CN114859668B - Photoetching morphology calculation method of electron beam ice etching process - Google Patents
Photoetching morphology calculation method of electron beam ice etching process Download PDFInfo
- Publication number
- CN114859668B CN114859668B CN202210369502.6A CN202210369502A CN114859668B CN 114859668 B CN114859668 B CN 114859668B CN 202210369502 A CN202210369502 A CN 202210369502A CN 114859668 B CN114859668 B CN 114859668B
- Authority
- CN
- China
- Prior art keywords
- ice
- photoresist
- electron beam
- morphology
- simulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
- G03F7/2059—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
技术领域Technical Field
本发明属于电子束光刻技术领域,具体涉及一种电子束冰刻工艺的光刻形貌计算方法。The invention belongs to the technical field of electron beam lithography, and in particular relates to a lithography morphology calculation method for an electron beam ice etching process.
背景技术Background Art
随着信息技术的快速发展,电子束光刻技术(EBL)因其拥有高分辨率、高对准精度和高灵活性等优势在电子器件、光学器件以及纳米科学领域发挥着重要作用,但是对于高密度的密集纳米结构、超大高宽比结构以及三维高度变化的纳米结构和器件,该技术则面临巨大挑战。于是,一种新型的电子束光刻技术,以冰为光刻胶的冰刻工艺(Icelithography technology,IL)应运而生,因其具备无显影、易剥离、绿色环保、高精度原位套刻以及在多类型衬底上灵活制备纳米结构等优势而引起了先进光刻领域的日益关注。虽然目前已经对电子束冰刻工艺进行了实验研究并取得了一系列进展,但是对于电子束冰刻工艺冰光刻胶形貌的计算方法还没有任何报道,这一计算方法的缺失会限制这种新兴光刻技术的进一步发展与应用。With the rapid development of information technology, electron beam lithography (EBL) plays an important role in the fields of electronic devices, optical devices and nanoscience due to its advantages such as high resolution, high alignment accuracy and high flexibility. However, this technology faces huge challenges for high-density dense nanostructures, ultra-large aspect ratio structures and nanostructures and devices with three-dimensional height changes. Therefore, a new type of electron beam lithography technology, ice lithography technology (IL) with ice as photoresist, came into being. It has attracted increasing attention in the field of advanced lithography due to its advantages such as no development, easy stripping, green environmental protection, high-precision in-situ overlay and flexible preparation of nanostructures on multiple types of substrates. Although the electron beam ice lithography process has been experimentally studied and a series of progress has been made, there is no report on the calculation method of the ice photoresist morphology of the electron beam ice lithography process. The lack of this calculation method will limit the further development and application of this emerging lithography technology.
因此,需要建立一种能够预测电子束冰刻工艺冰光刻胶形貌的计算方法,能够计算不同光刻条件下冰光刻胶的光刻形貌,从而为实际电子束冰刻工艺实验制备图形结构提供理论参考与指导,并有效地缩短实验周期和降低实验成本。Therefore, it is necessary to establish a calculation method that can predict the morphology of ice photoresist in electron beam ice etching process, and calculate the lithographic morphology of ice photoresist under different lithography conditions, so as to provide theoretical reference and guidance for the preparation of graphic structures in actual electron beam ice etching process experiments, and effectively shorten the experimental cycle and reduce experimental costs.
发明内容Summary of the invention
本发明的目的在于提出一种预测电子束冰刻工艺的冰光刻胶形貌计算方法,以解决上述电子束冰刻工艺背景技术中计算方法缺失的问题。The purpose of the present invention is to propose a calculation method for predicting ice photoresist morphology in electron beam ice etching process, so as to solve the problem of lack of calculation method in the background technology of the above-mentioned electron beam ice etching process.
本发明对于电子束冰刻工艺的光刻形貌计算方法,是由GenISys公司提供的基于蒙特卡洛(Monte Carlo)算法和卷积运算的TRACERv2.1.0、BEAMERv4.8.0和LABv4.7.0仿真软件进行的,具体步骤如下:The present invention provides a method for calculating the lithography profile of the electron beam ice etching process, which is performed by TRACERv2.1.0, BEAMERv4.8.0 and LABv4.7.0 simulation software based on Monte Carlo algorithm and convolution operation provided by GenISys, and the specific steps are as follows:
(1)在TRACER软件Material Archive中导入冰光刻胶材料参数;其中:(1) Import the ice photoresist material parameters in the TRACER software Material Archive; where:
所述冰光刻胶材料参数包括质量密度、化学分子式及平均激发能;The parameters of the ice photoresist material include mass density, chemical molecular formula and average excitation energy;
(2)在TRACER软件中计算每一个电子运动轨迹及所有冰光刻胶厚度层的点/线扩散函数(E a ),即单像素线图形的冰刻形貌:(2) Calculate the point/line spread function ( E a ) of each electron motion trajectory and all ice photoresist thickness layers in the TRACER software, that is, the ice engraving morphology of a single pixel line pattern:
设定衬底材料类型和厚度、冰光刻胶材料类型和厚度、初始电子束能量(keV)以及电子数量,运行仿真,可得到电子在冰光刻胶及衬底内部的运动轨迹和所有冰光刻胶厚度层的点/线扩散函数(E a ),对E a 数据进行绘图可得到电子损失能量密度分布,即单像素线图形(直径为0nm时的理想电子束斑)的电子束冰刻形貌;By setting the substrate material type and thickness, ice photoresist material type and thickness, initial electron beam energy (keV) and the number of electrons, and running the simulation, the motion trajectory of electrons in the ice photoresist and the substrate and the point/line spread function ( E a ) of all ice photoresist thickness layers can be obtained. By plotting the E a data, the electron loss energy density distribution can be obtained, that is, the electron beam ice engraving morphology of a single pixel line pattern (ideal electron beam spot with a diameter of 0 nm);
(3)在BEAMER软件中结合光刻版图和点/线扩散函数(E a )文件计算冰光刻胶分子吸收电子能量能力空间分布(AEA),即冰刻形貌:(3) In the BEAMER software, the spatial distribution of the ability of ice photoresist molecules to absorb electron energy (AEA), i.e., the ice morphology, is calculated by combining the photolithography pattern and the point/line spread function ( E a ) file:
首先导入待仿真的光刻版图,然后在BEAMER软件中的E-Beam模块导入不同冰光刻胶厚度层的点/线扩散函数(E a )并设定电子束斑尺寸、仿真区域和网格精度,运行仿真并对数据文件进行绘图,可得到冰光刻胶分子吸收电子能量的空间分布(AEA),即冰刻形貌;First, import the photolithography pattern to be simulated, then import the point/line spread function ( E a ) of different ice photoresist thickness layers in the E-Beam module of the BEAMER software and set the electron beam spot size, simulation area and grid accuracy. Run the simulation and plot the data file to obtain the spatial distribution of the electron energy absorbed by the ice photoresist molecules (AEA), that is, the ice morphology.
(4)在LAB软件中结合实验数据计算灰度冰刻形貌:(4) Calculate the grayscale ice engraving morphology in LAB software based on experimental data:
(4.1)在BEAMER软件中将待仿真灰度光刻版图转换为LAB软件识别的.ldb文件格式;(4.1) In the BEAMER software, convert the grayscale lithography layout to be simulated into the .ldb file format recognized by the LAB software;
(4.2)在LAB软件中的Calibration模块导入冰光刻胶对比度数据和对应的点/线扩散函数(E a ),并设定仿真环境,包括光刻胶类型、厚度以及网格精度,以获得特定厚度时的冰光刻胶仿真参数文件,所述参数包括:曝光速率系数(DillC),完全曝光光刻胶的溶解速率(Rmax),未曝光光刻胶的溶解速率(Rmin),斜率(Slope),阈值抑制剂浓度(Mth);(4.2) Import the ice photoresist contrast data and the corresponding point/line spread function ( E a ) in the Calibration module of the LAB software, and set the simulation environment, including the photoresist type, thickness, and grid accuracy, to obtain the ice photoresist simulation parameter file at a specific thickness. The parameters include: exposure rate coefficient (DillC), dissolution rate of fully exposed photoresist (Rmax), dissolution rate of unexposed photoresist (Rmin), slope (Slope), and threshold inhibitor concentration (Mth);
(4.3)在LAB软件中的E-Beam模块导入灰度光刻版图、冰光刻胶仿真参数文件和点/线扩散函数(E a )文件,设定光刻胶厚度、曝光剂量、电子束斑尺寸、网格精度以及仿真区域,运行仿真,并对数据文件进行绘图,可得到冰光刻胶分子吸收电子能量能力空间分布(AEA),即冰刻形貌。(4.3) Import the grayscale photolithography layout, ice photoresist simulation parameter file and point/line spread function ( E a ) file into the E-Beam module in the LAB software, set the photoresist thickness, exposure dose, electron beam spot size, grid accuracy and simulation area, run the simulation, and plot the data file to obtain the spatial distribution of the electron energy absorption ability (AEA) of the ice photoresist molecules, that is, the ice morphology.
本发明中,所述的冰光刻胶材料类型是极低温度下(120 K-140 K)的水冰(ASW)、苯甲醚、醇类、烷烃类、其他无需溶液显影工艺的冰光刻胶,或在仿真中无需显影工艺的电子束光刻胶。In the present invention, the ice photoresist material type is water ice (ASW) at extremely low temperature (120 K-140 K), anisole, alcohols, alkanes, other ice photoresists that do not require a solution development process, or electron beam photoresists that do not require a development process in simulation.
本发明中,所述的衬底类型是所有能进行电子束光刻或冰刻工艺的材料,如Si、InP、Si3N4、Au、碳纳米管等。In the present invention, the substrate type is all materials that can be subjected to electron beam lithography or ice lithography, such as Si, InP, Si 3 N 4 , Au, carbon nanotubes, and the like.
本发明中,所述的光刻版图是所有能被进行光刻制备的图形结构。In the present invention, the photolithography pattern is any graphic structure that can be prepared by photolithography.
与现有技术相比,本发明方法的有益效果是:Compared with the prior art, the method of the present invention has the following beneficial effects:
第一,本发明拓宽了电子束光刻工艺的仿真范围,提出了电子束冰刻工艺的仿真计算方法,能够用于计算冰刻工艺中电子束光刻胶的光刻形貌,包括极低温度下(120 K-140 K)的水冰(ASW)、苯甲醚、醇类、烷烃类、其他无需溶液显影工艺的冰光刻胶和在仿真中无需显影工艺的电子束光刻胶;First, the present invention broadens the simulation scope of the electron beam lithography process and proposes a simulation calculation method for the electron beam ice lithography process, which can be used to calculate the lithography morphology of the electron beam photoresist in the ice lithography process, including water ice (ASW) at extremely low temperatures (120 K-140 K), anisole, alcohols, alkanes, other ice photoresists that do not require a solution development process, and electron beam photoresists that do not require a development process in the simulation;
第二,本发明针对实际的实验光刻版图、初始电子束能量和电子数量、电子束斑尺寸、衬底材料和厚度、光刻胶材料、厚度和对比度实验数据,可以计算不同光刻条件下的光刻胶形貌;Second, the present invention can calculate the photoresist morphology under different photolithography conditions based on the actual experimental photolithography pattern, initial electron beam energy and electron quantity, electron beam spot size, substrate material and thickness, photoresist material, thickness and contrast experimental data;
第三,本发明提出的计算方法为电子束冰刻工艺的光刻形貌预测提供了参考,在实验制备层面为冰刻工艺提供关键的、必不可少的理论指导,具有针对性强、有效缩短实验周期、降低实验成本的优点。Third, the calculation method proposed in the present invention provides a reference for the prediction of the lithography morphology of the electron beam ice etching process, and provides key and indispensable theoretical guidance for the ice etching process at the experimental preparation level. It has the advantages of strong pertinence, effective shortening of the experimental cycle, and reduction of experimental costs.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的仿真计算流程图示。FIG. 1 is a flow chart of a simulation calculation of the present invention.
图2为实施例1中100 keV初始电子束能量下106个电子在Si基(500 μm厚)约480nm厚的冰胶ASW内部的运动轨迹。FIG. 2 shows the motion trajectory of 10 6 electrons in the Si-based (500 μm thick) cryogel ASW with a thickness of about 480 nm at an initial electron beam energy of 100 keV in Example 1.
图3为实施例1中在100 keV初始电子束能量下,由所有冰光刻胶ASW厚度层的点/线扩散函数.tpsf文件(E a )得到的电子损失能量密度分布,即单像素线图形(直径为0nm时的理想电子束斑)的电子束冰刻形貌。3 is the electron loss energy density distribution obtained from the point/line spread function .tpsf file ( E a ) of all ice photoresist ASW thickness layers at an initial electron beam energy of 100 keV in Example 1, that is, the electron beam ice engraving morphology of a single pixel line pattern (ideal electron beam spot with a diameter of 0 nm).
图4为实施例2中所使用的100 nm×100 μm单根线光刻版图及软件中基于卷积运算完成光刻过程的示意图。FIG. 4 is a schematic diagram of a 100 nm×100 μm single line lithography pattern used in Example 2 and the lithography process completed based on convolution operation in the software.
图5为实施例2中在10 keV初始电子束能量和Si基(500 μm厚)约380 nm厚的冰胶ASW条件下,所获得的对于100 nm×100 μm单根线光刻版图的冰光刻胶分子吸收电子能量能力分布(AEA,即冰刻形貌)。FIG5 shows the distribution of the electron energy absorption ability (AEA, i.e., ice lithography) of the ice photoresist molecules for a 100 nm×100 μm single line lithography pattern obtained in Example 2 under the conditions of 10 keV initial electron beam energy and a Si-based (500 μm thick) cryogel ASW with a thickness of about 380 nm.
图6为实施例3中(a)金属化工艺后的波带片聚焦透镜(Fresnel zone plates)示意图和(b)仿真中使用的具有防倒塌加强筋结构的最外环宽度100 nm的波带片光刻版图。FIG6 is a schematic diagram of (a) a zone plate focusing lens (Fresnel zone plates) after the metallization process in Example 3 and (b) a lithography layout of a zone plate with an outermost ring width of 100 nm and an anti-collapse reinforcement rib structure used in the simulation.
图7为实施例3中在100 keV初始电子束能量和Si基(500 μm厚)约4 μm厚的冰胶ASW条件下,所获得的对于具有防倒塌加强筋结构的最外环宽度100 nm的波带片光刻版图的冰光刻胶分子吸收电子能量能力分布(AEA=0.38,即冰刻形貌)。Figure 7 shows the distribution of the electron energy absorption ability of ice photoresist molecules for a zone plate lithography pattern with an outermost ring width of 100 nm having an anti-collapse reinforcement rib structure, obtained in Example 3 under the conditions of 100 keV initial electron beam energy and an ice gel ASW of about 4 μm thick on a Si substrate (500 μm thick). (AEA=0.38, i.e., ice-engraved morphology).
图8为实施例4中(a)金属化工艺后的Kinoform透镜示意图和(b)仿真中使用的Kinoform透镜灰度光刻版图。FIG8 is a schematic diagram of (a) a Kinoform lens after the metallization process in Example 4 and (b) a grayscale photolithography layout of the Kinoform lens used in the simulation.
图9为实施例4中在10 kV电子束加速能量、Si基的厚度为190 nm冰胶ASW的归一化对比度曲线实验数据。FIG. 9 is the normalized contrast curve experimental data of cryogel ASW with an electron beam acceleration energy of 10 kV and a Si-based thickness of 190 nm in Example 4.
图10为实施例4中结合实验数据计算得到的Kinoform透镜外环区域的归一化冰光刻胶分子ASW吸收电子能量能力分布AEA,即冰刻形貌。FIG. 10 is the normalized distribution of electron energy absorption ability AEA of ice photoresist molecules ASW in the outer ring region of the Kinoform lens calculated in Example 4 in combination with experimental data, that is, the ice engraving morphology.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明作进一步描述,但本发明不仅限于实例。凡是对实施例中的仿真材料、条件、光刻版图和计算参数进行了简单的改变,都属于本发明保护范围之内。The present invention is further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited to the examples. Any simple changes to the simulation materials, conditions, photolithography patterns and calculation parameters in the embodiments are within the protection scope of the present invention.
实施例1:计算100 keV初始电子束能量下106个电子在Si基(500 μm厚)约480 nm厚的冰胶水冰(ASW)内部的运动轨迹及所有冰光刻胶ASW厚度层的点/线扩散函数(E a ,即直径为0nm时的理想电子束斑对应的单像素线图形冰刻形貌),具体步骤为:Example 1: Calculate the motion trajectory of 10 6 electrons in about 480 nm thick cryogel water ice (ASW) on Si substrate (500 μm thick) at an initial electron beam energy of 100 keV and the point/line spread function of all ice photoresist ASW thickness layers ( E a , i.e., the single-pixel line pattern ice engraving morphology corresponding to an ideal electron beam spot with a diameter of 0 nm), the specific steps are:
(1)在TRACER软件Material Archive中导入新定义的冰光刻胶水冰ASW的材料参数,具体包括ASW的质量密度0.93 g/cm3、化学分子式H2O及平均激发能75 eV;(1) Import the newly defined material parameters of ice photoresist water ice ASW in the TRACER software Material Archive, including the mass density of ASW 0.93 g/cm 3 , the chemical formula H 2 O, and the average excitation energy 75 eV;
(2)在TRACER软件中计算电子运动轨迹及所有冰光刻胶厚度层的点/线扩散函数(E a )。设定衬底材料为Si和厚度为500 μm、冰光刻胶材料类型为ASW和厚度为480 nm、初始电子束能量为100 keV以及电子数量为106,运行仿真可得到图2所示的电子在冰光刻胶ASW及Si衬底内部的运动轨迹和图3所示的由所有冰光刻胶ASW厚度层的点/线扩散函数.tpsf文件(E a )得到的电子损失能量密度分布,由于冰刻工艺无需传统溶液型显影工艺,直接利用电子束与冰的相互作用来完成光刻,因此将不同能量的电子损失能量密度分布轮廓线定义为不同曝光强度下的冰刻形貌,即单像素线图形(直径为0nm时的理想电子束斑)的电子束冰刻形貌。(2) Calculate the electron motion trajectory and the point/line spread function ( E a ) of all ice photoresist thickness layers in TRACER software. Set the substrate material to Si and the thickness to 500 μm, the ice photoresist material type to ASW and the thickness to 480 nm, the initial electron beam energy to 100 keV, and the number of electrons to 10 6 . Run the simulation to obtain the electron motion trajectory inside the ice photoresist ASW and Si substrate shown in Figure 2 and the electron loss energy density distribution obtained from the point/line spread function .tpsf file ( E a ) of all ice photoresist ASW thickness layers shown in Figure 3. Since the ice etching process does not require the traditional solution-based development process and directly uses the interaction between the electron beam and ice to complete the lithography, the electron loss energy density distribution contour lines of different energies are defined as the ice etching morphology under different exposure intensities, that is, the electron beam ice etching morphology of a single pixel line pattern (ideal electron beam spot with a diameter of 0 nm).
实施例2:针对100 nm×100 μm单根线光刻版图,计算10 keV初始电子束能量下106个电子在Si基(500 μm厚)约380 nm厚的冰胶水冰(ASW)的冰刻形貌,具体步骤为:Example 2: For a 100 nm×100 μm single line lithography pattern, the ice-engraved morphology of 10 6 electrons on a Si substrate (500 μm thick) with a thickness of about 380 nm was calculated under an initial electron beam energy of 10 keV. The specific steps are as follows:
(1)在TRACER软件Material Archive中导入新定义的冰光刻胶水冰ASW的材料参数,具体包括ASW的质量密度0.93 g/cm3、化学分子式H2O及平均激发能75 eV;(1) Import the newly defined material parameters of ice photoresist water ice ASW in the TRACER software Material Archive, including the mass density of ASW 0.93 g/cm 3 , the chemical formula H 2 O, and the average excitation energy 75 eV;
(2)在TRACER软件中计算所有冰光刻胶厚度层的点/线扩散函数.lpsf文件(E a )。设定衬底材料为Si和厚度为500 μm、冰光刻胶材料类型为ASW和厚度为380 nm、初始电子束能量为10 keV以及电子数量为106,运行仿真得到不同ASW厚度层点/线扩散函数.lpsf文件(E a );(2) Calculate the point/line spread function .lpsf file ( E a ) of all ice photoresist thickness layers in TRACER software. Set the substrate material to Si and thickness to 500 μm, the ice photoresist material type to ASW and thickness to 380 nm, the initial electron beam energy to 10 keV, and the number of electrons to 10 6 , and run the simulation to obtain the point/line spread function .lpsf file ( E a ) of different ASW thickness layers;
(3)在BEAMER软件中结合光刻版图和点/线扩散函数.lpsf文件(E a )计算冰光刻胶分子(ASW)吸收电子能量能力分布(AEA,即冰刻形貌)。首先导入图4中待仿真的100 nm×100 μm单根线光刻版图,然后在E-Beam模块中导入步骤(2)中不同ASW厚度层的点/线扩散函数.lpsf文件并设定电子束斑尺寸为10 nm、仿真区域(单根线版图的中心区域)和网格精度(高精度模式:3nm),运行仿真并对数据文件绘图可得到图5所示的冰光刻胶分子吸收电子能量能力分布(AEA,即冰刻形貌),AEA与电子损失能量密度分布具有相同的意义,即不同AEA值定义为不同曝光强度下的冰刻形貌。(3) Combine the lithography layout and the point/line spread function .lpsf file ( E a ) in the BEAMER software to calculate the distribution of the electron energy absorption ability (AEA, i.e., ice morphology) of the ice photoresist molecules (ASW). First, import the 100 nm×100 μm single-line lithography layout to be simulated in Figure 4, then import the point/line spread function .lpsf files of different ASW thickness layers in step (2) in the E-Beam module and set the electron beam spot size to 10 nm, the simulation area (the central area of the single-line layout) and the grid accuracy (high-precision mode: 3 nm). Run the simulation and plot the data file to obtain the distribution of the electron energy absorption ability (AEA, i.e., ice morphology) of the ice photoresist molecules shown in Figure 5. AEA has the same meaning as the electron loss energy density distribution, that is, different AEA values are defined as ice morphology under different exposure intensities.
实施例3:针对具有防倒塌加强筋结构的最外环宽度100 nm的波带片(Fresnelzone plates)聚焦透镜光刻版图,计算100keV初始电子束能量下106个电子在Si基(500 μm厚)约4 μm厚的冰胶水冰(ASW)的冰刻形貌,具体步骤为:Example 3: For the Fresnelzone plates with an outermost ring width of 100 nm and an anti-collapse reinforcing rib structure, the ice-engraved morphology of 10 6 electrons on Si-based (500 μm thick) about 4 μm thick cryogel water ice (ASW) at an initial electron beam energy of 100 keV is calculated. The specific steps are:
(1)在TRACER软件Material Archive中导入新定义的冰光刻胶水冰ASW的材料参数,具体包括ASW的质量密度0.93 g/cm3、化学分子式H2O及平均激发能75 eV;(1) Import the newly defined material parameters of ice photoresist water ice ASW in the TRACER software Material Archive, including the mass density of ASW 0.93 g/cm 3 , the chemical formula H 2 O, and the average excitation energy 75 eV;
(2)在TRACER软件中计算所有冰光刻胶厚度层的点/线扩散函数.lpsf文件(E a )。设定衬底材料为Si和厚度为500 μm、冰光刻胶材料类型为ASW和厚度为4 μm、初始电子束能量为100keV以及电子数量为106,运行仿真得到不同ASW厚度层点/线扩散函数.lpsf文件(E a );(2) Calculate the point/line spread function .lpsf file ( E a ) of all ice photoresist thickness layers in TRACER software. Set the substrate material to Si and thickness to 500 μm, the ice photoresist material type to ASW and thickness to 4 μm, the initial electron beam energy to 100 keV, and the number of electrons to 10 6 , and run the simulation to obtain the point/line spread function .lpsf file ( E a ) of different ASW thickness layers;
(3)在BEAMER软件中结合光刻版图和点/线扩散函数.lpsf文件(E a )计算冰光刻胶分子(ASW)吸收电子能量能力分布(AEA,即冰刻形貌)。首先导入图6(b)中待仿真的具有防倒塌加强筋结构的最外环宽度100 nm的波带片光刻版图,然后在E-Beam模块中导入步骤(2)中不同ASW厚度层的点/线扩散函数.lpsf文件并设定电子束斑尺寸为10 nm、仿真区域(外环区域,即图6b的黑色方框区域)和网格精度(高精度模式:3nm),运行仿真并对数据文件绘图可得到图7所示的冰光刻胶分子吸收电子能量能力分布(AEA,即冰刻形貌),结果表明当AEA为0.38时,冰刻形貌最外环高宽比约18:1,内环高宽比也接近25:1。(3) Combine the lithography layout and the point/line spread function .lpsf file ( E a ) in the BEAMER software to calculate the distribution of the electron energy absorption ability (AEA, i.e., ice-engraved morphology) of the ice photoresist molecules (ASW). First, import the zone plate lithography layout with an outermost ring width of 100 nm with an anti-collapse stiffener structure to be simulated in Figure 6 (b), then import the point/line spread function .lpsf file of different ASW thickness layers in step (2) in the E-Beam module and set the electron beam spot size to 10 nm, the simulation area (outer ring area, i.e., the black box area in Figure 6b), and the grid accuracy (high-precision mode: 3 nm). Run the simulation and plot the data file to obtain the distribution of the electron energy absorption ability (AEA, i.e., ice-engraved morphology) of the ice photoresist molecules shown in Figure 7. The results show that when the AEA is 0.38, the aspect ratio of the outermost ring of the ice-engraved morphology is about 18:1, and the aspect ratio of the inner ring is also close to 25:1.
实施例4:针对Kinoform透镜灰度光刻版图,结合对比度曲线实验数据计算10 keV初始电子束能量下106个电子在Si基(500 μm厚)约190 nm厚的冰胶ASW的冰刻形貌,具体步骤为:Example 4: For the grayscale photolithography of Kinoform lens, the ice-engraved morphology of 10 6 electrons on Si substrate (500 μm thick) with a thickness of about 190 nm was calculated in combination with the experimental data of contrast curve under the initial electron beam energy of 10 keV. The specific steps are as follows:
(1)在TRACER软件Material Archive中导入新定义的冰光刻胶水冰ASW的材料参数,具体包括ASW的质量密度0.93 g/cm3、化学分子式H2O及平均激发能75 eV;(1) Import the newly defined material parameters of ice photoresist water ice ASW in the TRACER software Material Archive, including the mass density of ASW 0.93 g/cm 3 , the chemical formula H 2 O, and the average excitation energy 75 eV;
(2)在TRACER软件中计算电子运动轨迹及所有冰光刻胶厚度层的点/线扩散函数。设定衬底材料为Si和厚度为500 μm、冰光刻胶材料类型为ASW和厚度为190 nm、初始电子束能量为10 keV以及电子数量为106,运行仿真得到不同ASW厚度层点/线扩散函数.lpsf文件(E a );(2) Calculate the electron trajectory and the point/line spread function of all ice photoresist thickness layers in TRACER software. Set the substrate material to Si and the thickness to 500 μm, the ice photoresist material type to ASW and the thickness to 190 nm, the initial electron beam energy to 10 keV, and the number of electrons to 10 6 , and run the simulation to obtain the point/line spread function .lpsf file ( E a ) of different ASW thickness layers;
(3)在BEAMER软件中将图8(b)待仿真的Kinoform透镜灰度光刻版图转换为LAB软件识别的.ldb文件格式,灰度光刻版图中将每一个圆环分割成9个部分,不同部分的灰度颜色代表不同梯度的归一化曝光剂量;(3) In the BEAMER software, convert the grayscale lithography layout of the Kinoform lens to be simulated in Figure 8 (b) into the .ldb file format recognized by the LAB software. In the grayscale lithography layout, each ring is divided into 9 parts, and the grayscale colors of different parts represent normalized exposure doses of different gradients;
(4)在LAB软件中结合冰胶ASW实验数据计算灰度冰刻形貌:(4) Calculate the grayscale ice engraving morphology in LAB software combined with the cryogel ASW experimental data:
(4.1)在LAB软件中的Calibration模块导入图9所示的冰胶ASW(厚度为190 nm)对比度实验数据(对比度γ为1.9)和步骤(2)中的点/线扩散函数.lpsf文件并设定光刻胶类型为正胶、厚度为190 nm以及网格精度(x、y和z方向均为10nm),从而获得厚度为190 nm冰胶ASW的仿真参数文件(DillC为0.000196、Rmax为0.005、Rmin为0.000244、Slope为3.726139、Mth为0.897078);(4.1) In the Calibration module of the LAB software, import the contrast experimental data (contrast γ is 1.9) of the cryogel ASW (thickness is 190 nm) shown in Figure 9 and the point/line spread function .lpsf file in step (2) and set the photoresist type to positive photoresist, thickness to 190 nm, and grid accuracy (x, y, and z directions are all 10 nm), thereby obtaining the simulation parameter file of the cryogel ASW with a thickness of 190 nm (DillC is 0.000196, Rmax is 0.005, Rmin is 0.000244, Slope is 3.726139, and Mth is 0.897078);
(4.2)在LAB软件中的E-Beam模块导入步骤(3)中.ldb格式的Kinoform透镜灰度光刻版图、步骤(4.1)中的冰光刻胶仿真参数文件和步骤(2)中的点/线扩散函数.lpsf文件,设定光刻胶厚度(190 nm)、曝光剂量(0.8 C/cm2)、电子束斑尺寸为10 nm、网格精度(x和y方向为10nm、z方向为5nm)以及仿真区域(最外环区域,即图8b的黑色虚线区域),运行仿真并对数据文件进行绘图可得到图10所示的冰光刻胶分子吸收电子能量能力分布(AEA,即冰刻形貌)。(4.2) In the E-Beam module of the LAB software, import the Kinoform lens grayscale lithography pattern in .ldb format in step (3), the ice photoresist simulation parameter file in step (4.1), and the point/line spread function .lpsf file in step (2), set the photoresist thickness (190 nm), exposure dose (0.8 C/ cm2 ), electron beam spot size to 10 nm, grid accuracy (10 nm in the x and y directions, 5 nm in the z direction), and simulation area (the outermost ring area, i.e., the black dashed area in Figure 8b), run the simulation and plot the data file to obtain the distribution of the electron energy absorption ability of the ice photoresist molecules (AEA, i.e., the ice etched morphology) shown in Figure 10.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210369502.6A CN114859668B (en) | 2022-04-08 | 2022-04-08 | Photoetching morphology calculation method of electron beam ice etching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210369502.6A CN114859668B (en) | 2022-04-08 | 2022-04-08 | Photoetching morphology calculation method of electron beam ice etching process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114859668A CN114859668A (en) | 2022-08-05 |
CN114859668B true CN114859668B (en) | 2024-09-10 |
Family
ID=82629300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210369502.6A Active CN114859668B (en) | 2022-04-08 | 2022-04-08 | Photoetching morphology calculation method of electron beam ice etching process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114859668B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645609A (en) * | 2013-11-08 | 2014-03-19 | 上海华力微电子有限公司 | Method for improving photoresist profile |
CN112925173A (en) * | 2021-01-28 | 2021-06-08 | 西湖大学 | Three-dimensional suspended nanostructure processing method based on ice etching |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7090963B2 (en) * | 2003-06-25 | 2006-08-15 | International Business Machines Corporation | Process for forming features of 50 nm or less half-pitch with chemically amplified resist imaging |
KR100811434B1 (en) * | 2005-12-26 | 2008-03-07 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device using immersion lithography process |
-
2022
- 2022-04-08 CN CN202210369502.6A patent/CN114859668B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645609A (en) * | 2013-11-08 | 2014-03-19 | 上海华力微电子有限公司 | Method for improving photoresist profile |
CN112925173A (en) * | 2021-01-28 | 2021-06-08 | 西湖大学 | Three-dimensional suspended nanostructure processing method based on ice etching |
Also Published As
Publication number | Publication date |
---|---|
CN114859668A (en) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist | |
US7374867B2 (en) | Enhancing photoresist performance using electric fields | |
US20060292501A1 (en) | Lithography process with an enhanced depth-on-focus | |
CN114859668B (en) | Photoetching morphology calculation method of electron beam ice etching process | |
JPH0210362A (en) | Fine pattern forming method | |
CN106168737A (en) | Chemically amplified resist material, copolymer and photolithography method | |
TWI820349B (en) | An optical proximity correction method and a substrate processing method | |
Hatzakis | Materials and processes for microstructure fabrication | |
Roncaglia | Advanced Lithography | |
CN101067719A (en) | A method for constructing sub-10 nanometer gaps and arrays thereof | |
CN102466966B (en) | Method for improving electron beam exposure efficiency | |
JPH0480377B2 (en) | ||
CN1337600A (en) | Phase shifting mask etching process of producing T-shaped grid through one photo-etching step | |
Sakakibara et al. | Variable-shaped electron-beam direct writing technology for 1-µm VLSI fabrication | |
Huang et al. | CA resist with high sensitivity and sub-100-nm resolution for advanced mask making | |
Jamieson et al. | Low-voltage electron beam lithography resist processes: top surface imaging and hydrogen silisesquioxane bilayer | |
KR101095052B1 (en) | Nano imprinting apparatus and method of forming semiconductor device using same | |
Zimmerman | Extension options for 193nm immersion lithography | |
CN117492335A (en) | Electron beam exposure dose correction method | |
JPH02156244A (en) | Pattern forming method | |
JPH06120102A (en) | Exposure method and aligner | |
KR101051162B1 (en) | Nano imprinting apparatus and method of forming semiconductor device using same | |
US7078133B2 (en) | Photolithographic mask | |
JP2618978B2 (en) | Resist material and pattern forming method using the resist material | |
Hudek et al. | Shaped beam technology for nano-imprint mask lithography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |