[go: up one dir, main page]

CN114846785A - Image forming apparatus and image forming method - Google Patents

Image forming apparatus and image forming method Download PDF

Info

Publication number
CN114846785A
CN114846785A CN201980103051.8A CN201980103051A CN114846785A CN 114846785 A CN114846785 A CN 114846785A CN 201980103051 A CN201980103051 A CN 201980103051A CN 114846785 A CN114846785 A CN 114846785A
Authority
CN
China
Prior art keywords
comparator
ramp
signal
ramp signal
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980103051.8A
Other languages
Chinese (zh)
Other versions
CN114846785B (en
Inventor
樱木孝正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN114846785A publication Critical patent/CN114846785A/en
Application granted granted Critical
Publication of CN114846785B publication Critical patent/CN114846785B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

An embodiment of the present application may relate to an imaging apparatus including a comparator, a pixel, and a control circuit, wherein the comparator includes a switch, a first transistor, and a first capacitor, wherein the first capacitor is charged when the switch is turned on, and wherein the comparator compares a pixel signal input from the pixel with a ramp signal input from the control circuit using power charged in the first capacitor after the switch is turned off, and outputs an output signal.

Description

成像装置及成像方法Imaging device and imaging method

技术领域technical field

下面描述的实施例涉及例如用于静止图像和/或电影的成像装置/方法。The embodiments described below relate to imaging devices/methods, eg, for still images and/or movies.

背景技术Background technique

用于静止图像和/或电影的成像装置和成像方法通常被广泛使用。成像装置例如数码相机、蜂窝电话、终端设备和汽车(车载相机),但不限于此。Imaging devices and imaging methods for still images and/or movies are generally widely used. Imaging devices such as digital cameras, cellular phones, terminal equipment, and automobiles (vehicle cameras), but are not limited thereto.

发明内容SUMMARY OF THE INVENTION

包括下面所示的方面的本发明内容可以涉及例如用于静止图像和/或电影的成像装置/方法。应当理解,下面的公开内容并不限制或约束待决的申请/发明。SUMMARY OF THE INVENTION The present disclosure, including the aspects shown below, may relate to imaging apparatus/methods, eg, for still images and/or movies. It should be understood that the following disclosure does not limit or constrain the pending application/invention.

第一方面是一种成像装置,所述成像装置包括比较器、像素和控制电路,其中,所述比较器包括开关、第一晶体管和第一电容器,其中,当所述开关接通时,所述第一电容器被充电,并且其中,在所述开关断开之后,所述比较器使用在所述第一电容器中充入的电力,比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号,并输出输出信号。A first aspect is an imaging device including a comparator, a pixel, and a control circuit, wherein the comparator includes a switch, a first transistor, and a first capacitor, wherein when the switch is turned on, all the first capacitor is charged, and wherein, after the switch is turned off, the comparator compares the pixel signal input from the pixel with that from the control circuit using the power charged in the first capacitor Input the ramp signal, and output the output signal.

第二方面是根据上述方面所述的成像装置,其中,所述斜坡信号包括第一斜坡信号和第二斜坡信号。A second aspect is the imaging device according to the above aspect, wherein the ramp signal includes a first ramp signal and a second ramp signal.

第三方面是根据上述方面所述的成像装置,其中,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。A third aspect is the imaging device according to the above aspect, wherein the ramp signal includes a predetermined voltage difference between the first ramp signal and the second ramp signal.

第四方面是根据上述方面所述的成像装置,其中,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。A fourth aspect is the imaging device according to the above aspect, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal.

第五方面是根据上述方面所述的成像装置,其中,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。A fifth aspect is the imaging device according to the above aspect, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor biases A current is set to flow to drive the comparator.

第六方面是根据上述方面所述的成像装置,其中,所述第一电容器的电容足够大以驱动所述比较器。A sixth aspect is the imaging device according to the above aspect, wherein the capacitance of the first capacitor is large enough to drive the comparator.

第七方面是根据上述方面所述的成像装置,其中,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。A seventh aspect is the imaging device according to the above aspect, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal.

第八方面是根据上述方面所述的成像装置,其中,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。An eighth aspect is the imaging device according to the above aspect, wherein the comparator is disconnected from a common power source of the imaging device when the switch is turned off.

第九方面是根据上述方面所述的成像装置,其中,所述第一斜坡信号和所述第二斜坡信号是斜升信号。A ninth aspect is the imaging device according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-up signals.

第十方面是根据上述方面所述的成像装置,其中,所述第一斜坡信号和所述第二斜坡信号是斜降信号。A tenth aspect is the imaging device according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-down signals.

第十一方面是一种用于包括比较器、像素和控制电路的成像装置的成像方法,所述成像方法包括:当所述比较器的开关接通时,对所述比较器的第一电容器充电;在所述开关断开后,使用在所述第一电容器中充入的电力比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号;输出输出信号。An eleventh aspect is an imaging method for an imaging device including a comparator, a pixel, and a control circuit, the imaging method comprising: when a switch of the comparator is turned on, charging a first capacitor of the comparator charging; after the switch is turned off, comparing a pixel signal input from the pixel with a ramp signal input from the control circuit using the power charged in the first capacitor; and outputting an output signal.

第十二方面是根据上述方面所述的成像方法,其中,所述斜坡信号包括第一斜坡信号和第二斜坡信号。A twelfth aspect is the imaging method according to the above aspect, wherein the ramp signal includes a first ramp signal and a second ramp signal.

第十三方面是根据上述方面所述的成像方法,其中,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。A thirteenth aspect is the imaging method according to the above aspect, wherein the ramp signal includes a predetermined voltage difference between the first ramp signal and the second ramp signal.

第十四方面是根据上述方面所述的成像方法,其中,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。A fourteenth aspect is the imaging method according to the above aspect, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal.

第十五方面是根据上述方面所述的成像方法,其中,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。A fifteenth aspect is the imaging method according to the above aspect, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor makes A bias current flows to drive the comparator.

第十六方面是根据上述方面所述的成像方法,其中,所述第一电容器的电容足够大以驱动所述比较器。A sixteenth aspect is the imaging method according to the above aspect, wherein the capacitance of the first capacitor is large enough to drive the comparator.

第十七方面是根据上述方面所述的成像方法,其中,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。A seventeenth aspect is the imaging method according to the above aspect, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal.

第十八方面是根据上述方面所述的成像方法,其中,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。An eighteenth aspect is the imaging method according to the above aspect, wherein the comparator is disconnected from the common power supply of the imaging device when the switch is turned off.

第十九方面是根据上述方面所述的成像方法,其中,所述第一斜坡信号和所述第二斜坡信号是斜升信号。A nineteenth aspect is the imaging method according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-up signals.

第二十方面是根据上述方面所述的成像方法,其中,所述第一斜坡信号和所述第二斜坡信号是斜降信号。A twentieth aspect is the imaging method according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-down signals.

上述公开内容并不限制或约束本申请/发明。The above disclosure does not limit or constrain this application/invention.

附图说明Description of drawings

图1是在一个实施例中描述的成像装置的示意图。FIG. 1 is a schematic diagram of an imaging device described in one embodiment.

图2是一个实施例的电路图。Figure 2 is a circuit diagram of one embodiment.

图3是一个实施例的时序图。Figure 3 is a timing diagram of one embodiment.

图4是一个实施例的电路图。Figure 4 is a circuit diagram of one embodiment.

图5是一个实施例的时序图。Figure 5 is a timing diagram of one embodiment.

具体实施方式Detailed ways

下面的公开内容仅包括示例。本发明和申请的范围不应被认为受到下面所示的实施例的限制。The following disclosure includes examples only. The scope of the invention and application should not be considered limited by the examples shown below.

图1示出了一个实施例的成像装置的示意图。成像装置100包括相机模块110、像素120、模数(analog to digital,AD)转换器130和定时发生器(timing generator,T/G)140。成像装置100可以包括替换T/G 140的逻辑电路150。成像装置100还可以包括一组透镜、电池、存储器和屏幕或面板等。成像装置100还可以包括处理器、硬盘、光盘驱动器、收发器、扬声器和麦克风等。FIG. 1 shows a schematic diagram of an imaging device of one embodiment. The imaging apparatus 100 includes a camera module 110 , pixels 120 , an analog to digital (AD) converter 130 and a timing generator (T/G) 140 . Imaging device 100 may include logic circuit 150 in place of T/G 140 . The imaging device 100 may also include a set of lenses, a battery, a memory, and a screen or panel, among others. The imaging device 100 may also include a processor, a hard disk, an optical disk drive, a transceiver, a speaker, a microphone, and the like.

相机模块110包括像素120、AD转换器130和T/G 140。如上所述,T/G 140可以替换为相机模块110外部的逻辑电路150。相机模块110可以是图2中所示的图像传感器电路。The camera module 110 includes a pixel 120 , an AD converter 130 and a T/G 140 . As described above, the T/G 140 may be replaced with the logic circuit 150 external to the camera module 110 . The camera module 110 may be the image sensor circuit shown in FIG. 2 .

像素120可以是互补金属氧化物半导体(complementary metal oxidesemiconductor,CMOS)图像传感器、电荷耦合器件(charge coupled device,CCD)图像传感器或其它器件。像素120可以由多个像素构成。像素120还可以包括滤色器。像素120通过图中未示出的透镜接收光,并输出与所接收的光的强度对应的模拟信号。The pixels 120 may be complementary metal oxide semiconductor (CMOS) image sensors, charge coupled device (CCD) image sensors, or other devices. The pixel 120 may be composed of a plurality of pixels. The pixels 120 may also include color filters. The pixel 120 receives light through a lens not shown in the figure, and outputs an analog signal corresponding to the intensity of the received light.

AD转换器130被输入来自像素120的模拟信号,并输出指示像素120所接收的光的强度的数字信号。图中未示出的处理器可以接收来自AD转换器130的数字信号并生成图像数据。该处理器可以将图像数据存储在例如存储器中。图像数据可以是静止图像或电影的一部分。The AD converter 130 is input with an analog signal from the pixel 120 and outputs a digital signal indicating the intensity of light received by the pixel 120 . A processor not shown in the figure may receive the digital signal from the AD converter 130 and generate image data. The processor may store the image data in, for example, a memory. The image data can be a still image or part of a movie.

T/G 140(或逻辑电路150)输出指示操作时序的脉冲信号,成像装置100的构成元件基于该操作时序进行操作。例如,当从T/G 140(或逻辑电路150)输入定时信号时,AD转换器130可以比较从像素120输出的模拟信号的电压与图1中未示出的参考电压。The T/G 140 (or the logic circuit 150 ) outputs a pulse signal indicating the operation timing based on which the constituent elements of the imaging apparatus 100 operate. For example, when a timing signal is input from the T/G 140 (or the logic circuit 150 ), the AD converter 130 may compare the voltage of the analog signal output from the pixel 120 with a reference voltage not shown in FIG. 1 .

在下文中,参考附图解释AD转换器130的细节。Hereinafter, the details of the AD converter 130 are explained with reference to the accompanying drawings.

成像装置可以包括AD转换器,例如,单斜率AD转换器(single slope analog todigital converter,SS ADC)。通常,期望在不造成副效应的情况下降低SS ADC的功耗。The imaging device may include an AD converter, eg, a single slope analog to digital converter (SS ADC). In general, it is desirable to reduce the power consumption of the SS ADC without causing side effects.

例如,可以仅通过减少AD转换器中包括的比较器的偏置电流来降低AD转换器(SSADC除外)的功耗。降低功耗的偏置电路的一个示例是使用动态偏置电路实现的。另一方面,更少的偏置电流可能会降低比较器的性能(例如模数转换性能):速度降低、噪声增大和/或AD精度降低。For example, the power consumption of the AD converter (other than the SSADC) can be reduced only by reducing the bias current of the comparator included in the AD converter. An example of a bias circuit that reduces power consumption is implemented using a dynamic bias circuit. On the other hand, less bias current may degrade the performance of the comparator (eg analog-to-digital conversion): reduced speed, increased noise, and/or reduced AD accuracy.

如上所述,通常,期望降低ADC的功耗。需要说明的是,将比较器的可以降低AD转换器的功耗的动态偏置电路应用于SS ADC并不是最优选择。As mentioned above, in general, it is desirable to reduce the power consumption of the ADC. It should be noted that it is not an optimal choice to apply the dynamic bias circuit of the comparator, which can reduce the power consumption of the AD converter, to the SS ADC.

因为通常,具有动态偏置电路的比较器可以比较与输入数字信号对应的输入信号,而在SS ADC中,这些数字信号在AD转换操作期间无法生成。Because in general, comparators with dynamic bias circuits can compare input signals corresponding to input digital signals, which in SS ADCs cannot be generated during AD conversion operations.

通常,动态偏置比较器可能会引起大的“条带噪声”。这是因为动态偏置电路会引起比较器的电源电流发生大量变化。这可能会对图像质量产生负面影响。Typically, dynamically biased comparators can cause large "banding noise". This is because the dynamic bias circuit can cause large changes in the comparator's supply current. This may negatively affect image quality.

在下文中,将解释第一实施例。图2示出了包括两个输入像素信号线(Vpixel1和Vpixel2)和两个单斜率ADC的图像传感器电路。图2中所示的图像传感器电路示出了简化的结构,以便更容易地解释它们的操作。在实际的图像传感器中,需要放置更多的ADC,这些ADC通常是列式的,以适应像素信号输出的数量。图2中所示的图像传感器电路对应于图1中所示的相机模块。Hereinafter, the first embodiment will be explained. Figure 2 shows an image sensor circuit including two input pixel signal lines (Vpixel1 and Vpixel2) and two single slope ADCs. The image sensor circuits shown in Figure 2 show a simplified structure in order to more easily explain their operation. In an actual image sensor, more ADCs need to be placed, and these ADCs are usually columnar to accommodate the number of pixel signal outputs. The image sensor circuit shown in FIG. 2 corresponds to the camera module shown in FIG. 1 .

输入像素信号线Vpixel1和Vpixel2包括在图1中所示的像素120中。输入像素信号线Vpixel1和Vpixel2中的每一个对应于一个像素。图2中所示的I1和I2是比较器。比较器I1通过输入像素信号线Vpixel1接收来自图2中未示出的像素的信号。比较器I2通过输入像素信号线Vpixel1输入来自图2中未示出的像素的信号。The input pixel signal lines Vpixel1 and Vpixel2 are included in the pixel 120 shown in FIG. 1 . Each of the input pixel signal lines Vpixel1 and Vpixel2 corresponds to one pixel. I1 and I2 shown in Figure 2 are comparators. The comparator I1 receives signals from pixels not shown in FIG. 2 through an input pixel signal line Vpixel1. The comparator I2 inputs a signal from a pixel not shown in FIG. 2 through an input pixel signal line Vpixel1.

图2中所示的VRAMP1和VRAMP2表示通过线提供的斜坡参考电压。比较器I1从端子3接收斜坡参考电压VRAMP1。比较器I1从端子2接收斜坡参考电压VRAMP2。比较器2具有与比较器I1相同的结构。斜坡参考电压VRAMP1和VRAMP2可以从图2中未示出的控制电路(例如,图1中所示的逻辑电路150)输出。VRAMP1 and VRAMP2 shown in Figure 2 represent the ramp reference voltages provided through the lines. The comparator I1 receives the ramp reference voltage VRAMP1 from terminal 3 . Comparator I1 receives the ramp reference voltage VRAMP2 from terminal 2. The comparator 2 has the same structure as the comparator I1. The ramp reference voltages VRAMP1 and VRAMP2 may be output from a control circuit not shown in FIG. 2 (eg, the logic circuit 150 shown in FIG. 1 ).

图2中所示的VDD_common是与所有或部分比较器共享的公用电源。比较器I1通过端子1接收公用电源VDD_common并进行其操作。比较器I2具有与比较器I1相同的结构。公用电源VDD_common可以从附图中未示出的电源电路供电。VDD_common shown in Figure 2 is a common power supply shared with all or some of the comparators. The comparator I1 receives the common power supply VDD_common through terminal 1 and performs its operation. The comparator I2 has the same structure as the comparator I1. The common power supply VDD_common may be powered from a power supply circuit not shown in the drawings.

比较器I1接收斜坡参考电压VRAMP1/VRAMP2和输入像素电压(为了便于理解,在下文中为Vpixel1),并进行比较操作。比较器I1从图2中所示的端子Vout1输出指示其比较结果的信号。比较器I2从图2中所示的端子Vout2输出指示其比较结果的信号。The comparator I1 receives the ramp reference voltages VRAMP1/VRAMP2 and an input pixel voltage (hereinafter, Vpixel1 for ease of understanding), and performs a comparison operation. The comparator I1 outputs a signal indicating its comparison result from the terminal Vout1 shown in FIG. 2 . The comparator I2 outputs a signal indicating its comparison result from the terminal Vout2 shown in FIG. 2 .

比较器I1包括晶体管M1、M2、M3、M4、M6、M7、M8、M9和M10。比较器I1包括电容器Cp、CG和Cs。比较器I1包括开关SW1。比较器I1包括端子1至5。端子1连接到公用电源VDD_common。端子2接收斜坡参考电压VRAMP2。端子3接收斜坡参考电压VRAMP1。端子4连接到输入像素信号线Vpixel1。来自比较器I1的输出信号从端子5输出并提供给计数器电路I3。Comparator I1 includes transistors M1, M2, M3, M4, M6, M7, M8, M9, and M10. Comparator I1 includes capacitors Cp, CG , and Cs. The comparator I1 includes a switch SW1. Comparator I1 includes terminals 1 to 5 . Terminal 1 is connected to the common power supply VDD_common. Terminal 2 receives the ramp reference voltage VRAMP2. Terminal 3 receives the ramp reference voltage VRAMP1. Terminal 4 is connected to the input pixel signal line Vpixel1. The output signal from the comparator I1 is output from the terminal 5 and supplied to the counter circuit I3.

比较器I2具有与比较器I1基本相同的结构。它们之间有很小的区别。比较器I2的端子4连接到输入像素信号线Vpixel2,比较器I2的输出信号通过端子5提供给计数器电路I4。The comparator I2 has basically the same structure as the comparator I1. There is a small difference between them. The terminal 4 of the comparator I2 is connected to the input pixel signal line Vpixel2, and the output signal of the comparator I2 is supplied to the counter circuit I4 through the terminal 5.

计数器电路I3接收来自端子Vout1的输出信号。计数器电路I3接收时钟信号(CLK)。在预定的时间段内,计数器电路I3对时钟信号中包括的时钟进行计数,同时计数器电路检测来自端子Vout1的输出信号。时钟信号(CLK)可以由附图中所示的控制电路(例如,图1的逻辑电路150)输出。The counter circuit I3 receives the output signal from the terminal Vout1. The counter circuit I3 receives the clock signal (CLK). During a predetermined period of time, the counter circuit I3 counts the clocks included in the clock signal while the counter circuit detects the output signal from the terminal Vout1. The clock signal (CLK) may be output by the control circuit shown in the figures (eg, the logic circuit 150 of FIG. 1 ).

计数器电路I4接收来自端子Vout2的输出信号。计数器电路I4接收时钟信号(CLK)。在预定的时间段内,计数器电路4对包括在时钟信号中的时钟进行计数,同时计数器电路检测来自端子Vout1的输出信号。时钟信号(CLK)可以由附图中所示的控制电路(例如,图1的逻辑电路150)提供。The counter circuit I4 receives the output signal from the terminal Vout2. The counter circuit I4 receives the clock signal (CLK). During a predetermined period of time, the counter circuit 4 counts the clocks included in the clock signal while the counter circuit detects the output signal from the terminal Vout1. The clock signal (CLK) may be provided by the control circuit shown in the figures (eg, logic circuit 150 of FIG. 1 ).

参考图3中所示的时序图描述图2中所示的图像传感器电路的操作。在图3中,假设与输入像素信号线Vpixel1对应的第一像素信号电平(为了便于理解,在下文中为Vpixel1)低于与输入像素信号线Vpixel2对应的第二像素信号电平(为了便于理解,在下文中为Vpixel2)。在实际使用中,第一像素信号电平Vpixel1可以高于第二像素信号电平Vpixel2或与第二像素信号电平Vpixel2相同。图3的水平轴是时间轴。The operation of the image sensor circuit shown in FIG. 2 is described with reference to the timing diagram shown in FIG. 3 . In FIG. 3, it is assumed that the first pixel signal level corresponding to the input pixel signal line Vpixel1 (for ease of understanding, hereinafter Vpixel1) is lower than the second pixel signal level corresponding to the input pixel signal line Vpixel2 (for ease of understanding) , hereinafter Vpixel2). In actual use, the first pixel signal level Vpixel1 may be higher than the second pixel signal level Vpixel2 or the same as the second pixel signal level Vpixel2. The horizontal axis of FIG. 3 is the time axis.

在图3中,斜坡参考电压VRAMP2高于斜坡参考电压VRAMP1,并以预定的偏移电平(Vth)精确跟踪斜坡参考电压VRAMP1。斜坡参考电压VRAMP1最初处于预定的初始电平(Vinit)。在预定的时序下,斜坡参考电压VRAMP1开始以恒定速率从Vinit斜升。例如,当用户操作成像装置拍摄照片或拍摄电影时,斜坡参考电压开始斜升。当斜坡参考电压VRAMP1开始斜升时,斜坡参考电压VRAMP2同时以与VRAMP 1相同的速率从高于VRAMP 1的预定电平(Vinit+Vth)开始斜升。斜坡参考电压VRAMP1和VRAMP2都在相同的时序暂停斜升,并将其保持在预定电平。In FIG. 3 , the ramp reference voltage VRAMP2 is higher than the ramp reference voltage VRAMP1 and precisely tracks the ramp reference voltage VRAMP1 with a predetermined offset level (Vth). The ramp reference voltage VRAMP1 is initially at a predetermined initial level (Vinit). At a predetermined timing, the ramp reference voltage VRAMP1 starts to ramp up from Vinit at a constant rate. For example, when the user operates the imaging device to take a photo or to take a movie, the ramp reference voltage starts to ramp up. When the ramp reference voltage VRAMP1 starts to ramp up, the ramp reference voltage VRAMP2 simultaneously starts to ramp up from a predetermined level (Vinit+Vth) higher than VRAMP 1 at the same rate as VRAMP 1 . Both the ramp reference voltages VRAMP1 and VRAMP2 suspend the ramp-up at the same timing and maintain it at a predetermined level.

偏移电平Vth是预定电压,并且可以设计成图2中所示的晶体管M5使目标偏置电流流过所使用的电压。晶体管M5具有接地的源极端子。当电压施加到晶体管M5的栅极端子时,晶体管M5充当比较器的电流源。The offset level Vth is a predetermined voltage, and can be designed to be the voltage used by the transistor M5 shown in FIG. 2 to flow the target bias current. Transistor M5 has a grounded source terminal. When a voltage is applied to the gate terminal of transistor M5, transistor M5 acts as a current source for the comparator.

图2中所示的晶体管M5可以是MOS晶体管。例如,晶体管M5的漏极电流(Id)如下确定。The transistor M5 shown in FIG. 2 may be a MOS transistor. For example, the drain current (Id) of the transistor M5 is determined as follows.

Id=k*W/L*(Vgs–Vt)2 (1)Id=k*W/L*(Vgs–Vt) 2 (1)

在公式(1)中,k:常数,W:沟道宽度,L:沟道长度,Vgs:栅极端子与源极端子之间的电压差,Vt:阈值电压。In formula (1), k: constant, W: channel width, L: channel length, Vgs: voltage difference between gate terminal and source terminal, Vt: threshold voltage.

如果假设“k”、“W”、“L”和“Vt”都是已知的,并且可以确定或预定目标漏极电流Id,则可以使用公式(1)自动计算“Vgs”。当源极端子接地且Vth施加于栅极端子时,Vth等于Vgs。因此,将预定偏移电平Vth施加到晶体管M5的栅极端子。If it is assumed that "k", "W", "L" and "Vt" are all known, and the target drain current Id can be determined or predetermined, then "Vgs" can be automatically calculated using equation (1). When the source terminal is grounded and Vth is applied to the gate terminal, Vth is equal to Vgs. Therefore, the predetermined offset level Vth is applied to the gate terminal of the transistor M5.

这里,目标漏极电流Id可以考虑例如比较器I1和I2的功耗、随机噪声、电压增益、瞬态响应等来确定。Here, the target drain current Id may be determined in consideration of, for example, power consumption of the comparators I1 and I2, random noise, voltage gain, transient response, and the like.

在图2中,每个像素信号(为了便于理解,Vpixel1或Vpixel2)被馈送到比较器I1(或I2)的负极输入端(端子4),比较器I1(或I2)将像素信号Vpixel1(或Vpixel2)与斜坡参考电压Vramp1进行比较。另一个斜坡参考电压Vramp2用于将电压施加到晶体管M5的栅极端子。该参考电压Vramp2可通过附图中未示出的采样/保持电路提供。晶体管M5充当比较器I1(或I2)的偏置电流源。In Figure 2, each pixel signal (for ease of understanding, Vpixel1 or Vpixel2) is fed to the negative input (terminal 4) of the comparator I1 (or I2), which converts the pixel signal Vpixel1 (or I2) Vpixel2) is compared with the ramp reference voltage Vramp1. Another ramp reference voltage Vramp2 is used to apply a voltage to the gate terminal of transistor M5. The reference voltage Vramp2 may be provided by a sample/hold circuit not shown in the drawings. Transistor M5 acts as a bias current source for comparator I1 (or I2).

在下文中,解释比较器I1/I2的基本操作。该实施例中的比较器I1、I2可以是差分放大器。比较器I1和I2具有相同的结构,包括晶体管M1至M5。晶体管M1和M2可以是由电流源晶体管M5驱动的NMOS差分输入晶体管。晶体管M3和M4用作输入晶体管M1和M2的负载晶体管。晶体管M3和M4可以理解为电流镜电路。In the following, the basic operation of the comparators I1/I2 is explained. The comparators I1, I2 in this embodiment may be differential amplifiers. The comparators I1 and I2 have the same structure, including transistors M1 to M5. Transistors M1 and M2 may be NMOS differential input transistors driven by current source transistor M5. Transistors M3 and M4 serve as load transistors for input transistors M1 and M2. The transistors M3 and M4 can be understood as a current mirror circuit.

在该实施例中,假设晶体管M1和M2的大小相同,晶体管M3和M4的大小相同。当晶体管M1的栅极端子电压高于晶体管M2的栅极端子电压时,晶体管M1的漏极电流(IdM1)大于晶体管M2的漏极电流(IdM2)。晶体管M1的漏极电流(IdM1)等于晶体管M3的漏极电流(IdM3)。由于晶体管M3和M4充当电流镜电路,因此晶体管M3的漏极电流被镜像到晶体管M4的漏极电流(IdM3=IdM4)。In this embodiment, it is assumed that transistors M1 and M2 are the same size, and transistors M3 and M4 are the same size. When the gate terminal voltage of the transistor M1 is higher than the gate terminal voltage of the transistor M2, the drain current (IdM1) of the transistor M1 is greater than the drain current (IdM2) of the transistor M2. The drain current (IdM1) of transistor M1 is equal to the drain current (IdM3) of transistor M3. Since transistors M3 and M4 act as a current mirror circuit, the drain current of transistor M3 is mirrored to the drain current of transistor M4 (IdM3=IdM4).

比较器I1(或I2)的输出电流通过晶体管M2的漏极电流与晶体管M4的漏极电流之间的差(IdM4–IdM2)产生。由于来自晶体管M2的漏极电流小于晶体管M1的漏极电流,因此晶体管M1与M2之间的漏极电流差(IdM1–IdM2)超出端子5的比较器I1(或I2)的输出电流。输出端子阻抗可以设计为具有高值,因此,输出电压可以相应地升高。The output current of comparator I1 (or I2) is generated by the difference (IdM4-IdM2) between the drain current of transistor M2 and the drain current of transistor M4. Since the drain current from transistor M2 is less than the drain current of transistor M1 , the drain current difference between transistors M1 and M2 (IdM1 - IdM2 ) exceeds the output current of comparator I1 (or I2 ) at terminal 5 . The output terminal impedance can be designed to have a high value, and therefore, the output voltage can be raised accordingly.

在图2中,来自像素的每个信号(输入像素电压Vpixel1/Vpixel2)被馈送到比较器I1(或I2)的负极输入端(端子4)。比较器I1(或I2)将像素信号与斜坡参考电压(Vramp1)进行比较。其它斜坡参考电压(Vramp2)用于通过采样/保持电路向晶体管M5的栅极端子(通过晶体管M7)提供电压。晶体管M5充当比较器I1(或I2)的偏置电流源。In Figure 2, each signal from a pixel (input pixel voltage Vpixel1/Vpixel2) is fed to the negative input (terminal 4) of the comparator I1 (or I2). The comparator I1 (or I2) compares the pixel signal with the ramp reference voltage (Vramp1). The other ramp reference voltage (Vramp2) is used to supply voltage to the gate terminal of transistor M5 (through transistor M7) through the sample/hold circuit. Transistor M5 acts as a bias current source for comparator I1 (or I2).

如上所述,预定偏移电平Vth可以设计成偏置电流源晶体管M5以使目标偏置电流流向比较器I1(或I2)的电压电平。当斜坡参考信号Vramp1达到与输入像素信号(Vpixel1/Vpixel2)相同的电平时,比较器I1(或I2)可以具有电压增益,该电压增益具有足以比较输入信号的电平。该情况发生的时序是图3中所示的“T5”。As described above, the predetermined offset level Vth may be designed to be the voltage level at which the current source transistor M5 is biased to cause the target bias current to flow to the comparator I1 (or I2). When the ramp reference signal Vramp1 reaches the same level as the input pixel signal (Vpixel1/Vpixel2), the comparator I1 (or I2) may have a voltage gain with a level sufficient to compare the input signal. The timing at which this occurs is "T5" shown in FIG. 3 .

如图2中所示,来自比较器I1(或I2)的输出通过端子Vout1(或Vout2)提供给计数器电路I3(或I4)。计数器电路I3(或I4)对从端子CLK提供的脉冲数量进行计数,同时来自比较器I1(或I2)的输出的输出电压电平保持在低电平。该情况对应于图3中所示的“T1”至“T5”。以类似的方式,当斜坡参考电压VRAMP1低于输入像素电压Vpixel2时,计数器电路I4对通过端子CLK施加的脉冲数量进行计数。因此,来自计数器电路I3的输出值可以不同于计数器电路I4的输出值。例如,图1中所示的逻辑电路150可以接收来自计数器电路I3(或I4)的输出值,并使用输出数字值生成图像。As shown in FIG. 2, the output from the comparator I1 (or I2) is provided to the counter circuit I3 (or I4) through the terminal Vout1 (or Vout2). The counter circuit I3 (or I4) counts the number of pulses supplied from the terminal CLK while the output voltage level from the output of the comparator I1 (or I2) is kept at a low level. This case corresponds to "T1" to "T5" shown in FIG. 3 . In a similar manner, when the ramp reference voltage VRAMP1 is lower than the input pixel voltage Vpixel2, the counter circuit I4 counts the number of pulses applied through the terminal CLK. Therefore, the output value from the counter circuit I3 may be different from the output value of the counter circuit I4. For example, the logic circuit 150 shown in Figure 1 may receive the output value from the counter circuit I3 (or I4) and use the output digital value to generate an image.

在图3中,在时序T1处,当脉冲ΦPW变为高电平时,开关SW1接通。公用电源VDD_common通过开关SW1提供给比较器I1(或I2)的本地电源线Vdd1(或Vdd2)。对作为存储电容器的电容器Cp充电,以便与公用电源VDD_common具有相同的电压。在“T1”之前,开关SW1保持断开,具有一个接地端子的电容器Cp不充电。脉冲ΦPW和其它脉冲信号可以从例如逻辑电路150或T/G 140提供。In FIG. 3, at timing T1, when the pulse ΦPW becomes a high level, the switch SW1 is turned on. The common power supply VDD_common is supplied to the local power supply line Vdd1 (or Vdd2) of the comparator I1 (or I2) through the switch SW1. The capacitor Cp, which is a storage capacitor, is charged so as to have the same voltage as the common power supply VDD_common. Before "T1", the switch SW1 remains open and the capacitor Cp, which has one ground terminal, is not charged. Pulse ΦPW and other pulse signals may be provided from, for example, logic circuit 150 or T/G 140 .

在时序T1处,脉冲ΦPW变为高电平,开关SW1相应地接通。然后,从时序T1至T2,对电容器Cp充电。在时序T2处,脉冲ΦPW变为低电平,开关SW1断开,比较器I1(或I2)的本地电源线Vdd1(或Vdd2)与公用电源VDD_common断开连接。在T3之后,比较器I1(或I2)使用存储在电容器Cp中的电力进行其操作。因此,例如,当比较器I1(或I2)进行比较功能时,可以将每个比较器的本地电源线彼此隔离,因此,可以减少由比较器(I1、I2)之间的电源线相关串扰引起的负面影响。由于电源线的串扰更少且电源线更稳定,因此这样可以促使提高通过成像装置100获得的图像的质量。此外,比较器I1(或I2)仅在需要进行比较操作时消耗功率,因此,可以降低成像装置100的功耗。需要说明的是,成像装置100可以包括数百万或更多的像素和比较器。这些整个电路的功耗可以显著降低,这对于获得高分辨率图像的设备十分有益。At timing T1, the pulse ΦPW becomes a high level, and the switch SW1 is turned on accordingly. Then, from the timings T1 to T2, the capacitor Cp is charged. At timing T2, the pulse ΦPW becomes low, the switch SW1 is turned off, and the local power supply line Vdd1 (or Vdd2) of the comparator I1 (or I2) is disconnected from the common power supply VDD_common. After T3, the comparator I1 (or I2) uses the power stored in the capacitor Cp for its operation. Thus, for example, when the comparator I1 (or I2) is performing a comparison function, the local power lines of each comparator can be isolated from each other, thus reducing the power supply line related crosstalk between the comparators (I1, I2) caused by negative impact. This may contribute to improving the quality of images obtained by the imaging device 100 due to less crosstalk and more stable power lines. In addition, the comparator I1 (or I2 ) consumes power only when a comparison operation is required, and thus, the power consumption of the imaging device 100 can be reduced. It should be noted that the imaging device 100 may include millions or more of pixels and comparators. The power consumption of these entire circuits can be significantly reduced, which is beneficial for devices that obtain high-resolution images.

在时序T3处,从逻辑电路150或T/G 140提供的脉冲Φ1变为高电平,比较器I1(或I2)中的晶体管M8和M10导通。电容器CG的一个端子通过晶体管M8连接到端子4,并且输入像素电压Vpixel1(或Vpixel2)施加到端子4。电容器CG的另一个端子通过晶体管M10连接到比较器I1(或I2)的接地端子。At timing T3, the pulse Φ1 supplied from the logic circuit 150 or the T/G 140 becomes a high level, and the transistors M8 and M10 in the comparator I1 (or I2) are turned on. One terminal of the capacitor CG is connected to the terminal 4 through the transistor M8 , and the input pixel voltage Vpixel1 (or Vpixel2 ) is applied to the terminal 4 . The other terminal of capacitor CG is connected to the ground terminal of comparator I1 (or I2) through transistor M10.

在图3中,当脉冲Φ1变为高电平时,施加到晶体管M6的栅极端子的脉冲Φ同时变为高电平。具有接地源极端子的晶体管M6导通,然后,将连接到晶体管M6的漏极端子和源极端子的电容器Cs放电。晶体管M5的源极端子连接到电容器Cs,因此,晶体管M5的源极端子的电压电平变为接地电平。In FIG. 3, when the pulse Φ1 goes high, the pulse Φ applied to the gate terminal of the transistor M6 goes high at the same time. The transistor M6 having the grounded source terminal is turned on, and then the capacitor Cs connected to the drain terminal and the source terminal of the transistor M6 is discharged. The source terminal of the transistor M5 is connected to the capacitor Cs, and therefore, the voltage level of the source terminal of the transistor M5 becomes the ground level.

在时序T4处,脉冲Φ1变为低电平,由逻辑电路150或T/G 140提供的脉冲Φ2变为高电平。晶体管M8和M10由于施加到它们的栅极端子上的脉冲Φ1而截止。当晶体管M8截止时,电容器CG的一个端子与端子4断开连接。当晶体管M10截止时,电容器CG的另一个端子与比较器I1(或I2)的接地端子断开连接。At timing T4, pulse Φ1 goes low and pulse Φ2 provided by logic circuit 150 or T/G 140 goes high. Transistors M8 and M10 are turned off due to pulse Φ1 applied to their gate terminals. When transistor M8 is turned off, one terminal of capacitor CG is disconnected from terminal 4 . When the transistor M10 is turned off, the other terminal of the capacitor CG is disconnected from the ground terminal of the comparator I1 (or I2).

在时序T4处,晶体管M7由于施加到晶体管M7的栅极端子上的脉冲Φ2而导通。电容器CG的一个端子通过晶体管M7连接到端子2。在时序T4处,晶体管M9由于施加到晶体管M9的栅极端子上的脉冲Φ2而导通。电容器CG的另一个端子通过晶体管M9连接到晶体管M5的栅极端子。晶体管M5充当比较器I1中的电流源。由于斜坡参考电压Vramp2施加到端子2,并且电容器CG中的电荷被保存,即电容器CG的两个端子之间的电压差保持恒定,因此可以理解的是,晶体管M5的栅极电压(图2中所示的“VGATE”)可以用以下公式“Vinit+Vth–Vpixel1”计算。在比较器I2的情况下,该公式为“Vinit+Vth–Vpixel2”。At timing T4, transistor M7 is turned on due to pulse Φ2 applied to the gate terminal of transistor M7. One terminal of capacitor CG is connected to terminal 2 through transistor M7. At timing T4, transistor M9 is turned on due to pulse Φ2 applied to the gate terminal of transistor M9. The other terminal of capacitor CG is connected to the gate terminal of transistor M5 through transistor M9. Transistor M5 acts as a current source in comparator I1. Since the ramp reference voltage Vramp2 is applied to terminal 2 and the charge in the capacitor CG is preserved, i.e. the voltage difference between the two terminals of the capacitor CG remains constant, it can be understood that the gate voltage of the transistor M5 (Fig. "VGATE" shown in 2) can be calculated with the following formula "Vinit+Vth-Vpixel1". In the case of comparator I2, the formula is "Vinit+Vth-Vpixel2".

在图3中所示的时序T5处,斜坡参考电压Vramp1达到输入像素电压Vpixel1。由于施加到比较器I1的斜坡参考电压Vramp1中的电压增加是通过“Vpixel1–Vinit”获得的,并且斜坡参考电压Vramp1与Vramp2之间的电压差为Vth,因此施加到比较器I1中晶体管M5的栅极端子的电压可以根据下面所示的公式获得。At timing T5 shown in FIG. 3, the ramp reference voltage Vramp1 reaches the input pixel voltage Vpixel1. Since the voltage increase in the ramp reference voltage Vramp1 applied to the comparator I1 is obtained by "Vpixel1-Vinit", and the voltage difference between the ramp reference voltages Vramp1 and Vramp2 is Vth, the voltage applied to the transistor M5 in the comparator I1 is The voltage of the gate terminal can be obtained according to the formula shown below.

{(Vinit+Vth–Vpixel1)+(Vpixel1–Vinit)}=Vth{(Vinit+Vth–Vpixel1)+(Vpixel1–Vinit)}=Vth

这表示晶体管M5可以使足够大以驱动比较器I1的偏置电流流过,比较器I1的输出变为高电平,并且有一定量的延迟时间响应其输入电压变化。这些响应在图3中示为“Vout1”和“ibias1”。This means that transistor M5 can cause a bias current large enough to drive comparator I1 to flow through, and the output of comparator I1 goes high with a certain amount of delay time in response to its input voltage change. These responses are shown in Figure 3 as "Vout1" and "ibias1".

在图3中所示的示出T6处,斜坡参考电压Vramp1达到输入像素电压Vpixel2。由于比较器I2的斜坡参考电压Vramp1中的电压增加为(Vpixel2–Vinit),其中,斜坡参考电压Vramp1与Vramp2之间的电压差为Vth,因此可以理解的是,施加到比较器I2中包括的晶体管M5的栅极端子的电压(VGATE)通过下面所示的公式获得。这与比较器I1类似。At illustration T6 shown in FIG. 3, the ramp reference voltage Vramp1 reaches the input pixel voltage Vpixel2. Since the voltage increase in the ramp reference voltage Vramp1 of the comparator I2 is (Vpixel2−Vinit), where the voltage difference between the ramp reference voltages Vramp1 and Vramp2 is Vth, it can be understood that the voltage applied to the comparator I2 included in the The voltage (VGATE) of the gate terminal of the transistor M5 is obtained by the formula shown below. This is similar to comparator I1.

{(Vinit+Vth–Vpixel2)+(Vpixel2–Vinit)}=Vth{(Vinit+Vth-Vpixel2)+(Vpixel2-Vinit)}=Vth

这表示晶体管M5可以使足够大以驱动比较器I2的偏置电流流过,比较器I2的输出变为高电平,并且有一定量的延迟时间响应其输入电压变化。这些响应在图3中示为“Vout2”和“ibias2”。This means that transistor M5 can flow a bias current large enough to drive comparator I2, whose output goes high with a certain amount of delay in response to its input voltage change. These responses are shown in Figure 3 as "Vout2" and "ibias2".

如上所述,由于每个比较器I1/I2的偏置电流仅在斜坡参考电压Vramp1的电平接近其输入像素信号电平(Vpixel1或Vpixel2)时流动,因此与一些传统SS ADC中由恒定电流源驱动的比较器相比,比较器I1和I2的功耗降低。此外,偏置电流在比较器I1/I2中流动的时序可以由输入信号电平和斜坡参考电平(Vramp1/Vramp2)自动控制。As mentioned above, since the bias current of each comparator I1/I2 only flows when the level of the ramp reference voltage Vramp1 is close to its input pixel signal level (Vpixel1 or Vpixel2), it is different from the constant current in some conventional SS ADCs. Comparators I1 and I2 consume less power compared to source-driven comparators. Furthermore, the timing of bias current flow in comparators I1/I2 can be automatically controlled by the input signal level and the ramp reference level (Vramp1/Vramp2).

图2中所示的电容器Cp的电容用于在图3中所示的T2之后操作比较器I1/I2。在时序T2处,开关SW1断开,比较器I1/I2与公用电源VDD_common断开连接。当实现与比较器I1/I2的比较操作时,具有以下信息可能是有帮助的:可以如何估计电容器Cp的电容,以及上文公开的比较器(I1/I2)在与公用电源线(VDD_common)断开连接后如何正确操作其本地电源线(Vdd1/Vdd2)。The capacitance of the capacitor Cp shown in FIG. 2 is used to operate the comparators I1/I2 after T2 shown in FIG. 3 . At timing T2, the switch SW1 is turned off, and the comparators I1/I2 are disconnected from the common power supply VDD_common. When implementing a comparison operation with comparators I1/I2, it may be helpful to have information on how the capacitance of capacitor Cp can be estimated, and when the comparators (I1/I2) disclosed above are connected to the common supply line (VDD_common) How to properly handle its local power cord (Vdd1/Vdd2) after disconnection.

在估计电容器Cp(为了便于理解,这里简称为“Cp”)的电容之前,可以理解的是,在比较器I1/I2的比较过程中流入电容器Cs的总电荷小于Vth*Cs。为了便于理解,在该公式中,“Cs”表示电容器Cs的电容。为了比较器I1/I2的正确操作,施加到电容器Cs的最小电源电压可以基于比较器I1/I2的电压增益、输入-输出时间延迟、输入偏移电压和输出动态范围等各个方面来估计。为了达到实现ADC规格所需的这些规格,比较器I1/I2中每个晶体管的漏极-源极电压需要保持高于根据下面所示的公式计算的所谓的饱和电压(Vds_min)的电压。Before estimating the capacitance of the capacitor Cp (herein simply referred to as "Cp" for ease of understanding), it is understood that the total charge flowing into the capacitor Cs during the comparison of the comparators I1/I2 is less than Vth*Cs. For ease of understanding, in this formula, "Cs" represents the capacitance of the capacitor Cs. For correct operation of comparators I1/I2, the minimum supply voltage applied to capacitor Cs can be estimated based on various aspects of comparators I1/I2's voltage gain, input-output time delay, input offset voltage, and output dynamic range. In order to achieve these specifications required to achieve ADC specifications, the drain-source voltage of each transistor in comparators I1/I2 needs to remain above the so-called saturation voltage (Vds_min) calculated according to the formula shown below.

Vds_min=Vgs–VtVds_min=Vgs–Vt

因此,通过将每个晶体管M4、M2和M5的饱和电压Vds_min相加,可以估计最小电源电压(Vdd_min),如下所示。在该实施例中,假设这些晶体管的尺寸相同。Therefore, by adding the saturation voltage Vds_min of each transistor M4, M2 and M5, the minimum supply voltage (Vdd_min) can be estimated as shown below. In this embodiment, these transistors are assumed to be the same size.

Vdd_min=3*Vds_minVdd_min=3*Vds_min

电容器Cp的电容需要大于“Cs*Vth/(VDD_common–Vdd_min)”。根据这种计算,可以估计电容器Cp的最小电容。这种最小电容可以降低成像装置100的功耗。此外,当比较器I1/I2放置在芯片中时,通过使用此类计算结果,可以最小化电容器Cp共享的硅面积。硅面积最小可以有助于降低成像装置100成本。The capacitance of the capacitor Cp needs to be larger than "Cs*Vth/(VDD_common-Vdd_min)". From this calculation, the minimum capacitance of the capacitor Cp can be estimated. This minimum capacitance can reduce the power consumption of the imaging device 100 . Furthermore, by using such calculation results, the silicon area shared by the capacitors Cp can be minimized when the comparators I1/I2 are placed in the chip. Minimizing silicon area can help reduce the cost of the imaging device 100 .

在下文中,解释第二实施例。图4示出了比较器I1和I2。图3的附图标记对应于图2。比较器I1/I2包括晶体管M1至M10,其中,M1、M2、M5、M6、M7、M8、M9、M10都是PMOS晶体管,而M3和M4是NMOS晶体管,还包括端子1至5、电容器CG、Cp和Cs以及开关SW1。需要说明的是,晶体管M1至M10与图2不同。I3和I4是计数器电路。CLK提供来自例如图1中所示的T/G 140或逻辑电路150的时钟信号。图5是比较器I1/I2进行操作时的时序图。在图4和图5中,假设像素信号电平Vpixel1高于像素信号电平Vpixel2,斜坡参考电压VRAMP2低于斜坡参考电压VRAMP1,并且斜坡参考电压VRAMP2以预定的偏移电平(Vth)精确地跟踪斜坡参考电压VRAMP1。斜坡参考电压VRAMP1以恒定速率从预定初始电平(Vinit)斜降。晶体管M1至M4的操作类似于图2。Hereinafter, the second embodiment is explained. Figure 4 shows comparators I1 and I2. The reference numbers of FIG. 3 correspond to FIG. 2 . The comparators I1/I2 include transistors M1 to M10, wherein M1, M2, M5, M6, M7, M8, M9, M10 are all PMOS transistors, and M3 and M4 are NMOS transistors, and also include terminals 1 to 5, a capacitor C G , Cp and Cs and switch SW1. It should be noted that the transistors M1 to M10 are different from those in FIG. 2 . I3 and I4 are counter circuits. CLK provides a clock signal from, for example, T/G 140 or logic circuit 150 shown in FIG. 1 . FIG. 5 is a timing chart when the comparators I1/I2 operate. In FIGS. 4 and 5, it is assumed that the pixel signal level Vpixel1 is higher than the pixel signal level Vpixel2, the ramp reference voltage VRAMP2 is lower than the ramp reference voltage VRAMP1, and the ramp reference voltage VRAMP2 is precisely at a predetermined offset level (Vth) Tracking ramp reference voltage VRAMP1. The ramp reference voltage VRAMP1 ramps down from a predetermined initial level (Vinit) at a constant rate. The operation of transistors M1 to M4 is similar to that of FIG. 2 .

在图4中,每个像素信号/电压(为了便于理解,Vpixel1和Vpixel2)被提供到比较器I1(或I2)的负极输入端(端子4),该比较器I1(或I2)将像素信号Vpixel1(或Vpixel2)与斜坡参考电压(VRAMP1)进行比较。另一个斜坡参考电压(VRAMP2)可以通过采样/保持电路向晶体管M5的栅极端子提供电压,该晶体管M5充当比较器I1(或I2)的偏置电流源。In Figure 4, each pixel signal/voltage (for ease of understanding, Vpixel1 and Vpixel2) is supplied to the negative input (terminal 4) of a comparator I1 (or I2) which converts the pixel signal Vpixel1 (or Vpixel2) is compared to the ramp reference voltage (VRAMP1). Another ramp reference voltage (VRAMP2) can provide a voltage through the sample/hold circuit to the gate terminal of transistor M5, which acts as a bias current source for comparator I1 (or I2).

如上所述,“Vth”可以设计成偏置电流源晶体管(M5)以使偏置电流流向比较器I1(或I2)的电压电平。因此,比较器I1(或I2)可以具有电压增益,该电压增益足够大以当斜坡参考电压Vramp1达到与输入像素信号Vpixel1(或Vpixel2)相同的电压时,比较输入信号。As mentioned above, "Vth" can be designed to be the voltage level of the bias current source transistor (M5) to cause the bias current to flow to the comparator I1 (or I2). Therefore, the comparator I1 (or I2) may have a voltage gain that is large enough to compare the input signal when the ramp reference voltage Vramp1 reaches the same voltage as the input pixel signal Vpixel1 (or Vpixel2).

如上所述,计数器电路I3(或I4)输入从比较器I1(或I2)输出的信号。计数器电路I3(或I4)对通过CLK端子提供的脉冲数量进行计数,而来自比较器I1(或I2)的输出信号保持在低电平。As described above, the counter circuit I3 (or I4) inputs the signal output from the comparator I1 (or I2). The counter circuit I3 (or I4) counts the number of pulses supplied through the CLK terminal, while the output signal from the comparator I1 (or I2) is kept at low level.

在图5中,在时序T1处,脉冲ΦPW变为高电平,开关SW1相应地接通。公用电源VDD_common通过开关SW1提供给每个比较器(Vdd1、Vdd2)的本地电源线,并对存储电容器Cp充电,以具有与VDD_common相同的电平。从时序T1至T2,对电容器Cp充电。In FIG. 5, at timing T1, the pulse ΦPW becomes a high level, and the switch SW1 is turned on accordingly. The common power supply VDD_common is supplied to the local power supply line of each comparator (Vdd1, Vdd2) through the switch SW1, and charges the storage capacitor Cp to have the same level as VDD_common. From timing T1 to T2, the capacitor Cp is charged.

在时序T2处,脉冲φPW变为低电平,开关SW1断开。每个比较器(I1、I2)的本地电源线(Vdd1/Vdd2,在图4中示为Vdd)与公用电源线(VDD_common)断开连接。在时序T3处,已经处于高电平并施加到晶体管M8和M10的栅极端子上的脉冲Φ1变为低电平。因此,比较器I1(或I2)中的晶体管M8和M10导通。电容器CG的一个端子通过晶体管M10连接到端子4。端子4接收输入像素信号Vpixel1(或Vpixel2),而电容器CG的另一个端子通过晶体管M8连接到源自公用电源VDD_common的Vdd1。在时序T3之后,比较器I1(或I2)使用存储在电容器Cp中的电力进行其操作。因此,例如,当比较器I1(或I2)进行比较功能时,可以将每个比较器的本地电源线彼此隔离,因此,可以减少由比较器(I1、I2)之间的电源线相关串扰引起的负面影响。At timing T2, the pulse φPW becomes low level, and the switch SW1 is turned off. The local power line (Vdd1/Vdd2, shown as Vdd in Figure 4) of each comparator (I1, I2) is disconnected from the common power line (VDD_common). At timing T3, the pulse Φ1, which has been at a high level and applied to the gate terminals of transistors M8 and M10, becomes a low level. Therefore, transistors M8 and M10 in comparator I1 (or I2) are turned on. One terminal of capacitor CG is connected to terminal 4 through transistor M10. Terminal 4 receives the input pixel signal Vpixel1 (or Vpixel2 ), while the other terminal of capacitor CG is connected through transistor M8 to Vdd1 derived from the common power supply VDD_common. After timing T3, the comparator I1 (or I2) uses the power stored in the capacitor Cp for its operation. Thus, for example, when the comparator I1 (or I2) is performing a comparison function, the local power lines of each comparator can be isolated from each other, thus reducing the power supply line related crosstalk between the comparators (I1, I2) caused by negative impact.

当已经处于高电平并施加到晶体管M8和M10的栅极端子上的脉冲Φ1变为低电平,同时施加到晶体管M6的栅极端子的脉冲Φres变为低电平时,晶体管M8、M10和M6导通。将连接到晶体管M6的电容器Cs放电,施加到晶体管M5的源极端子的电压达到与Vdd1/Vdd2相同的电平,即与公用电源VDD_common相同的电平。When the pulse Φ1, which has been at a high level and applied to the gate terminals of transistors M8 and M10, goes low, while the pulse Φres applied to the gate terminal of transistor M6 goes low, the transistors M8, M10 and M6 is turned on. The capacitor Cs connected to the transistor M6 is discharged, and the voltage applied to the source terminal of the transistor M5 reaches the same level as Vdd1/Vdd2, that is, the same level as the common power supply VDD_common.

在时序T4处,脉冲Φ1变为高电平,同时脉冲Φ2变为低电平。在栅极节点上接收脉冲Φ1的晶体管M8和M10截止,在栅极节点上接收脉冲Φ2的晶体管M7和M9导通。因此,电容器CG的两个端子与端子4(通过晶体管M10)和公用电源Vdd(通过晶体管M8)断开连接,并连接到端子2(通过晶体管M9)和晶体管M5的栅极端子(通过晶体管M7)。晶体管M5用作比较器I1(或I2)的电流源。斜坡参考电压VRAMP2施加到端子2,因此,电容器CG上的电荷被保存。电容器CG的两个端子之间的电压差仍然存在,晶体管M5的栅极端子上的电压通过“Vinit–Vth+Vdd–Vpixelx(x=1或2)”计算。At timing T4, the pulse Φ1 becomes a high level, while the pulse Φ2 becomes a low level. The transistors M8 and M10 that receive the pulse Φ1 on the gate node are turned off, and the transistors M7 and M9 that receive the pulse Φ2 on the gate node are turned on. Therefore, the two terminals of capacitor CG are disconnected from terminal 4 (via transistor M10 ) and the common power supply Vdd (via transistor M8 ) and are connected to terminal 2 (via transistor M9 ) and the gate terminal of transistor M5 (via transistor M8 ) M7). Transistor M5 acts as a current source for comparator I1 (or I2). The ramp reference voltage VRAMP2 is applied to terminal 2, so the charge on the capacitor CG is preserved. The voltage difference between the two terminals of capacitor CG still exists, and the voltage on the gate terminal of transistor M5 is calculated by "Vinit-Vth+Vdd- Vpixelx (x=1 or 2)".

在时序T5处,斜坡参考电压VRAMP1达到与输入像素信号Vpixel1相同的电压。施加到比较器I1的斜坡参考电压VRAMP1的电压降低为(Vinit–Vpixel1),斜坡参考电压VRAMP1与VRAMP2之间的电压差为Vth,因此,比较器I1中的晶体管M5的栅极端子达到如下所示的电压。At timing T5, the ramp reference voltage VRAMP1 reaches the same voltage as the input pixel signal Vpixel1. The voltage of the ramp reference voltage VRAMP1 applied to the comparator I1 is reduced by (Vinit – Vpixel1), and the voltage difference between the ramp reference voltages VRAMP1 and VRAMP2 is Vth, therefore, the gate terminal of the transistor M5 in the comparator I1 reaches as follows. voltage shown.

(Vinit–Vth+Vdd1–Vpixel1)–(Vinit–Vpixel1)=Vdd1–Vth(Vinit–Vth+Vdd1–Vpixel1)–(Vinit–Vpixel1)=Vdd1–Vth

该公式表示晶体管M5可以使足够大以驱动比较器I1的偏置电流流过,并且比较器I1的输出信号变为低电平,并且有一定量的延迟时间响应其输入电压变化。在图5中,响应被示为“Vout1”和“ibias1”。This formula means that transistor M5 can cause a bias current large enough to drive comparator I1 to flow and the output signal of comparator I1 to go low with a certain amount of delay in response to its input voltage change. In Figure 5, the responses are shown as "Vout1" and "ibias1".

在时序T6处,斜坡参考电压VRAMP1达到与输入像素信号Vpixel2相同的电压。施加到比较器I2的斜坡参考电压VRAMP1的电压降低为(Vinit–Vpixel2),斜坡参考电压VRAMP1与VRAMP2之间的电压差为Vth。施加到比较器I2中的晶体管M5的栅极端子的电压通过如下所示的公式计算。At timing T6, the ramp reference voltage VRAMP1 reaches the same voltage as the input pixel signal Vpixel2. The voltage of the ramp reference voltage VRAMP1 applied to the comparator I2 is reduced to (Vinit−Vpixel2), and the voltage difference between the ramp reference voltages VRAMP1 and VRAMP2 is Vth. The voltage applied to the gate terminal of the transistor M5 in the comparator I2 is calculated by the formula shown below.

(Vinit–Vth+Vdd2–Vpixel2)–(Vinit–Vpixel2)=Vdd2–Vth(Vinit–Vth+Vdd2–Vpixel2)–(Vinit–Vpixel2)=Vdd2–Vth

这表示,如果晶体管M5可以使足够大以驱动比较器I2的偏置电流流过,则比较器I2的输出变为低电平,并且有一定量的延迟时间响应其输入电压变化。这些响应在图5中示为“Vout2”和“ibias2”。This means that if transistor M5 can cause a bias current large enough to drive comparator I2 to flow, the output of comparator I2 goes low with a certain amount of delay time in response to its input voltage change. These responses are shown in Figure 5 as "Vout2" and "ibias2".

可以理解的是,成像装置通常具有沿着多个列和行布置的大量像素。图3和/或图5中包括的时序图可以应用于这些像素,并且例如,每列或每行上的像素可以根据图3或图5中描述的相同时序同时操作。逻辑电路150或T/G 140可以输出信号和/或脉冲,以便控制比较器I1/I2。It will be appreciated that imaging devices typically have a large number of pixels arranged along multiple columns and rows. The timing diagrams included in FIG. 3 and/or FIG. 5 may be applied to these pixels, and for example, the pixels on each column or row may operate simultaneously according to the same timings described in FIG. 3 or FIG. 5 . Logic circuit 150 or T/G 140 may output signals and/or pulses to control comparators I1/I2.

上述实施例可以具有各种优点。首先,例如,SS ADC中的每个上述比较器的偏置电流取决于输入信号与施加到比较器的斜坡参考电压之间的电压差。比较器的偏置电流仅当斜坡参考电压电平接近输入信号电平时才开始流动。因此,动态偏置电路完全适合SS ADC,此外,还降低了SS ADC的功耗。The above-described embodiments may have various advantages. First, for example, the bias current of each of the aforementioned comparators in an SS ADC depends on the voltage difference between the input signal and the ramp reference voltage applied to the comparator. The comparator's bias current only begins to flow when the ramp reference voltage level is close to the input signal level. Therefore, the dynamic bias circuit is perfectly suitable for the SS ADC, and in addition, the power consumption of the SS ADC is reduced.

其次,例如,SS ADC中的每个上述比较器的本地电源线通过开关(SW1)连接到公用电源(VDD_common)。这种分离的本地电源线分别具有存储电容器(Cp)。Second, for example, the local power line of each of the above-mentioned comparators in the SS ADC is connected to the common power supply (VDD_common) through a switch (SW1). Such separate local power lines each have storage capacitors (Cp).

如上述实施例中所述,就在开始AD转换之前,这些开关(SW1)关闭,同时,对应于布置在一列上的像素的每个比较器的本地电源线与公用(传感器)电源线(VDD_common)断开连接。As described in the above-described embodiment, just before the start of AD conversion, these switches ( SW1 ) are turned off, and at the same time, the local power supply line and the common (sensor) power supply line (VDD_common) of each comparator corresponding to the pixels arranged on a column )Disconnect.

每列比较器的电源电流由存储电容器(Cp)提供,而不是由公用(传感器)电源线(VDD_common)提供。因此,负面影响,例如,在每个本地电源线(Vdd1/Vdd2)中产生的波动不会传播到其它本地电源线,因此,例如,可以消除“条带噪声”。The supply current for each column of comparators is provided by the storage capacitor (Cp) instead of the common (sensor) supply line (VDD_common). Therefore, negative effects such as fluctuations generated in each local power line (Vdd1/Vdd2) do not propagate to other local power lines, so that, for example, "striping noise" can be eliminated.

除了上述实施例之外,本申请可以具有其它方面。例如,第一方面是一种成像装置,所述成像装置包括比较器、像素和控制电路,其中,所述比较器包括开关、第一晶体管和第一电容器,其中,当所述开关接通时,所述第一电容器被充电,并且其中,在所述开关断开之后,所述比较器使用在所述第一电容器中充入的电力,比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号,并输出输出信号。In addition to the above-described embodiments, the present application may have other aspects. For example, a first aspect is an imaging device comprising a comparator, a pixel and a control circuit, wherein the comparator comprises a switch, a first transistor and a first capacitor, wherein when the switch is turned on , the first capacitor is charged, and wherein, after the switch is turned off, the comparator compares the pixel signal input from the pixel with the pixel signal input from the pixel using the power charged in the first capacitor Control the ramp signal input by the circuit and output the output signal.

第二方面是根据上述方面所述的成像装置,其中,所述斜坡信号包括第一斜坡信号和第二斜坡信号。A second aspect is the imaging device according to the above aspect, wherein the ramp signal includes a first ramp signal and a second ramp signal.

第三方面是根据上述方面所述的成像装置,其中,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。A third aspect is the imaging device according to the above aspect, wherein the ramp signal includes a predetermined voltage difference between the first ramp signal and the second ramp signal.

第四方面是根据上述方面所述的成像装置,其中,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。A fourth aspect is the imaging device according to the above aspect, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal.

第五方面是根据上述方面所述的成像装置,其中,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。A fifth aspect is the imaging device according to the above aspect, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor biases A current is set to flow to drive the comparator.

第六方面是根据上述方面所述的成像装置,其中,所述第一电容器的电容足够大以驱动所述比较器。A sixth aspect is the imaging device according to the above aspect, wherein the capacitance of the first capacitor is large enough to drive the comparator.

第七方面是根据上述方面所述的成像装置,其中,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。A seventh aspect is the imaging device according to the above aspect, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal.

第八方面是根据上述方面所述的成像装置,其中,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。An eighth aspect is the imaging device according to the above aspect, wherein the comparator is disconnected from a common power source of the imaging device when the switch is turned off.

第九方面是根据上述方面所述的成像装置,其中,所述第一斜坡信号和所述第二斜坡信号是斜升信号。A ninth aspect is the imaging device according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-up signals.

第十方面是根据上述方面所述的成像装置,其中,所述第一斜坡信号和所述第二斜坡信号是斜降信号。A tenth aspect is the imaging device according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-down signals.

第十一方面是一种用于包括比较器、像素和控制电路的成像装置的成像方法,所述成像方法包括:当所述比较器的开关接通时,对所述比较器的第一电容器充电;在所述开关断开后,使用在所述第一电容器中充入的电力比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号;输出输出信号。An eleventh aspect is an imaging method for an imaging device including a comparator, a pixel, and a control circuit, the imaging method comprising: when a switch of the comparator is turned on, charging a first capacitor of the comparator charging; after the switch is turned off, comparing a pixel signal input from the pixel with a ramp signal input from the control circuit using the power charged in the first capacitor; and outputting an output signal.

第十二方面是根据上述方面所述的成像方法,其中,所述斜坡信号包括第一斜坡信号和第二斜坡信号。A twelfth aspect is the imaging method according to the above aspect, wherein the ramp signal includes a first ramp signal and a second ramp signal.

第十三方面是根据上述方面所述的成像方法,其中,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。A thirteenth aspect is the imaging method according to the above aspect, wherein the ramp signal includes a predetermined voltage difference between the first ramp signal and the second ramp signal.

第十四方面是根据上述方面所述的成像方法,其中,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。A fourteenth aspect is the imaging method according to the above aspect, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal.

第十五方面是根据上述方面所述的成像方法,其中,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。A fifteenth aspect is the imaging method according to the above aspect, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor makes A bias current flows to drive the comparator.

第十六方面是根据上述方面所述的成像方法,其中,所述第一电容器的电容足够大以驱动所述比较器。A sixteenth aspect is the imaging method according to the above aspect, wherein the capacitance of the first capacitor is large enough to drive the comparator.

第十七方面是根据上述方面所述的成像方法,其中,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。A seventeenth aspect is the imaging method according to the above aspect, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal.

第十八方面是根据上述方面所述的成像方法,其中,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。An eighteenth aspect is the imaging method according to the above aspect, wherein the comparator is disconnected from the common power supply of the imaging device when the switch is turned off.

第十九方面是根据上述方面所述的成像方法,其中,所述第一斜坡信号和所述第二斜坡信号是斜升信号。A nineteenth aspect is the imaging method according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-up signals.

第二十方面是根据上述方面所述的成像方法,其中,所述第一斜坡信号和所述第二斜坡信号是斜降信号。A twentieth aspect is the imaging method according to the above aspect, wherein the first ramp signal and the second ramp signal are ramp-down signals.

上面公开的实施例是示例,应当理解,本发明和本申请的范围不受此类公开内容的限制或约束。The embodiments disclosed above are examples, and it should be understood that the scope of the invention and the application is not limited or restricted by such disclosure.

Claims (20)

1.一种成像装置,其特征在于,包括比较器、像素和控制电路,其中,1. An imaging device, comprising a comparator, a pixel and a control circuit, wherein, 所述比较器包括开关、第一晶体管和第一电容器,其中,The comparator includes a switch, a first transistor, and a first capacitor, wherein, 当所述开关接通时,所述第一电容器被充电,并且其中,When the switch is turned on, the first capacitor is charged, and wherein, 在所述开关断开后,所述比较器使用在所述第一电容器中充入的电力,比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号,并输出输出信号。After the switch is turned off, the comparator compares the pixel signal input from the pixel with the ramp signal input from the control circuit using the power charged in the first capacitor, and outputs an output signal. 2.根据权利要求1所述的成像装置,其特征在于,所述斜坡信号包括第一斜坡信号和第二斜坡信号。2. The imaging device of claim 1, wherein the ramp signal comprises a first ramp signal and a second ramp signal. 3.根据权利要求2所述的成像装置,其特征在于,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。3. The imaging device of claim 2, wherein the ramp signal comprises a predetermined voltage difference between the first ramp signal and the second ramp signal. 4.根据权利要求1所述的成像装置,其特征在于,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。4. The imaging device of claim 1, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal. 5.根据权利要求1所述的成像装置,其特征在于,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。5. The imaging apparatus according to claim 1, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor enables A bias current flows to drive the comparator. 6.根据权利要求1所述的成像装置,其特征在于,所述第一电容器的电容足够大以驱动所述比较器。6. The imaging device of claim 1, wherein the capacitance of the first capacitor is large enough to drive the comparator. 7.根据权利要求1所述的成像装置,其特征在于,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。7. The imaging device of claim 1, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal. 8.根据权利要求1所述的成像装置,其特征在于,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。8. The imaging device of claim 1, wherein the comparator is disconnected from a utility power source for the imaging device when the switch is open. 9.根据权利要求1所述的成像装置,其特征在于,所述第一斜坡信号和所述第二斜坡信号是斜升信号。9. The imaging device of claim 1, wherein the first ramp signal and the second ramp signal are ramp-up signals. 10.根据权利要求1所述的成像装置,其特征在于,所述第一斜坡信号和所述第二斜坡信号是斜降信号。10. The imaging device of claim 1, wherein the first ramp signal and the second ramp signal are ramp-down signals. 11.一种用于包括比较器、像素和控制电路的成像装置的成像方法,其特征在于,所述成像方法包括:11. An imaging method for an imaging device comprising a comparator, a pixel and a control circuit, wherein the imaging method comprises: 当所述比较器的开关接通时,对所述比较器的第一电容器充电;charging the first capacitor of the comparator when the switch of the comparator is turned on; 在所述开关断开后,使用在所述第一电容器中充入的电力比较从所述像素输入的像素信号与从所述控制电路输入的斜坡信号;comparing a pixel signal input from the pixel with a ramp signal input from the control circuit using the power charged in the first capacitor after the switch is turned off; 输出输出信号。Output the output signal. 12.根据权利要求11所述的成像方法,其特征在于,所述斜坡信号包括第一斜坡信号和第二斜坡信号。12. The imaging method of claim 11, wherein the ramp signal comprises a first ramp signal and a second ramp signal. 13.根据权利要求12所述的成像方法,其特征在于,所述斜坡信号包括所述第一斜坡信号与所述第二斜坡信号之间的预定电压差。13. The imaging method of claim 12, wherein the ramp signal comprises a predetermined voltage difference between the first ramp signal and the second ramp signal. 14.根据权利要求11所述的成像方法,其特征在于,当所述第一斜坡信号达到与所述像素信号相同的电平时,所述比较器使所述输出信号反转。14. The imaging method of claim 11, wherein the comparator inverts the output signal when the first ramp signal reaches the same level as the pixel signal. 15.根据权利要求11所述的成像方法,其特征在于,当将与所述预定电压差具有相同电压电平的电压施加到所述第一晶体管的栅极端子时,所述第一晶体管使偏置电流流过以驱动所述比较器。15. The imaging method according to claim 11, wherein when a voltage having the same voltage level as the predetermined voltage difference is applied to the gate terminal of the first transistor, the first transistor causes the A bias current flows to drive the comparator. 16.根据权利要求11所述的成像方法,其特征在于,所述第一电容器的电容足够大以驱动所述比较器。16. The imaging method of claim 11, wherein the capacitance of the first capacitor is large enough to drive the comparator. 17.根据权利要求11所述的成像方法,其特征在于,当所述第二斜坡信号达到与所述像素信号相同的电平时,所述比较器完成其比较操作。17. The imaging method of claim 11, wherein the comparator completes its comparison operation when the second ramp signal reaches the same level as the pixel signal. 18.根据权利要求11所述的成像方法,其特征在于,当所述开关断开时,所述比较器与所述成像装置的公用电源断开连接。18. The imaging method of claim 11, wherein the comparator is disconnected from a utility power source of the imaging device when the switch is turned off. 19.根据权利要求11所述的成像方法,其特征在于,所述第一斜坡信号和所述第二斜坡信号是斜升信号。19. The imaging method of claim 11, wherein the first ramp signal and the second ramp signal are ramp-up signals. 20.根据权利要求11所述的成像方法,其特征在于,所述第一斜坡信号和所述第二斜坡信号是斜降信号。20. The imaging method of claim 11, wherein the first ramp signal and the second ramp signal are ramp-down signals.
CN201980103051.8A 2019-12-23 2019-12-23 Imaging device and imaging method Active CN114846785B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127325 WO2021127809A1 (en) 2019-12-23 2019-12-23 Imaging apparatus and imaging method

Publications (2)

Publication Number Publication Date
CN114846785A true CN114846785A (en) 2022-08-02
CN114846785B CN114846785B (en) 2025-04-04

Family

ID=76572861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980103051.8A Active CN114846785B (en) 2019-12-23 2019-12-23 Imaging device and imaging method

Country Status (2)

Country Link
CN (1) CN114846785B (en)
WO (1) WO2021127809A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309084A (en) * 2007-05-16 2008-11-19 夏普株式会社 Analog-to-digital converter, solid-state image capture device, and electronic information equipment
US20100002120A1 (en) * 2008-07-03 2010-01-07 Sony Corporation Comparator, method of calibrating comparator, solid-state imaging device, and camera system
CN103248842A (en) * 2012-02-09 2013-08-14 佳能株式会社 Solid-state image sensing device
CN104079841A (en) * 2013-03-29 2014-10-01 索尼公司 Comparator, solid-state imaging device, electronic apparatus and driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122800A1 (en) * 2016-12-30 2018-07-05 Insightness Ag Data rate control for event-based vision sensor
JP7005231B2 (en) * 2017-08-28 2022-01-21 キヤノン株式会社 Imaging device, imaging system, mobile body
CN208174542U (en) * 2018-05-08 2018-11-30 杰华特微电子(杭州)有限公司 The control circuit of reduction voltage circuit
CN109194118B (en) * 2018-09-12 2024-12-24 杰华特微电子股份有限公司 Switching power supply and control circuit and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309084A (en) * 2007-05-16 2008-11-19 夏普株式会社 Analog-to-digital converter, solid-state image capture device, and electronic information equipment
US20100002120A1 (en) * 2008-07-03 2010-01-07 Sony Corporation Comparator, method of calibrating comparator, solid-state imaging device, and camera system
CN103248842A (en) * 2012-02-09 2013-08-14 佳能株式会社 Solid-state image sensing device
CN104079841A (en) * 2013-03-29 2014-10-01 索尼公司 Comparator, solid-state imaging device, electronic apparatus and driving method

Also Published As

Publication number Publication date
CN114846785B (en) 2025-04-04
WO2021127809A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US10523889B2 (en) Image sensor, electronic apparatus, comparator, and drive method
CN104079846B (en) Comparator, solid-state imaging device, electronic equipment and driving method
US10334193B2 (en) Read-out circuits of image sensors and image sensors including the same
US9609187B2 (en) Solid-state imaging device, drive method thereof and camera system
US10707852B2 (en) Comparator, AD converter, solid-state imaging apparatus, electronic apparatus, and method of controlling comparator
US20100182448A1 (en) Data transfer circuit, solid-state imaging device and camera system
US11310488B2 (en) Method of operating an image sensor, image sensor performing the same, and electronic system including the same
US11323639B2 (en) Image sensor and operation method thereof
US10574917B2 (en) Pixel output level control device and CMOS image sensor using the same
WO2015111371A1 (en) Solid-state image pickup device, and image pickup device
US20030052848A1 (en) Signal transmission circuit, solid-state imaging device, camera and liquid crystal display
CN115802180B (en) Transfer gate driver for image sensor
KR20170094832A (en) Unit Pixel Apparatus and Operation Method Thereof, and CMOS Image Sensor Using That
CN114846785B (en) Imaging device and imaging method
JP3699674B2 (en) Signal transmission circuit, solid-state imaging device, camera, and display device
KR102088732B1 (en) Pixel for image sensor, photodiode and driving method for image sensor
US9386251B2 (en) Image pickup device, image pickup system, and method of driving image pickup device in which comparison start times are controlled
US10122954B2 (en) Photoelectric conversion apparatus, imaging system, and method for driving photoelectric conversion apparatus
CN114598826A (en) Image sensor with active clamp to suppress transfer gate feedthrough
KR102012767B1 (en) Image sensor
CN106325352A (en) output stage circuit
JP2017055370A (en) Solid-state imaging apparatus
JP2017073746A (en) Imaging device, imaging system, and driving method of imaging device
TWI637597B (en) Output stage circuit
JP2005276424A (en) Signal transmission circuit, solid imaging apparatus, camera and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant