[go: up one dir, main page]

CN114846716A - 控制能量存储器的能量模块的接通时间 - Google Patents

控制能量存储器的能量模块的接通时间 Download PDF

Info

Publication number
CN114846716A
CN114846716A CN202080089378.7A CN202080089378A CN114846716A CN 114846716 A CN114846716 A CN 114846716A CN 202080089378 A CN202080089378 A CN 202080089378A CN 114846716 A CN114846716 A CN 114846716A
Authority
CN
China
Prior art keywords
energy
modules
string
module
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080089378.7A
Other languages
English (en)
Inventor
安德斯·埃格特·马尔比约
洛朗·贝德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KK-ELECTRONIC AS
Original Assignee
KK-ELECTRONIC AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KK-ELECTRONIC AS filed Critical KK-ELECTRONIC AS
Publication of CN114846716A publication Critical patent/CN114846716A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种控制能量存储器的多个能量模块的接通时间的方法。能量存储器包括形成能量模块串的多个串联连接的能量模块。串控制器通过控制多个开关的状态来控制各个能量模块中作为通过能量模块串的电流路径的一部分的能量模块。串控制器根据与能量存储器所连接到的系统相关的电气系统参考来控制能量模块串电压的频率。并且其中,串控制器控制各个能量模块的开关,从而使得被要求包括在电流路径中以建立能量模块串电压的各个能量模块中的每一个能量模块均被包括在电流路径中达至少最小接通时间。

Description

控制能量存储器的能量模块的接通时间
技术领域
本发明涉及一种包括多个独立可控的能量模块的能量存储器以及一种控制这些能量模块的接通时间的方法。
背景技术
DE 102012209179公开了一种包括串的能量存储器,该串(string)包括多个电池模块。电池模块中的每一个经由多个开关连接到串。由控制器控制开关的状态以建立能量存储器的期望输出,而无需指定如何控制开关以建立该期望输出。
US 8395280公开了一种包括多电平转换器的电路布置,其中至少两个转换器单元被配置为具有电荷存储单元。切换装置被配置为提供具有占空比的输出电压,该输出电压的值在例如每两个放电循环开始时改变以平衡各个电荷存储单元。US 8395280教导了如何建立各个存储单元的期望占空比,其目的是平衡存储单元的电荷。
上述现有技术的问题在于,开关的切换在例如热量和电磁干扰方面产生损耗。
发明内容
通过选择能够符合高切换频率的开关来解决当今的上述问题。与在根据本发明控制的能量存储器中使用的开关相比,这种开关昂贵,产生更多的热量并且更重。
本发明涉及一种控制能量存储器的多个能量模块的接通时间的方法。能量存储器包括形成能量模块串的多个串联连接的能量模块,其中,各个能量模块中的每一个通过配置为H桥的多个开关而连接到能量模块串。其中,串控制器通过控制多个开关的状态,来控制各个能量模块中作为通过能量模块串的电流路径的一部分的能量模块。其中,串控制器根据能量存储器连接到的系统的电气系统参考,来控制能量模块串电压的频率。并且其中,串控制器控制各个能量模块的开关,从而使得被要求包括在电流路径中以建立能量模块串电压的各个能量模块中的每一个均被包括在电流路径中达至少最小接通时间。
这样的优点在于其具有如下效果:各个能量模块的开关的切换频率可被控制为高于较低的切换时间,从而减少开关的磨损、减少切换损耗并且减少较高的谐波噪声。
另外,这样的优点在于其具有如下效果:各个能量模块的SOC可被控制,从而使得,如果期望的话,可以包含一个或多个能量模块以比其他的模块更加反复地使用到。以此方式,可控制各个能量模块的负载和磨损。
另外,这样的优点在于其具有如下效果:当能量模块级上的切换频率减小时,从系统级看到的带宽被维持。
另外,这样的优点在于其具有如下效果:至少一个或两个被打开的能量模块(例如,在正弦曲线的顶部上)不是第一个关闭的能量模块。因此,将接通时间控制到期望的长度,使得各个能量模块的最小接通时间得到控制,从而使得开关的磨损更加平衡并且切换损耗减少。
电气系统参考应当理解为从能量存储器的串/能量存储器所连接到的系统接收的参考频率、参考电压、参考电流或参考功率。参考频率可以是系统的电压的频率,即,能量存储器所连接到的负载,诸如,公用电网频率(通常为50Hz或60Hz)、期望的电机频率等。
可以从这种系统的控制器或传感器或从能量存储控制器接收电气系统参考。后者可以包括预定的系统参考,其可以提供给串控制器,从而用于控制串的电压的频率。
通过本发明,可实现高控制带宽,同时减少与各个能量模块相关联的开关的切换次数。另外,确保了各个能量模块总是接通达最小的接通时间,并且在任何时刻,“接通”的能量模块的数量是串控制器所要求的数量。有利地,减少与各个能量模块相关联的开关的切换次数可以减少开关的磨损并且减少由开关的快速切换引起的系统的温度升高,从而例如通过实施散热器(即,减小散热器的占地面积)而减少或可能消除从系统移去热量的需要。注意,开关的快速切换可理解为开关的高切换频率。各个能量模块的最短接通时间的另一优点在于,其可减小瞬变,这可减小能量存储系统中的例如电磁干扰和高频干扰。
根据示例性实施方式,串控制器根据能量模块串的多个能量模块的动态性能评估,动态地建立各个能量模块的接通时间。
接通时间(on-time)应被理解为各个能量模块连接到能量模块串并由此成为通过能量模块串的电流路径的一部分的时间以及由此其被充电或放电的时间。
能量存储器应被理解为串联连接的能量模块的一个或多个串。应注意的是,电池是能量模块的最常见的存储元件,但是还可以使用例如电容器。
能量模块应被理解为包括多个能量存储元件的能量存储模块。能量存储元件优选地是电池单元但也可以是电容器。
能量模块串(或简称为串)应理解为多个串联连接的能量模块。能量模块中的每个单独的能量模块经由多个开关串联连接,多个开关优选安装在切换模块PCB上。可以通过附加的开关来控制一个或多个串以串联连接或并联连接。
串控制器应被理解为控制器,该控制器监测能量模块的荷电状态(SOC;充电状态)、健康状态(SOH;健康状态)、电压、温度等中的一个或多个,并且基于此对各个能量模块执行性能评估排名并且根据该排名、来自外部控制器/能量存储控制器的输入(诸如,功率参考)和/或总体控制策略等,控制切换模块PCB,以允许电流流入能量模块或者从能量模块流出。性能评估可以称为动态的,因为它是在能量存储器在使用中时进行的,即,基于电气系统参考或能量存储模块参考的实时测量。
根据本发明的实施方式,总体控制策略(即,待接通、断开或旁路的能量模块以及这些能量模块的顺序)可以基于列表上能量模块的排序,该排序是根据各个能量模块总接通时间或当前接通时间、荷电状态、健康状态、温度、内阻等进行的。这种列表在下文中可称为动态性能列表。
此外,除了性能列表之外,还可以由串控制器选择接通的时间比最小接通时间长的随机模块,与性能列表上的位置无关。
基频的系统频率应理解为能量存储器所连接到的系统(也称为负载)的频率。因此,如果能量存储器连接到具有50Hz的频率的电气AC系统,则系统频率将是50Hz。应注意的是,系统频率也可以为0Hz,即,DC。
在一个实施方式中,从与能量存储器外部的控制器通信的能量存储控制器,向串控制器提供期望的系统频率(即,电气系统参考的实例)。在替代实施方式中,串控制器能够确定能量存储器所连接到的系统的系统频率。在该实施方式中,功率参考通常从外部控制器传送到串控制器。在又一替代实施方式中,能量存储器可供应负载或形成“本地电网”。在该实施方式中,如果没有可用的外部电力(外部电力总线),则外部控制器提供诸如系统频率的频率信息。
在一个实施方式中,根据电气系统参考控制能量模块串电压应理解为控制能量模块串的电压的频率与能量存储器所连接到的电气系统的电压的频率相似。因此,串控制器通过控制各个能量模块的接通时间,来建立频率与期望系统频率相对应的能量模块串电压。
根据示例性实施方式,串控制器在每次接通能量存储模块之前执行动态性能评估。这样的优点在于其具有如下效果:根据来自负载的、来自在各个能量模块或串处进行的测量输入的实时评估、或基于各个能量模块的历史使用信息,来控制各个能量模块的接通时间。
根据示例性实施方式,动态性能评估包括根据列表中的至少一项对多个能量模块进行排序,该列表包括:多个能量模块的荷电状态、健康状态、温度。控制各个能量模块的接通时间的优点在于,以此方式确保了一个单独的能量模块不总是最后一个被连接的能量模块和第一个被断开的能量模块,并且由此总是接通时间最短的能量模块。这样的优点在于其具有减小模块频率的较高谐波、减小瞬变等的效果
根据示例性实施方式,动态性能评估进一步包括:对接下来连接到电流路径的能量模块的选择符合从以下列表中选择的条件中的至少一个,该列表包括:最小接通时间、最小温度、能够充电和能够放电。
根据本发明的示例性实施方式,动态性能评估进一步包括将多个能量模块在动态性能列表排序。
将能量模块在动态性能列表中排序的优点在于,动态性能列表可以构成对多个模块中的每个模块的状态的参考,其中,列表中的能量模块可以根据动态性能评估进行排序。
能量模块在动态性能列表中的这种排序可以优选地由串控制器执行。然而,在本发明的其他实施方式中,其他控制器可以执行能量模块在动态性能列表中的排序。
根据本发明的另一示例性实施方式,将多个能量模块在动态性能列表中排序是基于列表中的至少一个能量模块参数,包括:接通时间、荷电状态、健康状态、温度和内阻。
基于例如内阻和/或多个能量模块的荷电状态、健康状态、温度来对动态性能列表进行排序的优点在于,其构成了对多个能量模块中的每一个的动态性能的参考。有利地,列表可以由串控制器应用,串控制器基于列表确定在哪个时间点应该接通和/或断开哪个能量模块。
能量模块的内阻取决于多个能量模块参数,包括例如其尺寸、荷电状态、化学性质、寿命、温度和放电电流。因此,监测内阻以获得关于这些能量模块参数的信息并且根据这些参数中的一个或多个对能量模块进行分类可能是有利的。
在本发明的实施方式中,将能量模块在动态性能列表中排序可基于以下各项中至少一项的线性或非线性数学函数:内阻、多个能量模块的接通时间、荷电状态、健康状态、温度。可能有利的是,将能量模块在动态性能列表中排序是基于选自动态能量模块参数(或简称为能量模块参数)的列表中的至少一个或多个的加权:通电时间、荷电状态、健康状态、多个能量模块的温度、内阻。
在本发明的实施方式中,将能量模块在动态性能列表中的排序可以基于例如动态能量模块参数中的一个或多个的加权总和,诸如,动态能量模块参数中一个或多个的加权平均值。
根据本发明的实施方式,将能量模块在动态性能列表中排序可基于各个能量模块的温度。然而,在本发明的其他实现方式中,基于例如SOC、SOH、电池模块的内阻和/或能量模块的接通时间来对能量模块进行排序可能是有利的。基于接通时间对动态性能列表进行排序可能是有益的,因为串控制器可以应用列表来选择接通和/或断开的能量模块,使得多个能量模块之间的接通时间是平衡的。
因此,动态性能评估应被解释为对能量模块的能量模块(操作)参数的实时评估并根据这些操作参数中的一个或多个对能量模块的排序。可以利用控制频率来更新性能列表,但是更新频率可以基于例如SOC、温度、SOH等的可接受范围/分布来确定。
要注意的是,接通时间可以是实时接通时间,即,自能量模块已接通起的时间,还可以是自能量模块安装在能量存储器中起的能量模块的总接通时间。此外,要注意的是,动态能量模块参数的列表还可以包括循环计数,即,能量模块已经放电或完全放电或完全放电并且随后被完全充电的次数。
控制接通时间的优点在于其具有以下效果:可以根据需要平衡能量模块之间的SOC以具有均匀的分布,即,相同水平的SOC或控制各个能量模块具有比其他能量模块更低或更高的SOC。在不需要所有能量模块来建立能量模块串电压的所需幅度的情况下,将多余能量模块的接通时间设置为0(零),即,不用于建立能量模块串电压并且因此不连接到电流路径。
在实施方式中,参照能量存储系统调节频率来理解较短的接通时间,并且较短的接通时间是一种设计选择。在非限制性示例性实施方式中,能量存储系统调节频率(有时也称为控制频率)为10kHz,则避免能量存储器的各个部分中的损耗和各个部分上的负载,诸如,切换损耗,并且减少EMC(EMC;电磁兼容性)和EMI(EMI;电磁干扰)干扰,与各个模块相关联的开关的短时间(即,最短/最小接通时间)是一个控制周期(即,100us),可替代地,在上述实例中,是两个控制周期(即,200us)。在另一示例性实施方式中,最短接通时间在80us与150us之间的下限之上。
应理解,最短接通时间可与最小接通时间相同。在根据本发明的另一实施方式中,最短接通时间是200us,诸如在150us与300us之间。增加最短接通时间和/或最小接通时间可能例如有利于减少上述EMC和EMI干扰以及高频噪声。
模块频率(有时也称为切换频率)应当理解为各个能量模块连接到通过能量模块串的电流路径和从该电流路径连接的频率,即,半导体开关的切换频率。因此,从连接到能量存储器的负载可以看出,能量模块串的切换频率是一个模块的切换频率乘以模块的数量,因为模块产生相移/交错。换言之,有效切换频率可以理解为各个模块的切换频率乘以模块的数量。
因此,由于可能具有例如10KHz的控制频率,与一个能量模块相关联的半导体开关可以以10KHz的频率接通/断开,这是不希望的。因此,为了避免这样的快速切换,确定最小接通时间,并且如果不符合最小接通时间,串控制器否决总的/正常的控制策略并且改变切换顺序(通常是断开能量模块的时序)。相应地,在本发明的能量存储器中,控制频率可以高于切换频率。因而,有利的是,可以在保持控制性能的同时减小切换损耗。因此,这是优于经典系统的另一优点,在经典系统中,切换频率与控制频率紧密地结合在一起并且控制频率不能高于切换频率。
根据示例性实施方式,其中,串控制器还根据从能量模块串外部的控制器接收的输入来控制能量模块串电压的振幅。
这样的优点在于其具有如下效果:以此方式可以控制进入能量模块串的电流路径或离开能量模块串的电流路径的电流的方向。相应地,可控制能量模块串的能量模块是否可以充电或放电。这当然取决于它们是否经由它们各自的切换模块PCB连接到电流路径、它们的荷电状态等。
从外部控制器接收的输入可以是频率、电流、电压或功率参考,串控制器能够基于该频率、电流、电压或功率参考确定建立期望的输出电压所需的能量模块的数量。另外,串控制器通过根据性能评估的结果和总体控制策略选择和切换能量模块串的各个能量模块,来建立输出电压的期望的振幅和频率(即,如果一个模块将反复地用到,则模块的SOC最小等)。
向串控制器提供控制输入的外部控制器可以是电流控制器、电压控制器、电网控制器、风力涡轮机控制器、太阳能发电厂控制器或者能量存储器连接到的系统的控制器,诸如,船的控制器。
在本发明的实施方式中,能量存储器是用于供应例如固定负载(诸如,风力涡轮机中的负载)的高功率能量存储器。因此,通常,能量模块定位并安装在一个或多个直立电气面板中,该一个或多个直立电气面板可在工厂处制造、运输至风力涡轮机的场地并安装在风力涡轮机中。
根据示例性实施方式,其中,模块频率低于2kHz,优选地,低于1.5kHz,最优选地,低于1kHz。与系统调节频率(在实施方式中为10kHz)相比,低模块频率的优点在于,其具有以下效果:电池阻抗不暴露于高频并且由此保存较好。
根据示例性实施方式,其中,来自能量存储器的输出的控制由串控制器根据从列表中选择的总体控制策略来控制,该列表包括:预定控制方案、一个或多个能量模块的荷电状态或一个或多个能量模块的健康状态。
预定的和/或总体的控制方案是有利的,因为其具有以下效果:以此方式,预先确定何时使用哪些能量模块并且由此电池模式的磨损分布均匀等。另外,以此方式,各个能量模块的接通时间也是预先确定的。可替换地,根据荷电状态、健康状态等的测量或基于其可导出荷电状态、健康状态等的测量,来控制来自能量存储器的输出。
根据示例性实施方式,其中,性能评估包括由串控制器基于来自监测能量模块的电池监测模块的输入而建立的荷电状态评估或温度评估。如果能量存储器放电,那么这是有利的,因为其具有以下效果:具有最高SOC的能量模块可被控制为具有最长接通时间和/或具有最低SOC的能量模块可被控制为具有最短接通时间。如果能量存储器待充电,换句话说,具有最低SOC的能量模块应该具有最长的接通时间。另一优点在于,具有最低温度的能量模块可被控制为具有最长的接通时间和/或具有最高温度的能量模块可被控制为具有最短的接通时间。如果能量存储器待充电,换句话说,具有最高温度的能量模块应该具有最长的接通时间。在根据本发明的不同实现方式中,可能有利的是基于例如温度和/或荷电状态来有区别地控制接通时间。
根据示例性实施方式,其中,性能评估包括由串控制器基于能量模块的使用的历史数据建立的磨损评估。这样的优点在于其具有能量模块使用最多磨损最少的效果。
根据示例性实施方式,其中,能量元件是电池单元。这样的优点在于其具有如下效果:来自能量存储器的输出电压的分辨率可以通过能量模块限定所包含的电池单元的数量和/或容量来控制。
根据示例性实施方式,其中,切换模块PCB的开关以H桥实现。这样的优点在于其具有如下效果:各个能量模块通过能量模块串在电流路径中的极性可被控制。另外,有利的是,它具有这样的效果,即,在H桥后面的能量模块元件可独立于串电流方向根据H桥开关的状态进行充电或放电。
根据示例性实施方式,其中,能量存储器包括至少两个能量模块串,诸如至少三个能量模块串,每个能量模块串由串控制器控制。这样的优点在于其具有如下效果:能量存储器可以建立三相电压并且由此用于三相系统中。这种三相系统的实例可以是风力涡轮机或者公用电网的辅助系统。
根据示例性实施方式,其中,能量存储器包括与串控制器通信的能量存储控制器。这样的优点在于其具有如下效果:能量存储控制器可以充当控制串控制器的主控制器(与从控制器相比)。以此方式,能量存储控制器可向串控制器提供设定点、控制策略等。这种控制策略可以至少部分地由能量存储控制器从能量存储器外部的控制器或用户接收的输入来建立。
根据示例性实施方式,能量存储器包括与串控制器通信的能量存储控制器,其中,能量存储控制器被配置为基于所测量的电气系统参考建立有功功率参考或无功功率参考,并且向串控制器提供所建立的有功或无功功率参考。这样的优点在于其具有如下效果:以此方式建立自主频率调节器系统。
根据示例性实施方式,串控制器被配置为基于多个能量模块的动态性能列表,计算能量模块接通和断开的顺序。
动态性能列表的优点在于串控制器根据预定的控制策略总是知道哪个能量模块应该替换不符合最小接通时间的能量模块。因此,在控制中没有浪费时间,例如,在从能量模块接收测量、比较这种测量并且选择能量模块或者其他比较或确定步骤时。
根据示例性实施方式,如果多个能量模块的一个能量模块符合从包括以下各项的列表中选择的条件中的至少一个,则接通和/或断开该能量模块:最小接通时间和最大温度。
这样的优点在于以此方式能量模块的最小接通时间和最大温度可以用作用于否决总体/正常控制策略的阈值。
根据示例性实施方式,当计算接通和断开哪个能量模块的顺序时,最小接通时间否决了总体控制策略。
这这样的优点在于如果根据总体控制策略,能量模块应当已断开,但是不符合接通时间或温度的阈值,则总体控制策略被否决,并且由串控制器选择另一断开顺序。
根据示例性实施方式,能量存储器包括至少两个能量模块串,例如,至少三个能量模块串。
根据示例性实施方式,能量存储器是用于供应固定负载的高功率能量存储器。
此外,本发明涉及一种包括能量模块串的能量存储器,能量模块串包括多个能量模块,多个能量模块中的每一个包括形成H桥的四个开关。其中,至少两个能量模块的H桥的一个中点电连接,从而建立能量模块串。其中,串控制器被配置用于控制H桥的开关的状态以及由此控制通过能量模块串的电流路径,从而使得各个能量模块导通至少达最小导通时间。
应注意的是,一个能量存储器可包括几个能量模块串,其可根据需要独立地(并联)操作或一起(串联)操作。
根据示例性实施方式,其中,所述串控制器被配置为控制所述各个能量模块的接通时间在从所述能量存储串输出的AC电压的两个后续周期中不同。
根据示例性实施方式,其中,串控制器被配置为从外部控制器接收频率、电流、电压或功率参考,并且被配置为基于该频率、电流、电压或功率参考计算建立期望的能量模块输出电压所需的能量模块串的能量模块的数量、和接通和断开所需数量的能量模块的顺序。
期望的能量模块输出电压可以例如由其频率和振幅限定。这两者都可以通过控制切换模块PCB的开关的串控制器来控制。
根据示例性实施方式,其中,所述串控制器被配置为基于所述多个能量模块的性能评估,计算所述能量模块被接通和断开的顺序。
根据本发明的示例性实施方式,串控制器被配置为基于多个能量模块的动态性能列表确定接通和断开能量模块的顺序。
在本发明的示例性实施方式中,接通和/或断开多个能量模块中的一个能量模块符合从包括以下各项的列表中选择的能量模块的条件/操作参数中的至少一个:最小接通时间、最小温度、能够充电和能够放电。
符合例如最小接通时间,有利地确保接通时间不超过最小接通时间,并且由此可减小快速瞬变,进而有利地减小能量存储器中的EMC、EMI以及高频噪声。
根据本发明的示例性实施方式,串控制器可以从动态性能列表上的第一能量模块开始接通能量模块。
在本发明的其他示例性实现方式中,串控制器可以从动态性能列表的最后一个能量模块开始接通能量模块。然而,以任何顺序接通和/或断开能量模块在本发明的范围内。
根据本发明的示例性实施方式,当能量模块的输出端连接到一个或多个AC负载或AC电网时,能量模块被断开的顺序不同于能量模块被接通的顺序。由此避免了与开关的太短的接通时间和例如能量模块的SOC的平衡相关的干扰。
在本发明的示例性实施方式中,当通过能量存储器的串的能量模块建立AC波形时,由串控制器断开的串的第一能量模块与由串控制器接通的最后一个能量模块不同。由此,避免了开关太短的接通时间和正弦波形式的峰值。
根据本发明的示例性实施方式,当计算接通和断开能量模块的顺序时,最小接通时间否决总体控制策略。
附图说明
为了更完整地理解本公开,现在参考以下结合附图和具体实施方式进行的简要描述,附图中:相同的参考标号表示相同的部件:
图1示出了能量存储器的串的能量模块,
图2a示出了能量存储模块,
图2b示出了能量存储模块的开关,
图3a示出了在AC场景下的能量存储模块的接通时间,
图3b示出了在DC场景下的能量存储模块的接通时间;
图4示出了控制能量存储器的方法的流程图。
具体实施方式
本发明的能量存储器7可以用于若干种应用中并且有以下几个原因。在此仅列举少数,能量存储器7可以连接到风力涡轮机的发电机的输出端。这种发电机连接到电流路径的第一端,电流路径的第二端连接到公用电网。在发电机与公用电网之间,转换器一般位于电流路径中。这种转换器可以包括通过直流(DC)链路连接到电网侧转换器的发电机侧转换器。风力涡轮机的其他配置也可以适合于与本发明一起使用。
能量存储器7可用于所有类型的能量系统,包括风力涡轮机转换器,包括DFIG(DFIG;双馈感应发电机)转换器、全功率2电平背靠背、全功率3电平背靠背、MMC(MMC;M模块化多电平换流器)等。能量存储器7可以位于转换器与电网之间,事实上,其可以连接在直流链路中或连接在转换器与包括DFIG配置的定子路径的变压器之间,事实上,其可以放置在任何AC或DC电力线上。另外,能量存储器7可以用于所有类型的风力涡轮机发电机,包括感应发电机、永磁体同步发电机、双馈感应发电机、同步发电机等。
另外,能量存储器7可以在风力涡轮机或其他可再生能量产生系统的外部用作能量存储器或电网支持。当船在港口或在港口之间时,一个或多个能量存储器可用作船的电源,以减少矿物燃料发电机的使用并减少港口的电网上的负载。在下文中,为了简单起见,仅示出了一个能量存储器的一个串,但是所描述的原理可以用于几个串行或并行的串以及几个串行或并行的能量存储器。
应注意的是,包括能量存储模块8的能量存储器7优选地位于电气柜内部。电气柜保护能量存储器免受环境影响并且可以帮助维持期望的温度、冷却空气的直接流动等。将能量存储器定位在电气柜中是有利的,因为其可以定位在例如风力涡轮机的场所或其他极端场所中。
图1示出了包括能量存储器7的最小元件的能量存储器7的设计的原理。能量存储器7由多个能量存储模块8构成。能量存储模块8中的每一个均包括至少两个半导体开关10a、10b和至少一个能量存储元件9。能量存储元件9优选地是电池单元,但也可以是其他替代的方案,诸如,电容器。半导体开关10的状态由串控制器12控制,由此,串控制器12控制通过能量存储器7的能量存储模块8的电流路径13。应当提及的是,在实施方式中,电流路径13也被认为通过能量存储模块8,即使能量存储模块8的能量存储元件9被旁路。
电流路径13通过能量存储器7的路线由半导体开关10的状态确定,并且因此由串控制器12控制。基于能量存储模块8/能量元件9的可用性、能量存储模块8/能量元件9的健康状态、能量存储元件9的荷电状态、可用的充电电压、能量存储器7两端的期望/所需电压/来自能量存储器7的期望/所需电压、开关10的健康状况/磨损、温度、能量存储元件或能量存储模块的内阻和/或历史接通时间等,来确定半导体开关10的状态。半导体开关10的状态在导通模式(开关闭合)和非导通模式(开关断开)之间改变。从开关的一个状态变成另一状态之间的死区时间,优选可在10纳秒与1微秒之间调节,通常,该值是数个100纳秒。
能量存储元件9的可用性可以指缺陷元件(诸如,电池单元),在这种情况下电池模块8将是不可用的。能量存储元件9的健康状态可以指特定能量存储元件9已经被充电/放电的次数。因此,次数越高则越接近能量存储元件9的寿命终点,串控制器12可以跟踪该次数并且激活能量存储模块8以试图将该次数或多或少保持相同,即,针对能量存储器7的所有能量存储元件9保持平衡。以相同的方式,也可以基于开关10已经切换的次数来估计开关10的健康状况。
图1中示出的能量存储器7包括第一能量存储模块8a和第二能量存储模块8b,每个能量存储模块均包括多个能量存储元件9a、...、9n。第一能量存储模块8a的能量存储元件9a-9n由于开关10a的非导通状态和开关10b的导通状态而被旁路。第二能量存储模块8b的能量存储元件9a-9n由于开关10a的导通状态和开关10b的非导通状态而被包括在电流路径13中。
如上所述,开关10的状态由串控制器12控制,串控制器12通过有线控制信号路径14或无线通信协议与开关10通信。串控制器12还优选连接到外部控制器15。外部控制器可以是风力涡轮机控制器、风电场控制器、光伏控制器、电网控制器等,其在频率、电压电平等方面向串控制器12和/或能量存储控制器6提供用于能量存储器7的输出的参考。另外,如图所示,串控制器12还优选从电流传感器1接收输入,该电流传感器1被实现并测量在电流路径13中传导的电流。在图1中,在串控制器12与电池监测模块2之间并且在串控制器12与开关板11之间示出了一个控制信号路径14。应当提及的是,仅一个信号路径14可被用于这两个模块2/板11。这样的替代设计的有利之处可能在于串控制器可以验证板与串控制器12的软件一致在物理上正确安装。
应当提及的是,图2示出了串联连接的能量存储模块8的实例,这些能量存储模块将被称为串。能量存储器7可以包括更多串,并且在这种情况下优选每个串均具有其自身的串控制器12。在这种情况下,这些串控制器12可以与能量存储控制器6通信,该能量存储控制器可再次与外部控制器15通信。
能量存储器7的串的数量可以在1与25之间变化或甚至更高,通常,串的数量反映了能量存储器所连接到的系统的相的数量和/或系统的消耗。在这些串中,能量存储模块8是串联连接的并且每个串通常包括1到20个能量存储模块8,优选地,5到15个。能量存储模块8的数量以及由此能量存储元件9的数量由能量存储器7上的期望电压确定,该期望电压优选高于能量存储器7所连接的电力网络的峰值电压。能量存储器7的存储容量是由使用能量存储器7的应用来确定的。另外,能量存储模块8的能量存储元件9的数量可以变化,如同能量存储器7内的能量存储模块8不必相同,甚至各个串内的能量存储模块也不必相同。只要用各个PCB(PCB;印刷电路板)开关板11后面的内容的信息更新串控制器12。
优选地,开关10是IGBT(IGBT;绝缘栅型双极晶体管)、MOSFET(MOSFET;金属氧化物半导体场效应晶体管)类型、GaN晶体管(Gan;氮化镓)或SiC晶体管(SiC;碳化硅)的半导体开关10,然而也可以使用其他类型的开关。
优选地,选择商用开关10是因为它们测试良好并且价格较低。商用开关通常不被设计用于在高电压(例如,1000V以上)和高电流(例如,500A以上)中操作,因此,与使用被设计用于更高电压和电流的开关的设计相比,这种类型的开关的数量更多。然而,增加的数量由商用交换机的较低价格来补偿。用于本发明的开关10的优选类型被设计为100A的电流和50V的电压。在优选类型的开关的较高电压下,半导体开关10的导通电阻增加,从而开关10中的功率损耗增加。
优选地,对能量存储元件9的引用是指多个串联连接的电池元件。在能量存储模块8中的一列串联连接的电池元件中,电池元件的数量可以在2与25之间变化或甚至更高。典型的列包括在10到20之间串联连接的电池元件9。列中的电池元件9的数量取决于对能量存储器7以及对少数单元9之间的折衷的要求,导致低价格和降低的功率损耗,而多数单元9减少谐波电流贡献并且导致更可靠的系统,因为增加了控制中的冗余/灵活性。
能量存储元件9优选地为锂离子类型,因为该电池类型的特性符合能量存储器7以及例如风力涡轮机的环境的要求。这么说,也可以使用其他电池类型。作为实例,一个电池元件9可以是3.2V的元件,其在与例如14个类似元件9连接时,在一个能量存储模块8内产生48V的电池组。因此,在该实例中,能量存储器7包括可由能量存储模块8的开关10控制的一个48V的电池。电池元件9的容量优选在10Ah与200Ah之间或甚至更高,但如所提及的,这是基于对能量存储器7和系统价格的要求而做出的设计选择。尤其是在开关10安装在PCB上的优选实施方式中,最大电流被确定为允许通过PCB 11的电流路径13的最大电流和最大电池电流中的较低者。
图2a示意性地示出了能量存储器8。在PCB 11上实现开关10。示出了PCB包括所有四个开关10以及控制开关10的栅极驱动器5。栅极驱动器5可与电流路径13电隔离。电隔离可以被实现为栅极驱动器5的一部分。
图2b示出了根据本发明的实施方式的开关配置的电气图,其中,半导体开关10的二极管是MOSFET的体二极管。图2b示出的能量存储模块8包括以H桥形式的四个半导体开关10。这是因为能量存储器7能够符合AC电流和电压,即,负极性和正极性两者,并且仍然能够旁路如上所述的能量模块8。图2b仅示出了能量存储模块8中的一个电池元件9,然而,如从以上描述所理解的,能量存储模块8中可以存在若干电池元件9。
参见图1和图2描述的能量存储器7是可以根据以下参见图3a和图3b描述的本发明的方法控制的一种类型的能量存储器的实例。
应当提及的是,在能量存储器7包括多个串的情况下,串控制器12可以与能量存储控制器15通信。如果能量存储器仅包括一个串,则能量存储控制器可能是多余的。因此,能量存储控制器或串控制器与外部控制器15通信,从外部控制器15接收用于从串输送能量(即,基于接收到的信息)的电流、电压、频率等参考,串控制器控制来自串的输出。此外,串控制器12可以从传感器接收信息,并且被配置为基于该信息控制能量存储器是否向其所连接的电气系统输送能量或从其所连接的电气系统接收能量。串控制器知道能量存储模块的容量,并且如果其接收到能量可用的传感器输入,则串控制器可以控制电流路径13(其所连接的模块)以对可能需要充电的能量存储模块充电。外部控制器可以是风力涡轮机控制器、电网运营商控制器等。
另外,在示例性实施方式中,串控制器与包括电池元件9的能量存储模块8中的每一个的电池监测系统通信。电池监测系统知道电池元件9的硬件细节,诸如,电池类型、操作温度、容量、内阻、历史接通时间等。因此,至少基于该信息,串控制器能够计算荷电状态、健康状态等,并且由此计算通过能量模块串的电流路径。
电池监测系统可以进一步通过电流传感器1来测量电流并且通过温度传感器4来测量温度,并且通过电压传感器3来测量模块电压。这些传感器可以是包括电池模块的硬件配置的信息的电池监测模块2的一部分,并且基于传感器向串控制器提供电池模块的实时信息。来自这些传感器的信息也可以被串控制器用来建立例如电池元件9的荷电状态。具体地,串控制器可以使用各个模块8中连接到电流路径的模块的信息以及电流路径中的电流的测量,以根据包括各个模块8的负载分布的期望总体控制策略优化输出电压的控制。此外,更换模块8不会立即中断操作,因为串控制器知道新类型的电池元件9、其容量等。
如果电池元件的容量对环境温度敏感,则温度信息可用于确定电池元件的容量。因此,串控制器可考虑能量模块或电池元件的温度,以确定给定的电池元件或能量模块是否应当切换入串或切换出串,即使在正常操作温度下。因此,当符合最小接通时间时,串控制器可减少具有最高温度的能量模块或电池元件的接通时间,或者甚至确定将这些串断开,即使它们在安全操作温度内。
如上所述,在实施方式中,电池监测模块2还可以提供电池模块8的电池单元9的信息。因此,在电池监测模块2的存储器中存储以下各项中的至少一些:能量存储器的类型(电池、电容器等)、诸如电池单元9的类型、电池单元9的数量、这样的电池单元9的容量(例如,25Ah和50Ah)以及由此整个电池模块8的容量、电池单元9的生产商、印刷11、18和/或电池单元9的生产日期、电池模块8在能量存储器7中的安装日期、切换信息(诸如,类型、循环次数等)。应当提及的是,电池监测模块2可以被实现为PCB。
总之,串控制器基于从不同传感器接收的信息和能量模块硬件配置的信息来建立性能评估。该性能评估的结果可以是一个或多个列表,所谓的动态性能列表,包括根据SOC、SOH、电压、温度、开关的切换次数、能量模块已经连接到电流路径的次数、能量模块已经连接到电流路径的时间、内阻、能量模块的历史接通时间等进行排序的所有能量模块。
可以基于上述参数的线性或非线性函数,将能量模块在一个或多个动态性能列表排序。本文中的实例可包括上述提及的参数中的几个参数的加权平均或加权和。在实例中,第一动态性能列表可基于SOC进行排序,具有最高SOC的能量模块先放在动态性能列表上,具有最低SOC的能量模块最后放在动态性能列表上。在该实例中,第二列表可基于接通时间(例如,历史接通时间)对能量模块进行排序,并且第三动态性能列表可基于能量模块的温度等来进行排序。
基于这些列表中的一个或多个,串控制器和/或能量存储控制器可以确定能量模块中应该用于建立能量存储输出的能量模块。在该实例中,当确定接通哪些能量模块以建立能量存储输出时,串控制器可被配置为给予充电状态最大权重、给予SOH第二大权重,而给予温度较小权重。串控制器可以进一步管理接通的每个模块的接通时间,使得其符合最小接通时间,以便最小化瞬变,从而最小化能量存储器中的EMC、EMI和高频干扰。在实施方式中,该确定可包括考虑例如维持一定水平的SOC、峰值容量等的总体控制策略。在实施方式中,总体控制策略可能被最小接通时间否决,以减少上述干扰,该干扰可能在能量模块的接通时间较短(例如低于最小接通时间)时发生。
在根据本发明的一个不同的实例中,代替针对所提及的参数中的每一个参数(例如,SOC)生成动态性能列表,能量模块基于上述参数(例如,SOC、接通时间和温度)的选择的测量的线性组合,再次被简单地分类为一个动态性能列表。然后串控制器利用该列表来选择接通和断开哪些能量模块以建立能量存储输出。在该实例中,对列表进行排序,使得具有最高SOC、最低温度和最低接通时间的能量模块先放在列表中。然后串控制器从先放在动态性能列表上的能量模块开始接通能量模块,然后接通动态性能列表上的第二能量模块,接着接通动态性能列表上的第三能量模块等,以建立能量存储器的输出端。
图3a示出根据示例性实施方式的来自如上所述的能量存储器7的一个串的电压输出曲线的一部分。可见,能量存储器需要五个能量存储模块8(8a-8e)来建立所示出的电压曲线。进一步可见,能量存储模块8a-8e中的每一个为输出电压增加50V,并且它们按照顺序8a、8b、8c、8d和8e的数字顺序被连接到通过该串的电流路径。最后,可以看出它们以数字顺序8c、8d、8b、8e和8a与串断开。
注意,与模块接通的顺序相比,能量模块断开的顺序遵循不同的顺序。在本发明的优选实现方式中,参见图3a,可能优选的是要断开的第一个能量模块与要接通的最后一个能量模块不同。参见图3a,这意味着8e(作为最后一个要接通的能量模块)不应该是要断开的第一个能量模块。这样做的有利之处在于能量模块输出的频率会较高,而能量模块的切换频率会保持较低,以最小化开关的磨损并减少每个能量模块的瞬变,因为每个能量模块从未比最小接通时间更长地被接通。
为了避免能量模块的接通时间低于预定最小接通时间,在该实例中,模块8不仅按有序顺序(该有序顺序与模块被接通的顺序相反)断开,即,接通(有序的):1、2、3、4以及断开(有序的)4、3、2、1。如果接通模块的顺序是有序的(例如,1、2、3、4),断开模块的顺序是无序的(例如,4、2、3、1或1、3、2、4)或反之亦然。另外,如果接通模块的顺序是无序的,则它们应该以替代的无序顺序被断开。基于模块的排序列表(例如,动态性能列表)和如下所述的一个或多个条件来确定顺序。
图3a仅示出了正弦曲线的前半个周期。通常,后半个周期关于模块被接通和断开的顺序镜像前半个周期。
应当提及的是,在图3a未示出的示例性实施方式中,如果模块8a的温度在前半个周期期间证明过高。那么,串控制器将检测到这一点,并且用来自另一模块的贡献代替模块8a的贡献。然后,可能在同一周期内,温度下降到温度阈值以下,并且串控制器可以回退并再次使用模块8a。能量存储器的最高温度的实例可以是在40℃与60℃之间、优选在45℃与55℃之间。然而,即使电池模块的温度在正常的安全操作范围内,还将能量模块切换出串也在本发明的范围内。因此,根据本发明,温度不仅可用于切断温度高于指定操作温度范围的能量模块。
应当提及的是,接通时间应当理解为能量模块连接到串的时间。
来自能量存储模块8a-8e的总贡献是相同的,无论断开连接的顺序如何,只要能量存储模块连接到串的时间总和不变。更具体地,50V的电平中的每个电平必须连接到电流路径达由要求输出电压所指定的时间段。因此,必须在时间T1与时间T2之间的整个时间内连接能量存储模块。不需要整个时间都是一个特定的能量存储模块,但是可以按照来自几个能量存储模块8的贡献对该时间进行划分。以此方式,输出保持相同,但是各个模块8的接通时间发生变化。换言之,可更好地平衡各个能量存储模块的接通时间,导致能量模块8的开关模块/开关之间的磨损分布更佳。
图3b示出了125V的DC输出曲线。由于能量存储模块各自具有50V,所以两个能量存储模块将必须总是接通并且一个能量存储模块将必须在50%的时间接通。在所示出的实施方式中,能量存储模块8a总是接通,而能量存储模块8b和8e在时间T5处供应50V移位并因此与模块8a一起供应100V。剩余的25V是通过50%的时间接通一个模块来提供的,在这个实施方式中,这部分地由模块8c并且部分地由模块8d来输送。在时间T3与T4之间以及在T4与T6之间的接通时间高于最小接通时间,并且因此没有关于切换损耗以及EMI和EMC的问题。然而,如果控制策略是平衡各个存储模块8的SOC,则不同的模块可以连接到电流路径13。在本发明的示例性实施方式中,控制策略可能被最小接通时间否决。
在要求串控制器向AC负载或AC电网输送电流的情况下,串控制器控制各个模块建立符合要向其输送电流的系统的系统频率的输出电压。通常,在AC系统中,系统频率是50Hz或60Hz。
串控制器控制各个模块8的接通时间,并且如图3a所示,需要几个模块8来建立输出电压的期望振幅。在该文献中,串控制器接通或断开各个模块的频率被称为控制频率。
各个模块的接通时间可以被称为模块频率。各个模块8的接通时间由串控制器基于从所有的各个模块接收的信息来控制,并且此外,还可以基于关于如何建立来自能量模块的期望输出电压的总体控制策略来控制。因此,考虑例如荷电状态、健康状态、系统频率和来自能量存储器所连接到的系统的其他要求等来确定接通时间。因此,串控制器可被指示输送250VAC和至少10A,然后由串控制器基于其对各个模块8的了解、控制策略、电流传感器输入等确定需要多少模块以及这些模块何时被连接到电流路径13。在本发明的优选实施方式中,串控制器还控制各个能量模块的接通时间,使得串的能量模块的接通时间总是大于最小接通时间。
由串控制器12确定必须在哪些电压电平(在图3中处于0V、50V、100V、150V和200V)下连接的能量存储模块8的分布。在示例性实施方式中,这是根据图4的流程图完成的。
在第一步骤S1中,向串控制器12提供输出参考。输出通常是外部数据处理器15(诸如,电气系统的控制器)接收的,能量存储器7连接到外部数据处理器。这种系统可以是例如风力涡轮机、太阳能系统、公用电网等。通常,能量存储器7被设计成特定的系统并且因此被优化成向风力涡轮机或太阳能发电厂的辅助系统输送例如备用电力。能量存储器也可以用作剩余能量的存储器并且用于支撑公用电网。在这种示例性实施方式中,当需要时,如果能量存储器包括多于一个串(多于一个相),则风力涡轮机控制器与能量存储控制器6通信,或者与串控制器12通信。如果能量存储器/串控制器知道“负载”(在该示例性辅助系统中)需要哪个输出,那么传送启动信号,或者提供输出参考。输出参考可以是电压参考和频率参考中的一个或多个。
在步骤S2中,串控制器12建立多个能量存储模块中的大多数能量存储模块的性能评估。可以更新现有的性能评估或者可以基于从电池监测模块、传感器接收的输入和/或关于各个能量模块的先前使用(即,历史数据)的信息存储,来做出新的性能评估。
在步骤S3中,串控制器12使用例如接收的输出参考以及所确定的控制策略和性能评估来为能量存储模块8的开关10建立栅极信号。一个控制策略可以是在能量存储模块8之间均等地平衡SOC或SOH,另一个控制策略可以是相反的,即,使用多于其他模块的一个或多个存储模块8,再一个策略可以是开关10的切换时间的下限或者这些策略与其他策略的组合。如果一个存储模块8看起来接近寿命终点,并且短时间内计划维修并且最后的容量要被耗尽,则可以选择使用多于其他模块的一个模块的策略。反之,例如如果不计划维修,则可能希望尽可能少地使用这种电池模块8。
无论选择哪种控制策略,串控制器都为能量存储模块8建立接通和断开顺序,该接通和断开顺序需要符合要求的输出参考并且依据性能评估来符合控制策略。应当提及的是,串中可以包括比需要的更多的能量存储模块8,因为其增加了如何建立能量存储输出的灵活性。
接通/断开顺序的建立包括在步骤S3中的测试,其中切换时间,即,在开关接通(闭合)与断开(打开)之间的时间,即,由开关10控制的能量存储模块8连接到电流路径13的时间。为了减少能量存储器7中的切换损耗、EMI和EMC干扰,接通时间优选地高于在80us至150us的范围内的下限,例如,100us,或者例如,在200us至300us的范围内的下限。该下限可以是预定的最小接通时间。如果依据总体控制策略的切换顺序导致一个能量模块证实是低于该下限,则该下限否决了总体控制策略,并且因此相应地调整顺序。如果例如总体控制策略指示能量模块应该从具有最高SOC的能量模块开始,根据SOC依次接通,这导致具有最高SOC的能量模块的接通时间最长,并且最后接通的能量模块可以在小于AC波形的峰值处的最小接通时间接通。在该实例中,串控制器可以修改由总体控制策略指示的顺序,以延长接通时间低于最小接通时间的那个能量模块的接通时间,同时减少接通的其他能量模块中的一个能量模块的接通时间,即使这意味着与接通的具有较高的SOC的另一能量模块相比,这种能量模块接通的时间更长。
步骤S3作为独立的步骤示出,相反,步骤S2既包括建立SOC等,也包括计算SOC上的模式(顺序)。应当提及的是,本方法在流程图中的呈现仅是为了帮助理解和描述步骤,并且由于所描述的步骤的顺序和内容可能是优选的,因此并非绝对必须严格地遵循。
在步骤S4中,根据所确定的顺序将栅极信号提供给各个能量存储模块8的栅极驱动器。
如上所述,能量存储模块可包括不同类型的能量存储元件。元件9可以是不同的电池类型和电容器类型。通常,在一个电池存储模块8中仅使用一种类型的电池/电容器,然而,并不总是这种情况。同一串中的两个能量存储模块8可以具有不同类型的能量存储元件9,即,第一可包括电池,第二可包括不同类型的电池,第三可包括电容器。
这是可以控制的,因为每个能量存储模块8优选包括电池监测系统模块2,该电池监测系统模块提供能量存储模块8的能量存储元件9的状态的信息。另外,其包括能量存储元件9所包括的硬件元件的信息,包括能量存储元件9所包括的电池或电容器单元的类型和数量。
如从以上可以理解的,本发明涉及能量存储器7和其能量存储模块8的接通时间的控制,以在保持系统带宽并减少切换损耗的同时建立期望的能量存储输出电压。输出电压可能需要几串能量模块8。该控制由一个或多个串控制器12基于来自能量存储器7所连接的电气系统的控制器15的输入、基于来自电气系统的传感器的输入、来自电气系统的触发信号、电流传感器17、能量模块的性能评估等来进行。
能量存储模块8包括能量模块监测模块2(如果能量存储元件是电池,则称为电池监测模块),串控制器12通过能量模块监测模块2接收电池模块8的硬件配置以及电池元件9的实时状态的信息。状态可以包括从传感器3、4测量的温度和电压,该传感器可以在电池监测模块PCB上实现。
根据本发明的控制的有利之处在于可以更好地分布电池模块的磨损,因为可以控制来自模块的电流的传导,同时减小在接通和断开时从开关产生的噪声。另外,有利的是,开关10的切换时间可被控制为高于下限,例如高于最小接通时间,最小接通时间可以预先确定。这就减少了能量存储系统中的EMC、EMI和高频噪声。
能量存储器可用作本地电网、备用、剩余能量的存储器和包括对无功功率或有功功率、频率等的支持的电网支持。
更具体地,根据示例性实施方式,充电或放电的控制(即,串的电流/电压)根据以下步骤进行控制。
第一,向串控制器提供离散的电气参考(频率、电压、电流或功率)。该参考可以从负载的控制器或从能量存储控制器接收并且经由算法被变换成连续的电气参考(诸如,正弦波形)。
第二,测量能量存储模块串中的一个或多个电气值。如果电气参考是电压,则测量串的电压。
第三,串控制器基于连续的电气参考和测量的电气值计算电压参考。该电压参考确定从串从当前电压到由连续的电气参考确定的下一电压电平所需要的能量模块的数量。应注意的是,在其他示例性实施方式中,所述电压参考而不是电压参考可以是频率、电流或功率参考。
第四,然后该电压参考被用于确定需要连接到电流路径的能量模块的数量。待连接的能量模块选自列表,例如,动态性能列表,该列表优选包括串的每个能量模块。该列表的能量模块是根据SOC、SOH、温度或其他相关电气参数(包括例如内阻)中的一个或多个来分类的。这和以下被称为性能评估或动态性能评估。
可用时间间隔建立和更新能量模块的分类表。列表的两次更新之间的最小时间是串控制器从电池监测系统(如果电池元件是电池)接收测量的频率,即,电池监控系统的采样频率。可替代地,可以基于能量存储器所连接到的系统的频率来确定时间间隔,即,每个周期或半个周期。可替代地,时间间隔可以是1ms、1秒、1分钟的预定时间或介于其之间的任何时间。相应地,时间间隔可以由使用能量存储器的应用来确定。
作为实例,如果能量模块根据SOC分类并且能量模块将被充电,则首先选择具有最低的SOC的能量模块,即,列表的底部模块。相反,如果能量模块将被放电,则首先选择具有最高SOC的能量模块,即,列表的顶部模块。如图3a所示,首先连接的能量模块8a是充/放电最多的能量模块。
第五,在串控制器向从列表中选择的能量模块的开关发送接通信号之前,串控制器检查该能量模块是否符合一个或多个条件。这些条件可包括最大/最小温度、最小接通时间、最小断开时间、充电/放电等。
所提及的最小接通时间是为了避免由于高模块频率引起的切换损耗。为了符合最小接通时间,串控制器可控制各个能量模块接通、断开或其组合的时间。
另外,为了避免瞬变,串控制器可以确保一个模块断开然后再次接通之间的最小时间,反之亦然。
列表
1.电流传感器
2.电池监测模块
3.电压传感器
4.温度传感器
5.栅极驱动器
6.能量存储控制器
7.能量存储器
8.能量存储模块
9.能量存储元件
10.半导体开关
11.PCB开关板
12.串控制器
13.电流路径
14.控制信号路径
15.外部控制器。

Claims (29)

1.一种用于控制能量存储器(7)的多个能量模块(8)的接通时间的方法,
所述能量存储器包括形成能量模块串的多个串联连接的所述能量模块,其中,各个能量模块中的每一个能量模块通过配置为H桥的多个开关(10)而连接到所述能量模块串,
其中,串控制器(12)通过控制所述多个开关的状态,来控制所述各个能量模块中作为通过所述能量模块串的电流路径(13)的一部分的能量模块,
其中,所述串控制器根据所述能量存储器所连接到的系统的电气系统参考,来控制能量模块串电压的频率,并且
其中,所述串控制器控制所述各个能量模块的开关,从而使得被要求包括在所述电流路径中以建立所述能量模块串电压的所述各个能量模块中的每一个能量模块均被包括在所述电流路径中达至少最小接通时间。
2.根据权利要求1所述的方法,其中,所述串控制器根据所述能量模块串的多个所述能量模块的动态性能评估,来动态地建立所述各个能量模块的接通时间。
3.根据权利要求1和2中任一项所述的方法,其中,所述串控制器在每次接通能量存储模块之前进行动态性能评估。
4.根据前述权利要求中任一项所述的方法,其中,动态性能评估包括将多个所述能量模块在动态性能列表中排序。
5.根据前述权利要求中任一项所述的方法,其中,将多个所述能量模块在动态性能列表中排序是基于所述列表中的至少一个能量模块参数,所述列表包括:接通时间、荷电状态、健康状态、温度和内阻。
6.根据前述权利要求中任一项所述的方法,其中,动态性能评估包括根据列表中的至少一项来对多个所述能量模块进行排序,所述列表包括:多个所述能量模块的荷电状态、健康状态、温度。
7.根据前述权利要求中任一项所述的方法,其中,动态性能评估还包括:对接下来连接到所述电流路径的所述能量模块的选择符合从列表中选择的至少一个条件,所述列表包括:最小接通时间、最小温度、能够充电和能够放电。
8.根据前述权利要求中任一项所述的方法,其中,所述串控制器还根据从所述能量模块串外部的控制器接收的输入,来控制所述能量模块串电压的振幅。
9.根据前述权利要求中任一项所述的方法,其中,模块频率低于2kHz,优选地,低于1.5kHz,以及最优选地,低于1kHz。
10.根据前述权利要求中任一项所述的方法,其中,对所述能量存储器的输出的控制由所述串控制器根据从列表中选择的总体控制策略来控制,所述列表包括:预定控制方案、一个或多个所述能量模块的荷电状态或一个或多个所述能量模块的健康状态。
11.根据前述权利要求中任一项所述的方法,其中,性能评估包括由所述串控制器基于来自监测所述能量模块的电池监测模块的输入而建立的荷电状态评估或温度评估。
12.根据前述权利要求中任一项所述的方法,其中,性能评估包括由所述串控制器基于所述能量模块的使用的历史数据而建立的磨损评估。
13.根据前述权利要求中任一项所述的方法,其中,能量元件是电池单元。
14.根据前述权利要求中任一项所述的方法,其中,切换PCB的开关以H桥形式实现。
15.根据前述权利要求中任一项所述的方法,其中,所述能量存储器包括至少两个所述能量模块串,诸如至少三个所述能量模块串,每一个能量模块串由所述串控制器控制。
16.根据前述权利要求中任一项所述的方法,其中,所述能量存储器包括与所述串控制器通信的能量存储控制器。
17.根据前述权利要求中任一项所述的方法,所述能量存储器包括与所述串控制器通信的能量存储控制器,其中,所述能量存储控制器被配置用于基于测量的电气系统参考建立有功功率参考或无功功率参考,并将建立的有功功率参考或无功功率参考提供给所述串控制器。
18.根据前述权利要求中任一项所述的方法,其中,所述串控制器被配置为基于多个所述能量模块的动态性能列表,计算接通和断开所述能量模块的顺序。
19.根据前述权利要求中任一项所述的方法,其中,所述串控制器被配置为控制接通和断开所述能量模块的顺序,从而使得所述顺序所包括的每个能量模块符合从列表中选择的至少一个条件,所述列表包括:高于最小接通时间且低于最大温度。
20.根据前述权利要求中任一项所述的方法,其中,当计算接通和断开所述能量模块的顺序时,所述最小接通时间否决总体控制策略。
21.根据前述权利要求中任一项所述的方法,其中,所述能量存储器包括至少两个所述能量模块串,例如,至少三个所述能量模块串。
22.根据前述权利要求中任一项所述的方法,其中,所述能量存储器是用于供应固定负载的高功率能量存储器。
23.一种包括能量模块串的能量存储器(7),所述能量模块串包括多个能量模块(8),所述多个能量模块中的每一个能量模块包括形成为H桥的四个开关(10),
其中,至少两个所述能量模块的H桥的一个中点电连接,从而建立所述能量模块串,
其中,串控制器(12)被配置用于控制所述H桥的所述开关的状态并且由此控制通过所述能量模块串的电流路径,从而使得各个能量模块接通达至少最小接通时间。
24.根据权利要求23所述的能量存储器,其中,所述串控制器被配置为控制所述各个能量模块的接通时间在从所述能量存储串输出的AC电压的两个后续周期中不同。
25.根据权利要求23和24中任一项所述的能量存储器,其中,所述串控制器被配置为从外部控制器接收频率、电流、电压或功率参考,并且被配置为基于所述频率、所述电流、所述电压或所述功率参考计算建立期望能量模块输出电压所需的所述能量模块串的所述能量模块的数量、和接通和断开所需数量的所述能量模块的顺序。
26.根据权利要求23-25中任一项所述的能量存储器,其中,所述串控制器被配置为基于所述多个能量模块的性能评估,计算接通和断开所述能量模块的顺序。
27.根据权利要求23-26中任一项所述的能量存储器,其中,所述串控制器被配置为基于所述多个能量模块的动态性能列表,确定接通和断开所述能量模块的顺序。
28.根据权利要求23-27中任一项所述的能量存储器,其中,所述能量存储器是用于供应固定负载的高功率能量存储器。
29.根据权利要求23-28中任一项所述的能量存储器,其中,所述能量存储器包括至少两个所述能量模块串,例如,至少三个所述能量模块串。
CN202080089378.7A 2019-12-23 2020-12-17 控制能量存储器的能量模块的接通时间 Pending CN114846716A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201970833A DK180691B1 (en) 2019-12-23 2019-12-23 Controlling on-time of energy modules of an energy storage
DKPA201970833 2019-12-23
PCT/DK2020/050375 WO2021129911A1 (en) 2019-12-23 2020-12-17 Controlling on-time of energy modules of an energy storage

Publications (1)

Publication Number Publication Date
CN114846716A true CN114846716A (zh) 2022-08-02

Family

ID=73855627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080089378.7A Pending CN114846716A (zh) 2019-12-23 2020-12-17 控制能量存储器的能量模块的接通时间

Country Status (5)

Country Link
US (1) US20230016562A1 (zh)
EP (1) EP4082092A1 (zh)
CN (1) CN114846716A (zh)
DK (1) DK180691B1 (zh)
WO (1) WO2021129911A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12098708B2 (en) * 2021-01-19 2024-09-24 General Electric Renovables Espana, S.L. Systems and methods for operating a power generating asset
EP4084265A1 (en) * 2021-04-29 2022-11-02 Volvo Truck Corporation A method for operating a switching arrangement of an energy storage system
EP4084035A1 (en) 2021-04-29 2022-11-02 Volvo Truck Corporation A switching arrangement
CN115411758B (zh) * 2022-11-02 2023-02-17 国网浙江省电力有限公司宁波供电公司 一种电池储能系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249400A1 (en) * 2012-11-16 2015-09-03 Abb Technology Ag Converter
EP2973935A1 (en) * 2013-03-15 2016-01-20 Design Flux Technologies, LLC Method and apparatus for creating a dynamically reconfigurable energy storage device
EP3373407A1 (de) * 2017-03-10 2018-09-12 VARTA Microbattery GmbH Verfahren zum betreiben eines modularen batteriespeichersystems, modulares batteriespeichersystem und batteriemanagementsystem hierfür
US20190103750A1 (en) * 2014-03-17 2019-04-04 GLX Power Systems Inc. Method and apparatus for creating a dynamically reconfigurable energy storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969967B2 (en) * 2003-12-12 2005-11-29 Ut-Battelle Llc Multi-level dc bus inverter for providing sinusoidal and PWM electrical machine voltages
US8395280B2 (en) 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
DE102012209179A1 (de) 2012-05-31 2013-12-05 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
GB201308189D0 (en) * 2013-05-07 2013-06-12 Univ Aston Energy transfer apparatus and distribution control method therefor
US12062815B2 (en) * 2015-09-30 2024-08-13 Relectrify Holdings Pty Ltd Battery system
US10079558B2 (en) * 2016-04-08 2018-09-18 American Superconductor Corporation Switching scheme for static synchronous compensators using cascaded H-bridge converters
US10790738B1 (en) * 2018-05-29 2020-09-29 Haider Mhiesan Circuit and method for fault detection and reconfiguration in cascaded H-bridge multilevel converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249400A1 (en) * 2012-11-16 2015-09-03 Abb Technology Ag Converter
EP2973935A1 (en) * 2013-03-15 2016-01-20 Design Flux Technologies, LLC Method and apparatus for creating a dynamically reconfigurable energy storage device
US20190103750A1 (en) * 2014-03-17 2019-04-04 GLX Power Systems Inc. Method and apparatus for creating a dynamically reconfigurable energy storage device
EP3373407A1 (de) * 2017-03-10 2018-09-12 VARTA Microbattery GmbH Verfahren zum betreiben eines modularen batteriespeichersystems, modulares batteriespeichersystem und batteriemanagementsystem hierfür

Also Published As

Publication number Publication date
US20230016562A1 (en) 2023-01-19
WO2021129911A1 (en) 2021-07-01
EP4082092A1 (en) 2022-11-02
DK201970833A1 (en) 2021-07-28
DK180691B1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US12012007B2 (en) Electric vehicle battery charger
JP7428638B2 (ja) 電気自動車用バッテリ充電器
CN110521078B (zh) 电池系统
RU2529017C2 (ru) Трехфазный источник бесперебойного питания большой мощности
CN114846716A (zh) 控制能量存储器的能量模块的接通时间
EP3259152B1 (en) Electric vehicle power distribution system
JP5959561B2 (ja) 直列接続された複数の電池直流マイクログリッド充放電システム
US9735619B2 (en) Power conversion device
EP2362480A2 (en) Battery system
US20130088900A1 (en) Energy storage system and controlling method of the same
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
WO2012049915A1 (ja) 電力管理システム
JP2013531961A (ja) 無効電力管理
TW201338390A (zh) 獨立直流電源的疊型電壓源變流器
JP2013102572A (ja) 制御装置、制御方法および制御システム
CN114467238A (zh) 连接至多个电力总线的储能器
WO2013039839A2 (en) Hierarchical balancing system
CN114846717A (zh) 用于能量存储器的监测系统
JP2015192549A (ja) 電力変換装置及び電力変換方法
JP2013099207A (ja) 制御装置および制御方法
TW201944685A (zh) 電動車電池充電器
KR101476337B1 (ko) 에너지 저장 시스템 및 그 제어 방법
Das et al. Supercapacitor Assisted DC Microgrid Voltage Regulation Using Multipoint Droop Control Mechanism
GB2608577A (en) Battery management system
TW202515086A (zh) 可重構電池管理系統

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination