, according to the satellite position x n (t b ), y n (t b ), z n (t b ) at the reference time t b , the satellite velocity x' n (t b ), y' n (t b ), z' n (t b ), the sun-moon perturbation acceleration x” n (t b ), y” n (t b ), z” n (t b ), the integration step is selected as h, the fourth-order Runge-kutta orbital integration algorithm is used to perform a numerical integration to obtain the satellite motion state at time t b +h. The integral formula of the Runge-kutta orbital integration method is as follows:

Figure BDA0003600916680000047
Figure BDA0003600916680000047

通过日月摄动加速度计算起始时刻卫星的加速度,然后对加速度做二次积分,再结合起始时刻卫星的速度,可以得到卫星在tb+h时刻的运动位置如下:Calculate the acceleration of the satellite at the starting time through the sun-moon perturbation acceleration, and then integrate the acceleration twice, and then combine the speed of the satellite at the starting time, the motion position of the satellite at the time t b +h can be obtained as follows:

Figure BDA0003600916680000048
Figure BDA0003600916680000048

经数次积分,即可得到GLONASS卫星在tk时刻的卫星坐标。After several integrations, the satellite coordinates of the GLONASS satellite at time t k can be obtained.

通过Runge-kutta轨道积分算法得到tb和tk的卫星运动状态后,即采用 Hermite插值算法。因为轨道方程函数f(t)在[tb,tk]上有一阶连续导数,且存在 n+1个互异点∈[tb,tk]则在n+1个互异点上都唯一存在一个2n+1个 Hermite插值多项式。After the satellite motion states of t b and t k are obtained by the Runge-kutta orbit integration algorithm, the Hermite interpolation algorithm is used. Because the orbital equation function f(t) has a continuous derivative on [t b , t k ], and there are n+1 mutual dissimilarities ∈ [t b , t k ], then all the n+1 dissimilar points have There is only one 2n+1 Hermite interpolation polynomial.

Figure BDA0003600916680000049
Figure BDA0003600916680000049

其中n次多项式li(t)为:where the nth degree polynomial l i (t) is:

Figure BDA0003600916680000051
Figure BDA0003600916680000051

Figure BDA0003600916680000052
Figure BDA0003600916680000052

当只有两个首尾插值点时,代入可得插值多项式为:When there are only two end-to-end interpolation points, the interpolation polynomial can be obtained by substituting:

Figure BDA0003600916680000053
Figure BDA0003600916680000053

由以上插值多项式,即可计算得到任意时刻的GLONASS卫星运动状态。From the above interpolation polynomial, the motion state of the GLONASS satellite at any time can be calculated.

本发明采用Hermite插值法,通过已知插值节点上的函数值及导数值,构造一个新的插值函数,使得插值函数与原函数的密合程度更好,大大减小了近似卫星坐标与真实卫星坐标的误差,能更好的与真实卫星运动模型所匹配,并有效提高了运算效率,缩短了积分时间。The invention adopts the Hermite interpolation method to construct a new interpolation function by knowing the function value and the derivative value on the interpolation node, so that the interpolation function and the original function have a better degree of closeness, and greatly reduce the approximate satellite coordinates and the real satellite coordinates. The error of the coordinates can be better matched with the real satellite motion model, and the calculation efficiency is effectively improved and the integration time is shortened.

以上所揭露的仅为本发明的一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。The above disclosure is only a preferred embodiment of the present invention, and of course, it cannot limit the scope of rights of the present invention. Those of ordinary skill in the art can understand that all or part of the process of implementing the above embodiment can be implemented according to the present invention. The equivalent changes made by the claims still belong to the scope covered by the invention.

Claims (3)

1.一种基于Hermite插值法的GLONASS卫星坐标拟合方法,其特征在于,包括如下步骤:1. a GLONASS satellite coordinate fitting method based on Hermite interpolation method, is characterized in that, comprises the steps: 根据GLONASS卫星星历,建立卫星的轨道运动微分方程;According to the GLONASS satellite ephemeris, establish the satellite orbital motion differential equation; 根据参考时刻的卫星运动状态信息,对所述轨道运动微分方程积分,获得所述参考时刻的下一时刻的卫星运动状态信息;According to the satellite motion state information at the reference time, integrate the orbital motion differential equation to obtain the satellite motion state information at the next moment at the reference time; 将所述参考时刻的卫星运动状态信息和所述下一时刻的卫星运动状态信息作为Hermite插值法的两个插值节点,并对所述Hermite插值法进行推导,得到三阶插值公式;Taking the satellite motion state information of the reference moment and the satellite motion state information of the next moment as two interpolation nodes of the Hermite interpolation method, and deriving the Hermite interpolation method to obtain a third-order interpolation formula; 通过所述三阶插值公式近似得到任意时刻的所述卫星的位置。The position of the satellite at any moment is approximated by the third-order interpolation formula. 2.如权利要求1所述的基于Hermite插值法的GLONASS卫星坐标拟合方法,其特征在于,2. the GLONASS satellite coordinate fitting method based on Hermite interpolation method as claimed in claim 1, is characterized in that, 所述参考时刻的卫星运动状态信息包括卫星位置、卫星速度和日月摄动加速度。The satellite motion state information at the reference time includes satellite position, satellite velocity and sun-moon perturbation acceleration. 3.如权利要求2所述的基于Hermite插值法的GLONASS卫星坐标拟合方法,其特征在于,所述对所述轨道运动微分方程积分,包括:3. the GLONASS satellite coordinate fitting method based on Hermite interpolation method as claimed in claim 2, is characterized in that, described to described orbital motion differential equation integral, comprises: 采用四阶Runge-kutta轨道积分算法对所述轨道运动微分方程积分。The orbital motion differential equation is integrated using a fourth-order Runge-kutta orbital integration algorithm.
CN202210403479.8A 2022-04-18 2022-04-18 GLONASS satellite coordinate fitting method based on Hermite interpolation method Pending CN114861123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210403479.8A CN114861123A (en) 2022-04-18 2022-04-18 GLONASS satellite coordinate fitting method based on Hermite interpolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210403479.8A CN114861123A (en) 2022-04-18 2022-04-18 GLONASS satellite coordinate fitting method based on Hermite interpolation method

Publications (1)

Publication Number Publication Date
CN114861123A true CN114861123A (en) 2022-08-05

Family

ID=82630756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210403479.8A Pending CN114861123A (en) 2022-04-18 2022-04-18 GLONASS satellite coordinate fitting method based on Hermite interpolation method

Country Status (1)

Country Link
CN (1) CN114861123A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065587A1 (en) * 2000-11-30 2002-05-30 Syrjaerinne Paula Method and apparatus for satellite orbit interpolation using piecewise hermite interpolating polynomials
CN102508260A (en) * 2011-11-30 2012-06-20 武汉大学 Geometric imaging construction method for side-looking medium resolution ratio satellite
CN114035210A (en) * 2021-10-28 2022-02-11 中国电子科技集团公司第五十四研究所 Low-earth-orbit satellite navigation enhanced load main control module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065587A1 (en) * 2000-11-30 2002-05-30 Syrjaerinne Paula Method and apparatus for satellite orbit interpolation using piecewise hermite interpolating polynomials
CN102508260A (en) * 2011-11-30 2012-06-20 武汉大学 Geometric imaging construction method for side-looking medium resolution ratio satellite
CN114035210A (en) * 2021-10-28 2022-02-11 中国电子科技集团公司第五十四研究所 Low-earth-orbit satellite navigation enhanced load main control module

Similar Documents

Publication Publication Date Title
CN104678408B (en) Satellite borne navigation receiver time service method, time service type satellite borne navigation receiver and satellite borne navigation application system
CN105203104B (en) A kind of gravitational field modeling method suitable for high accuracy inertial navigation system
CN109901206B (en) Single-star positioning and time service method based on low-orbit satellite radio range signal
CN108364014A (en) A kind of multi-sources Information Fusion Method based on factor graph
CN108226985A (en) Train Combinated navigation method based on Static Precise Point Positioning
CN104713559B (en) A kind of design method of high-precision SINS simulators
CN103453906A (en) Prediction method for satellite orbit
CN103557864A (en) Initial alignment method for micro electro mechanical system (MEMS) strap-down inertial navigation adaptive square-root cubature Kalman filtering (SCKF)
CN108490973A (en) Spacecraft formation relative orbit determines method and device
CN104597460A (en) Beidou satellite navigation receiver based carrier wave tracking loop crystal oscillator acceleration speed sensitivity coefficient calibration method
Islam et al. An effective approach to improving low‐cost GPS positioning accuracy in real‐time navigation
CN118425985A (en) A satellite navigation message format adaptation method for air-based platforms
CN107036603A (en) Mars probes device upper rail recursive algorithm based on Lagrange&#39;s interpolation ephemeris
CN104864875B (en) A kind of spacecraft autonomic positioning method based on non-linear H ∞ filtering
CN111290008A (en) A Fault Tolerant Algorithm for Dynamic Adaptive Extended Kalman Filtering
CN110058324B (en) Correction Method of Horizontal Component Error of Strapdown Gravimeter Using Gravity Field Model
CN111650613A (en) Distributed ephemeris calculation method
CN114861123A (en) GLONASS satellite coordinate fitting method based on Hermite interpolation method
CN111982126B (en) Design method of full-source BeiDou/SINS elastic state observer model
CN102680989B (en) Positioning result filtering method and device
CN118171050A (en) Low computational cost nonlinear Kalman filtering method for integrated navigation systems
CN111398994A (en) Method and device for positioning and timing of medium-orbit communication satellites
Zhang et al. GNSS real‐time instantaneous velocimetry based on moving‐window polynomial modelling
CN116224399A (en) Beidou navigation satellite orbit prediction method based on long-short-term memory neural network
CN115015981A (en) Ionized layer grid model construction method and system based on low-orbit satellite constellation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination