CN114854702A - Herbicide tolerance protein, coding gene and application thereof - Google Patents
Herbicide tolerance protein, coding gene and application thereof Download PDFInfo
- Publication number
- CN114854702A CN114854702A CN202210330228.1A CN202210330228A CN114854702A CN 114854702 A CN114854702 A CN 114854702A CN 202210330228 A CN202210330228 A CN 202210330228A CN 114854702 A CN114854702 A CN 114854702A
- Authority
- CN
- China
- Prior art keywords
- hppd inhibitor
- plants
- inhibitor herbicides
- plant
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y113/00—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
- C12Y113/11—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
- C12Y113/11027—4-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本申请为中国专利申请202010194585.0的分案申请,发明名称:除草剂耐受性蛋白质、其编码基因及用途,申请日:2020年3月19日。This application is a divisional application of Chinese Patent Application No. 202010194585.0. The name of the invention is: Herbicide Tolerance Protein, Its Encoding Gene and Use. The application date is March 19, 2020.
技术领域technical field
本发明涉及一种除草剂耐受性蛋白质、其编码基因及用途,特别是涉及一种对HPPD抑制剂除草剂具有耐受性的蛋白质、其编码基因及用途。The present invention relates to a herbicide tolerance protein, its encoding gene and use, in particular to a protein with tolerance to HPPD inhibitor herbicide, its encoding gene and use.
背景技术Background technique
羟基苯丙酮酸双加氧酶(hydroxyphenylpyruvate dioxygenase,简称HPPD)是一种酶,其在铁离子(Fe2+)和氧的存在下,催化酪氨酸的降解产物-对羟基苯丙酮酸(hydroxyphenylpyruvic acid,简称HPP)转化为植物中生育酚和质体醌(plastoquinone,简称PQ)的前体-尿黑酸盐/尿黑酸(homogentisate,简称HG)的反应。生育酚具有膜相关抗氧化剂的作用;PQ不仅是PSⅡ和细胞色素b6/f复合物之间的电子载体,而且是类胡萝卜素生物合成中八氢番茄红素去饱和酶的必需辅因子。Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme that catalyzes the degradation product of tyrosine-p-hydroxyphenylpyruvate (hydroxyphenylpyruvate) in the presence of iron ions (Fe 2+ ) and oxygen. acid (HPP for short) is converted into the precursor of tocopherol and plastoquinone (PQ) in plants - the reaction of homogentisate/homogentisate (HG). Tocopherols act as membrane-associated antioxidants; PQ is not only an electron carrier between PSII and the cytochrome b6/f complex, but also an essential cofactor for phytoene desaturase in carotenoid biosynthesis.
通过抑制HPPD而发挥作用的除草剂主要有三酮类、异噁唑类和吡唑啉酮类三个化学家族。在植物中,它们通过抑制HPPD阻断了从酪氨酸生物合成PQ,从而导致PQ耗尽,类胡萝卜素缺乏。上述抑制HPPD的除草剂是植物韧皮部可移动的漂白剂,其可以引起暴露于光的新的分生组织和叶片显现出白色,而类胡萝卜素对于光防护是必需的,在缺乏类胡萝卜素的情况下,紫外线辐射和活性氧中间体会破坏叶绿素的合成和功能,从而导致植物生长受到抑制,甚至死亡。The herbicides that act by inhibiting HPPD mainly include three chemical families: triketones, isoxazoles and pyrazolones. In plants, they block PQ biosynthesis from tyrosine by inhibiting HPPD, resulting in PQ depletion and carotenoid deficiency. The above HPPD-inhibiting herbicides are phloem mobile bleaching agents that can cause new meristems and leaves exposed to light to appear white, and carotenoids are necessary for photoprotection, and in the absence of carotenoids Under certain circumstances, ultraviolet radiation and reactive oxygen intermediates can disrupt the synthesis and function of chlorophyll, resulting in the inhibition of plant growth and even death.
用于提供耐受HPPD抑制剂除草剂植物的方法主要包括:1)将HPPD过量表达从而在植物中产生大量的HPPD,尽管存在HPPD抑制剂除草剂,但这些HPPD与该HPPD抑制剂除草剂是充分作用的,从而具有足够的可供使用的功能性酶。2)将目标HPPD突变成一种功能性HPPD,该功能性HPPD对于除草剂或其活性代谢物是较不敏感的,但其保留了转化为HG的性质。关于突变体HPPD类,虽然一种给定的突变体HPPD可以提供一个有用水平的对于一些HPPD抑制剂除草剂的耐受性,但是相同的突变体HPPD可能不足以提供一个商业化水平的对于一种不同的、更希望的HPPD抑制剂除草剂的耐受性;例如,HPPD抑制剂除草剂可以在它们控制的杂草范围、它们的制造成本、以及它们的环境友好性方面是不同的。因此,需要用于向不同的作物和作物品种赋予HPPD抑制剂除草剂耐受性的新的方法和/或组合物。Methods for providing plants tolerant to HPPD inhibitor herbicides mainly include: 1) HPPD is overexpressed to produce large amounts of HPPD in plants that, despite the presence of HPPD inhibitor herbicides, are not related to the HPPD inhibitor herbicide. Sufficiently functioning, so that there is sufficient functional enzyme available. 2) Mutation of the target HPPD into a functional HPPD that is less sensitive to the herbicide or its active metabolite, but which retains the property of being converted to HG. With regard to the class of mutant HPPDs, although a given mutant HPPD may provide a useful level of tolerance to some HPPD inhibitor herbicides, the same mutant HPPD may not be sufficient to provide a commercial level of Tolerance to different, more desirable HPPD inhibitor herbicides; for example, HPPD inhibitor herbicides may vary in the range of weeds they control, their cost of manufacture, and their environmental friendliness. Therefore, there is a need for new methods and/or compositions for conferring HPPD inhibitor herbicide tolerance to different crops and crop varieties.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种新的蛋白质、其编码基因及用途,所述蛋白质不仅具有HPPD酶活性,而且使得转入所述蛋白质编码基因的植物对HPPD抑制剂除草剂具有耐受性。The object of the present invention is to provide a novel protein, its encoding gene and use, which not only has HPPD enzyme activity, but also makes plants into which the protein encoding gene is transformed have tolerance to HPPD inhibitor herbicides.
为实现上述目的,本发明提供了一种蛋白质,包括:To achieve the above object, the present invention provides a protein, comprising:
(a)具有SEQ ID NO:6或SEQ ID NO:9所示的氨基酸序列;(a) has the amino acid sequence shown in SEQ ID NO:6 or SEQ ID NO:9;
(b)在(a)中的氨基酸序列经过取代和/或缺失和/或添加一个或几个氨基酸且具有羟基苯丙酮酸双加氧酶活性的由(a)衍生的蛋白质。(b) A protein derived from (a) having the amino acid sequence in (a) substituted and/or deleted and/or added with one or several amino acids and having hydroxyphenylpyruvate dioxygenase activity.
为实现上述目的,本发明提供了一种基因,包括:To achieve the above object, the invention provides a kind of gene, including:
(a)编码权利要求1所述蛋白质的核苷酸序列;或(a) a nucleotide sequence encoding the protein of claim 1; or
(b)在严格条件下与(a)限定的核苷酸序列杂交且编码具有羟基苯丙酮酸双加氧酶活性的蛋白质的核苷酸序列;或(b) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence defined in (a) and encodes a protein having hydroxyphenylpyruvate dioxygenase activity; or
(c)具有SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:11所示的核苷酸序列。(c) having the nucleotide sequence shown in SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:10 or SEQ ID NO:11.
所述严格条件可为在6×SSC(柠檬酸钠)、0.5%SDS(十二烷基硫酸钠)溶液中,在65℃下杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。The stringent conditions can be hybridization in 6×SSC (sodium citrate), 0.5% SDS (sodium dodecyl sulfate) solution at 65°C, followed by 2×SSC, 0.1% SDS and 1×SSC, The membranes were washed once with 0.1% SDS.
为实现上述目的,本发明还提供了一种表达盒,包含在有效连接的调控序列调控下的所述基因。To achieve the above object, the present invention also provides an expression cassette comprising the gene under the control of an operably linked regulatory sequence.
为实现上述目的,本发明还提供了一种包含所述基因或所述表达盒的重组载体To achieve the above purpose, the present invention also provides a recombinant vector comprising the gene or the expression cassette
为实现上述目的,本发明还提供了一种扩展植物耐受的除草剂范围的方法,包括:将所述蛋白质或所述表达盒编码的蛋白质在植物中与至少一种不同于所述蛋白质或所述表达盒编码的蛋白质的第二种除草剂耐受性蛋白质一起表达。In order to achieve the above object, the present invention also provides a method for extending the range of herbicides tolerated by plants, comprising: combining the protein or the protein encoded by the expression cassette with at least one protein different from the protein or the protein in the plant. The protein encoded by the expression cassette is expressed together with a second herbicide tolerance protein.
进一步地,所述第二种除草剂耐受性蛋白质为5-烯醇丙酮酰莽草酸-3-磷酸合酶、草甘膦氧化还原酶、草甘膦-N-乙酰转移酶、草甘膦脱羧酶、草铵膦乙酰转移酶、α酮戊二酸依赖性双加氧酶、麦草畏单加氧酶、乙酰乳酸合酶、细胞色素类蛋白质和/或原卟啉原氧化酶。Further, the second herbicide tolerance protein is 5-enolpyruvylshikimate-3-phosphate synthase, glyphosate oxidoreductase, glyphosate-N-acetyltransferase, glyphosate Decarboxylase, glufosinate acetyltransferase, alpha-ketoglutarate-dependent dioxygenase, dicamba monooxygenase, acetolactate synthase, cytochrome-like proteins and/or protoporphyrinogen oxidase.
为实现上述目的,本发明还提供了一种选择转化的植物细胞的方法,包括:用所述基因或所述表达盒转化多个植物细胞,并在允许表达所述基因或所述表达盒的转化细胞生长,而杀死未转化细胞或抑制未转化细胞生长的HPPD抑制剂除草剂浓度下培养所述细胞;In order to achieve the above object, the present invention also provides a method for selecting transformed plant cells, comprising: transforming a plurality of plant cells with the gene or the expression cassette, and in a condition that allows the gene or the expression cassette to be expressed Transformed cells are grown while culturing the cells at a concentration of an HPPD inhibitor herbicide that kills untransformed cells or inhibits the growth of untransformed cells;
优选地,所述植物包括单子叶植物和双子叶植物;更优选地,所述植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;Preferably, the plants include monocotyledonous and dicotyledonous plants; more preferably, the plants are oat, wheat, barley, millet, corn, sorghum, Brassica, rice, tobacco, sunflower, alfalfa, soybean , chickpeas, peanuts, beets, cucumbers, cotton, canola, potatoes, tomatoes or Arabidopsis;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
为实现上述目的,本发明还提供了一种控制杂草的方法,包括:对种植目的植物的大田施用有效剂量的HPPD抑制剂除草剂,所述目的植物包含所述基因或所述表达盒或所述重组载体;In order to achieve the above object, the present invention also provides a method for controlling weeds, comprising: applying an effective dose of an HPPD inhibitor herbicide to a field planting a target plant, the target plant comprising the gene or the expression cassette or the recombinant vector;
优选地,所述目的植物包括单子叶植物和双子叶植物;更优选地,所述目的植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;进一步优选地,所述目的植物为草甘膦耐受性植物,所述杂草为草甘膦抗性杂草;Preferably, the target plants include monocotyledonous plants and dicotyledonous plants; more preferably, the target plants are oat, wheat, barley, millet, corn, sorghum, Brassica oleracea, rice, tobacco, sunflower, alfalfa , soybean, chickpea, peanut, sugar beet, cucumber, cotton, rape, potato, tomato or Arabidopsis; further preferably, the target plant is a glyphosate-tolerant plant, and the weed is glyphosate resistant weeds;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
为实现上述目的,本发明还提供了一种用于保护植物免受由HPPD抑制剂除草剂引起的损伤或赋予植物HPPD抑制剂除草剂耐受性的方法,包括:将所述基因或所述表达盒或所述重组载体导入植物,使导入后的植物产生足够保护其免受HPPD抑制剂除草剂损害量的除草剂耐受性蛋白质;In order to achieve the above objects, the present invention also provides a method for protecting plants from damage caused by HPPD inhibitor herbicides or imparting HPPD inhibitor herbicide tolerance to plants, comprising: adding said gene or said introducing the expression cassette or the recombinant vector into a plant such that the introduced plant produces the herbicide tolerance protein in an amount sufficient to protect it from damage by the HPPD inhibitor herbicide;
优选地,所述植物包括单子叶植物和双子叶植物;更优选地,所述植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;Preferably, the plants include monocotyledonous and dicotyledonous plants; more preferably, the plants are oat, wheat, barley, millet, corn, sorghum, Brassica, rice, tobacco, sunflower, alfalfa, soybean , chickpeas, peanuts, beets, cucumbers, cotton, canola, potatoes, tomatoes or Arabidopsis;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
为实现上述目的,本发明还提供了一种产生耐受HPPD抑制剂除草剂的植物的方法,包括向植物的基因组中引入所述基因;In order to achieve the above object, the present invention also provides a method for producing a plant tolerant to an HPPD inhibitor herbicide, comprising introducing the gene into the genome of the plant;
优选地,所述引入的方法包括遗传转化方法、基因组编辑方法或基因突变方法;Preferably, the introduced method includes genetic transformation method, genome editing method or gene mutation method;
具体地,所述产生耐受HPPD抑制剂除草剂的植物的方法包括:通过将亲本植物自交或与第二种植物杂交而产生HPPD抑制剂除草剂耐受性植物,所述亲本植物和/或第二种植物包含所述基因或所述表达盒,所述HPPD抑制剂除草剂耐受性植物遗传了来自所述亲本植物和/或第二种植物的所述基因或所述表达盒;Specifically, the method of producing a plant tolerant to an HPPD inhibitor herbicide comprises: producing an HPPD inhibitor herbicide tolerant plant by selfing or crossing a parent plant with a second plant, the parent plant and/or or a second plant comprising said gene or said expression cassette, said HPPD inhibitor herbicide tolerant plant having inherited said gene or said expression cassette from said parental plant and/or said second plant;
优选地,所述植物包括单子叶植物和双子叶植物;更优选地,所述植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;Preferably, the plants include monocotyledonous and dicotyledonous plants; more preferably, the plants are oat, wheat, barley, millet, corn, sorghum, Brassica, rice, tobacco, sunflower, alfalfa, soybean , chickpeas, peanuts, beets, cucumbers, cotton, canola, potatoes, tomatoes or Arabidopsis;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
为实现上述目的,本发明还提供了一种培养耐受HPPD抑制剂除草剂的植物的方法,包括:To achieve the above object, the present invention also provides a method for culturing plants resistant to HPPD inhibitor herbicides, comprising:
种植至少一个植物繁殖体,所述植物繁殖体的基因组中包括所述基因或所述表达盒;Planting at least one plant propagule comprising the gene or the expression cassette in the genome of the plant propagule;
使所述植物繁殖体长成植株;growing the plant propagules into plants;
将有效剂量的HPPD抑制剂除草剂施加到至少包含所述植株的植物生长环境中,收获与其他不具有所述基因或所述表达盒的植株相比具有减弱的植物损伤和/或具有增加的植物产量的植株;An effective dose of an HPPD inhibitor herbicide is applied to a plant growth environment comprising at least the plant, and the harvest is harvested with reduced plant damage and/or with increased plant damage compared to other plants not having the gene or the expression cassette. Plant yielding plants;
优选地,所述植物包括单子叶植物和双子叶植物;更优选地,所述植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;Preferably, the plants include monocotyledonous and dicotyledonous plants; more preferably, the plants are oat, wheat, barley, millet, corn, sorghum, Brassica, rice, tobacco, sunflower, alfalfa, soybean , chickpeas, peanuts, beets, cucumbers, cotton, canola, potatoes, tomatoes or Arabidopsis;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
本发明还提供了一种获得加工农产品的方法,包括将由所述方法获得的耐受HPPD抑制剂除草剂植物的收获物进行处理以获得加工农产品。The present invention also provides a method for obtaining processed agricultural products, comprising treating the harvest of HPPD inhibitor herbicide-tolerant plants obtained by the method to obtain processed agricultural products.
为实现上述目的,本发明还提供了一种控制杂草生长的种植系统,包括将HPPD抑制剂除草剂和存在至少一种目的植物的植物生长环境,所述目的植物包含所述基因或所述表达盒;In order to achieve the above object, the present invention also provides a planting system for controlling the growth of weeds, comprising adding an HPPD inhibitor herbicide and a plant growth environment in which at least one target plant contains the gene or the target plant. expression cassette;
优选地,所述目的植物包括单子叶植物和双子叶植物;更优选地,所述目的植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;进一步优选地,所述目的植物为草甘膦耐受性植物,所述杂草为草甘膦抗性杂草;Preferably, the target plants include monocotyledonous plants and dicotyledonous plants; more preferably, the target plants are oat, wheat, barley, millet, corn, sorghum, Brassica oleracea, rice, tobacco, sunflower, alfalfa , soybean, chickpea, peanut, sugar beet, cucumber, cotton, rape, potato, tomato or Arabidopsis; further preferably, the target plant is a glyphosate-tolerant plant, and the weed is glyphosate resistant weeds;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
为实现上述目的,本发明还提供了所述蛋白质在赋予植物HPPD抑制剂除草剂的用途;To achieve the above object, the present invention also provides the use of the protein in imparting HPPD inhibitor herbicides to plants;
优选地,所述植物包括单子叶植物和双子叶植物;更优选地,所述植物为燕麦、小麦、大麦、谷子、玉米、高粱、二穗短柄草、水稻、烟草、向日葵、苜蓿、大豆、鹰嘴豆、花生、甜菜、黄瓜、棉花、油菜、土豆、番茄或拟南芥;Preferably, the plants include monocotyledonous and dicotyledonous plants; more preferably, the plants are oat, wheat, barley, millet, corn, sorghum, Brassica, rice, tobacco, sunflower, alfalfa, soybean , chickpeas, peanuts, beets, cucumbers, cotton, canola, potatoes, tomatoes or Arabidopsis;
优选地,所述HPPD抑制剂除草剂包括吡唑啉酮类HPPD抑制剂除草剂、三酮类HPPD抑制剂除草剂和/或异噁唑类HPPD抑制剂除草剂;更优选地,所述HPPD抑制剂除草剂为苯吡唑草酮、硝磺草酮和/或二酮腈。Preferably, the HPPD inhibitor herbicides include pyrazolinone HPPD inhibitor herbicides, triketone HPPD inhibitor herbicides and/or isoxazole HPPD inhibitor herbicides; more preferably, the HPPD inhibitor herbicides Inhibitor herbicides are fenflufen, mesotrione and/or diketonitrile.
本发明中使用的冠词“一种”和“一个”是指一个(种)或多于一个(种)(即至少一个)。例如,“一种要素”表示一种或多种要素(元件)。此外,术语“包括”或其变体例如“包括了”或“包含”应被理解为是指包括一种所述要素、整数或步骤,或一组要素、整数或步骤,但是不排除任何其他要素、整数或步骤,或者成组的要素、整数或步骤。The articles "a" and "an" as used herein refer to one (species) or more than one (species) (ie, at least one). For example, "an element" means one or more elements (elements). Furthermore, the term "comprising" or variations thereof such as "comprising" or "comprising" should be understood to mean the inclusion of one stated element, integer or step, or a group of elements, integers or steps, but not the exclusion of any other Elements, integers or steps, or groups of elements, integers or steps.
本发明中,术语“羟基苯丙酮酸双加氧酶(HPPD)”与“4-羟基苯丙酮酸双加氧酶(4-HPPD)”以及“对羟基苯丙酮酸双加氧酶(p-HPPD)”是同义的。In the present invention, the terms "hydroxyphenylpyruvate dioxygenase (HPPD)" and "4-hydroxyphenylpyruvate dioxygenase (4-HPPD)" and "p-hydroxyphenylpyruvate dioxygenase (p- HPPD)" is synonymous.
术语“HPPD抑制除草剂”与“HPPD除草剂”是同义的,是指直接或间接地抑制HPPD的除草剂,这些除草剂是漂白剂,并且它们的主要作用位点是HPPD。市场上最易买到的HPPD抑制除草剂属于以下三个化学家族之一:(1)三酮类,例如,磺草酮(sulcotrione)(即2-[2-氯-4-(甲磺酰基)苯甲酰基]-1,3-环己二酮)、硝磺草酮(mesotrione)(即2-[4-(甲磺酰基)-2-硝基苯甲酰基]-1,3-环己二酮)、环磺酮(tembotrione)(即2-[2-氯-4-(甲磺酰基)-3-[(2,2,2-三氟乙氧基)甲基]苯甲酰基]-1,3-环己二酮);(2)异噁唑类(在植物中,异噁唑类HPPD除草剂会被快速转化为具有生物活性的二酮腈(diketonitrile,DKN)来对HPPD发挥抑制作用,因而二酮腈是异噁唑类HPPD抑制除草剂的活性形式),例如,异噁唑草酮(isoxaflutole)(即5-环丙基-4-异噁唑基[2-(甲磺酰基)-4-(三氟甲基)苯基]甲酮);(3)吡唑啉酮(pyrazolinate)类,例如,苯吡唑草酮(topramezone)(即[3-(4,5-二氢-3-异噁唑基)-2-甲基-4-(甲磺酰基)苯基](5-羟基-1-甲基吡唑-4-基)甲酮)、磺酰草吡唑(pyrasulfotole)(5-羟基-1,3-二甲基吡唑-4-基(2-甲磺酰-4-三氟甲基苯基)甲酮)。The term "HPPD-inhibiting herbicide" is synonymous with "HPPD herbicide" and refers to herbicides that directly or indirectly inhibit HPPD, these herbicides are bleaches, and their primary site of action is HPPD. The most commercially available HPPD-inhibiting herbicides belong to one of three chemical families: (1) triketones, for example, sulcotrione (ie, 2-[2-chloro-4-(methylsulfonyl) ) benzoyl]-1,3-cyclohexanedione), mesotrione (i.e. 2-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-ring Hexanedione), tembotrione (ie 2-[2-chloro-4-(methylsulfonyl)-3-[(2,2,2-trifluoroethoxy)methyl]benzoyl ]-1,3-cyclohexanedione); (2) isoxazoles (in plants, isoxazole HPPD herbicides are rapidly converted into bioactive diketonitrile (DKN) to HPPD exerts an inhibitory effect, and thus diketonitriles are the active forms of isoxazole-based HPPD-inhibiting herbicides), for example, isoxaflutole (ie, 5-cyclopropyl-4-isoxazolyl[2- (methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone); (3) pyrazolinates, eg, topramezone (ie [3-(4) ,5-dihydro-3-isoxazolyl)-2-methyl-4-(methylsulfonyl)phenyl](5-hydroxy-1-methylpyrazol-4-yl)methanone), sulfonic acid Pyrasulfotole (5-hydroxy-1,3-dimethylpyrazol-4-yl(2-methanesulfonyl-4-trifluoromethylphenyl)methanone).
本发明中所述苯吡唑草酮(topramezone),也称苯唑草酮,是指[3-(4,5-二氢-3-异噁唑基)-2-甲基-4-(甲磺酰基)苯基](5-羟基-1-甲基吡唑-4-基)甲酮,为白色结晶状固体。属于吡唑啉酮(pyrazolinate)类苗后茎叶处理内吸传导型HPPD除草剂,常用剂型为30%悬浮剂。苯吡唑草酮商业制剂如苞卫,可防治禾本科和阔叶杂草,每亩用制剂5.6-6.7g,可以有效防治的杂草,包括但不限于,马唐(鸡爪草)、稗草、牛筋草、野黍、狗尾草(谷莠子)、藜、蓼、青麻、苘麻、野苋、马齿苋、苍耳、龙葵。苞卫加入莠去津后有显著的增效作用,除了对上述杂草具有优异的防效外,还可以对恶性阔叶杂草如刺儿菜(小蓟)、苣荬菜、铁苋菜、鸭跖草(兰花菜)具有良好的防除效果,特别是能有效防除硝磺草酮防效不佳的狗尾草、马唐、牛筋草、野黍。In the present invention, topramezone, also known as topramezone, refers to [3-(4,5-dihydro-3-isoxazolyl)-2-methyl-4-( Methylsulfonyl)phenyl](5-hydroxy-1-methylpyrazol-4-yl)methanone as a white crystalline solid. It belongs to pyrazolinate class post-emergence stem and leaf treatment systemic HPPD herbicide, and the commonly used formulation is 30% suspending agent. The commercial preparations of fenpyrazone, such as Baowei, can control grass and broadleaf weeds, and use 5.6-6.7g of the preparation per mu. Weeds that can be effectively controlled include, but are not limited to, crabgrass (chicken's claw), Barnyardgrass, beef tendon grass, wild millet, foxtail (grass), quinoa, polygonum, green hemp, amaranth, wild amaranth, purslane, cocklebur, nightshade. Baowei has a significant synergistic effect after adding atrazine. In addition to having excellent control effects on the above weeds, it can also treat malignant broad-leaved weeds such as spinach (little thistle), endive radish, iron amaranth, Commelina officinalis (orchid) has a good control effect, especially it can effectively control foxtail, crabgrass, beef tendon, and wild millet which have poor control effect of mesotrione.
本发明中所述有效剂量苯吡唑草酮是指以25-100g ai/ha使用,包括50-100g ai/ha、60-90g ai/ha或75-85g ai/ha。In the present invention, the effective dose of fenflufen refers to use at 25-100 g ai/ha, including 50-100 g ai/ha, 60-90 g ai/ha or 75-85 g ai/ha.
本发明中,术语“抗性”是可遗传的,并允许植物在除草剂对给定植物进行一般除草剂有效处理的情况下生长和繁殖。正如本领域技术人员所认可的,即使给定植物受到除草剂处理的一定程度损伤,如很少的坏死、溶解、萎黄病或其它损伤,但至少没有在产量上有显著影响,植物仍可被认为“抗性”,也即给定植物具有的抵抗除草剂诱导的各种程度损伤的提高的能力,而在同样的除草剂剂量下一般导致相同基因型野生型植物损伤。本发明中术语“耐性”或“耐受性”比术语“抗性”更广泛,并包括“抗性”。In the present invention, the term "resistance" is heritable and allows a plant to grow and reproduce with the herbicide under normal herbicide-effective treatment of a given plant. As recognized by those skilled in the art, even if a given plant suffers some degree of damage from herbicide treatment, such as little necrosis, lysis, chlorosis, or other damage, but at least no significant effect on yield, the plant can still be It is considered "resistance", that is, the increased ability of a given plant to resist various degrees of herbicide-induced damage, while the same herbicide dosage generally results in damage to wild-type plants of the same genotype. The term "tolerance" or "tolerance" in the present invention is broader than the term "resistance" and includes "resistance".
本发明中术语“赋予”是指向植物提供特征或性状,如除草剂耐受性和/或其它所希望的性状。The term "conferring" as used herein refers to providing a plant with a characteristic or trait, such as herbicide tolerance and/or other desirable traits.
本发明中术语“异源的”是指来自另一个来源。在DNA的背景下,“异源的”是指任何外来的“非自身”DNA,包括来自相同种类的另一个植物的DNA。例如,在本发明中,可以利用转基因的方法在大豆植物中表达大豆HPPD基因,该大豆HPPD基因仍被认为“异源的”DNA。The term "heterologous" in the present invention means from another source. In the context of DNA, "heterologous" refers to any foreign "non-self" DNA, including DNA from another plant of the same species. For example, in the present invention, the soybean HPPD gene, which is still considered "heterologous" DNA, can be expressed in soybean plants using transgenic methods.
本发明中术语“核酸”包括涉及的单链或双链形式的脱氧核糖核苷酸或核糖核苷酸聚合物,并且除非另有限制,包括具有天然核苷酸的基本性质的已知类似物(例如肽核酸),因为它们以一种类似于天然存在的核苷酸的方式与单链核酸杂交。The term "nucleic acid" in the present invention includes reference to polymers of deoxyribonucleotides or ribonucleotides in single- or double-stranded form, and unless otherwise limited, includes known analogs having the essential properties of natural nucleotides (eg peptide nucleic acids) because they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides.
本发明中,当术语“编码”或“编码的”用于一种特定核酸的上下文中时,其意指核酸包含必需的信息以指导核苷酸序列翻译成一种特定蛋白质。用来编码蛋白质的信息通过使用密码子来详细说明。编码蛋白质的核酸可以包含在核酸的翻译区内的非翻译序列(例如内含子),或者可以缺少此类插入的非翻译序列(例如在cDNA中)。In the present invention, when the terms "encode" or "encoded" are used in the context of a specific nucleic acid, it means that the nucleic acid contains the necessary information to direct the translation of a nucleotide sequence into a specific protein. The information used to encode the protein is specified through the use of codons. A nucleic acid encoding a protein may contain untranslated sequences within the translated region of the nucleic acid (eg, introns), or may lack such intervening untranslated sequences (eg, in cDNA).
本发明中所述除草剂耐受性蛋白质具有HPPD酶活性并且在植物中赋予对于某些类别的HPPD抑制除草剂的耐受性。编码本发明所述除草剂耐受性蛋白质的DNA序列用于提供本发明的植物、作物、植物细胞以及种子它们提供了对于一种或多种HPPD除草剂增强的耐受性。The herbicide tolerance proteins described in the present invention have HPPD enzymatic activity and confer tolerance in plants to certain classes of HPPD-inhibiting herbicides. DNA sequences encoding the herbicide tolerance proteins of the present invention are used to provide plants, crops, plant cells and seeds of the present invention that provide enhanced tolerance to one or more HPPD herbicides.
编码本发明所述除草剂耐受性蛋白质的基因对于产生耐受HPPD抑制除草剂的植物是有用的。所述除草剂耐受性基因特别适合在植物中表达,以便向植物赋予除草剂耐受性。Genes encoding the herbicide tolerance proteins of the present invention are useful for producing plants tolerant to HPPD-inhibiting herbicides. The herbicide tolerance gene is particularly suitable for expression in plants in order to impart herbicide tolerance to the plant.
术语“多肽”、“肽”以及“蛋白”在本发明中可互换地使用,指的是氨基酸残基的聚合物。这些术语应用于氨基酸残基的聚合物,所述氨基酸残基的聚合物中的一个或多个氨基酸残基是一个相应的天然存在的氨基酸的一种人工化学类似物,以及天然存在的氨基酸聚合物。本发明的蛋白可以从一种本发明披露的核酸或通过使用标准分子生物学技术来产生。例如,本发明的一种截短的蛋白可以通过在一种适当的宿主细胞中表达本发明的一种重组核酸,或者可选择地通过结合离体方法(如蛋白酶消化和纯化)来产生。The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. These terms apply to polymers of amino acid residues in which one or more amino acid residues is an artificial chemical analog of a corresponding naturally occurring amino acid, as well as naturally occurring amino acid polymers thing. The proteins of the present invention can be produced from a nucleic acid disclosed herein or by using standard molecular biology techniques. For example, a truncated protein of the present invention can be produced by expressing a recombinant nucleic acid of the present invention in a suitable host cell, or alternatively, in combination with ex vivo methods such as protease digestion and purification.
本发明还提供了包括编码除草剂耐受性蛋白质的多核苷酸序列的核酸分子,所述除草剂耐受性蛋白质具有HPPD酶活性并且在植物中赋予对于某些类别的HPPD抑制除草剂的耐受性。总体上,本发明包括编码在此所述的任何除草剂耐受性蛋白质的任何多核苷酸序列,连同编码相对于在此所述的除草剂耐受性蛋白质具有一个或多个保守性氨基酸替换的除草剂耐受性蛋白质的任何多核苷酸序列。提供功能上相似的氨基酸保守性取代是本领域技术人员所熟知的,以下五组各自包含彼此保守性取代的氨基酸:脂肪族:甘氨酸(G)、丙氨酸(A)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I);芳香族:苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);含硫的:甲硫氨酸(M)、半胱氨酸(C);碱性的:精氨酸(I)、赖氨酸(K)、组氨酸(H);酸性的:天冬氨酸(D)、谷氨酸(E)、天冬酰胺(N)、谷氨酰胺(Q)。The present invention also provides nucleic acid molecules comprising polynucleotide sequences encoding herbicide tolerance proteins having HPPD enzymatic activity and conferring tolerance in plants to certain classes of HPPD-inhibiting herbicides acceptability. In general, the present invention includes any polynucleotide sequence encoding any of the herbicide tolerance proteins described herein, as well as encoding one or more conservative amino acid substitutions relative to the herbicide tolerance proteins described herein Any polynucleotide sequence of a herbicide tolerance protein. Conservative substitutions of amino acids to provide functionally similar amino acids are well known to those skilled in the art, and the following five groups each contain amino acids that are conservatively substituted for each other: aliphatic: glycine (G), alanine (A), valine (V ), leucine (L), isoleucine (I); aromatic: phenylalanine (F), tyrosine (Y), tryptophan (W); sulfur-containing: methionine (M), Cysteine (C); Basic: Arginine (I), Lysine (K), Histidine (H); Acidic: Aspartic acid (D), Glutamine Acid (E), Asparagine (N), Glutamine (Q).
因此,具有HPPD抑制除草剂耐受性活性并在严格条件下与本发明所述除草剂耐受性蛋白质的编码基因杂交的序列包括在本发明中。示例性的,这些序列与本发明序列SEQID NO:2、SEQ ID NO:3、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:11至少大约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同源性。Therefore, sequences that have HPPD-inhibiting herbicide tolerance activity and hybridize under stringent conditions to the genes encoding the herbicide tolerance proteins of the present invention are included in the present invention. Illustratively, these sequences are at least about 75% different, SEQ ID NO: 3, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 11, %, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence homology.
任何常规的核酸杂交或扩增方法都可以用于鉴定本发明除草剂耐受性基因的存在。核酸分子或其片段在一定情况下能够与其他核酸分子进行特异性杂交。本发明中,如果两个核酸分子能形成反平行的双链核酸结构,就可以说这两个核酸分子彼此间能够进行特异性杂交。如果两个核酸分子显示出完全的互补性,则称其中一个核酸分子是另一个核酸分子的“互补物”。本发明中,当一个核酸分子的每一个核苷酸都与另一个核酸分子的对应核苷酸互补时,则称这两个核酸分子显示出“完全互补性”。如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在至少常规的“低度严格”条件下退火且彼此结合,则称这两个核酸分子为“最低程度互补”。类似地,如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在常规的“高度严格”条件下退火且彼此结合,则称这两个核酸分子具有“互补性”。从完全互补性中偏离是可以允许的,只要这种偏离不完全阻止两个分子形成双链结构。为了使一个核酸分子能够作为引物或探针,仅需保证其在序列上具有充分的互补性,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of the herbicide tolerance genes of the present invention. Nucleic acid molecules or fragments thereof are capable of specific hybridization with other nucleic acid molecules under certain circumstances. In the present invention, if two nucleic acid molecules can form an anti-parallel double-stranded nucleic acid structure, it can be said that the two nucleic acid molecules can specifically hybridize with each other. Two nucleic acid molecules are said to be the "complement" of the other if they exhibit complete complementarity. In the present invention, when each nucleotide of one nucleic acid molecule is complementary to the corresponding nucleotide of another nucleic acid molecule, the two nucleic acid molecules are said to show "complete complementarity". Two nucleic acid molecules are said to be "minimally complementary" if they can hybridize to each other with sufficient stability such that they anneal and bind to each other under at least conventional "low stringency" conditions. Similarly, two nucleic acid molecules are said to be "complementary" if they can hybridize to each other with sufficient stability so that they anneal and bind to each other under conventional "high stringency" conditions. Deviations from perfect complementarity are permissible as long as such deviations do not completely prevent the two molecules from forming a double-stranded structure. In order for a nucleic acid molecule to function as a primer or probe, it only needs to be sufficiently complementary in sequence to allow for the formation of a stable double-stranded structure under the particular solvent and salt concentration employed.
本发明中,基本同源的序列是一段核酸分子,该核酸分子在高度严格条件下能够和相匹配的另一段核酸分子的互补链发生特异性杂交。促进DNA杂交的适合的严格条件,例如,大约在45℃条件下用6.0×氯化钠/柠檬酸钠(SSC)处理,然后在50℃条件下用2.0×SSC洗涤,这些条件对本领域技术人员是公知的。例如,在洗涤步骤中的盐浓度可以选自低度严格条件的约2.0×SSC、50℃到高度严格条件的约0.2×SSC、50℃。此外,洗涤步骤中的温度条件可以从低度严格条件的室温约22℃,升高到高度严格条件的约65℃。温度条件和盐浓度可以都发生改变,也可以其中一个保持不变而另一个变量发生改变。优选地,本发明所述严格条件可为在6×SSC、0.5%SDS溶液中,在65℃下与本发明除草剂耐受性基因发生特异性杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。In the present invention, a substantially homologous sequence is a nucleic acid molecule that can specifically hybridize with the complementary strand of another matched nucleic acid molecule under highly stringent conditions. Suitable stringent conditions to promote DNA hybridization, for example, treatment with 6.0x sodium chloride/sodium citrate (SSC) at approximately 45°C, followed by a wash with 2.0x SSC at 50°C, these conditions are very useful to those skilled in the art. is known. For example, the salt concentration in the wash step can be selected from about 2.0×SSC, 50°C under low stringency conditions to about 0.2×SSC, 50°C under highly stringent conditions. In addition, the temperature conditions in the wash steps can be increased from about 22°C at room temperature for low stringency conditions to about 65°C for high stringency conditions. Both the temperature conditions and the salt concentration can be changed, or one can be kept constant while the other variable. Preferably, the stringent conditions of the present invention may be specific hybridization with the herbicide tolerance gene of the present invention in 6×SSC, 0.5% SDS solution at 65°C, and then using 2×SSC, 0.1% SDS and The membrane was washed once with 1×SSC and 0.1% SDS each.
本发明中,术语“杂交”或“特异性杂交”是指一种分子在严格条件下仅可与特定的核苷酸序列结合、双链化或杂交,这是在该序列存在于一种复合混合物(例如,总细胞)DNA或RNA中时进行的。In the present invention, the term "hybridizes" or "specifically hybridizes" means that a molecule can only bind, double-stranded or hybridize to a specific nucleotide sequence under stringent conditions, which is when the sequence exists in a complex in a mixture (eg, total cellular) DNA or RNA.
由于遗传密码子的丰余性,多种不同的DNA序列可以编码相同的氨基酸序列。产生这些编码相同或基本相同的蛋白的可替代DNA序列正在本领域技术人员的技术水平内。这些不同的DNA序列包括在本发明的范围内。所述“基本上相同的”序列是指有氨基酸取代、缺失、添加或插入但实质上不影响除草剂耐受性活性的序列,亦包括保留除草剂耐受性活性的片段。Due to the redundancy of the genetic code, many different DNA sequences can encode the same amino acid sequence. The generation of these alternative DNA sequences encoding the same or substantially the same proteins is within the skill of those skilled in the art. These various DNA sequences are included within the scope of the present invention. The "substantially identical" sequences refer to sequences with amino acid substitutions, deletions, additions or insertions that do not substantially affect herbicide tolerance activity, and also include fragments that retain herbicide tolerance activity.
术语“功能活性”或“活性”在本发明中指本发明用途的蛋白质/酶(单独或与其它蛋白质组合)具有降解或减弱除草剂活性的能力。产生本发明蛋白质的植物优选产生“有效量”的蛋白质,从而在用除草剂处理植物时,蛋白质表达的水平足以给予植物对除草剂(若无特别说明则为一般用量)完全或部分的耐受性。可以以通常杀死靶植物的用量、正常的大田用量和浓度使用除草剂。优选地,本发明的植物细胞和植物被保护免受除草剂处理引起的生长抑制或损伤。本发明的转化植物和植物细胞优选具有HPPD抑制除草剂的耐受性,即转化的植物和植物细胞能在有效量的HPPD抑制除草剂存在下生长。The term "functional activity" or "activity" in the present invention refers to the ability of the protein/enzyme for use in the present invention (alone or in combination with other proteins) to degrade or attenuate herbicidal activity. Plants producing the proteins of the present invention preferably produce an "effective amount" of the protein such that upon treatment of the plant with the herbicide, the protein is expressed at a level sufficient to confer complete or partial tolerance to the herbicide (or general amount unless otherwise specified) to the plant sex. The herbicides can be used at rates that would normally kill the target plant, normal field rates and concentrations. Preferably, the plant cells and plants of the present invention are protected from growth inhibition or damage caused by herbicide treatment. The transformed plants and plant cells of the present invention preferably are HPPD-inhibiting herbicide tolerant, ie, the transformed plants and plant cells are capable of growing in the presence of an effective amount of the HPPD-inhibiting herbicide.
本发明中所述的基因和蛋白质不但包括特定的示例序列,还包括保存了所述特定示例的蛋白质的HPPD抑制除草剂耐受性活性特征的部分和/片段(包括与全长蛋白质相比在内和/或末端缺失)、变体、突变体、变体蛋白质、取代物(有替代氨基酸的蛋白质)、嵌合体和融合蛋白。The genes and proteins described in the present invention include not only the specific exemplified sequences, but also parts and/or fragments that preserve the HPPD-inhibiting herbicide tolerance activity characteristics of the specific exemplified proteins (including those in internal and/or terminal deletions), variants, mutants, variant proteins, substitutions (proteins with substituted amino acids), chimeras, and fusion proteins.
本发明术语“变体”意指实质上类似的序列。对于多核苷酸,一种变体包括在参比多核苷酸之内的一个或多个内部位点处的一个或多个核苷酸的缺失和/或添加和/或在除草剂耐受性基因中的一个或多个位点处的一个或多个核苷酸的替换。本发明中术语“参比多核苷酸或多肽”对应地包括除草剂耐受性核苷酸序列或氨基酸序列。本发明中术语“天然多核苷酸或多肽”对应地包括天然发生的核苷酸序列或氨基酸序列。对于多核苷酸,保守型变体包括编码本发明的这些除草剂耐受性蛋白质之一的核苷酸序列(由于遗传密码的简并性)。如这些天然发生的等位基因变体可以使用熟知的分子生物学技术,例如使用以下概述的聚合酶链式反应(PCR)以及杂交技术来鉴定。变体多核苷酸还包括合成衍生的多核苷酸,例如通过使用定点诱变产生的但是仍然编码本发明的一种除草剂耐受性蛋白质的序列。通常,本发明的一种特定的多核苷酸的变体将具有与该特定的多核苷酸至少大约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同源性,通过序列对比程序和参数来确定同源性。The term "variant" of the present invention means a substantially similar sequence. For polynucleotides, a variant includes deletions and/or additions of one or more nucleotides at one or more internal sites within the reference polynucleotide and/or in herbicide tolerance Substitution of one or more nucleotides at one or more sites in a gene. The term "reference polynucleotide or polypeptide" in the present invention includes a herbicide tolerance nucleotide sequence or amino acid sequence, respectively. The term "native polynucleotide or polypeptide" in the present invention includes correspondingly naturally-occurring nucleotide sequences or amino acid sequences. For polynucleotides, conservative variants include the nucleotide sequence encoding one of these herbicide tolerance proteins of the invention (due to the degeneracy of the genetic code). Naturally occurring allelic variants such as these can be identified using well-known molecular biology techniques, eg, using the polymerase chain reaction (PCR) and hybridization techniques outlined below. Variant polynucleotides also include synthetically derived polynucleotides, eg, sequences generated by using site-directed mutagenesis but which still encode a herbicide tolerance protein of the invention. Typically, a variant of a particular polynucleotide of the invention will have at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence homology, as determined by sequence alignment procedures and parameters.
本发明中“变体蛋白质”意指从一种参比蛋白通过在所述除草剂耐受性蛋白质中的一个或多个内部位点处的一个或多个氨基酸的缺失或添加和/或在该除草剂耐受性蛋白质中的一个或多个位点处的一个或多个氨基酸的替换而衍生的一种蛋白质。由本发明涵盖的变体蛋白是生物学活性的,即它们继续具有除草剂耐受性蛋白质的所希望的活性,即,仍具有所述的HPPD酶活性和/或除草剂耐性。此类变体可以产生于例如遗传多态性或产生于人工操作。本发明的一种除草剂耐受性蛋白质的生物活性变体将具有与该除草剂耐受性蛋白质的氨基酸序列的全部的至少大约85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同源性,此同源性通过序列比对程序和参数所确定。本发明的一种蛋白质的一种生物活性变体可能不同于以少至1-15个氨基酸残基、少至1-10个(如6-10个)、少至5个(如4、3、2个、或甚至1个)氨基酸残基的蛋白质。"Variant protein" in the present invention means from a reference protein by deletion or addition of one or more amino acids at one or more internal sites in the herbicide tolerance protein and/or in A protein derived from the substitution of one or more amino acids at one or more sites in the herbicide tolerance protein. Variant proteins encompassed by the present invention are biologically active, ie they continue to possess the desired activity of a herbicide tolerance protein, ie, still possess the described HPPD enzyme activity and/or herbicide tolerance. Such variants can arise, for example, from genetic polymorphisms or from human manipulation. A biologically active variant of a herbicide tolerance protein of the invention will have at least about 85%, 90%, 91%, 92%, 93%, 94% of the total amino acid sequence of the herbicide tolerance protein %, 95%, 96%, 97%, 98%, 99% or more sequence homology as determined by sequence alignment programs and parameters. A biologically active variant of a protein of the invention may differ from as few as 1-15 amino acid residues, as few as 1-10 (eg, 6-10), as few as 5 (eg, 4, 3) , 2, or even 1) amino acid residues of the protein.
用于序列对比的方法在本领域中是熟知的并且可以使用数学算法来完成,这些数学算法如Myers and Miller(1988)CABIOS 4:11-17的算法;Smith et al.(1981)Adv.Appl.Math.2:482的局部比对算法;Need eman and Wunsch(1970)J.Mol.Biol.48:443-453的全局比对算法;以及Karlin and Altschul(1990)Proc.Natl.Acad.Sci.USA872264的算法,如在Karlin and Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5877中的修改。对于序列比较可以利用这些数学算法的电脑实现方式以确定序列的同源性,此类实现方式包括但不限于:PC/Gene程序中的CLUSTAL(从Intelligenetics,MountainView,California可获得);ALLGN程序(版本2.0)以及GCG Wisconsin Genetics SoftwarePackage版本10中的GAP、BESTFIT、BLAST、FASTA以及TFASTA(从Accelrys Inc.,9685Scranton Road,San Diego,California,USA获得)。Methods for alignment of sequences are well known in the art and can be accomplished using mathematical algorithms such as those of Myers and Miller (1988) CABIOS 4: 11-17; Smith et al. (1981) Adv. Appl .Math. 2:482 Local Alignment Algorithm; Need eman and Wunsch (1970) J.Mol.Biol.48:443-453 Global Alignment Algorithm; and Karlin and Altschul (1990) Proc.Natl.Acad.Sci . The algorithm of USA872264, as modified in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Computer implementations of these mathematical algorithms can be used for sequence comparison to determine sequence homology, such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, MountainView, California); the ALLGN program ( Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in GCG Wisconsin Genetics Software Package Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, California, USA).
在某些实施例中,编码本发明除草剂耐受性蛋白质或它们的保留了HPPD酶活性的变体的氨基酸可以与任何感兴趣的多核苷酸序列的组合进行叠加从而产生具有一种所希望的性状的植物。术语“性状”是指从特定的序列或序列组得到的表型。例如,编码所述除草剂耐受性蛋白质或保留了HPPD酶活性的变体的氨基酸的多核苷酸可以与任何其他的编码赋予一种所希望的性状的多肽的多核苷酸进行叠加,所述性状包括但不限于:对于疾病、昆虫以及除草剂的抗性,对于热和干旱的耐受性,缩短作物成熟时间、改进工业加工(例如,用于将淀粉或生物质转化为可发酵的糖类)以及改进的农艺学品质(例如,高油含量和高蛋白含量)。In certain embodiments, the amino acids encoding the herbicide tolerance proteins of the invention or their variants that retain HPPD enzymatic activity can be stacked with any combination of polynucleotide sequences of interest to produce a desired traits of plants. The term "trait" refers to a phenotype derived from a particular sequence or group of sequences. For example, a polynucleotide encoding an amino acid of the herbicide tolerance protein or variant that retains HPPD enzymatic activity can be stacked with any other polynucleotide encoding a polypeptide conferring a desired trait, the Traits include, but are not limited to: resistance to disease, insects, and herbicides, tolerance to heat and drought, shortened crop maturation time, improved industrial processing (for example, for converting starch or biomass to fermentable sugars) species) and improved agronomic qualities (eg, high oil content and high protein content).
本领域技术人员所熟知的,两种或更多作用模式的组合在提高受控杂草谱和/或天然更具耐受性物种或抗性杂草物种上的益处还可扩展到通过人工(转基因或非转基因)在作物中产生除HPPD耐受性作物外的除草剂耐受性的化学品。事实上,可以单独或以多重组合叠加编码以下抗性的性状以提供有效控制或防止杂草演替对除草剂产生抗性能力:草甘膦抗性(如抗性植物或细菌EPSPS、GOX、GAT)、草铵膦抗性(如PAT、Bar)、乙酰乳酸合酶(ALS)抑制性除草剂抗性(如咪唑啉酮、磺酰脲、三唑嘧啶、磺苯胺、嘧啶硫代苯甲酸和其它化学品抗性基因如AHAS、Csrl、SurA等)、苯氧基生长素类除草剂抗性(如芳氧基链烷酸酯双加氧酶-AAD)、麦草畏除草剂抗性(如麦草畏单加氧酶-DMO)、溴草腈抗性(如Bxn)、对八氢番茄红素去饱和酶(PDS)抑制剂的抗性、对光系统Ⅱ抑制性除草剂的抗性(如psbA)、对光系统Ⅰ抑制性除草剂的抗性、对原卟啉原氧化酶Ⅸ(PPO)抑制性除草剂抗性(如PPO-1)、对苯脲除草剂的抗性(如CYP76B1)、二氯甲氧苯酸降解酶等等。As is well known to those skilled in the art, the benefits of a combination of two or more modes of action in increasing the controlled weed spectrum and/or in naturally more tolerant or resistant weed species may also extend to artificial ( Transgenic or non-transgenic) chemicals that confer herbicide tolerance in crops other than HPPD-tolerant crops. Indeed, traits encoding the following resistances can be stacked individually or in multiple combinations to provide effective control or prevent weed succession from developing resistance to herbicides: glyphosate resistance (eg resistant plants or bacteria EPSPS, GOX, GAT), glufosinate resistance (e.g. PAT, Bar), acetolactate synthase (ALS) inhibitory herbicide resistance (e.g. imidazolidinone, sulfonylurea, triazolopyrimidine, sulfaniline, pyrimidine thiobenzoic acid) and other chemical resistance genes such as AHAS, Csrl, SurA, etc.), phenoxy auxin herbicide resistance (such as aryloxyalkanoate dioxygenase-AAD), dicamba herbicide resistance ( Such as dicamba monooxygenase-DMO), bromoxynil resistance (such as Bxn), resistance to phytoene desaturase (PDS) inhibitors, resistance to photosystem II-inhibiting herbicides (such as psbA), resistance to photosystem I-inhibiting herbicides, resistance to protoporphyrinogen oxidase IX (PPO)-inhibiting herbicides (such as PPO-1), resistance to phenylurea herbicides ( Such as CYP76B1), dichloromethoxybenzoic acid degrading enzyme and so on.
草甘膦被广泛地使用,因为它控制非常广谱的阔叶和禾本科杂草物种。然而,在草甘膦耐性作物和非作物应用中重复使用草甘膦已经(而且仍将继续)选择使杂草演替为天然更具有耐性的物种或草甘膦抗性生物型。多数除草剂抗性管理策略建议使用有效用量的罐混除草剂伴侣作为延缓出现抗性杂草的方法,所述除草剂伴侣提供对同一物种的控制,但具有不同的作用模式。将本发明除草剂耐受性基因与草甘膦耐性性状(和/或其他除草剂耐性性状)叠加可通过允许对同一作物选择性使用草甘膦和吡唑啉酮类除草剂(如苯吡唑草酮)而实现对草甘膦耐性作物中草甘膦抗性杂草物种(被一种或多种吡唑啉酮类除草剂控制的阔叶杂草物种)的控制。这些除草剂的应用可以是在含有不同作用模式的两种或更多除草剂的罐混合物中同时使用、在连续使用(如种植前、出苗前或出苗后)中单个除草剂组合物的单独使用(使用的间隔时间范围从2小时到3个月),或者备选地,可以在任何时间(从种植作物7个月内到收获作物时(或对于单个除草剂为收获前间隔,取最短者))使用代表可应用每种化合类别的任意数目除草剂的组合。Glyphosate is widely used because it controls a very broad spectrum of broadleaf and grass weed species. However, repeated use of glyphosate in glyphosate-tolerant crops and non-crop applications has (and will continue to be) selected for the succession of weeds to naturally more tolerant species or glyphosate resistant biotypes. Most herbicide resistance management strategies recommend the use of effective amounts of tank-mixed herbicide companions that provide control of the same species but with different modes of action as a means of delaying the emergence of resistant weeds. Stacking the herbicide tolerance genes of the present invention with glyphosate tolerance traits (and/or other herbicide tolerance traits) may allow selective use of glyphosate and pyrazolone herbicides (eg, fenpyridine) on the same crop. control of glyphosate-resistant weed species (broadleaf weed species controlled by one or more pyrazolone herbicides) in glyphosate-tolerant crops. The applications of these herbicides can be simultaneous use in tank mixtures containing two or more herbicides with different modes of action, individual herbicide compositions in sequential use (eg pre-plant, pre-emergence or post-emergence) (Intervals used ranged from 2 hours to 3 months), or alternatively, at any time (within 7 months from planting the crop to when the crop was harvested (or the pre-harvest interval for individual herbicides, whichever is the shortest) )) use combinations representing any number of herbicides to which each compound class can be applied.
在控制阔叶杂草中具有灵活性是很重要的,即使用时间、单个除草剂用量和控制顽固或抗性杂草的能力。作物中与草甘膦抗性基因/本发明除草剂耐受性基因叠加的草甘膦应用范围可以从250至2500g ae/ha;吡唑啉酮类除草剂(一种或多种)可按照从25-500gai/ha。这些应用的时间的最佳组合取决于具体的条件、物种和环境。It is important to have flexibility in controlling broadleaf weeds, namely timing of application, individual herbicide rates and the ability to control stubborn or resistant weeds. The application range of glyphosate superimposed with the glyphosate resistance gene/herbicide tolerance gene of the present invention in crops can be from 250 to 2500 g ae/ha; From 25-500gai/ha. The optimal combination of times for these applications depends on the specific conditions, species and environment.
除草剂制剂(如酯、酸或盐配方或可溶浓缩剂、乳化浓缩剂或可溶液体)和罐混添加剂(如佐剂或相容剂)可显著影响给定的除草剂或一种或多种除草剂的组合的杂草控制。任意前述除草剂的任意化学组合均在本发明的范围内。Herbicide formulations (eg ester, acid or salt formulations or soluble concentrates, emulsified concentrates or soluble liquids) and tank mix additives (eg adjuvants or compatibilizers) can significantly affect a given herbicide or one or more Combination of multiple herbicides for weed control. Any chemical combination of any of the foregoing herbicides is within the scope of this invention.
此外,可以将编码本发明除草剂耐受性蛋白质的基因单独或与其它除草剂耐受作物特征叠加后再与一种或多种其它输入(如昆虫抗性、真菌抗性或胁迫耐受性等)或输出(如提高的产量、改进的油量、提高的纤维品质等)性状叠加。因此,本发明可用于提供以灵活且经济地控制任何数目的农学害虫的能力和提高作物品质的完整农学解决方案。In addition, the genes encoding the herbicide tolerance proteins of the invention can be combined with one or more other inputs such as insect resistance, fungal resistance or stress tolerance, alone or stacked with other herbicide tolerant crop traits. etc.) or output (eg increased yield, improved oil yield, improved fiber quality, etc.) trait stacking. Thus, the present invention can be used to provide a complete agronomic solution with the ability to flexibly and economically control any number of agronomic pests and improve crop quality.
这些叠加的组合可以通过任何方法来产生,这些方法包括但不限于:通过常规的或顶交方法的杂交育种植物或遗传转化。如果这些序列是通过遗传转化这些植物来进行叠加的,所感兴趣的多核苷酸序列可以在任何时间并且以任何次序进行组合。例如,包括一个或多个所希望的性状的转基因植物可以用做通过后续转化而引入另外性状的靶标。这些性状可以在一个共转化方案中与由表达盒的任何组合提供的感兴趣的多核苷酸同时引入。例如,如果将引入两个序列,这两个序列可以包含在分开的表达盒(反式)中或包含在相同的表达盒(顺式)中。这些序列的表达可以通过相同的启动子或通过不同的启动子来驱动。在某些情况下,可能希望的是引入一个抑制所感兴趣的多核苷酸的表达的表达盒。这可以与其他的抑制表达盒或过量表达盒的任何组合进行组合以在该植物中产生所希望的性状组合。进一步认识到的是,多核苷酸序列可以在一个所希望的基因组位置处使用位点特异性重组系统进行叠加。These stacked combinations can be produced by any method including, but not limited to, cross-breeding plants or genetic transformation by conventional or topcrossing methods. If the sequences are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. For example, transgenic plants comprising one or more desired traits can be used as targets for the introduction of additional traits by subsequent transformation. These traits can be introduced simultaneously with the polynucleotides of interest provided by any combination of expression cassettes in a co-transformation scheme. For example, if two sequences are to be introduced, the two sequences can be contained in separate expression cassettes (trans) or in the same expression cassette (cis). Expression of these sequences can be driven by the same promoter or by different promoters. In some cases, it may be desirable to introduce an expression cassette that inhibits the expression of the polynucleotide of interest. This can be combined with any combination of other suppressor expression cassettes or overexpression cassettes to produce the desired combination of traits in the plant. It is further recognized that polynucleotide sequences can be stacked at a desired genomic location using a site-specific recombination system.
本发明编码所述除草剂耐受性蛋白质的基因对吡唑啉酮类除草剂具有较高的耐受性,是重要的除草剂耐受作物和选择标记物特征可能性的基础。The gene encoding the herbicide tolerance protein of the present invention has high tolerance to pyrazolone herbicides, and is the basis for the feature possibility of important herbicide tolerance crops and selection markers.
本发明中术语“表达盒”是指能够在适当的宿主细胞中指引一种特定核苷酸序列表达的一种核酸分子,包括有效连接到感兴趣的核苷酸序列(即,一种单独地或与一种或多种编码赋予所希望的性状的多肽的额外的核酸分子相组合而编码一种除草剂耐受性蛋白质或保留了HPPD酶活性的变体的多核苷酸)的启动子,该感兴趣的核苷酸序列有效连接到终止信号。该编码区通常对一种感兴趣的蛋白质进行编码,但是还可以对一种感兴趣的功能性RNA进行编码,例如在正义或反义方向上的反义RNA或一种非翻译RNA。包含该感兴趣的核苷酸序列的表达盒可以是嵌合的,意味着至少一个它的组分相对于至少一个它的其他组分是异源的。该表达盒还可以是一种天然发生的表达盒,但一定是以在对异源表达有用的重组体形式而获得的。然而,典型地,该表达盒对于宿主是异源的,即,该表达盒的特定DNA序列并不天然发生于该宿主细胞中,并且必须已通过转化事件而被引入新宿主细胞中。在该表达盒中核苷酸序列的表达可以是在组成型启动子或诱导型启动子的控制之下,该启动子只有当该宿主细胞暴露于一些特殊的外界刺激时才引发转录。另外,该启动子对于一种特定的组织或器官或发育阶段也是特异性的。The term "expression cassette" in the present invention refers to a nucleic acid molecule capable of directing the expression of a particular nucleotide sequence in a suitable host cell, comprising operably linked to a nucleotide sequence of interest (ie, a single or a polynucleotide encoding a herbicide tolerance protein or a variant that retains HPPD enzymatic activity in combination with one or more additional nucleic acid molecules encoding a polypeptide conferring the desired trait), The nucleotide sequence of interest is operably linked to a termination signal. The coding region typically encodes a protein of interest, but can also encode a functional RNA of interest, such as antisense RNA or an untranslated RNA in the sense or antisense orientation. An expression cassette comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette can also be a naturally occurring expression cassette, but must be obtained in a recombinant form useful for heterologous expression. Typically, however, the expression cassette is heterologous to the host, ie, the particular DNA sequence of the expression cassette does not naturally occur in the host cell and must have been introduced into the new host cell by a transformation event. Expression of the nucleotide sequence in the expression cassette can be under the control of a constitutive promoter or an inducible promoter that initiates transcription only when the host cell is exposed to some specific external stimulus. Additionally, the promoter is specific for a particular tissue or organ or stage of development.
本发明涵盖了用能够表达一种感兴趣的多核苷酸(即一种单独地或与一种或多种编码赋予所希望的性状的多肽的额外的核酸分子相组合而编码一种除草剂耐受性蛋白质或它的保留了HPPD酶活性的变体的多核苷酸)的表达盒来转化植物。该表达盒在5’-3’的转录方向上包括转录和翻译的起始区(即启动子)和多核苷酸开放阅读框。该表达盒可以任选地包括在植物中起作用的转录和翻译终止区(即终止区)。在一些实施方案中,该表达盒包括一种选择标记基因从而允许选择稳定的转化体。本发明的表达构建体还可以包括前导序列和/或允许感兴趣的多核苷酸的诱导型表达的序列。The present invention contemplates encoding a herbicide-resistant polynucleotide capable of expressing a polynucleotide of interest (ie, a single or in combination with one or more additional nucleic acid molecules encoding a polypeptide conferring a desired trait). Plants are transformed with an expression cassette of a receptor protein or a polynucleotide of its variant that retains HPPD enzymatic activity. The expression cassette includes transcription and translation initiation regions (i.e., promoters) and a polynucleotide open reading frame in the 5'-3' transcriptional direction. The expression cassette may optionally include transcriptional and translational termination regions (ie, termination regions) that function in plants. In some embodiments, the expression cassette includes a selectable marker gene to allow selection of stable transformants. Expression constructs of the present invention may also include leader sequences and/or sequences that allow for inducible expression of the polynucleotide of interest.
该表达盒的调控序列有效连接到感兴趣的多核苷酸。本发明中所述调控序列包括但不限于启动子、转运肽、终止子、增强子、前导序列、内含子以及其它可操作地连接到编码所述除草剂耐受性蛋白质除草剂耐受性基因的调节序列。The regulatory sequences of the expression cassette are operably linked to the polynucleotide of interest. The regulatory sequences described in the present invention include, but are not limited to, promoters, transit peptides, terminators, enhancers, leader sequences, introns, and other operably linked to the herbicide tolerance protein encoding the herbicide tolerance. gene regulatory sequences.
所述启动子为植物中可表达的启动子,所述的“植物中可表达的启动子”是指确保与其连接的编码序列在植物细胞内进行表达的启动子。植物中可表达的启动子可为组成型启动子。指导植物内组成型表达的启动子的示例包括但不限于,来源于花椰菜花叶病毒的35S启动子、玉米Ubi启动子、水稻GOS2基因的启动子等。备选地,植物中可表达的启动子可为组织特异的启动子,即该启动子在植物的一些组织内如在绿色组织中指导编码序列的表达水平高于植物的其他组织(可通过常规RNA试验进行测定),如PEP羧化酶启动子。备选地,植物中可表达的启动子可为创伤诱导启动子。创伤诱导启动子或指导创伤诱导的表达模式的启动子是指当植物经受机械或由昆虫啃食引起的创伤时,启动子调控下的编码序列的表达较正常生长条件下有显著提高。创伤诱导启动子的示例包括但不限于,马铃薯和西红柿的蛋白酶抑制基因(pinⅠ和pinⅡ)和玉米蛋白酶抑制基因(MPI)的启动子。The promoter is a promoter expressible in plants, and the "promoter expressible in plants" refers to a promoter that ensures the expression of the coding sequence linked thereto in plant cells. Promoters expressible in plants can be constitutive promoters. Examples of promoters that direct constitutive expression in plants include, but are not limited to, the 35S promoter derived from cauliflower mosaic virus, the maize Ubi promoter, the promoter of the rice GOS2 gene, and the like. Alternatively, a promoter expressible in a plant may be a tissue-specific promoter, i.e., the promoter directs the expression of the coding sequence to a higher level in some tissues of the plant, such as in green tissues, than in other tissues of the plant (by conventional RNA assay), such as the PEP carboxylase promoter. Alternatively, the promoter expressible in plants may be a wound-inducible promoter. A wound-inducible promoter or a promoter that directs a wound-induced expression pattern means that the expression of the coding sequence under the control of the promoter is significantly increased when the plant is subjected to mechanical or insect-induced wounding compared to normal growth conditions. Examples of wound-inducible promoters include, but are not limited to, promoters of the protease inhibitory genes (pin I and pin II) of potato and tomato and the promoters of the maize protease inhibitor gene (MPI).
所述转运肽(又称分泌信号序列或导向序列)是指导转基因产物到特定的细胞器或细胞区室,对受体蛋白质来说,所述转运肽可以是异源的,例如,利用编码叶绿体转运肽序列靶向叶绿体,或者利用‘KDEL’保留序列靶向内质网,或者利用大麦植物凝集素基因的CTPP靶向液泡。The transit peptide (also known as a secretion signal sequence or targeting sequence) directs the transgene product to a specific organelle or cellular compartment, the transit peptide may be heterologous to the receptor protein, for example, by encoding chloroplast transport The peptide sequences were targeted to the chloroplast, either to the endoplasmic reticulum using the 'KDEL' retention sequence, or to the vacuole using the CTPP of the barley lectin gene.
所述前导序列包含但不限于,小RNA病毒前导序列,如EMCV前导序列(脑心肌炎病毒5’非编码区);马铃薯Y病毒组前导序列,如MDMV(玉米矮缩花叶病毒)前导序列;人类免疫球蛋白质重链结合蛋白质(BiP);苜蓿花叶病毒的外壳蛋白质mRNA的不翻译前导序列(AMVRNA4);烟草花叶病毒(TMV)前导序列。The leader sequence includes, but is not limited to, picornavirus leader sequence, such as EMCV leader sequence (encephalomyocarditis virus 5' non-coding region); Potato gamma virus group leader sequence, such as MDMV (maize dwarf mosaic virus) leader sequence; Human immunoglobulin heavy chain binding protein (BiP); untranslated leader sequence of coat protein mRNA of alfalfa mosaic virus (AMVRNA4); tobacco mosaic virus (TMV) leader sequence.
所述增强子包含但不限于,花椰菜花叶病毒(CaMV)增强子、玄参花叶病毒(FMV)增强子、康乃馨风化环病毒(CERV)增强子、木薯脉花叶病毒(CsVMV)增强子、紫茉莉花叶病毒(MMV)增强子、夜香树黄化曲叶病毒(CmYLCV)增强子、木尔坦棉花曲叶病毒(CLCuMV)、鸭跖草黄斑驳病毒(CoYMV)和花生褪绿线条花叶病毒(PCLSV)增强子。The enhancers include, but are not limited to, cauliflower mosaic virus (CaMV) enhancers, scrophularia mosaic virus (FMV) enhancers, carnation weathering ring virus (CERV) enhancers, cassava vein mosaic virus (CsVMV) enhancers , Purple jasmine mosaic virus (MMV) enhancer, Nougat yellow leaf curl virus (CmYLCV) enhancer, Multan cotton leaf curl virus (CLCuMV), Commelina yellow mottle virus (CoYMV) and Peanut chlorotic streak Leaf virus (PCLSV) enhancer.
对于单子叶植物应用而言,所述内含子包含但不限于,玉米hsp70内含子、玉米泛素内含子、Adh内含子1、蔗糖合酶内含子或水稻Act1内含子。对于双子叶植物应用而言,所述内含子包含但不限于,CAT-1内含子、pKANNIBAL内含子、PIV2内含子和“超级泛素”内含子。For monocot applications, the introns include, but are not limited to, the maize hsp70 intron, the maize ubiquitin intron, the Adh intron 1, the sucrose synthase intron, or the rice Act1 intron. For dicot applications, such introns include, but are not limited to, the CAT-1 intron, the pKANNIBAL intron, the PIV2 intron, and the "super ubiquitin" intron.
所述终止子可以为在植物中起作用的适合多聚腺苷酸化信号序列,包括但不限于,来源于农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)基因的多聚腺苷酸化信号序列、来源于蛋白酶抑制剂Ⅱ(pinⅡ)基因的多聚腺苷酸化信号序列、来源于豌豆ssRUBISCO E9基因的多聚腺苷酸化信号序列和来源于α-微管蛋白(α-tubulin)基因的多聚腺苷酸化信号序列。The terminator may be a suitable polyadenylation signal sequence that functions in plants, including, but not limited to, a polyadenylation signal sequence derived from the nopaline synthase (NOS) gene of Agrobacterium tumefaciens , the polyadenylation signal sequence derived from the protease inhibitor II (pin II) gene, the polyadenylation signal sequence derived from the pea ssRUBISCO E9 gene, and the polyadenylation signal sequence derived from the α-tubulin gene. Polyadenylation signal sequence.
本发明中所述“有效连接”表示核酸序列的联结,所述联结使得一条序列可提供对相连序列来说需要的功能。在本发明中所述“有效连接”可以为将启动子与感兴趣的序列相连,使得该感兴趣的序列的转录受到该启动子控制和调控。当感兴趣的序列编码蛋白并且想要获得该蛋白的表达时“有效连接”表示:启动子与所述序列相连,相连的方式使得得到的转录物高效翻译。如果启动子与编码序列的连接是转录物融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得得到的转录物中第一翻译起始密码子是编码序列的起始密码子。备选地,如果启动子与编码序列的连接是翻译融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得5’非翻译序列中含有的第一翻译起始密码子与启动子相连结,并且连接方式使得得到的翻译产物与编码想要的蛋白的翻译开放读码框的关系是符合读码框的。可以“有效连接”的核酸序列包括但不限于:提供基因表达功能的序列(即基因表达元件,例如启动子、5’非翻译区域、内含子、蛋白编码区域、3’非翻译区域、聚腺苷化位点和/或转录终止子)、提供DNA转移和/或整合功能的序列(即T-DNA边界序列、位点特异性重组酶识别位点、整合酶识别位点)、提供选择性功能的序列(即抗生素抗性标记物、生物合成基因)、提供可计分标记物功能的序列、体外或体内协助序列操作的序列(即多接头序列、位点特异性重组序列)和提供复制功能的序列(即细菌的复制起点、自主复制序列、着丝粒序列)。"Operably linked" in the context of the present invention refers to the association of nucleic acid sequences such that one sequence can provide the desired function for the linked sequences. In the present invention, the "operably linked" can be to link a promoter with a sequence of interest, so that the transcription of the sequence of interest is controlled and regulated by the promoter. "Operably linked" when the sequence of interest encodes a protein and expression of the protein is desired to mean: a promoter is linked to the sequence in such a way that the resulting transcript is efficiently translated. If the linkage of the promoter to the coding sequence is a transcript fusion and expression of the encoded protein is desired, the linkage is made such that the first translation initiation codon in the resulting transcript is the initiation codon of the coding sequence. Alternatively, if the linkage of the promoter to the coding sequence is a translational fusion and expression of the encoded protein is desired, the linkage is made such that the first translation initiation codon contained in the 5' untranslated sequence is linked to the promoter are linked, and are linked in such a way that the resulting translation product is in-frame with respect to the translational open reading frame encoding the desired protein. Nucleic acid sequences that may be "operably linked" include, but are not limited to, sequences that provide gene expression function (i.e., gene expression elements such as promoters, 5' untranslated regions, introns, protein coding regions, 3' untranslated regions, poly adenylation sites and/or transcription terminators), sequences providing DNA transfer and/or integration functions (i.e. T-DNA border sequences, site-specific recombinase recognition sites, integrase recognition sites), providing selection Sequences for sexual function (i.e. antibiotic resistance markers, biosynthetic genes), sequences providing scoreable marker function, sequences assisting in sequence manipulation in vitro or in vivo (i.e. polylinker sequences, site-specific recombination sequences) and providing Sequences of replication function (ie bacterial origins of replication, autonomously replicating sequences, centromeric sequences).
本发明中所述的植物、植物组织或植物细胞的基因组,是指植物、植物组织或植物细胞内的任何遗传物质,且包括细胞核和质体和线粒体基因组。The genome of a plant, plant tissue or plant cell in the present invention refers to any genetic material in the plant, plant tissue or plant cell, and includes the nucleus and plastid and mitochondrial genome.
在本发明中,术语“植物部分”或“植物组织”包括植物细胞、植物原生质体、植物可以由之再生的植物细胞组织培养物、植物愈伤组织、植物簇以及在植物或以下植物的部分中完整的植物细胞,这些植物的部分是如胚、花粉、胚珠、种子、叶、花、枝、果实、核、穗、穗轴、外壳、茎、根、根尖、花药等等。In the present invention, the term "plant part" or "plant tissue" includes plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clusters and parts of plants on or below plants In complete plant cells, these plant parts are embryos, pollen, ovules, seeds, leaves, flowers, branches, fruits, cores, ears, cobs, husks, stems, roots, root tips, anthers, and the like.
本发明所述除草剂耐受性蛋白质可应用于多种植物中,所述双子叶植物包括但不限于苜蓿、菜豆、花椰菜、甘蓝、胡萝卜、芹菜、棉花、黄瓜、茄子、莴苣、甜瓜、豌豆、胡椒、西葫芦、萝卜、油菜、菠菜、大豆、南瓜、番茄、拟南芥、花生或西瓜;优选地,所述双子叶植物是指黄瓜、大豆、拟南芥、烟草、棉花、花生或油菜。所述单子叶植物包括但不限于玉米、水稻、高粱、小麦、大麦、黑麦、粟、甘蔗、燕麦或草坪草;优选地,所述单子叶植物是指玉米、水稻、高粱、小麦、大麦、粟、甘蔗或燕麦。The herbicide-tolerant protein of the present invention can be applied to a variety of plants, including but not limited to alfalfa, kidney bean, cauliflower, cabbage, carrot, celery, cotton, cucumber, eggplant, lettuce, melon, pea , pepper, zucchini, radish, rape, spinach, soybean, pumpkin, tomato, Arabidopsis, peanut or watermelon; preferably, the dicotyledonous plant refers to cucumber, soybean, Arabidopsis, tobacco, cotton, peanut or rapeseed . The monocots include but are not limited to corn, rice, sorghum, wheat, barley, rye, millet, sugar cane, oats or turfgrass; preferably, the monocots refer to corn, rice, sorghum, wheat, barley , millet, sugar cane or oats.
在本发明中术语“植物转化”是指将一种抗或耐受除草剂的多核苷酸单独地或与编码赋予所希望的性状的多肽的一种或多种额外的核酸分子结合而克隆到一个表达系统中,它就是被转化到了一种植物细胞中。本发明的受体和目标表达盒可以以多种公知的方法被引入到植物细胞中。在多核苷酸的背景下,术语“引入”(例如,感兴趣的核苷酸构建体)旨在表示以这样一种方式将多核苷酸提供给该植物,使得该多核苷酸获得对一种植物细胞的内部的接近或实现。其中有待引入一个以上的多核苷酸,这些多核苷酸可以作为单个核苷酸构建体的部分而进行组装,或者作为分开的核苷酸构建体,并且可以位于相同的或不同的转化载体上。因此,或作为育种方案的一部分,例如在植物中的在一个单一的转化事件中、在分开的转化事件中可以将这些多核苷酸引入到感兴趣的宿主细胞中。本发明的这些方法并不取决于一种用于引入一个或多个多核苷酸到植物中的具体方法,仅仅是获得这个或这些多核苷酸对于植物的至少一个细胞的内部的接近或实现。在本领域中已知的用于将一个或多个多核苷酸引入到植物中的方法包括但不限于瞬时转化方法、稳定转化方法、病毒介导的方法或基因组编辑技术。The term "plant transformation" in the present invention refers to the cloning of a herbicide-resistant or tolerant polynucleotide, alone or in combination with one or more additional nucleic acid molecules encoding a polypeptide conferring a desired trait, into In an expression system, it is transformed into a plant cell. The receptors and target expression cassettes of the present invention can be introduced into plant cells in a variety of well-known ways. In the context of a polynucleotide, the term "introduced" (eg, a nucleotide construct of interest) is intended to mean that the polynucleotide is provided to the plant in such a way that the polynucleotide acquires support for a The access or realization of the interior of a plant cell. Where more than one polynucleotide is to be introduced, these polynucleotides may be assembled as part of a single nucleotide construct or as separate nucleotide constructs and may be located on the same or different transformation vectors. Thus, or as part of a breeding regimen, eg, in plants, the polynucleotides can be introduced into host cells of interest in a single transformation event, in separate transformation events. The methods of the present invention do not depend on a particular method for introducing one or more polynucleotides into a plant, merely obtaining access or realization of the polynucleotide(s) to the interior of at least one cell of the plant. Methods known in the art for introducing one or more polynucleotides into plants include, but are not limited to, transient transformation methods, stable transformation methods, virus-mediated methods, or genome editing techniques.
术语“稳定转化”是指将外源基因导入植物基因组,且稳定地整合进该植物及其任何连续世代的基因组中,导致外源基因稳定遗传。The term "stable transformation" refers to the introduction of an exogenous gene into the genome of a plant, and stable integration into the genome of the plant and any successive generations thereof, resulting in the stable inheritance of the exogenous gene.
术语“瞬时转化”是指核酸分子或蛋白质导入植物细胞中,执行功能但不整合进植物基因组中,导致外源基因不能稳定遗传。The term "transient transformation" refers to the introduction of a nucleic acid molecule or protein into a plant cell that performs a function but does not integrate into the plant genome, resulting in the inability of the foreign gene to be stably inherited.
术语“基因组编辑技术”是指能够对基因组序列进行精确操作,实现基因定点突变、插入、删除等操作的基因组修饰技术。目前基因组编辑技术主要有HE(homingendonuclease,归巢核酸内切酶)、ZFN技术(Zinc-finger nuclease,锌指核酸酶)、TALEN技术(transcription activator-like effector nuclease,转录激活样效应因子核酸酶)、CRISPR技术(Clustered regulatory interspaced short palindromic repeat,成簇规律间隔短回文重复)。The term "genome editing technology" refers to a genome modification technology that enables precise manipulation of genome sequences to achieve gene site-directed mutation, insertion, deletion and other operations. At present, genome editing technologies mainly include HE (homingendonuclease, homing endonuclease), ZFN technology (Zinc-finger nuclease, zinc finger nuclease), TALEN technology (transcription activator-like effector nuclease, transcription activator-like effector nuclease) , CRISPR technology (Clustered regulatory interspaced short palindromic repeat, clustered regularly interspaced short palindromic repeat).
对本领域技术人员而言,用于植物转化的可获得的众多转化载体是已知的,并且与本发明有关的基因可以与任何上述载体结合使用。载体的选择将取决于优选的转化技术以及用于转化的目标种类。对于某些目标种类,可以优选不同的抗生素或除草剂选择标记。在转化中常规使用的选择标记包括赋予对卡那霉素以及相关抗生素或相关除草剂的抗性的nptll基因(此基因被Bevan等人于1983年发表在《自然科学》第304卷184-187页)、赋予对除草剂草丁膦(还被称作草铵膦;参见White等人于1990年发表于《Nucl.AcidsRes》第18卷1062页、Spencer等人于1990年发表于《Theor.Appl.Genet》第79卷625-631页以及美国专利5561236和5276268)抗性的pat和bar基因,赋予对抗生素潮霉素的抗性的hpn基因(Blochinger&Diggelmann,Mol.Cell Biol.4:2929-2931)以及赋予对甲氨蝶呤的抗性的dnfr基因(Bourouis等人1983年于《EMBO J.》第2卷1099-1104页)、赋予对草甘膦的抗性的EPSPS基因(美国专利4940935和5188642)、也赋予对草甘膦的抗性的草甘膦N-乙酰基转移酶(GAT)基因(Castle等人于2004年在《Science》第304卷1151-1154页;美国申请公开专利20070004912,20050246798和20050060767中有描述)以及提供代谢甘露糖的6-磷酸甘露糖异构酶基因(美国专利5767378和5994629有描述)。Numerous transformation vectors available for plant transformation are known to those skilled in the art, and the genes relevant to the present invention may be used in combination with any of the above-described vectors. The choice of vector will depend on the preferred transformation technique and the target species used for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selectable markers routinely used in transformation include the nptll gene that confers resistance to kanamycin and related antibiotics or related herbicides (this gene was published by Bevan et al. page), conferring resistance to the herbicide glufosinate (also known as glufosinate-ammonium; see White et al., Nucl. AcidsRes, Vol. 18, p. 1062, 1990, Spencer et al., 1990, Theor. Appl. Genet, Vol. 79, pp. 625-631 and U.S. Pat. 2931) and the dnfr gene conferring resistance to methotrexate (Bourouis et al. 1983 in EMBO J. Vol. 2 pp. 1099-1104), the EPSPS gene conferring resistance to glyphosate (U.S. Pat. 4940935 and 5188642), the glyphosate N-acetyltransferase (GAT) gene that also confers resistance to glyphosate (Castle et al., Science vol. 304, pp. 1151-1154, 2004; US application published Patents 20070004912, 20050246798 and 20050060767) and the 6-phosphate mannose isomerase gene that provides the metabolism of mannose (described in US Patents 5,767,378 and 5,994,629).
用于再生植物的方法在本领域也是熟知的。例如,已经利用Ti质粒载体用于传送外源DNA,以及直接DNA摄入、脂质体、电穿孔、显微注射以及微弹。Methods for regenerating plants are also well known in the art. For example, Ti plasmid vectors have been utilized for the delivery of exogenous DNA, as well as direct DNA uptake, liposomes, electroporation, microinjection, and microprojectiles.
本发明中所述种植系统是指植物、其显示的任一种除草剂耐受性和/或在植物发育的不同阶段可用的除草剂处理的组合,产生高产和/或减弱损伤的植物。Planting systems in the context of the present invention refer to plants, which exhibit any combination of herbicide tolerance and/or herbicide treatments available at different stages of plant development, resulting in high yielding and/or reduced damage plants.
本发明中,所述杂草是指在植物生长环境中与耕种的目的植物竞争的植物。In the present invention, the weeds refer to plants that compete with the target plant to be cultivated in the plant growth environment.
本发明术语“控制”和/或“防治”是指至少将有效剂量的吡唑啉酮类除草剂直接施用(例如通过喷雾)到植物生长环境中,使杂草发育最小化和/或停止生长。同时,耕种的目的植物在形态上应是正常的,且可在常规方法下培养以用于产物的消耗和/或生成;优选地,与非转基因的野生型植株相比具有减弱的植物损伤和/或具有增加的植物产量。所述具有减弱的植物损伤,具体表现包括但不限于改善的茎秆抗性、和/或提高的籽粒重量等。所述除草剂耐受性蛋白质对杂草的“控制”和/或“防治”作用是可以独立存在的,不因其它可“控制”和/或“防治”杂草的物质的存在而减弱和/或消失。具体地,转基因植物(含有编码除草剂耐受性蛋白质的基因)的任何组织同时和/或不同步地,存在和/或产生,所述除草剂耐受性蛋白质和/或可控制杂草的另一种物质,则所述另一种物质的存在既不影响所述除草剂耐受性蛋白质对杂草的“控制”和/或“防治”作用,也不能导致所述“控制”和/或“防治”作用完全和/或部分由所述另一种物质实现,而与所述除草剂耐受性蛋白质无关。The terms "control" and/or "control" herein refer to the direct application (eg, by spraying) of at least an effective dose of a pyrazolone herbicide to the plant growth environment to minimize and/or stop weed development . At the same time, the plant of interest to be cultivated should be morphologically normal and can be cultivated under conventional methods for product consumption and/or production; preferably, with reduced plant damage and /or have increased plant yield. Specific manifestations of the reduced plant damage include, but are not limited to, improved stalk resistance, and/or increased grain weight, and the like. The "control" and/or "control" effect of the herbicide tolerance protein on weeds can exist independently, and is not weakened by the presence of other substances that can "control" and/or "control" weeds. / or disappear. Specifically, any tissue of a transgenic plant (containing a gene encoding a herbicide tolerance protein) exists and/or produces simultaneously and/or asynchronously, the herbicide tolerance protein and/or the weed-controlling another substance, the presence of the other substance neither affects nor results in the "control" and/or "control" of the herbicide tolerance protein on weeds or "control" effect is achieved entirely and/or in part by the other substance independent of the herbicide tolerance protein.
本发明中所述的“植物繁殖体”包括但不限于植物有性繁殖体和植物无性繁殖体。所述植物有性繁殖体包括但不限于植物种子;所述植物无性繁殖体是指植物体的营养器官或某种特殊组织,其可以在离体条件下产生新植株;所述营养器官或某种特殊组织包括但不限于根、茎和叶,例如:以根为无性繁殖体的植物包括草莓和甘薯等;以茎为无性繁殖体的植物包括甘蔗和马铃薯(块茎)等;以叶为无性繁殖体的植物包括芦荟和秋海棠等。The "plant propagules" described in the present invention include, but are not limited to, plant sexual propagules and plant vegetative propagules. The plant sexual propagules include, but are not limited to, plant seeds; the plant vegetative propagules refer to the vegetative organs or certain special tissues of the plant body, which can produce new plants under in vitro conditions; the vegetative organs or certain Special tissues include but are not limited to roots, stems and leaves, for example: plants with roots as vegetative bodies include strawberries and sweet potatoes, etc.; plants with stems as vegetative bodies include sugarcane and potato (tuber), etc.; leaves as vegetative bodies Plants that produce propagules include aloe vera and begonia.
本发明可赋予植物新除草剂抗性性状,并且未观察到对表型包括产量的不良影响。本发明中植物能耐受住如至少一种受试除草剂2×、3×、或4×一般应用水平。这些耐性水平的提高在本发明的范围之内。例如可对本领域已知的多种技术进行可预见到的优化和进一步发展,以增加给定基因的表达。The present invention can confer novel herbicide resistance traits to plants, and no adverse effects on phenotype, including yield, are observed. Plants of the present invention can tolerate typical application levels such as 2x, 3x, or 4x of at least one of the herbicides tested. Improvements in these tolerance levels are within the scope of the present invention. For example, various techniques known in the art can be foreseen for optimization and further development to increase the expression of a given gene.
本发明提供了一种除草剂耐受性蛋白质、其编码基因及用途,具有以下优点:The present invention provides a herbicide tolerance protein, its encoding gene and application, and has the following advantages:
1、本发明除草剂耐受性蛋白质可以赋予植物对HPPD抑制剂除草剂产生耐受性,至少可以耐受1倍大田浓度的苯吡唑草酮。1. The herbicide tolerance protein of the present invention can endow plants with tolerance to HPPD inhibitor herbicides, and can tolerate at least 1-fold field concentration of fenflufenac.
2、本发明除草剂耐受性蛋白质在植物上应用前景广阔。2. The herbicide tolerance protein of the present invention has broad application prospects in plants.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be further described in detail below through the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明含有所述HP1核苷酸序列的原核重组表达载体DBN11765结构示意图;1 is a schematic structural diagram of the prokaryotic recombinant expression vector DBN11765 containing the HP1 nucleotide sequence of the present invention;
图2为除草剂耐受性蛋白质HP1在不同浓度梯度的HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮或二酮腈)条件下的酶活力效果图;Figure 2 is a graph showing the effect of the enzyme activity of the herbicide-tolerant protein HP1 under the conditions of different concentration gradients of HPPD inhibitor herbicides (fenflumetrizone, mesotrione or diketonitrile);
图3为除草剂耐受性蛋白质HP1-1在不同浓度梯度的HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮或二酮腈)条件下的酶活力效果图;Figure 3 is a graph showing the effect of the enzyme activity of the herbicide-tolerant protein HP1-1 under the conditions of different concentration gradients of HPPD inhibitor herbicides (flufenazone, mesotrione or diketonitrile);
图4为除草剂耐受性蛋白质HP1-2在不同浓度梯度的HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮或二酮腈)条件下的酶活力效果图;Fig. 4 is a graph showing the effect of enzyme activity of herbicide-tolerant protein HP1-2 under different concentration gradients of HPPD inhibitor herbicides (fenflumetrizone, mesotrione or diketonitrile);
图5为本发明含有所述HP1M核苷酸序列的拟南芥重组表达载体DBN11770结构示意图;Figure 5 is a schematic structural diagram of the Arabidopsis thaliana recombinant expression vector DBN11770 containing the HP1M nucleotide sequence of the present invention;
图6为本发明对照重组表达载体DBN11770N结构示意图。Figure 6 is a schematic structural diagram of the control recombinant expression vector DBN11770N of the present invention.
具体实施方式Detailed ways
下面通过具体实施例进一步说明本发明除草剂耐受性蛋白质、其编码基因及用途的技术方案。The technical solutions of the herbicide tolerance protein of the present invention, its encoding gene and its use are further described below through specific examples.
第一实施例、HP1基因的突变和筛选First Example, Mutation and Screening of HP1 Gene
1、合成HP1基因1. Synthesis of HP1 gene
合成所述HP1基因的核苷酸序列,如序列表中SEQ ID NO:2所示,其编码HP1蛋白,如序列表中SEQ ID NO:1所示。依据拟南芥偏好性密码子获得编码相应于所述HP1的氨基酸序列的HP1M核苷酸序列,如序列表中SEQ ID NO:3所示。The nucleotide sequence of the HP1 gene is synthesized, as shown in SEQ ID NO: 2 in the sequence listing, which encodes the HP1 protein, as shown in SEQ ID NO: 1 in the sequence listing. The HP1M nucleotide sequence encoding the amino acid sequence corresponding to the HP1 was obtained according to Arabidopsis thaliana-preferred codons, as shown in SEQ ID NO: 3 in the sequence listing.
2、构建HP1基因突变文库2. Construction of HP1 gene mutation library
将上述合成的HP1基因经PCR扩增后,按照Takara公司产品pUC118载体(Takara,CAT:3318)说明书的操作步骤,克隆到载体pUC118上,然后将上述连接后的产物导入大肠杆菌DH5α作为模板,用正向引物和反向引物进行易错PCR,使得HP1基因由于碱基随机错配而发生突变。After the above-mentioned synthetic HP1 gene is amplified by PCR, according to the operation steps of the Takara company product pUC118 carrier (Takara, CAT: 3318) instruction manual, clone on the carrier pUC118, then import the product after the above-mentioned connection into Escherichia coli DH5α as a template, Error-prone PCR with forward and reverse primers allowed the HP1 gene to mutate due to random base mismatches.
引物和易错PCR反应体系如下:The primers and error-prone PCR reaction system are as follows:
正向引物:5’-cccaagcttgatggccgccgattccgaaaatc-3’,如序列表中SEQ ID NO:4所示(下划线为HindIII酶切位点);Forward primer: 5'-ccc aagctt gatggccgccgattccgaaaatc-3', as shown in SEQ ID NO: 4 in the sequence listing (the underline is the HindIII restriction site);
反向引物:5’-cgcggatcctcaggcatcgaccgtcacaacg-3’,如序列表中SEQ ID NO:5所示(下划线为BamHI酶切位点);Reverse primer: 5'-cgc ggatcc tcaggcatcgaccgtcacaacg-3', as shown in SEQ ID NO: 5 in the sequence listing (the underline is the BamHI restriction site);
易错PCR反应体系(总体积50μL)为:The error-prone PCR reaction system (total volume 50 μL) was:
所述质粒DNA模板的浓度为1-10ng/μL,所述正向引物的浓度为10μM,所述反向引物的浓度为10μM。The concentration of the plasmid DNA template is 1-10 ng/μL, the concentration of the forward primer is 10 μM, and the concentration of the reverse primer is 10 μM.
易错PCR反应条件为:Error-prone PCR reaction conditions are:
将上述易错PCR产物通过7g/L的琼脂糖凝胶电泳并切胶回收,利用HindIII和BamHI对切胶回收后的易错PCR产物和pUC118载体进行双酶切,并将酶切产物提纯后通过T4-DNA连接酶进行酶连,然后转化到对苯吡唑草酮敏感的大肠杆菌DH5α中,构建HP1基因随机突变文库。The above-mentioned error-prone PCR product was subjected to 7g/L agarose gel electrophoresis and recovered by cutting the gel. The error-prone PCR product and the pUC118 vector after the recovery of the cutting gel were double digested by HindIII and BamHI, and the digested product was purified. T4-DNA ligase was used for enzymatic ligation, and then it was transformed into E. coli DH5α, which is sensitive to fenflufen, to construct a random mutation library of HP1 gene.
3、对HP1基因突变文库进行筛选3. Screening the HP1 gene mutation library
将上述突变文库中的转化产物接种于含有300μM苯吡唑草酮的2mL LB液体培养基(氨苄青霉素100mg/L、酪氨酸800mg/L)的48孔板中,在温度37℃、180rpm恒温摇床中震荡培养。观察菌株的生长状况,待菌株生长至OD 0.4-0.6时,向上述LB液体培养基中添加1mMIPTG后继续培养,观察培养基的颜色变化。The transformation product in the above mutant library was inoculated into a 48-well plate containing 2mL LB liquid medium (100mg/L of ampicillin, 800mg/L of tyrosine) containing 300 μM of fenflumezone, and the temperature was kept at 37°C and 180rpm. Shake the culture in a shaker. The growth status of the strain was observed. When the strain grew to an OD of 0.4-0.6, 1 mM IPTG was added to the above-mentioned LB liquid medium and the culture was continued, and the color change of the medium was observed.
因大肠杆菌中存在酪氨酸氨基转移酶,其可催化酪氨酸生成对羟苯基丙酮酸(HPP),HPP可作为HPPD的底物而被利用,HPPD催化反应后的产物HG可以自发氧化聚合产生棕红色脓黑素,但HPPD抑制剂能够抑制HPPD酶活性进而抑制颜色生成。因而,可根据LB液体培养基中是否产生棕红色来对上述突变文库进行高通量筛选,分离在上述含有300μM苯吡唑草酮的培养基上仍能产生棕红色的大肠杆菌DH5α以获得抗性基因。Due to the presence of tyrosine aminotransferase in Escherichia coli, it can catalyze the formation of p-hydroxyphenylpyruvate (HPP) from tyrosine. HPP can be used as a substrate for HPPD, and the product HG catalyzed by HPPD can be oxidized spontaneously. Polymerization produces brown-red pyomelanin, but HPPD inhibitors can inhibit HPPD enzyme activity and thus inhibit color production. Therefore, high-throughput screening of the above-mentioned mutant library can be performed according to whether brown-red color is produced in the LB liquid medium. sex genes.
4、获得突变的抗性基因4. Acquire a mutated resistance gene
测序结果表明获得两个HP1突变的抗性基因,分别命名为HP1-1和HP1-2,所述HP1-1核苷酸序列第475位由原来的A突变为G,导致其氨基酸序列第159位由原来的苏氨酸突变为丙氨酸;所述HP1-2核苷酸序列第772和第773位由原来的CA突变为AT,导致其氨基酸序列第258位由原来的谷氨酰胺突变为甲硫氨酸。The sequencing results showed that two HP1 mutant resistance genes were obtained, named HP1-1 and HP1-2 respectively. The 475th position of the HP1-1 nucleotide sequence was mutated from the original A to G, resulting in the 159th amino acid sequence. The 772nd and 773rd positions of the HP1-2 nucleotide sequence are mutated from the original CA to AT, resulting in the mutation of the 258th position of the amino acid sequence from the original glutamine for methionine.
除草剂耐受性蛋白质HP1-1的氨基酸序列,如序列表中SEQ ID NO:6所示,编码相应于所述除草剂耐受性蛋白质HP1-1的氨基酸序列的HP1-1核苷酸序列,如序列表中SEQ IDNO:7所示;依据拟南芥偏好性密码子获得编码相应于所述除草剂耐受性蛋白质HP1-1的氨基酸序列的HP1-1M核苷酸序列,如序列表中SEQ ID NO:8所示。The amino acid sequence of the herbicide tolerance protein HP1-1, as shown in SEQ ID NO: 6 in the sequence listing, encodes the HP1-1 nucleotide sequence corresponding to the amino acid sequence of the herbicide tolerance protein HP1-1 , as shown in SEQ ID NO: 7 in the sequence listing; obtain the HP1-1M nucleotide sequence encoding the amino acid sequence corresponding to the herbicide tolerance protein HP1-1 according to the Arabidopsis preference codons, as shown in the sequence listing shown in SEQ ID NO:8.
除草剂耐受性蛋白质HP1-2的氨基酸序列,如序列表中SEQ ID NO:9所示,编码相应于所述除草剂耐受性蛋白质HP1-2的氨基酸序列的HP1-2核苷酸序列,如序列表中SEQ IDNO:10所示;依据拟南芥偏好性密码子获得编码相应于所述除草剂耐受性蛋白质HP1-2的氨基酸序列的HP1-2M核苷酸序列,如序列表中SEQ ID NO:11所示。The amino acid sequence of the herbicide tolerance protein HP1-2, as shown in SEQ ID NO: 9 in the sequence listing, encodes the HP1-2 nucleotide sequence corresponding to the amino acid sequence of the herbicide tolerance protein HP1-2 , as shown in SEQ ID NO: 10 in the sequence listing; the HP1-2M nucleotide sequence encoding the amino acid sequence corresponding to the herbicide tolerance protein HP1-2 is obtained according to the Arabidopsis preference codons, as shown in the sequence listing shown in SEQ ID NO: 11.
第二实施例、除草剂耐受性蛋白质HP1-1和HP1-2对HPPD抑制剂除草剂的耐受性效果检测The second example, the detection of the tolerance effect of herbicide tolerance proteins HP1-1 and HP1-2 on HPPD inhibitor herbicides
1、合成HP1、HP1-1和HP1-2的核苷酸序列1. Nucleotide sequences for the synthesis of HP1, HP1-1 and HP1-2
将所述HP1核苷酸序列(SEQ ID NO:2)、HP-1核苷酸序列(SEQ ID NO:7)和HP1-2核苷酸序列(SEQ ID NO:10)的5’和3’端分别连接通用接头引物1:5' and 3 of the HP1 nucleotide sequence (SEQ ID NO: 2), HP-1 nucleotide sequence (SEQ ID NO: 7) and HP1-2 nucleotide sequence (SEQ ID NO: 10) The ' ends are connected to the universal linker primer 1 respectively:
5’端通用接头引物1:5’-taagaaggagatatacatatg-3’,如序列表中SEQ ID NO:12所示;5'-end universal adapter primer 1: 5'-taagaaggatatacatatg-3', as shown in SEQ ID NO: 12 in the sequence listing;
3’端通用接头引物1:5’-gtggtggtggtggtgctcgag-3’,如序列表中SEQ ID NO:13所示。3'-end universal linker primer 1: 5'-gtggtggtggtggtgctcgag-3', as shown in SEQ ID NO: 13 in the sequence listing.
2、原核重组表达载体的构建和重组菌株的获得2. Construction of prokaryotic recombinant expression vector and acquisition of recombinant strains
利用限制性内切酶Nde I和Xho I对原核表达载体DBNBC-01进行双酶切反应,从而对原核表达载体线性化,酶切产物纯化得到线性化的DBNBC-01表达载体骨架(载体骨架:pET-29a(+)),将连接所述通用接头引物1的所述HP1核苷酸序列与所述线性化的DBNBC-01表达载体骨架进行重组反应,操作步骤按照Takara公司In-Fusion无缝连接产品试剂盒(Clontech,CA,USA,CAT:121416)说明书进行,构建成重组表达载体DBN11765,其载体结构如图1所示(F1 ori:噬菌体F1的复制起点;Kan:卡那霉素抗性基因;Ori:复制起始点;Rop:Rop基因,编码ROP蛋白;T7 promoter:T7 RNA聚合酶启动子;HP1:HP1核苷酸序列(SEQ IDNO:2);6xHis:亲和标签,编码6个连续的His,用来作为纯化目标蛋白的标签;T7terminator:T7 RNA聚合酶的终止子;LacI operator:乳糖操纵子的操纵区;lacIpromoter:lacI启动子;lacI:乳糖操纵子调节基因)。The prokaryotic expression vector DBNBC-01 was subjected to double digestion reaction with restriction enzymes Nde I and Xho I to linearize the prokaryotic expression vector, and the digestion product was purified to obtain the linearized DBNBC-01 expression vector backbone (vector backbone: pET-29a(+)), the HP1 nucleotide sequence connected with the universal linker primer 1 is subjected to a recombination reaction with the linearized DBNBC-01 expression vector backbone, and the operation steps follow the Takara company In-Fusion seamless The ligation product kit (Clontech, CA, USA, CAT: 121416) was used to construct a recombinant expression vector DBN11765, the structure of which is shown in Figure 1 (F1 ori: origin of replication of phage F1; Kan: kanamycin resistance Sex gene; Ori: origin of replication; Rop: Rop gene, encoding ROP protein; T7 promoter: T7 RNA polymerase promoter; HP1: HP1 nucleotide sequence (SEQ ID NO: 2); 6xHis: affinity tag, encoding 6 A continuous His is used as a tag to purify the target protein; T7terminator: the terminator of T7 RNA polymerase; LacI operator: the operator region of the lactose operon; lacIpromoter: the lacI promoter; lacI: the lacI operon regulatory gene).
将重组表达载体DBN11765用热激方法转化大肠杆菌BL21(DE3)感受态细胞,其热激条件为:50μL大肠杆菌BL21(DE3)感受态细胞、10μL质粒DNA(重组表达载体DBN11765),42℃水浴30s;37℃振荡培养1h(100rpm转速下摇床摇动);然后在含50mg/L卡那霉素(Kanamycin)的所述LB固体平板上于温度37℃条件下培养12h,挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、卡那霉素50mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒。将提取的质粒进行测序鉴定,结果表明重组表达载体DBN11765在Nde I和Xho I位点间的核苷酸序列为分别为序列表中SEQ ID NO:2所示的核苷酸序列,保存重组菌株BL21(HP1)备用。The recombinant expression vector DBN11765 was transformed into E. coli BL21(DE3) competent cells by heat shock method, and the heat shock conditions were: 50 μL E. coli BL21 (DE3) competent cells, 10 μL plasmid DNA (recombinant expression vector DBN11765), 42 ℃ water bath 30s; 37°C shaking culture for 1h (shaking at 100rpm); then cultured on the LB solid plate containing 50mg/L kanamycin (Kanamycin) for 12h at 37°C, pick white colonies, In LB liquid medium (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L, kanamycin 50 mg/L, adjusted to pH 7.5 with NaOH) overnight at 37°C. Its plasmid was extracted by alkaline method. The extracted plasmid is sequenced and identified, and the results show that the nucleotide sequence of the recombinant expression vector DBN11765 between the Nde I and Xho I sites is the nucleotide sequence shown in SEQ ID NO: 2 in the sequence table, respectively, and the recombinant strain is preserved. BL21(HP1) is spare.
按照上述构建重组表达载体DBN11765的方法,将连接所述通用接头引物1的所述HP1-1核苷酸序列和HP1-2核苷酸序列分别与所述线性化的DBNBC-01表达载体骨架进行重组反应,依次得到重组表达载体DBN11774和DBN11775。将重组表达载体DBN11774和DBN11775用热激方法分别转化大肠杆菌BL21(DE3)感受态细胞并用碱法提取其质粒,将提取的质粒进行测序验证,结果表明重组表达载体DBN11774和DBN11775中的核苷酸序列分别含有序列表中SEQ ID NO:7所示核苷酸序列和SEQ ID NO:10所示核苷酸序列,即所述HP1-1核苷酸序列和HP1-2核苷酸序列正确插入。保存得到的重组菌株BL21(HP1-1)和BL21(HP1-2)备用。According to the above-mentioned method for constructing the recombinant expression vector DBN11765, the HP1-1 nucleotide sequence and HP1-2 nucleotide sequence of the universal linker primer 1 were respectively connected with the linearized DBNBC-01 expression vector backbone. After the recombination reaction, the recombinant expression vectors DBN11774 and DBN11775 were obtained in turn. The recombinant expression vectors DBN11774 and DBN11775 were transformed into Escherichia coli BL21(DE3) competent cells by heat shock method and their plasmids were extracted by alkaline method. The extracted plasmids were sequenced and verified. The results showed that the nucleotides in the recombinant expression vectors DBN11774 and DBN11775 The sequences respectively contain the nucleotide sequence shown in SEQ ID NO: 7 and the nucleotide sequence shown in SEQ ID NO: 10 in the sequence listing, that is, the HP1-1 nucleotide sequence and the HP1-2 nucleotide sequence are correctly inserted . The obtained recombinant strains BL21 (HP1-1) and BL21 (HP1-2) were saved for future use.
3、除草剂耐受性蛋白质在大肠杆菌中的表达及纯化3. Expression and purification of herbicide tolerance protein in Escherichia coli
将所述重组菌株BL21(HP1)、BL21(HP1-1)和BL21(HP1-2)分别单克隆接种在100mL的LB培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、氨苄青霉素100mg/L,用NaOH调pH至7.5)中培养至浓度为OD600nm=0.6-0.8,加入浓度为0.4mM的IPTG,在温度16℃下诱导12h。收集菌体,用15mL PBS缓冲液(50mM,pH 7.4)重悬菌体,超声破碎(X0-900Dultrasonic processor ultrasonic processor,30%intensity)10min,然后离心,收集上清,用镍离子亲和层析柱分别对获得的上述除草剂耐受性蛋白质进行纯化,用SDS-PAGE蛋白电泳检测纯化结果,条带大小和理论预测的条带大小一致。The recombinant strains BL21 (HP1), BL21 (HP1-1) and BL21 (HP1-2) were monoclonally inoculated in 100 mL of LB medium (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L).
4、测定HP1、HP1-1和HP1-2对HPPD抑制剂除草剂的耐受性4. Determination of tolerance of HP1, HP1-1 and HP1-2 to HPPD inhibitor herbicides
酶活反应体系(1mL):含有25μg反应酶(上述纯化获得的所述除草剂耐受性蛋白质HP1、HP1-1或HP1-2)、0.2mM HPP底物、1mM Fe2+、1mM抗坏血酸、不同浓度梯度(浓度分别为0μM、5μM、10μM、20μM、30μM、40μM和50μM)的苯吡唑草酮(硝磺草酮或二酮腈),缓冲体系为浓度50mM的PBS缓冲液(pH 7.4),温度30℃下在水浴锅中反应20min,每个反应以加入反应酶开始计时,沸水浴5min终止酶反应体系。Enzyme activity reaction system (1 mL): containing 25 μg reaction enzyme (the herbicide-tolerant protein HP1, HP1-1 or HP1-2 obtained by the above purification), 0.2 mM HPP substrate, 1 mM Fe 2+ , 1 mM ascorbic acid, Different concentration gradients (concentrations of 0 μM, 5 μM, 10 μM, 20 μM, 30 μM, 40 μM and 50 μM) of fenflumetrizone (mesotrione or diketonitrile), the buffer system is 50mM PBS buffer (pH 7.4 ), reacted in a water bath for 20 min at a temperature of 30 °C, each reaction was timed by adding the reaction enzyme, and the enzyme reaction system was terminated in a boiling water bath for 5 min.
将上述终止的酶反应体系离心过滤,取20μL滤液进行高效液相色谱(HPLC)分析,HPLC条件为:流动相为乙腈:水(30:70,V/V),水中添加0.1%的三氟乙酸。C18反相色谱柱(5μm,250mm×4.6mm),柱温为40℃,VWD-3100单波长紫外检测器,检测波长为292nm,进样量为20μL,流速为1.0mL/min。经HPLC分析,酶促反应产物与尿黑酸标样的出峰时间一致,而不加酶的反应体系中无尿黑酸的生成。根据体系中加入的不同浓度的HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮或二酮腈)来检测HP1、HP1-1和HP1-2的抗性情况,具体为:以不加HPPD抑制剂除草剂时的酶活为100%,计算加入HPPD抑制剂除草剂时的相对酶活,采用HPLC测定产物尿黑酸的生成量来计算HPPD抑制剂除草剂对HP1、HP1-1和HP1-2的IC50(酶活催化反应被抑制50%时HPPD抑制剂除草剂的浓度)。一个酶活力单位定义为:在pH 7.4、温度30℃条件下1min内生成1μmol尿黑酸所需的酶量。实验结果如图2-4所示(除草剂耐受性蛋白质HP1、HP1-1和HP1-2在不同浓度梯度的HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮或二酮腈)条件下的酶活效果图),利用Prism 6.0软件,通过非线性拟合计算苯吡唑草酮、硝磺草酮和二酮腈对HP1、HP1-1和HP1-2的IC50值,结果如表1所示。The above-terminated enzyme reaction system was centrifugally filtered, and 20 μL of the filtrate was taken for high-performance liquid chromatography (HPLC) analysis. The HPLC conditions were: the mobile phase was acetonitrile: water (30:70, V/V), and 0.1% trifluoride was added to the water. Acetic acid. C18 reversed-phase chromatographic column (5μm, 250mm×4.6mm), the column temperature is 40°C, the detection wavelength is 292nm with a VWD-3100 single-wavelength UV detector, the injection volume is 20μL, and the flow rate is 1.0mL/min. The HPLC analysis showed that the peak time of the enzymatic reaction product was consistent with that of the standard sample of homogentisic acid, and no homogentisic acid was generated in the reaction system without enzyme. The resistance of HP1, HP1-1 and HP1-2 was detected according to different concentrations of HPPD inhibitor herbicides (fenflumetrizone, mesotrione or diketonitrile) added to the system, specifically: The enzyme activity when adding HPPD inhibitor herbicide is 100%, calculate the relative enzyme activity when adding HPPD inhibitor herbicide, and use HPLC to measure the production of homogentisic acid to calculate the effect of HPPD inhibitor herbicide on HP1, HP1-1 and the IC 50 of HP1-2 (the concentration of HPPD inhibitor herbicide at which the enzymatic catalytic reaction is inhibited by 50%). One unit of enzyme activity is defined as the amount of enzyme required to generate 1 μmol of homogentisate within 1 min at pH 7.4 and temperature of 30 °C. The experimental results are shown in Figure 2-4 (herbicide tolerance proteins HP1, HP1-1 and HP1-2 in different concentration gradients of HPPD inhibitor herbicides (fenflumetrizone, mesotrione or diketonitrile) ) conditions), using Prism 6.0 software, the IC 50 values of fenflumetrizone, mesotrione and diketonitrile on HP1, HP1-1 and HP1-2 were calculated by nonlinear fitting, The results are shown in Table 1.
表1、HPPD抑制剂除草剂苯吡唑草酮、硝磺草酮和二酮腈对HP1、HP1-1和HP1-2的半抑制浓度Table 1. Half-inhibitory concentrations of HPPD inhibitor herbicides mesotrione, mesotrione and diketonitrile on HP1, HP1-1 and HP1-2
表1的结果表明:除草剂耐受性蛋白质HP1、HP1-1和HP1-2对HPPD抑制剂除草剂(苯吡唑草酮、硝磺草酮和二酮腈)均具有不同程度的耐受性;与所述除草剂耐受性蛋白质HP1相比,纯化后的所述除草剂耐受性蛋白质HP1-1和HP1-2对HPPD抑制剂除草剂的抗性更优。The results in Table 1 show that the herbicide tolerance proteins HP1, HP1-1 and HP1-2 have different degrees of tolerance to HPPD inhibitor herbicides (fenflumetrizone, mesotrione and diketonitrile) Compared with the herbicide tolerance protein HP1, the purified herbicide tolerance proteins HP1-1 and HP1-2 have better resistance to HPPD inhibitor herbicides.
第三实施例、转基因拟南芥植株的获得和验证The third example, the acquisition and verification of transgenic Arabidopsis plants
1、分别构建含有HP1、HP1-1或HP1-2基因的拟南芥重组表达载体1. Construct Arabidopsis recombinant expression vectors containing HP1, HP1-1 or HP1-2 genes respectively
将上述第一实施例1中所述HP1M核苷酸序列(SEQ ID NO:3)、上述第一实施例4中所述HP1-1M核苷酸序列(SEQ ID NO:8)和HP1-2M核苷酸序列(SEQ ID NO:11)的5’和3’端分别连接通用接头引物2:The HP1M nucleotide sequence (SEQ ID NO: 3) described in the above first embodiment 1, the HP1-1M nucleotide sequence (SEQ ID NO: 8) described in the above first embodiment 4, and HP1-2M The 5' and 3' ends of the nucleotide sequence (SEQ ID NO: 11) were respectively connected with universal linker primer 2:
5’端通用接头引物2:5’-agtttttctgattaacagactagt-3’,如序列表中SEQ ID NO:14所示;5'-end universal adapter primer 2: 5'-agttttttctgattaacagactagt-3', as shown in SEQ ID NO: 14 in the sequence listing;
3’端通用接头引物2:5’-caaatgtttgaacgatcggcgcgcc-3’,如序列表中SEQ IDNO:15所示。3'-end universal linker primer 2: 5'-caaatgtttgaacgatcggcgcgcc-3', as shown in SEQ ID NO: 15 in the sequence listing.
利用限制性内切酶Spe I和Asc I对植物表达载体DBNBC-02进行双酶切反应,从而对植物表达载体线性化,酶切产物纯化得到线性化的DBNBC-02表达载体骨架(载体骨架:pCAMBIA2301(CAMBIA机构可以提供)),将连接所述通用接头引物2的所述HP1M核苷酸序列与所述线性化的DBNBC-02表达载体骨架进行重组反应,操作步骤按照Takara公司In-Fusion无缝连接产品试剂盒(Clontech,CA,USA,CAT:121416)说明书进行,构建成重组表达载体DBN11770,其结构示意图如图5所示(Spec:壮观霉素基因;RB:右边界;eFMV:玄参花叶病毒的34S增强子(SEQ ID NO:16);prBrCBP:油菜真核延长因子基因1α(Tsf1)的启动子(SEQ ID NO:17);spAtCTP2:拟南芥叶绿体转运肽(SEQ ID NO:18);EPSPS:5-烯醇丙酮酸莽草酸-3-磷酸合酶基因(SEQ ID NO:19);tPsE9:豌豆RbcS基因的终止子(SEQ ID NO:20);prAtUbi10:拟南芥泛素(Ubiquitin)10基因的启动子(SEQ ID NO:21);spAtCTP2:拟南芥叶绿体转运肽(SEQ ID NO:18);HP1M:HP1M核苷酸序列(SEQ ID NO:3);tNos:胭脂碱合成酶基因的终止子(SEQ ID NO:22);pr35S:花椰菜花叶病毒35S启动子(SEQ ID NO:23);PAT:膦丝菌素N-乙酰基转移酶基因(SEQ ID NO:24);t35S:花椰菜花叶病毒35S终止子(SEQ ID NO:25);LB:左边界)。The plant expression vector DBNBC-02 was subjected to double digestion reaction with restriction endonucleases Spe I and Asc I to linearize the plant expression vector, and the digestion product was purified to obtain the linearized DBNBC-02 expression vector backbone (vector backbone: pCAMBIA2301 (can be provided by CAMBIA agency)), the HP1M nucleotide sequence connected with the universal linker primer 2 is subjected to a recombination reaction with the linearized DBNBC-02 expression vector backbone, and the operation steps are according to Takara In-Fusion No. The suture ligation product kit (Clontech, CA, USA, CAT: 121416) was carried out according to the instructions, and the recombinant expression vector DBN11770 was constructed, the schematic diagram of which is shown in Figure 5 (Spec: spectinomycin gene; RB: right border; eFMV: mysterious 34S enhancer of ginseng mosaic virus (SEQ ID NO: 16); prBrCBP: promoter of rape eukaryotic elongation factor gene 1α (Tsf1) (SEQ ID NO: 17); spAtCTP2: Arabidopsis chloroplast transit peptide (SEQ ID NO: 18); EPSPS: 5-enolpyruvate shikimate-3-phosphate synthase gene (SEQ ID NO: 19); tPsE9: terminator of the pea RbcS gene (SEQ ID NO: 20); prAtUbi10: Southern Promoter of Ubiquitin 10 gene (SEQ ID NO:21); spAtCTP2: Arabidopsis chloroplast transit peptide (SEQ ID NO:18); HP1M: HP1M nucleotide sequence (SEQ ID NO:3); tNos: terminator of nopaline synthase gene (SEQ ID NO: 22); pr35S: cauliflower mosaic virus 35S promoter (SEQ ID NO: 23); PAT: phosphinothricin N-acetyltransferase gene (SEQ ID NO: 23) ID NO: 24); t35S: Cauliflower mosaic virus 35S terminator (SEQ ID NO: 25); LB: left border).
将重组表达载体DBN11770用热激方法转化大肠杆菌T1感受态细胞,其热激条件为:50μL大肠杆菌T1感受态细胞、10μL质粒DNA(重组表达载体DBN11770),42℃水浴30s;37℃振荡培养1h(100rpm转速下摇床摇动);然后在含50mg/L壮观霉素(Spectinomycin)的所述LB固体平板(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、琼脂15g/L,用NaOH调pH至7.5)上于温度37℃条件下培养12h,挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、壮观霉素50mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒:将菌液在12000rpm转速下离心1min,去上清液,沉淀菌体用100μl冰预冷的溶液I(25mM Tris-HCl、10mM EDTA(乙二胺四乙酸)、50mM葡萄糖,pH8.0)悬浮;加入200μL新配制的溶液II(0.2M NaOH、1%SDS(十二烷基硫酸钠)),将管子颠倒4次,混合,置冰上3-5min;加入150μL冰冷的溶液III(3M醋酸钾、5M醋酸),立即充分混匀,冰上放置5-10min;于温度4℃、转速12000rpm条件下离心5min,在上清液中加入2倍体积无水乙醇,混匀后室温放置5min;于温度4℃、转速12000rpm条件下离心5min,弃上清液,沉淀用浓度(V/V)为70%的乙醇洗涤后晾干;加入30μL含RNase(20μg/mL)的TE(10mM Tris-HCl、1mM EDTA,pH8.0)溶解沉淀;于温度37℃下水浴30min,消化RNA;于温度-20℃保存备用。将提取的质粒进行测序鉴定,结果表明重组表达载体DBN11770在Spe I和Asc I位点间的核苷酸序列为序列表中SEQ ID NO:3所示的核苷酸序列,即所述HP1M核苷酸序列。The recombinant expression vector DBN11770 was transformed into E. coli T 1 competent cells by heat shock method, and the heat shock conditions were: 50 μL E. coli T 1 competent cells, 10 μL plasmid DNA (recombinant expression vector DBN11770), 42 ℃ water bath for 30 s; 37 ℃ Shaking culture for 1 h (shaking at 100 rpm); then on the LB solid plate (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L, agar containing 50 mg/L Spectinomycin) 15g/L, adjust the pH to 7.5 with NaOH) and cultivate it for 12h at a temperature of 37°C, pick white colonies, and put them in LB liquid medium (tryptone 10g/L, yeast extract 5g/L, NaCl 10g/L, Spectinomycin 50mg/L, adjust pH to 7.5 with NaOH) and cultivate overnight at 37°C. Extract its plasmid by alkaline method: Centrifuge the bacterial liquid at 12000rpm for 1min, remove the supernatant, and precipitate the bacterial cells with 100μl ice-precooled solution I (25mM Tris-HCl, 10mM EDTA (ethylenediaminetetraacetic acid), 50mM glucose , pH8.0) suspension; add 200 μL of freshly prepared solution II (0.2M NaOH, 1% SDS (sodium dodecyl sulfate)), invert the tube 4 times, mix, put on ice for 3-5min; add 150 μL ice-cold solution III (3M potassium acetate, 5M acetic acid), immediately mixed thoroughly, placed on ice for 5-10 min; centrifuged for 5 min at a temperature of 4 °C and a rotating speed of 12000 rpm, added 2 times the volume of anhydrous ethanol to the supernatant, mixed After homogenization, place at room temperature for 5 min; centrifuge at 4°C and 12000 rpm for 5 min, discard the supernatant, wash the precipitate with 70% ethanol and dry it; add 30 μL containing RNase (20 μg/mL) TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to dissolve the precipitate; water bath at 37 °C for 30 min to digest RNA; store at -20 °C for later use. The extracted plasmid is sequenced and identified, and the result shows that the nucleotide sequence of the recombinant expression vector DBN11770 between the Spe I and Asc I sites is the nucleotide sequence shown in SEQ ID NO: 3 in the sequence listing, that is, the HP1M core. nucleotide sequence.
按照上述构建重组表达载体DBN11770的方法,将分别连接所述通用接头引物2的所述HP1-1M核苷酸序列、HP1-2M核苷酸序列分别与所述线性化的DBNBC-02表达载体骨架进行重组反应,依次得到重组表达载体DBN11777和DBN11778。测序验证重组表达载体DBN11777和DBN11778中的核苷酸序列分别含有序列表中SEQ ID NO:8所示核苷酸序列和SEQ ID NO:11所示核苷酸序列,即所述HP1-1M核苷酸序列和HP1-2M核苷酸序列正确插入。According to the above-mentioned method for constructing the recombinant expression vector DBN11770, the HP1-1M nucleotide sequence and HP1-2M nucleotide sequence respectively connected with the universal linker primer 2 were respectively connected with the linearized DBNBC-02 expression vector backbone. Carry out the recombination reaction to obtain the recombinant expression vectors DBN11777 and DBN11778 in turn. Sequencing to verify that the nucleotide sequences in the recombinant expression vectors DBN11777 and DBN11778 respectively contain the nucleotide sequence shown in SEQ ID NO: 8 and the nucleotide sequence shown in SEQ ID NO: 11 in the sequence listing, that is, the HP1-1M core The nucleotide sequence and the HP1-2M nucleotide sequence were inserted correctly.
按照上述构建重组表达载体DBN11770的方法,构建对照重组表达载体DBN11770N,其载体结构如图6所示(Spec:壮观霉素基因;RB:右边界;eFMV:玄参花叶病毒的34S增强子(SEQ ID NO:16);prBrCBP:油菜真核延长因子基因1α(Tsf1)的启动子(SEQ ID NO:17);spAtCTP2:拟南芥叶绿体转运肽(SEQ ID NO:18);EPSPS:5-烯醇丙酮酸莽草酸-3-磷酸合酶基因(SEQ ID NO:19);tPsE9:豌豆RbcS基因的终止子(SEQ ID NO:20);pr35S:花椰菜花叶病毒35S启动子(SEQ ID NO:23);PAT:膦丝菌素N-乙酰基转移酶基因(SEQ ID NO:24);t35S:花椰菜花叶病毒35S终止子(SEQ ID NO:25);LB:左边界)。According to the above-mentioned method of constructing the recombinant expression vector DBN11770, the control recombinant expression vector DBN11770N was constructed, and its vector structure is shown in Figure 6 (Spec: spectinomycin gene; RB: right border; eFMV: 34S enhancer of Scrophulariaceae mosaic virus ( SEQ ID NO: 16); prBrCBP: promoter of rape eukaryotic elongation factor gene 1α (Tsf1) (SEQ ID NO: 17); spAtCTP2: Arabidopsis chloroplast transit peptide (SEQ ID NO: 18); EPSPS: 5- Enolpyruvate shikimate-3-phosphate synthase gene (SEQ ID NO: 19); tPsE9: terminator of pea RbcS gene (SEQ ID NO: 20); pr35S: cauliflower mosaic virus 35S promoter (SEQ ID NO: 20) : 23); PAT: phosphinothricin N-acetyltransferase gene (SEQ ID NO: 24); t35S: cauliflower mosaic virus 35S terminator (SEQ ID NO: 25); LB: left border).
2、拟南芥重组表达载体转化农杆菌2. Arabidopsis thaliana recombinant expression vector transformed into Agrobacterium
对己经构建正确的重组表达载体DBN11770、DBN11777、DBN11778和对照重组表达载体DBN11770N分别用液氮法转化到农杆菌GV3101中,其转化条件为:100μL农杆菌GV3101、3μL质粒DNA(重组表达载体);置于液氮中10min,37℃温水浴10min;将转化后的农杆菌GV3101接种于LB试管中于温度28℃、转速为200rpm条件下培养2h,涂于含50mg/L的利福平(Rifampicin)和50mg/L的壮观霉素的所述LB固体平板上直至长出阳性单克隆,挑取单克隆培养并提取其质粒,将提取的质粒进行测序鉴定,结果表明重组表达载体DBN11770、DBN11777、DBN11778和DBN11770N结构完全正确。The correctly constructed recombinant expression vectors DBN11770, DBN11777, DBN11778 and the control recombinant expression vector DBN11770N were transformed into Agrobacterium GV3101 by liquid nitrogen method respectively, and the transformation conditions were: 100 μL Agrobacterium GV3101, 3 μL plasmid DNA (recombinant expression vector) ; placed in liquid nitrogen for 10min, 37 ℃ warm water bath for 10min; inoculated the transformed Agrobacterium GV3101 in LB test tube at a temperature of 28 ℃ and a rotating speed of 200rpm for 2h, coated with rifampicin containing 50mg/L ( Rifampicin) and 50 mg/L spectinomycin on the LB solid plate until a positive single clone grows, pick the single clone and cultivate and extract its plasmid, and the extracted plasmid is sequenced and identified, the results show that the recombinant expression vectors DBN11770, DBN11777 , DBN11778 and DBN11770N structures are completely correct.
3、转基因拟南芥植株的获得3. Obtainment of transgenic Arabidopsis plants
将野生型拟南芥种子悬浮于0.1%(w/v)琼脂糖溶液中。将悬浮的种子在4℃下保存2天以完成对休眠的需要以保证种子同步萌发。用蛭石混合马粪土并用水地下灌溉至湿润,使土壤混合物排水24h。将预处理后的种子种在土壤混合物上并用保湿罩覆盖7天。使种子萌发并在恒温(22℃)恒湿(40-50%)光强度为120-150μmol/m2s-1的长日照条件(16h光照/8h黑暗)下在温室中培养植物。开始用霍格兰营养液灌溉植物,接着用去离子水灌溉,保持土壤潮湿但不湿透。Wild-type Arabidopsis seeds were suspended in 0.1% (w/v) agarose solution. Suspended seeds were stored at 4°C for 2 days to complete the need for dormancy to ensure synchronized seed germination. The horse manure was mixed with vermiculite and sub-irrigated with water until moist, and the soil mixture was allowed to drain for 24 h. The pretreated seeds were sown on the soil mix and covered with a moisturiser for 7 days. Seeds were germinated and plants were grown in a greenhouse under long-day conditions (16h light/8h dark) with a constant temperature (22°C) and constant humidity (40-50%) light intensity of 120-150 μmol/m 2 s −1 . Start by irrigating the plants with Hoagland nutrient solution, followed by deionized water, keeping the soil moist but not soggy.
使用花浸泡法转化拟南芥。用选取的农杆菌菌落接种一份或多份15-30mL含壮观霉素(50mg/L)和利福平(10mg/L)的LB培养液的预培养物。以220rpm转速将预培养物在温度28℃恒速摇动孵育过夜。每个预培养物用于接种两份500ml含壮观霉素(50mg/L)和利福平(10mg/L)的所述YEP培养液的培养物并将培养物在温度28℃持续摇动孵育过夜。室温以转速约4000rpm离心20min沉淀细胞,弃去得到的上清液。将细胞沉淀轻柔重悬于500mL渗透培养基中,所述渗透培养基含有1/2×MS盐/B5维生素、10%(w/v)蔗糖、0.044μM苄氨基嘌呤(10μL/L(1mg/mL DMSO中的原液))和300μL/LSilvet L-77。将约1月龄的拟南芥植物在含重悬细胞的渗透培养基中浸泡5min,确保浸没最新的花序。接着将拟南芥植物侧面放倒并覆盖,黑暗环境下保湿24h后,在温度22℃以16h光照/8h黑暗的光周期正常培养拟南芥植物。约4周后收获种子。Arabidopsis thaliana was transformed using the flower soak method. One or more 15-30 mL pre-cultures of LB broth containing spectinomycin (50 mg/L) and rifampicin (10 mg/L) were inoculated with selected Agrobacterium colonies. The preculture was incubated overnight at 28°C with constant shaking at 220 rpm. Each pre-culture was used to inoculate two 500 ml cultures of the YEP broth containing spectinomycin (50 mg/L) and rifampicin (10 mg/L) and the cultures were incubated overnight at 28°C with constant shaking . The cells were pelleted by centrifugation at about 4000 rpm for 20 min at room temperature, and the obtained supernatant was discarded. The cell pellet was gently resuspended in 500 mL of osmotic medium containing 1/2 x MS salts/B5 vitamins, 10% (w/v) sucrose, 0.044 μM benzylaminopurine (10 μL/L (1 mg/ stock solution in mL DMSO)) and 300 μL/L Silvet L-77. About 1 month old Arabidopsis plants were soaked in osmotic medium containing resuspended cells for 5 min, making sure to submerge the newest inflorescences. Next, the Arabidopsis plants were placed sideways and covered, and after moisturizing for 24 hours in a dark environment, the Arabidopsis plants were normally cultured at a temperature of 22°C with a photoperiod of 16h light/8h dark. Seeds are harvested after about 4 weeks.
将新收获的(HP1M核苷酸序列、HP1-1M核苷酸序列、HP1-2M核苷酸序列、和对照载体DBN11770N)T1种子在室温干燥7天。将种子种在26.5cm×51cm萌发盘中,每盘接受200mgT1种子(约10000个种子),所述种子事先已悬浮于蒸馏水中并在温度4℃下保存2天以完成对休眠的需要以保证种子同步萌发。Freshly harvested (HP1M nucleotide sequence, HP1-1M nucleotide sequence, HP1-2M nucleotide sequence, and control vector DBN11770N ) Ti seeds were dried at room temperature for 7 days. Seeds were sown in 26.5 cm x 51 cm germination trays, each tray receiving 200 mgT 1 seeds (approximately 10,000 seeds) that had been previously suspended in distilled water and kept at 4°C for 2 days to complete the need for dormancy to Ensure that the seeds germinate synchronously.
用蛭石混合马粪土并用水底部灌溉至湿润,利用重力排水。用移液管将预处理后的种子均匀地种在土壤混合物上,并用保湿罩覆盖4-5天。在使用出苗后喷洒草铵膦(选择共转化的PAT基因)进行最初转化体选择的前1天移去罩。在7个种植天数后(DAP)并于11DAP再次使用DeVilbiss压缩空气喷嘴以10mL/盘(703L/ha)的喷洒体积用Liberty除草剂(200gai/L的草铵膦)的0.2%溶液喷洒T1植物(分别为子叶期和2-4叶期),以提供每次应用280gai/ha有效量的草铵膦。在最后喷洒后4-7天鉴定存活株(生长活跃的植物),并分别移植到用马粪土和蛭石制备的7cm×7cm的方盆中(每盘3-5棵)。用保湿罩覆盖移植的植物3-4天,并如前置于温度22℃培养室中或直接移入温室。接着移去罩并在测试HP1M基因、HP1-1M基因和HP1-2M基因提供苯吡唑草酮除草剂耐受性的能力之前至少1天将植物栽种到温室(温度22±5℃,50±30%RH,14h光照:10h黑暗,最小500μE/m2s-1天然+补充光)。The horse manure was mixed with vermiculite and bottom irrigated with water until moist, draining by gravity. Pipette the pretreated seeds evenly over the soil mix and cover with a moisturiser for 4-5 days. Hoods were removed 1 day prior to initial transformant selection with post-emergence spray glufosinate-ammonium (to select for co-transformed PAT genes). T 1 was sprayed with a 0.2% solution of Liberty herbicide (200 gai/L of glufosinate) at a spray volume of 10 mL/pan (703 L/ha) after 7 days of planting (DAP) and again at 11 DAP using DeVilbiss compressed air nozzles Plants (cotyledon stage and 2-4 leaf stage, respectively) to provide an effective amount of glufosinate ammonium per application of 280 gai/ha. Survivors (active plants) were identified 4-7 days after the last spray and transplanted into 7 cm x 7 cm square pots (3-5 per tray) prepared with horse manure and vermiculite, respectively. Transplanted plants were covered with a moisturizing hood for 3-4 days and placed in a 22°C culture room as before or moved directly into a greenhouse. The hood was then removed and the plants were planted in a greenhouse (temperature 22±5°C, 50±5°C) at least 1 day prior to testing the HP1M, HP1-1M and HP1-2M genes for their ability to confer tolerance to the herbicide fenflufenac 30% RH, 14h light: 10h dark, min 500μE/m 2 s -1 natural + supplemental light).
4、转基因拟南芥植株的除草剂耐受性效果检测4. Detection of herbicide tolerance of transgenic Arabidopsis plants
首先使用草铵膦选择方案从未转化种子背景中选择T1转化体。转化重组表达载体DBN11770的为转入HP1M核苷酸序列的拟南芥植株(HP1),转化重组表达载体DBN11777的为转入HP1-1M核苷酸序列的拟南芥植株(HP1-1),转化重组表达载体DBN11778的为转入HP1-2M核苷酸序列的拟南芥植株(HP1-2),转化重组表达载体DBN11770N的为转入对照重组表达载体的拟南芥植株(对照载体)。筛选了约20000个HP1的T1种子,并鉴定了213株T1代阳性转化子(PAT基因),约1.0%的转化效率;筛选了约20000个HP1-1的T1种子,并鉴定了195株T1代阳性转化子(PAT基因),约1.0%的转化效率;筛选了约20000个HP1-2的T1种子,并鉴定了195株T1代阳性转化子(PAT基因),约1.0%的转化效率;筛选了约20000个对照载体的T1种子,并鉴定了172株T1代阳性转化子(PAT基因),约0.86%的转化效率。T1 transformants were first selected from an untransformed seed background using the glufosinate selection protocol. The recombinant expression vector DBN11770 was transformed into an Arabidopsis plant (HP1) with the nucleotide sequence of HP1M, and the recombinant expression vector DBN11777 was transformed into an Arabidopsis plant (HP1-1) with the nucleotide sequence of HP1-1M, The Arabidopsis plant (HP1-2) transformed with the HP1-2M nucleotide sequence was transformed into the recombinant expression vector DBN11778, and the Arabidopsis plant transformed into the control recombinant expression vector (control vector) was transformed into the recombinant expression vector DBN11770N. About 20,000 HP1 T1 seeds were screened, and 213 T1 generation positive transformants (PAT genes) were identified, with a transformation efficiency of about 1.0%; about 20000 HP1-1 T1 seeds were screened and identified 195 T 1 generation positive transformants (PAT gene), about 1.0% transformation efficiency; screened about 20,000 HP1-2 T 1 seeds, and identified 195 T 1 generation positive transformants (PAT gene), about 1.0% transformation efficiency; about 20,000 T 1 seeds of the control vector were screened, and 172 T 1 generation positive transformants (PAT genes) were identified, with a transformation efficiency of about 0.86%.
分别将HP1拟南芥T1植株、HP1-1拟南芥T1植株、HP1-2拟南芥T1植株、对照载体的拟南芥T1植株和野生型拟南芥植株(CK)(播种后18天)分别用3种浓度的苯吡唑草酮进行喷洒以检测拟南芥的除草剂耐受性,即25gai/ha(1倍大田浓度,1×)、100g ai/ha(4倍大田浓度,4×)和0g ai/ha(水,0×)。在喷施7天(7DAT)后,根据叶片白化面积比例(叶片白化面积比例=叶片白化面积/叶片总面积×100%)来统计每株植株受除草剂的损伤程度:以基本无白化表型为0级,叶片白化面积比例小于50%为1级,叶片白化面积比例大于50%为2级,叶片白化面积比例100%为3级。按照公式X=[Σ(N×S)/(T×M)]×100对每个重组表达载体的转化事件抗性表现进行评分。(X-药害评分、N-同级受害株数、S-药害等级数、T-总株数、M-最高药害等级),根据分值进行抗性评价:高抗植株(0-15分)、中抗植株(16-33分)、低抗植株(34-67分)、不抗植株(68-100分)。实验结果如表2所示。The HP1 Arabidopsis T1 plants, HP1-1 Arabidopsis T1 plants, HP1-2 Arabidopsis T1 plants, Arabidopsis T1 plants of the control vector and wild - type Arabidopsis plants (CK) ( The herbicide tolerance of Arabidopsis thaliana was tested by spraying 18 days after sowing with 3 concentrations of fenflufen, namely 25 gai/ha (1x field concentration, 1×), 100 g ai/ha (4 Double field concentration, 4×) and 0 g ai/ha (water, 0×). After 7 days of spraying (7DAT), the damage degree of each plant by herbicides was calculated according to the proportion of leaf whitening area (the proportion of leaf whitening area = leaf whitening area/total leaf area × 100%): basically no whitening phenotype It is grade 0, the proportion of leaf whitening area is less than 50%, it is grade 1, the proportion of leaf whitening area is more than 50%, it is grade 2, and the proportion of leaf whitening area is 100%, it is grade 3. The transformation event resistance performance of each recombinant expression vector was scored according to the formula X=[Σ(N×S)/(T×M)]×100. (X- phytotoxicity score, N-the number of injured plants at the same level, S-the number of phytotoxicity grades, T-the total number of plants, M-the highest phytotoxicity grade), resistance evaluation according to the score: highly resistant plants (0-15 points) ), medium-resistant plants (16-33 points), low-resistant plants (34-67 points), and non-resistant plants (68-100 points). The experimental results are shown in Table 2.
表2、转基因拟南芥T1植株对苯吡唑草酮的耐受性实验结果Table 2. Experimental results of the tolerance of transgenic Arabidopsis T 1 plants to fenflufen
表2的结果表明:相比于转入对照载体DBN11770N的拟南芥T1植株和野生型拟南芥植株,转入HP1M核苷酸序列的拟南芥T1植株、转入HP1-1M核苷酸序列的拟南芥T1植株和转入HP1-2M核苷酸序列的拟南芥T1植株均能够对苯吡唑草酮产生不同程度的耐受性;相比转入HP1M核苷酸序列的拟南芥T1植株,转入HP1-1M核苷酸序列的拟南芥T1植株和转入HP1-2M核苷酸序列的拟南芥T1植株对苯唑草酮抗性更优。The results in Table 2 show that: compared with the Arabidopsis T1 plants and wild - type Arabidopsis plants transformed into the control vector DBN11770N, the Arabidopsis T1 plants transformed with the HP1M nucleotide sequence, transformed into the HP1-1M nucleus Both the Arabidopsis T 1 plant with the nucleotide sequence and the Arabidopsis T 1 plant transformed with the HP1-2M nucleotide sequence were able to produce different degrees of tolerance to toflufenazone; Resistance of Arabidopsis T1 plants with acid sequence, Arabidopsis T1 plants transformed with HP1-1M nucleotide sequence, and Arabidopsis T1 plants transformed with HP1-2M nucleotide sequence to oxaflutole better.
综上所述,本发明所述除草剂耐受性蛋白质HP1的氨基酸序列第159位由苏氨酸突变为丙氨酸或第258位由谷氨酰胺突变为甲硫氨酸(所述除草剂耐受性蛋白质HP1-1或HP1-2)时可以对HPPD抑制剂除草剂表现出较高的耐受性,且上述除草剂耐受性蛋白质可以耐受1倍大田浓度的苯吡唑草酮(中抗),因此在植物上应用前景广阔。To sum up, the amino acid sequence of the herbicide tolerance protein HP1 of the present invention is mutated from threonine to alanine at position 159 or from glutamine to methionine at position 258 (the herbicide Tolerance proteins HP1-1 or HP1-2) can show higher tolerance to HPPD inhibitor herbicides, and the above herbicide tolerance proteins can tolerate 1 times the field concentration of fenflufenac (medium resistance), so it has broad application prospects in plants.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be The solutions can be modified or equivalently replaced without departing from the spirit and scope of the technical solutions of the present invention.
序列表sequence listing
<110> 北京大北农生物技术有限公司<110> Beijing Dabeinong Biotechnology Co., Ltd.
南京农业大学Nanjing Agricultural College
<120> 除草剂耐受性蛋白质、其编码基因及用途<120> Herbicide tolerance protein, its encoding gene and use
<130> DBNBC152<130> DBNBC152
<160> 25<160> 25
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 350<211> 350
<212> PRT<212> PRT
<213> HP1的氨基酸序列(Sphingobacterium)<213> Amino acid sequence of HP1 (Sphingobacterium)
<400> 1<400> 1
Met Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala PheMet Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala Phe
1 5 10 151 5 10 15
Ala Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe GluAla Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe Glu
20 25 30 20 25 30
Gln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu ThrGln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu Thr
35 40 45 35 40 45
Leu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu GlyLeu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu Gly
50 55 60 50 55 60
Glu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn GlyGlu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn Gly
65 70 75 8065 70 75 80
Met Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala IleMet Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala Ile
85 90 95 85 90 95
Gln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro GlyGln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro Gly
100 105 110 100 105 110
Thr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val AspThr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val Asp
115 120 125 115 120 125
Ser Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu AlaSer Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu Ala
130 135 140 130 135 140
Ser Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Thr HisSer Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Thr His
145 150 155 160145 150 155 160
Asn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala ThrAsn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala Thr
165 170 175 165 170 175
Leu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln AlaLeu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln Ala
180 185 190 180 185 190
Thr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile ArgThr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile Arg
195 200 205 195 200 205
Ile Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu PheIle Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu Phe
210 215 220 210 215 220
Ile Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr ThrIle Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr Thr
225 230 235 240225 230 235 240
Pro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val ArgPro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val Arg
245 250 255 245 250 255
Leu Gln Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg ValLeu Gln Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg Val
260 265 270 260 265 270
Pro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile LeuPro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile Leu
275 280 285 275 280 285
Ile Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe ThrIle Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe Thr
290 295 300 290 295 300
Glu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys GlyGlu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys Gly
305 310 315 320305 310 315 320
Asn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser IleAsn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser Ile
325 330 335 325 330 335
Glu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp AlaGlu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp Ala
340 345 350 340 345 350
<210> 2<210> 2
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1的核苷酸序列(Sphingobacterium)<213> Nucleotide sequence of HP1 (Sphingobacterium)
<400> 2<400> 2
atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60
tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120
cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180
gccggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240gccgggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240
atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300
acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360
gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420
tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctgacccat 480tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctgacccat 480
aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540
gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600
atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660
atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720
ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gcaggatacg 780ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gcaggatacg 780
atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840
cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900
cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960
aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020
atccggcgcg gcgttgtgac ggtcgatgcc tga 1053atccggcgcg gcgttgtgac ggtcgatgcc tga 1053
<210> 3<210> 3
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1M的核苷酸序列(Artificial Sequence)<213> Nucleotide sequence of HP1M (Artificial Sequence)
<400> 3<400> 3
atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60
tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120
agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180
gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240
atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300
actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360
gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420
tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttacccac 480tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttacccac 480
aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540
gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600
attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660
atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720
ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tcaagataca 780ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tcaagataca 780
atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840
agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900
caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960
aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020
attagaaggg gagttgtgac cgtggatgct tga 1053attagaaggg gagttgtgac cgtggatgct tga 1053
<210> 4<210> 4
<211> 32<211> 32
<212> DNA<212> DNA
<213> 正向引物(Artificial Sequence)<213> Forward primer (Artificial Sequence)
<400> 4<400> 4
cccaagcttg atggccgccg attccgaaaa tc 32cccaagcttg atggccgccg attccgaaaa tc 32
<210> 5<210> 5
<211> 31<211> 31
<212> DNA<212> DNA
<213> 反向引物(Artificial Sequence)<213> Reverse primer (Artificial Sequence)
<400> 5<400> 5
cgcggatcct caggcatcga ccgtcacaac g 31cgcggatcct caggcatcga ccgtcacaac g 31
<210> 6<210> 6
<211> 350<211> 350
<212> PRT<212> PRT
<213> HP1-1的氨基酸序列(Artificial Sequence)<213> Amino acid sequence of HP1-1 (Artificial Sequence)
<400> 6<400> 6
Met Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala PheMet Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala Phe
1 5 10 151 5 10 15
Ala Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe GluAla Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe Glu
20 25 30 20 25 30
Gln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu ThrGln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu Thr
35 40 45 35 40 45
Leu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu GlyLeu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu Gly
50 55 60 50 55 60
Glu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn GlyGlu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn Gly
65 70 75 8065 70 75 80
Met Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala IleMet Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala Ile
85 90 95 85 90 95
Gln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro GlyGln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro Gly
100 105 110 100 105 110
Thr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val AspThr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val Asp
115 120 125 115 120 125
Ser Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu AlaSer Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu Ala
130 135 140 130 135 140
Ser Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Ala HisSer Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Ala His
145 150 155 160145 150 155 160
Asn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala ThrAsn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala Thr
165 170 175 165 170 175
Leu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln AlaLeu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln Ala
180 185 190 180 185 190
Thr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile ArgThr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile Arg
195 200 205 195 200 205
Ile Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu PheIle Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu Phe
210 215 220 210 215 220
Ile Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr ThrIle Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr Thr
225 230 235 240225 230 235 240
Pro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val ArgPro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val Arg
245 250 255 245 250 255
Leu Gln Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg ValLeu Gln Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg Val
260 265 270 260 265 270
Pro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile LeuPro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile Leu
275 280 285 275 280 285
Ile Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe ThrIle Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe Thr
290 295 300 290 295 300
Glu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys GlyGlu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys Gly
305 310 315 320305 310 315 320
Asn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser IleAsn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser Ile
325 330 335 325 330 335
Glu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp AlaGlu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp Ala
340 345 350 340 345 350
<210> 7<210> 7
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1-1核苷酸序列(Artificial Sequence)<213> HP1-1 Nucleotide Sequence (Artificial Sequence)
<400> 7<400> 7
atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60
tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120
cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180
gccggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240gccgggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240
atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300
acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360
gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420
tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctggcccat 480tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctggcccat 480
aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540
gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600
atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660
atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720
ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gcaggatacg 780ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gcaggatacg 780
atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840
cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900
cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960
aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020
atccggcgcg gcgttgtgac ggtcgatgcc tga 1053atccggcgcg gcgttgtgac ggtcgatgcc tga 1053
<210> 8<210> 8
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1-1M核苷酸序列(Artificial Sequence)<213> HP1-1M Nucleotide Sequence (Artificial Sequence)
<400> 8<400> 8
atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60
tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120
agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180
gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240
atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300
actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360
gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420
tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttgcccac 480tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttgcccac 480
aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540
gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600
attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660
atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720
ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tcaagataca 780ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tcaagataca 780
atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840
agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900
caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960
aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020
attagaaggg gagttgtgac cgtggatgct tga 1053attagaaggg gagttgtgac cgtggatgct tga 1053
<210> 9<210> 9
<211> 350<211> 350
<212> PRT<212> PRT
<213> HP1-2的氨基酸序列(Artificial Sequence)<213> Amino acid sequence of HP1-2 (Artificial Sequence)
<400> 9<400> 9
Met Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala PheMet Ala Ala Asp Ser Glu Asn Pro Leu Gly Leu His Gly Phe Ala Phe
1 5 10 151 5 10 15
Ala Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe GluAla Glu Phe Thr Ser Pro Asp Pro Ala Ala Met Ala Arg Gln Phe Glu
20 25 30 20 25 30
Gln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu ThrGln Leu Gly Phe Val Pro Ala Ala Arg Arg Lys Asp Arg Gly Leu Thr
35 40 45 35 40 45
Leu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu GlyLeu Tyr Arg Gln Gly Arg Ile Ala Phe Ile Leu Asn Ala Gly Glu Gly
50 55 60 50 55 60
Glu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn GlyGlu Gln Ala Ser Ala Phe Arg Ala Ala His Gly Pro Ser Ala Asn Gly
65 70 75 8065 70 75 80
Met Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala IleMet Ala Phe Asn Val Ala Asp Ala Lys Ala Ala His Arg His Ala Ile
85 90 95 85 90 95
Gln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro GlyGln Ser Gly Ala Thr Asp Ala Asp Thr Ala Gln Ser Ala Leu Pro Gly
100 105 110 100 105 110
Thr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val AspThr Tyr Ala Ile Glu Gly Ile Gly Asp Ser Leu Leu Tyr Leu Val Asp
115 120 125 115 120 125
Ser Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu AlaSer Asp Pro Phe Ala Asp Trp Asp Glu Val Pro Gly Trp Arg Glu Ala
130 135 140 130 135 140
Ser Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Thr HisSer Ala Glu Arg Gly Val Gly Leu Asp Leu Leu Asp His Leu Thr His
145 150 155 160145 150 155 160
Asn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala ThrAsn Val Arg Arg Gly Gln Met Arg Val Trp Ser Glu Phe Tyr Ala Thr
165 170 175 165 170 175
Leu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln AlaLeu Phe Gly Phe Glu Glu Gln Lys Phe Phe Asp Ile Lys Gly Gln Ala
180 185 190 180 185 190
Thr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile ArgThr Gly Leu Phe Ser Gln Ala Met Ile Ala Pro Asp His Glu Ile Arg
195 200 205 195 200 205
Ile Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu PheIle Pro Leu Asn Glu Ser Gln Asp Asp Asn Ser Gln Ile Glu Glu Phe
210 215 220 210 215 220
Ile Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr ThrIle Arg Glu Tyr Asn Gly Glu Gly Ile Gln His Leu Ala Leu Thr Thr
225 230 235 240225 230 235 240
Pro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val ArgPro Asp Ile Tyr Ser Thr Val Glu Lys Leu Arg Ala Asn Gly Val Arg
245 250 255 245 250 255
Leu Met Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg ValLeu Met Asp Thr Ile Asp Thr Tyr Tyr Asp Leu Val Asp Glu Arg Val
260 265 270 260 265 270
Pro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile LeuPro Gly His Gly Glu Asp Leu Ala Arg Leu Arg Lys Asn Arg Ile Leu
275 280 285 275 280 285
Ile Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe ThrIle Asp Gly Asp Val His Asp Glu Gly Leu Leu Leu Gln Ile Phe Thr
290 295 300 290 295 300
Glu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys GlyGlu Thr Met Phe Gly Pro Ile Phe Phe Glu Ile Ile Gln Arg Lys Gly
305 310 315 320305 310 315 320
Asn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser IleAsn Glu Gly Phe Gly Asn Gly Asn Phe Gln Val Leu Tyr Glu Ser Ile
325 330 335 325 330 335
Glu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp AlaGlu Leu Asp Gln Ile Arg Arg Gly Val Val Thr Val Asp Ala
340 345 350 340 345 350
<210> 10<210> 10
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1-2核苷酸序列(Artificial Sequence)<213> HP1-2 Nucleotide Sequence (Artificial Sequence)
<400> 10<400> 10
atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60atggccgccg attccgaaaa tccgttgggc ctgcatggct ttgcgtttgc tgaatttacc 60
tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120tcacccgatc cggccgcgat ggcgcggcag ttcgagcagc ttggatttgt tccggcggcg 120
cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180cgccggaagg acagggggct gacgctttac cggcaggggc gcatcgcgtt cattctgaat 180
gccggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240gccgggggagg gcgaacaggc cagcgcgttt cgcgccgccc atggcccatc cgccaacggc 240
atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300atggcgttta acgtcgccga cgcgaaagca gcgcaccggc acgccattca aagtggggcg 300
acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360acagacgctg ataccgcgca gagcgctctg ccggggactt atgccattga gggcataggc 360
gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420gactcgctgc tctatctggt ggacagcgac ccctttgcgg actgggatga ggtgcccggt 420
tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctgacccat 480tggcgagagg cgtcggcgga gcggggcgtc ggcctcgacc tgctcgacca cctgacccat 480
aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540aatgtccgcc gggggcagat gcgcgtatgg tccgaattct acgcgacgct gttcggtttc 540
gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600gaggaacaga agttcttcga catcaaaggg caggcgaccg gtctgttcag ccaggcgatg 600
atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660atcgccccgg atcatgaaat ccgcatccct ctgaatgaaa gccaggatga taacagccag 660
atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720atcgaggagt ttatccgcga atataatggc gagggtatcc agcatctcgc cctgacgacg 720
ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gatggatacg 780ccggatatct attccacggt ggagaagcta cgcgccaatg gcgtgcggct gatggatacg 780
atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840atcgacacct attatgatct ggtcgacgag cgggtgccgg ggcatggcga ggatctggcg 840
cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900cgattgcgca aaaaccgcat cctgatcgat ggcgatgtcc atgatgaggg gctgctgctg 900
cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960cagatattca ccgagactat gttcggcccg atcttcttcg agatcatcca gcgcaagggc 960
aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020aatgagggtt tcgggaacgg caatttccag gtactctacg aatccataga attggaccag 1020
atccggcgcg gcgttgtgac ggtcgatgcc tga 1053atccggcgcg gcgttgtgac ggtcgatgcc tga 1053
<210> 11<210> 11
<211> 1053<211> 1053
<212> DNA<212> DNA
<213> HP1-2M核苷酸序列(Artificial Sequence)<213> HP1-2M Nucleotide Sequence (Artificial Sequence)
<400> 11<400> 11
atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60atggctgcag attctgagaa cccattgggt cttcatggat ttgctttcgc agagtttact 60
tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120tctccagatc cagctgcaat ggctagacaa tttgagcagt tgggtttcgt tcctgctgca 120
agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180agaaggaagg ataggggttt gactctttat agacaaggaa ggattgcttt tattcttaat 180
gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240gcaggagagg gtgaacaggc ttctgcattc agagctgcac acggtccatc agctaacgga 240
atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300atggctttta acgtggctga tgcaaaggct gcacataggc acgctattca atctggtgct 300
actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360actgatgcag atacagctca gtcagcattg cctggaacat atgctattga gggaattgga 360
gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420gattctcttt tgtaccttgt tgattcagat ccattcgcag attgggatga agtgcctgga 420
tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttacccac 480tggagagagg cttctgcaga aaggggagtt ggtttggatc ttttggatca tcttacccac 480
aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540aacgttagaa ggggtcaaat gagagtgtgg tcagagttct acgctacttt gtttggattc 540
gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600gaggaacaga agtttttcga tattaagggt caagcaacag gattgttttc tcaggctatg 600
attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660attgcaccag atcatgagat taggattcca cttaacgaat ctcaagatga taactcacag 660
atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720atcgaggagt ttattaggga gtataacgga gaaggtattc aacacttggc tcttactaca 720
ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tatggataca 780ccagatatct attcaacagt tgaaaagttg agagcaaatg gtgtgaggct tatggataca 780
atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840atcgatacct attacgattt ggttgatgag agagtgcctg gacatggtga agatttggct 840
agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900agacttagga agaacaggat tcttattgat ggagatgttc acgatgaggg acttttgctt 900
caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960caaattttta ccgaaactat gttcggtcca attttctttg agattattca gaggaaggga 960
aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020aacgagggat ttggtaacgg aaacttccaa gttttgtacg agtctatcga acttgatcag 1020
attagaaggg gagttgtgac cgtggatgct tga 1053attagaaggg gagttgtgac cgtggatgct tga 1053
<210> 12<210> 12
<211> 21<211> 21
<212> DNA<212> DNA
<213> 5’端通用接头引物1(Artificial Sequence)<213> 5'-end universal adapter primer 1 (Artificial Sequence)
<400> 12<400> 12
taagaaggag atatacatat g 21taagaaggag atatacatat g 21
<210> 13<210> 13
<211> 21<211> 21
<212> DNA<212> DNA
<213> 3’端通用接头引物1(Artificial Sequence)<213> 3' Universal Adapter Primer 1 (Artificial Sequence)
<400> 13<400> 13
gtggtggtgg tggtgctcga g 21gtggtggtgg tggtgctcga g 21
<210> 14<210> 14
<211> 24<211> 24
<212> DNA<212> DNA
<213> 5’端通用接头引物2(Artificial Sequence)<213> 5'-end universal adapter primer 2 (Artificial Sequence)
<400> 14<400> 14
agtttttctg attaacagac tagt 24agtttttctg attaacagac tagt 24
<210> 15<210> 15
<211> 25<211> 25
<212> DNA<212> DNA
<213> 3’端通用接头引物2(Artificial Sequence)<213> 3' Universal Adapter Primer 2 (Artificial Sequence)
<400> 15<400> 15
caaatgtttg aacgatcggc gcgcc 25caaatgtttg aacgatcggc gcgcc 25
<210> 16<210> 16
<211> 542<211> 542
<212> DNA<212> DNA
<213> 玄参花叶病毒的34S增强子(Figwort mosaic virus)<213> 34S enhancer of Scrophulariaceae mosaic virus (Figwort mosaic virus)
<400> 16<400> 16
aattctcagt ccaaagcctc aacaaggtca gggtacagag tctccaaacc attagccaaa 60aattctcagt ccaaagcctc aacaaggtca gggtacagag tctccaaacc attagccaaa 60
agctacagga gatcaatgaa gaatcttcaa tcaaagtaaa ctactgttcc agcacatgca 120agctacagga gatcaatgaa gaatcttcaa tcaaagtaaa ctactgttcc agcacatgca 120
tcatggtcag taagtttcag aaaaagacat ccaccgaaga cttaaagtta gtgggcatct 180tcatggtcag taagtttcag aaaaagacat ccaccgaaga cttaaagtta gtgggcatct 180
ttgaaagtaa tcttgtcaac atcgagcagc tggcttgtgg ggaccagaca aaaaaggaat 240ttgaaagtaa tcttgtcaac atcgagcagc tggcttgtgg ggaccagaca aaaaaggaat 240
ggtgcagaat tgttaggcgc acctaccaaa agcatctttg cctttattgc aaagataaag 300ggtgcagaat tgttaggcgc acctaccaaa agcatctttg cctttattgc aaagataaag 300
cagattcctc tagtacaagt ggggaacaaa ataacgtgga aaagagctgt cctgacagcc 360cagattcctc tagtacaagt ggggaacaaa ataacgtgga aaagagctgt cctgacagcc 360
cactcactaa tgcgtatgac gaacgcagtg acgaccacaa aagaattagc ttgagctcag 420cactcactaa tgcgtatgac gaacgcagtg acgaccacaa aagaattagc ttgagctcag 420
gatttagcag cattccagat tgggttcaat caacaaggta cgagccatat cactttattc 480gatttagcag cattccagat tgggttcaat caacaaggta cgagccatat cactttattc 480
aaattggtat cgccaaaacc aagaaggaac tcccatcctc aaaggtttgt aaggaagaat 540aaattggtat cgccaaaacc aagaaggaac tcccatcctc aaaggtttgt aaggaagaat 540
tc 542tc 542
<210> 17<210> 17
<211> 1534<211> 1534
<212> DNA<212> DNA
<213> 油菜真核延长因子基因1α(Tsf1的启动子Brassica napus)<213> Rape eukaryotic elongation factor gene 1α (Tsf1 promoter Brassica napus)
<400> 17<400> 17
gattatgaca ttgctcgtgg aatgggacag ttatggtatt tttttgtaat aaattgtttc 60gattatgaca ttgctcgtgg aatgggacag ttatggtatt tttttgtaat aaattgtttc 60
cattgtcatg agattttgag gttaatctat gagacattga atcacttagc attagggatt 120cattgtcatg agattttgag gttaatctat gagacattga atcacttagc attagggatt 120
aagtagtcac aaatcgcatt caagaagctg aagaacacgt tatggtctaa tggttgtgtc 180aagtagtcac aaatcgcatt caagaagctg aagaacacgt tatggtctaa tggttgtgtc 180
tctttattag aaaatgttgg tcagtagcta tatgcactgt ttctgtaaaa ccatgttggt 240tctttattag aaaatgttgg tcagtagcta tatgcactgt ttctgtaaaa ccatgttggt 240
gttgtgttta tttcaagaca catgttgagt ccgttgattc agagcttttg tcttcgaaca 300gttgtgttta tttcaagaca catgttgagt ccgttgattc agagcttttg tcttcgaaca 300
caatctagag agcaaatttg ggttcaattt ggatatcaat atgggttcga ttcagataga 360caatctagag agcaaatttg ggttcaattt ggatatcaat atgggttcga ttcagataga 360
acaataccct ttgatgtcgg gtttcgattt ggttgagatt catttttatc gggtttggtt 420acaataccct ttgatgtcgg gtttcgattt ggttgagatt catttttatc gggtttggtt 420
cgattttcga attcggttta ttcgccccct catagcatct acattctgca gattaatgta 480cgattttcga attcggttta ttcgccccct catagcatct acattctgca gattaatgta 480
caagttatgg aaaaaaaaat gtggttttcg aattcggttt agtagctaaa cgttgcttgc 540caagttatgg aaaaaaaaat gtggttttcg aattcggttt agtagctaaa cgttgcttgc 540
agtgtagtta tgggaattat gaaacacgac cgaaggtatc aattagaaga acgggtcaac 600agtgtagtta tgggaattat gaaacacgac cgaaggtatc aattagaaga acgggtcaac 600
gggtaagtat tgagaaatta ccggagggta aaaataaaca gtattctttt tttttcttaa 660gggtaagtat tgagaaatta ccggagggta aaaataaaca gtattctttt tttttcttaa 660
cgaccgacca aggttaaaaa aagaaaggag gacgagatac aggggcatga ctgtaattgt 720cgaccgacca aggttaaaaa aagaaaggag gacgagatac aggggcatga ctgtaattgt 720
acataagatc tgatctttaa accctaggtt tccttcgcat cagcaactat aaataattct 780acataagatc tgatctttaa accctaggtt tccttcgcat cagcaactat aaataattct 780
gagtgccact cttcttcatt cctagatctt tcgccttatc gctttagctg aggtaagcct 840gagtgccact cttcttcatt cctagatctt tcgccttatc gctttagctg aggtaagcct 840
ttctatacgc atagacgctc tcttttctct tctctcgatc ttcgttgaaa cggtcctcga 900ttctatacgc atagacgctc tcttttctct tctctcgatc ttcgttgaaa cggtcctcga 900
tacgcatagg atcggttaga atcgttaatc tatcgtctta gatcttcttg attgttgaat 960tacgcatagg atcggttaga atcgttaatc tatcgtctta gatcttcttg attgttgaat 960
tgagcttcta ggatgtattg tatcatgtga tggatagttg attggatctc tttgagtgaa 1020tgagcttcta ggatgtattg tatcatgtga tggatagttg attggatctc tttgagtgaa 1020
ctagctagct ttcgatgcgt gtgatttcag tataacagga tccgatgaat tatagctcgc 1080ctagctagct ttcgatgcgt gtgatttcag tataacagga tccgatgaat tatagctcgc 1080
ttacaattaa tctctgcaga tttattgttt aatcttggat ttgatgctcg ttgttgatag 1140ttacaattaa tctctgcaga ttttattgttt aatcttggat ttgatgctcg ttgttgatag 1140
aggatcgttt atagaactta ttgattctgg aattgagctt gtgtgatgta ttgtatcatg 1200aggatcgttt atagaactta ttgattctgg aattgagctt gtgtgatgta ttgtatcatg 1200
tgatcgatag ctgatggatc tatttgagtg aactagcgta cgatcttaag atgagtgtgt 1260tgatcgatag ctgatggatc tatttgagtg aactagcgta cgatcttaag atgagtgtgt 1260
attgtgaact gatgattcga gatcagcaaa acaagatctg atgatatctt cgtcttgtat 1320attgtgaact gatgattcga gatcagcaaa acaagatctg atgatatctt cgtcttgtat 1320
gcatcttgaa tttcatgatt ttttattaat tatagctcgc ttagctcaaa ggatagagca 1380gcatcttgaa tttcatgatt ttttattaat tatagctcgc ttagctcaaa ggatagagca 1380
ccacaaaatt ttattgtggt agaaatcggt tcgattccga tagcagctta ctgtgatgaa 1440ccacaaaatt ttattgtggt agaaatcggt tcgattccga tagcagctta ctgtgatgaa 1440
tgattttgag atttggtatt tgatatatgt ctactgtgtt gaatgatcgt ttatgcattg 1500tgattttgag atttggtatt tgatatatgt ctactgtgtt gaatgatcgt ttatgcattg 1500
tttaatcgct gcagatttgc attgacaagt agcc 1534tttaatcgct gcagatttgc attgacaagt agcc 1534
<210> 18<210> 18
<211> 228<211> 228
<212> DNA<212> DNA
<213> 拟南芥叶绿体转运肽(Arabidopsis thaliana)<213> Arabidopsis thaliana
<400> 18<400> 18
atggcgcaag ttagcagaat ctgcaatggt gtgcagaacc catctcttat ctccaatctc 60atggcgcaag ttagcagaat ctgcaatggt gtgcagaacc catctcttat ctccaatctc 60
tcgaaatcca gtcaacgcaa atctccctta tcggtttctc tgaagacgca gcagcatcca 120tcgaaatcca gtcaacgcaa atctccctta tcggtttctc tgaagacgca gcagcatcca 120
cgagcttatc cgatttcgtc gtcgtgggga ttgaagaaga gtgggatgac gttaattggc 180cgagcttatc cgatttcgtc gtcgtgggga ttgaagaaga gtgggatgac gttaattggc 180
tctgagcttc gtcctcttaa ggtcatgtct tctgtttcca cggcgtgc 228tctgagcttc gtcctcttaa ggtcatgtct tctgtttcca cggcgtgc 228
<210> 19<210> 19
<211> 1368<211> 1368
<212> DNA<212> DNA
<213> 5-烯醇丙酮酸莽草酸-3-磷酸合酶基因(Artificial Sequence)<213> 5-enolpyruvate shikimate-3-phosphate synthase gene (Artificial Sequence)
<400> 19<400> 19
atgcttcacg gtgcaagcag ccgtccagca actgctcgta agtcctctgg tctttctgga 60atgcttcacg gtgcaagcag ccgtccagca actgctcgta agtcctctgg tctttctgga 60
accgtccgta ttccaggtga caagtctatc tcccacaggt ccttcatgtt tggaggtctc 120accgtccgta ttccaggtga caagtctatc tcccacaggt ccttcatgtt tggaggtctc 120
gctagcggtg aaactcgtat caccggtctt ttggaaggtg aagatgttat caacactggt 180gctagcggtg aaactcgtat caccggtctt ttggaaggtg aagatgttat caacactggt 180
aaggctatgc aagctatggg tgccagaatc cgtaaggaag gtgatacttg gatcattgat 240aaggctatgc aagctatggg tgccagaatc cgtaaggaag gtgatacttg gatcattgat 240
ggtgttggta acggtggact ccttgctcct gaggctcctc tcgatttcgg taacgctgca 300ggtgttggta acggtggact ccttgctcct gaggctcctc tcgatttcgg taacgctgca 300
actggttgcc gtttgactat gggtcttgtt ggtgtttacg atttcgatag cactttcatt 360actggttgcc gtttgactat gggtcttgtt ggtgtttacg atttcgatag cactttcatt 360
ggtgacgctt ctctcactaa gcgtccaatg ggtcgtgtgt tgaacccact tcgcgaaatg 420ggtgacgctt ctctcactaa gcgtccaatg ggtcgtgtgt tgaacccact tcgcgaaatg 420
ggtgtgcagg tgaagtctga agacggtgat cgtcttccag ttaccttgcg tggaccaaag 480ggtgtgcagg tgaagtctga agacggtgat cgtcttccag ttaccttgcg tggaccaaag 480
actccaacgc caatcaccta cagggtacct atggcttccg ctcaagtgaa gtccgctgtt 540actccaacgc caatcaccta cagggtacct atggcttccg ctcaagtgaa gtccgctgtt 540
ctgcttgctg gtctcaacac cccaggtatc accactgtta tcgagccaat catgactcgt 600ctgcttgctg gtctcaacac cccaggtatc accactgtta tcgagccaat catgactcgt 600
gaccacactg aaaagatgct tcaaggtttt ggtgctaacc ttaccgttga gactgatgct 660gaccacactg aaaagatgct tcaaggtttt ggtgctaacc ttaccgttga gactgatgct 660
gacggtgtgc gtaccatccg tcttgaaggt cgtggtaagc tcaccggtca agtgattgat 720gacggtgtgc gtaccatccg tcttgaaggt cgtggtaagc tcaccggtca agtgattgat 720
gttccaggtg atccatcctc tactgctttc ccattggttg ctgccttgct tgttccaggt 780gttccaggtg atccatcctc tactgctttc ccattggttg ctgccttgct tgttccaggt 780
tccgacgtca ccatccttaa cgttttgatg aacccaaccc gtactggtct catcttgact 840tccgacgtca ccatccttaa cgttttgatg aacccaaccc gtactggtct catcttgact 840
ctgcaggaaa tgggtgccga catcgaagtg atcaacccac gtcttgctgg tggagaagac 900ctgcaggaaa tgggtgccga catcgaagtg atcaacccac gtcttgctgg tggagaagac 900
gtggctgact tgcgtgttcg ttcttctact ttgaagggtg ttactgttcc agaagaccgt 960gtggctgact tgcgtgttcg ttcttctact ttgaagggtg ttactgttcc agaagaccgt 960
gctccttcta tgatcgacga gtatccaatt ctcgctgttg cagctgcatt cgctgaaggt 1020gctccttcta tgatcgacga gtatccaatt ctcgctgttg cagctgcatt cgctgaaggt 1020
gctaccgtta tgaacggttt ggaagaactc cgtgttaagg aaagcgaccg tctttctgct 1080gctaccgtta tgaacggttt ggaagaactc cgtgttaagg aaagcgaccg tctttctgct 1080
gtcgcaaacg gtctcaagct caacggtgtt gattgcgatg aaggtgagac ttctctcgtc 1140gtcgcaaacg gtctcaagct caacggtgtt gattgcgatg aaggtgagac ttctctcgtc 1140
gtgcgtggtc gtcctgacgg taagggtctc ggtaacgctt ctggagcagc tgtcgctacc 1200gtgcgtggtc gtcctgacgg taagggtctc ggtaacgctt ctggagcagc tgtcgctacc 1200
cacctcgatc accgtatcgc tatgagcttc ctcgttatgg gtctcgtttc tgaaaaccct 1260cacctcgatc accgtatcgc tatgagcttc ctcgttatgg gtctcgtttc tgaaaaccct 1260
gttactgttg atgatgctac tatgatcgct actagcttcc cagagttcat ggatttgatg 1320gttactgttg atgatgctac tatgatcgct actagcttcc cagagttcat ggatttgatg 1320
gctggtcttg gagctaagat cgaactctcc gacactaagg ctgcttga 1368gctggtcttg gagctaagat cgaactctcc gacactaagg ctgcttga 1368
<210> 20<210> 20
<211> 643<211> 643
<212> DNA<212> DNA
<213> 豌豆RbcS基因的终止子(Pisum sativum)<213> Terminator of pea RbcS gene (Pisum sativum)
<400> 20<400> 20
agctttcgtt cgtatcatcg gtttcgacaa cgttcgtcaa gttcaatgca tcagtttcat 60agctttcgtt cgtatcatcg gtttcgacaa cgttcgtcaa gttcaatgca tcagtttcat 60
tgcgcacaca ccagaatcct actgagtttg agtattatgg cattgggaaa actgtttttc 120tgcgcacaca ccagaatcct actgagtttg agtattatgg cattgggaaa actgtttttc 120
ttgtaccatt tgttgtgctt gtaatttact gtgtttttta ttcggttttc gctatcgaac 180ttgtaccatt tgttgtgctt gtaatttact gtgtttttta ttcggttttc gctatcgaac 180
tgtgaaatgg aaatggatgg agaagagtta atgaatgata tggtcctttt gttcattctc 240tgtgaaatgg aaatggatgg agaagagtta atgaatgata tggtcctttt gttcattctc 240
aaattaatat tatttgtttt ttctcttatt tgttgtgtgt tgaatttgaa attataagag 300aaattaatat tatttgtttt ttctcttatt tgttgtgtgt tgaatttgaa attataagag 300
atatgcaaac attttgtttt gagtaaaaat gtgtcaaatc gtggcctcta atgaccgaag 360atatgcaaac attttgtttt gagtaaaaat gtgtcaaatc gtggcctcta atgaccgaag 360
ttaatatgag gagtaaaaca cttgtagttg taccattatg cttattcact aggcaacaaa 420ttaatatgag gagtaaaaca cttgtagttg taccattatg cttattcact aggcaacaaa 420
tatattttca gacctagaaa agctgcaaat gttactgaat acaagtatgt cctcttgtgt 480tatattttca gacctagaaa agctgcaaat gttactgaat acaagtatgt cctcttgtgt 480
tttagacatt tatgaacttt cctttatgta attttccaga atccttgtca gattctaatc 540tttagacatt tatgaacttt cctttatgta attttccaga atccttgtca gattctaatc 540
attgctttat aattatagtt atactcatgg atttgtagtt gagtatgaaa atatttttta 600attgctttat aattatagtt atactcatgg atttgtagtt gagtatgaaa atatttttta 600
atgcatttta tgacttgcca attgattgac aacatgcatc aat 643atgcatttta tgacttgcca attgattgac aacatgcatc aat 643
<210> 21<210> 21
<211> 1322<211> 1322
<212> DNA<212> DNA
<213> 拟南芥泛素(Ubiquitin10基因的启动子Arabidopsis thaliana)<213> Arabidopsis ubiquitin (promoter of Ubiquitin10 gene Arabidopsis thaliana)
<400> 21<400> 21
gtcgacctgc aggtcaacgg atcaggatat tcttgtttaa gatgttgaac tctatggagg 60gtcgacctgc aggtcaacgg atcaggatat tcttgtttaa gatgttgaac tctatggagg 60
tttgtatgaa ctgatgatct aggaccggat aagttccctt cttcatagcg aacttattca 120tttgtatgaa ctgatgatct aggaccggat aagttccctt cttcatagcg aacttattca 120
aagaatgttt tgtgtatcat tcttgttaca ttgttattaa tgaaaaaata ttattggtca 180aagaatgttt tgtgtatcat tcttgttaca ttgttattaa tgaaaaaata ttattggtca 180
ttggactgaa cacgagtgtt aaatatggac caggccccaa ataagatcca ttgatatatg 240ttggactgaa cacgagtgtt aaatatggac caggccccaa ataagatcca ttgatatatg 240
aattaaataa caagaataaa tcgagtcacc aaaccacttg ccttttttaa cgagacttgt 300aattaaataa caagaataaa tcgagtcacc aaaccacttg ccttttttaa cgagacttgt 300
tcaccaactt gatacaaaag tcattatcct atgcaaatca ataatcatac aaaaatatcc 360tcaccaactt gatacaaaag tcattatcct atgcaaatca ataatcatac aaaaatatcc 360
aataacacta aaaaattaaa agaaatggat aatttcacaa tatgttatac gataaagaag 420aataacacta aaaaattaaa agaaatggat aatttcacaa tatgttatac gataaagaag 420
ttacttttcc aagaaattca ctgattttat aagcccactt gcattagata aatggcaaaa 480ttacttttcc aagaaattca ctgattttat aagcccactt gcattagata aatggcaaaa 480
aaaaacaaaa aggaaaagaa ataaagcacg aagaattcta gaaaatacga aatacgcttc 540aaaaacaaaa aggaaaagaa ataaagcacg aagaattcta gaaaatacga aatacgcttc 540
aatgcagtgg gacccacggt tcaattattg ccaattttca gctccaccgt atatttaaaa 600aatgcagtgg gacccacggt tcaattattg ccaattttca gctccaccgt atatttaaaa 600
aataaaacga taatgctaaa aaaatataaa tcgtaacgat cgttaaatct caacggctgg 660aataaaacga taatgctaaa aaaatataaa tcgtaacgat cgttaaatct caacggctgg 660
atcttatgac gaccgttaga aattgtggtt gtcgacgagt cagtaataaa cggcgtcaaa 720atcttatgac gaccgttaga aattgtggtt gtcgacgagt cagtaataaa cggcgtcaaa 720
gtggttgcag ccggcacaca cgagtcgtgt ttatcaactc aaagcacaaa tacttttcct 780gtggttgcag ccggcacaca cgagtcgtgt ttatcaactc aaagcacaaa tacttttcct 780
caacctaaaa ataaggcaat tagccaaaaa caactttgcg tgtaaacaac gctcaataca 840caacctaaaa ataaggcaat tagccaaaaa caactttgcg tgtaaacaac gctcaataca 840
cgtgtcattt tattattagc tattgcttca ccgccttagc tttctcgtga cctagtcgtc 900cgtgtcattt tattattagc tattgcttca ccgccttagc tttctcgtga cctagtcgtc 900
ctcgtctttt cttcttcttc ttctataaaa caatacccaa agcttcttct tcacaattca 960ctcgtctttt cttcttcttc ttctataaaa caatacccaa agcttcttct tcacaattca 960
gatttcaatt tctcaaaatc ttaaaaactt tctctcaatt ctctctaccg tgatcaaggt 1020gatttcaatt tctcaaaatc ttaaaaactt tctctcaatt ctctctaccg tgatcaaggt 1020
aaatttctgt gttccttatt ctctcaaaat cttcgatttt gttttcgttc gatcccaatt 1080aaatttctgt gttccttatt ctctcaaaat cttcgatttt gttttcgttc gatcccaatt 1080
tcgtatatgt tctttggttt agattctgtt aatcttagat cgaagacgat tttctgggtt 1140tcgtatatgt tctttggttt agattctgtt aatcttagat cgaagacgat tttctgggtt 1140
tgatcgttag atatcatctt aattctcgat tagggtttca taaatatcat ccgatttgtt 1200tgatcgttag atatcatctt aattctcgat tagggtttca taaatatcat ccgatttgtt 1200
caaataattt gagttttgtc gaataattac tcttcgattt gtgatttcta tctagatctg 1260caaataattt gagttttgtc gaataattac tcttcgattt gtgatttcta tctagatctg 1260
gtgttagttt ctagtttgtg cgatcgaatt tgtcgattaa tctgagtttt tctgattaac 1320gtgttagttt ctagttttgtg cgatcgaatt tgtcgattaa tctgagtttt tctgattaac 1320
ag 1322ag 1322
<210> 22<210> 22
<211> 253<211> 253
<212> DNA<212> DNA
<213> 胭脂碱合成酶基因的终止子(Agrobacterium tumefaciens)<213> Nopaline synthase gene terminator (Agrobacterium tumefaciens)
<400> 22<400> 22
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 180atgacgttat ttatgagatg ggttttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atc 253atgttactag atc 253
<210> 23<210> 23
<211> 530<211> 530
<212> DNA<212> DNA
<213> 花椰菜花叶病毒35S启动子(Cauliflower mosaic virus)<213> Cauliflower mosaic virus 35S promoter
<400> 23<400> 23
ccatggagtc aaagattcaa atagaggacc taacagaact cgccgtaaag actggcgaac 60ccatggagtc aaagattcaa atagaggacc taacagaact cgccgtaaag actggcgaac 60
agttcataca gagtctctta cgactcaatg acaagaagaa aatcttcgtc aacatggtgg 120agttcataca gagtctctta cgactcaatg acaagaagaa aatcttcgtc aacatggtgg 120
agcacgacac gcttgtctac tccaaaaata tcaaagatac agtctcagaa gaccaaaggg 180agcacgacac gcttgtctac tccaaaaata tcaaagatac agtctcagaa gaccaaaggg 180
caattgagac ttttcaacaa agggtaatat ccggaaacct cctcggattc cattgcccag 240caattgagac ttttcaacaa agggtaatat ccggaaacct cctcggattc cattgcccag 240
ctatctgtca ctttattgtg aagatagtgg aaaaggaagg tggctcctac aaatgccatc 300ctatctgtca ctttattgtg aagatagtgg aaaaggaagg tggctcctac aaatgccatc 300
attgcgataa aggaaaggcc atcgttgaag atgcctctgc cgacagtggt cccaaagatg 360attgcgataa aggaaaggcc atcgttgaag atgcctctgc cgacagtggt cccaaagatg 360
gacccccacc cacgaggagc atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc 420gacccccacc cacgaggagc atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc 420
aagtggattg atgtgatatc tccactgacg taagggatga cgcacaatcc cactatcctt 480aagtggattg atgtgatatc tccactgacg taagggatga cgcacaatcc cactatcctt 480
cgcaagaccc ttcctctata taaggaagtt catttcattt ggagaggaca 530cgcaagaccc ttcctctata taaggaagtt catttcattt ggagaggaca 530
<210> 24<210> 24
<211> 552<211> 552
<212> DNA<212> DNA
<213> 膦丝菌素N-乙酰基转移酶基因核苷酸序列(Streptomycesviridochromogenes)<213> Streptomycesviridochromogenes Gene Nucleotide Sequence (Streptomycesviridochromogenes)
<400> 24<400> 24
atgtctccgg agaggagacc agttgagatt aggccagcta cagcagctga tatggccgcg 60atgtctccgg agaggagacc agttgagatt aggccagcta cagcagctga tatggccgcg 60
gtttgtgata tcgttaacca ttacattgag acgtctacag tgaactttag gacagagcca 120gtttgtgata tcgttaacca ttacattgag acgtctacag tgaactttag gacagagcca 120
caaacaccac aagagtggat tgatgatcta gagaggttgc aagatagata cccttggttg 180caaacaccac aagagtggat tgatgatcta gagaggttgc aagatagata cccttggttg 180
gttgctgagg ttgagggtgt tgtggctggt attgcttacg ctgggccctg gaaggctagg 240gttgctgagg ttgagggtgt tgtggctggt attgcttacg ctgggccctg gaaggctagg 240
aacgcttacg attggacagt tgagagtact gtttacgtgt cacataggca tcaaaggttg 300aacgcttacg attggacagt tgagagtact gtttacgtgt cacataggca tcaaaggttg 300
ggcctaggat ccacattgta cacacatttg cttaagtcta tggaggcgca aggttttaag 360ggcctaggat ccacattgta cacacatttg cttaagtcta tggaggcgca aggttttaag 360
tctgtggttg ctgttatagg ccttccaaac gatccatctg ttaggttgca tgaggctttg 420tctgtggttg ctgttatagg ccttccaaac gatccatctg ttaggttgca tgaggctttg 420
ggatacacag cccggggtac attgcgcgca gctggataca agcatggtgg atggcatgat 480ggatacacag cccggggtac attgcgcgca gctggataca agcatggtgg atggcatgat 480
gttggttttt ggcaaaggga ttttgagttg ccagctcctc caaggccagt taggccagtt 540gttggttttt ggcaaaggga ttttgagttg ccagctcctc caaggccagt taggccagtt 540
acccagatct ga 552acccagatct ga 552
<210> 25<210> 25
<211> 195<211> 195
<212> DNA<212> DNA
<213> 花椰菜花叶病毒35S终止子(Cauliflower mosaic virus)<213> Cauliflower mosaic virus 35S terminator
<400> 25<400> 25
ctgaaatcac cagtctctct ctacaaatct atctctctct ataataatgt gtgagtagtt 60ctgaaatcac cagtctctct ctacaaatct atctctctct ataataatgt gtgagtagtt 60
cccagataag ggaattaggg ttcttatagg gtttcgctca tgtgttgagc atataagaaa 120cccagataag ggaattaggg ttcttatagg gtttcgctca tgtgttgagc atataagaaa 120
cccttagtat gtatttgtat ttgtaaaata cttctatcaa taaaatttct aattcctaaa 180cccttagtat gtatttgtat ttgtaaaata cttctatcaa taaaatttct aattcctaaa 180
accaaaatcc agtgg 195accaaaatcc agtgg 195
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210330228.1A CN114854702B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, its encoding gene and use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210330228.1A CN114854702B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, its encoding gene and use |
CN202010194585.0A CN111304178B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, coding gene and application thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010194585.0A Division CN111304178B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, coding gene and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114854702A true CN114854702A (en) | 2022-08-05 |
CN114854702B CN114854702B (en) | 2024-04-19 |
Family
ID=71157254
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010194585.0A Active CN111304178B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, coding gene and application thereof |
CN202210330228.1A Active CN114854702B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, its encoding gene and use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010194585.0A Active CN111304178B (en) | 2020-03-19 | 2020-03-19 | Herbicide tolerance protein, coding gene and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111304178B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114774377B (en) * | 2021-03-24 | 2024-01-12 | 华中师范大学 | HPPD proteins, genes, vectors, cells, compositions, uses thereof and methods for increasing herbicide resistance in crops |
CN113980990B (en) * | 2021-11-26 | 2022-07-26 | 中国农业科学院生物技术研究所 | Transgenic insect-resistant herbicide-resistant corn and cultivation method thereof |
CN118813564A (en) * | 2021-12-15 | 2024-10-22 | 北京大北农生物技术有限公司 | Mutated hydroxyphenylpyruvate dioxygenase polypeptide, its encoding gene and use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110628733A (en) * | 2019-09-17 | 2019-12-31 | 北京大北农生物技术有限公司 | Herbicide tolerance protein, its encoding gene and use |
CN110656094A (en) * | 2019-09-17 | 2020-01-07 | 北京大北农生物技术有限公司 | Herbicide tolerance proteins, their encoding genes and uses |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110628732B (en) * | 2019-09-17 | 2022-04-15 | 北京大北农生物技术有限公司 | Herbicide tolerance proteins, their encoding genes and uses |
-
2020
- 2020-03-19 CN CN202010194585.0A patent/CN111304178B/en active Active
- 2020-03-19 CN CN202210330228.1A patent/CN114854702B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110628733A (en) * | 2019-09-17 | 2019-12-31 | 北京大北农生物技术有限公司 | Herbicide tolerance protein, its encoding gene and use |
CN110656094A (en) * | 2019-09-17 | 2020-01-07 | 北京大北农生物技术有限公司 | Herbicide tolerance proteins, their encoding genes and uses |
Non-Patent Citations (1)
Title |
---|
SRIDEVI NAKKA等: ""Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth (Amaranthus palmeri S.Wats.)"", 《FRONTIERS IN PLANT SCIENCE》, vol. 8, pages 7 - 8 * |
Also Published As
Publication number | Publication date |
---|---|
CN111304178B (en) | 2022-06-03 |
CN114854702B (en) | 2024-04-19 |
CN111304178A (en) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016399292B2 (en) | Herbicide tolerant protein, encoding gene and use thereof | |
WO2021051265A1 (en) | Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof | |
CN111304178B (en) | Herbicide tolerance protein, coding gene and application thereof | |
CA2975762A1 (en) | Herbicide-resistant protein, encoding gene and use thereof | |
CN110628733B (en) | Herbicide tolerance proteins, their encoding genes and uses | |
JP6486505B2 (en) | Herbicide resistant proteins, their coding genes and uses | |
CN111334484B (en) | Herbicide tolerance proteins, their encoding genes and uses | |
CA2976060C (en) | Herbicide-resistant protein, encoding gene and use thereof | |
CN110628732B (en) | Herbicide tolerance proteins, their encoding genes and uses | |
CN110656094B (en) | Herbicide tolerance proteins, their encoding genes and uses | |
CN114585731B (en) | Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene and application thereof | |
CN115340987B (en) | Herbicide tolerance protein, coding gene and application thereof | |
CN115336534A (en) | The use of protoporphyrinogen oxidase | |
WO2023206126A1 (en) | Use of protoporphyrinogen oxidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |