CN114842572B - Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material - Google Patents
Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material Download PDFInfo
- Publication number
- CN114842572B CN114842572B CN202210281717.2A CN202210281717A CN114842572B CN 114842572 B CN114842572 B CN 114842572B CN 202210281717 A CN202210281717 A CN 202210281717A CN 114842572 B CN114842572 B CN 114842572B
- Authority
- CN
- China
- Prior art keywords
- enthalpy
- nano
- variable
- temperature
- heat insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012774 insulation material Substances 0.000 title claims abstract description 71
- 230000008859 change Effects 0.000 title claims abstract description 46
- 238000007789 sealing Methods 0.000 claims abstract description 87
- 238000009413 insulation Methods 0.000 claims abstract description 77
- 238000009423 ventilation Methods 0.000 claims abstract description 26
- 239000003566 sealing material Substances 0.000 claims abstract description 25
- 239000000945 filler Substances 0.000 claims abstract description 14
- 238000012546 transfer Methods 0.000 claims abstract description 7
- 230000000149 penetrating effect Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 50
- 239000000843 powder Substances 0.000 claims description 41
- 239000011858 nanopowder Substances 0.000 claims description 36
- 238000012360 testing method Methods 0.000 claims description 29
- 239000000835 fiber Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 14
- 238000004088 simulation Methods 0.000 claims description 12
- 238000003801 milling Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000012783 reinforcing fiber Substances 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 10
- 239000003605 opacifier Substances 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052863 mullite Inorganic materials 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 229920002748 Basalt fiber Polymers 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 238000004455 differential thermal analysis Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 239000005543 nano-size silicon particle Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- 238000004364 calculation method Methods 0.000 claims 1
- 238000000748 compression moulding Methods 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 230000001681 protective effect Effects 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 229910001069 Ti alloy Inorganic materials 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- 239000000516 sunscreening agent Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000010146 3D printing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000000475 sunscreen effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000012782 phase change material Substances 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0841—Registering performance data
- G07C5/085—Registering performance data using electronic data carriers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
- C04B30/02—Compositions for artificial stone, not containing binders containing fibrous materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/30—Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
- C04B2201/32—Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Insulation (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种飞行参数记录器领域,特别是一种基于可焓变纳米隔热材料的飞行参数记录器热防护套。The invention relates to the field of flight parameter recorders, in particular to a thermal protective sleeve for flight parameter recorders based on enthalpy-changeable nano-insulation materials.
背景技术Background technique
飞行参数记录器用于记录飞机的工作状态与飞行员的操作情况,为飞行事故调查提供客观有效的依据。为使记录器中的数据在坠机后能完整保存,飞行参数记录器需要具有抗高温火烧(1100℃)与中温烘烤(260℃)的幸存能力。欧洲航空设备组织的ED-112《抗坠毁机载记录系统最低工作性能要求》以及美国联邦航空局的TSO-C124b《飞行数据记录系统技术标准》均规定了飞行参数记录器需耐受900~1100℃火焰烧蚀至少1小时的要求。在此隔热要求基础上,新型无人机和军用战机航电系统对飞行参数记录器的重量和体积也做出了很高的要求,需要飞行参数记录器尽可能的减重和降体积。The flight parameter recorder is used to record the working status of the aircraft and the pilot's operation, providing objective and effective basis for flight accident investigation. In order for the data in the recorder to be completely preserved after a crash, the flight parameter recorder needs to have the ability to survive high-temperature fire (1100°C) and medium-temperature baking (260°C). The European Aeronautical Equipment Organization's ED-112 "Minimum Operating Performance Requirements for Crash Resistant Airborne Recording Systems" and the FAA's TSO-C124b "Technical Standard for Flight Data Recording Systems" both stipulate that flight parameter recorders must withstand 900 to 1100 ℃ flame ablation requirement for at least 1 hour. On the basis of this thermal insulation requirement, new drones and military fighter aircraft avionics systems also have high requirements on the weight and volume of flight parameter recorders, which require flight parameter recorders to reduce weight and volume as much as possible.
现有的飞参热防护方法,使用热反射、隔热、储热手段来提升飞行参数记录器热防护能力,装配结构复杂且难以进一步降低总体重量和体积。因此需要新型多隔热功能的热防护材料和热防护结构来进一步提高飞行参数记录器整体的热防护能力与结构紧凑度,以此达到减重、降体积的要求。The existing flight parameter thermal protection method uses heat reflection, heat insulation, and heat storage to improve the thermal protection capability of the flight parameter recorder. The assembly structure is complex and it is difficult to further reduce the overall weight and volume. Therefore, new thermal protection materials and thermal protection structures with multiple thermal insulation functions are needed to further improve the overall thermal protection capability and structural compactness of the flight parameter recorder, so as to achieve weight and volume reduction requirements.
发明内容Contents of the invention
本发明解决的技术问题是:克服现有技术的不足,提供一种基于可焓变纳米隔热材料的飞行参数记录器热防护套,增强飞行参数记录器的结构紧凑度,降低装配难度,同时实现在保证隔热性能的条件下,降低飞行参数记录器的重量和体积。The technical problem solved by the present invention is to overcome the shortcomings of the existing technology, provide a thermal protective sleeve for a flight parameter recorder based on enthalpy-changeable nano-insulation materials, enhance the structural compactness of the flight parameter recorder, reduce the difficulty of assembly, and at the same time It is possible to reduce the weight and volume of the flight parameter recorder while ensuring the thermal insulation performance.
本发明解决技术的方案是:一种基于可焓变纳米隔热材料的飞行参数记录器热防护套,该保护套包括可焓变纳米隔热内衬、外结构壳体、热反射涂层、内密封壳体、内密封填料和N个透气通道,N大于等于1;The technical solution of the present invention is: a thermal protective sleeve for flight parameter recorders based on enthalpy-changeable nano-insulation materials. The protective sleeve includes an enthalpy-changeable nano-insulation lining, an outer structural shell, a heat-reflective coating, Inner sealing shell, inner sealing packing and N ventilation channels, N is greater than or equal to 1;
可焓变纳米隔热内衬安装在外结构壳体内部,内密封壳体的外侧,与二者直接接触;内密封壳体、被保护数据芯片和密封填料均位于可焓变纳米隔热内衬内部,被保护数据芯片安装于内密封壳体的中心位置,被保护数据芯片与内密封壳体之间填充密封填料;各透气通道设置在外结构壳体结构中,透气通道内开口与可焓变纳米隔热内衬接触,外开口与外界接触,透气通道内填充密封材料,常温下,该密封材料用于气密密封;在火烧状态下,可焓变纳米隔热内衬兼具隔热和焓变吸热作用,其焓变后的气态产物在飞行参数记录器外结构壳体表面形成气膜,减缓火焰对飞行参数记录器的对流传热,密封填料用于防止气态产物渗透进内密封壳体与被保护的数据芯片接触,透气通道内的密封材料烧蚀、挥发,使透气通道连通外界空间与可焓变纳米隔热内衬。The enthalpy-changeable nano-insulation lining is installed inside the outer structural shell and outside the inner sealing shell, and is in direct contact with the two; the inner sealing shell, the protected data chip and the sealing filler are all located in the enthalpy-changeable nano-insulation lining. Inside, the protected data chip is installed in the center of the inner sealing case, and sealing filler is filled between the protected data chip and the inner sealing case; each breathable channel is set in the outer structure shell structure, and the inner opening of the breathable channel is capable of enthalpy change. The nano thermal insulation lining is in contact with the outside world, and the breathable channel is filled with sealing material. At normal temperature, the sealing material is used for airtight sealing; in the fire state, the enthalpy-changing nano thermal insulation lining has both thermal insulation and The enthalpy change absorbs heat. The gaseous products after the enthalpy change form a gas film on the surface of the outer structural shell of the flight parameter recorder, slowing down the convective heat transfer of the flame to the flight parameter recorder. The sealing filler is used to prevent gaseous products from penetrating into the inner seal. When the shell comes into contact with the protected data chip, the sealing material in the breathable channel is ablated and volatilized, allowing the breathable channel to connect the external space with the enthalpy-changing nano-insulation lining.
优选地,所述透气通道有内螺纹结构。Preferably, the ventilation channel has an internal thread structure.
优选地,所述内置密封材料的透气通道在常温下能够通过0.4MPa/1h气密密封试验考核。Preferably, the breathable channel with built-in sealing material can pass the 0.4MPa/1h airtight sealing test at normal temperature.
优选地,1100℃高温火烧条件下,透气通道内的密封材料能够在10min内烧蚀、挥发,使得透气通道的开孔面积比例大于80%。Preferably, under the high temperature fire condition of 1100°C, the sealing material in the ventilation channel can be ablated and volatilized within 10 minutes, so that the opening area ratio of the ventilation channel is greater than 80%.
优选地,所述可焓变纳米隔热内衬的密度为0.45~0.8g/cm3,常温热导率小于0.03W/(m·K),抗压强度大于0.5MPa,潜焓吸热量>600kJ/kg。Preferably, the density of the enthalpy-changeable nano thermal insulation lining is 0.45-0.8g/cm 3 , the thermal conductivity at room temperature is less than 0.03W/(m·K), the compressive strength is greater than 0.5MPa, and the latent enthalpy heat absorption >600kJ/kg.
优选地,所述可焓变纳米隔热内衬材质为可焓变纳米隔热材料,由耐高温纳米粉末、可焓变材料纳米粉末、陶瓷增强纤维、遮光剂粉末构成,其中,耐高温纳米粉末为纳米氧化硅、纳米氧化铝、纳米莫来石中的一种或几种;可焓变材料纳米粉末为氢氧化铝、硼酸、水合氯化镁、碳酸钙、碳酸锂的一种或几种,陶瓷增强纤维为石英短切纤维、玻璃短切纤维、氧化锆纤维、氮化硅短切纤维、莫来石纤维、氧化铝纤维、高硅氧纤维、玄武岩纤维、碳化硅纤维中的一种或几种,遮光剂粉末为碳化硅粉末、氧化钛粉末、氧化锆粉末、硅酸锆粉末、氧化铬粉末、氧化铁粉末中的一种或几种。Preferably, the enthalpy-changeable nano-insulation lining material is an enthalpy-changeable nano-insulation material, which is composed of high-temperature-resistant nano-powder, enthalpy-change material nano-powder, ceramic reinforcing fiber, and sunscreen agent powder, wherein the high-temperature-resistant nano insulating material The powder is one or more of nano-silica, nano-alumina, and nano-mullite; the enthalpy-changeable material nano-powder is one or more of aluminum hydroxide, boric acid, hydrated magnesium chloride, calcium carbonate, and lithium carbonate. Ceramic reinforced fiber is one of quartz chopped fiber, glass chopped fiber, zirconia fiber, silicon nitride chopped fiber, mullite fiber, alumina fiber, high silica fiber, basalt fiber, silicon carbide fiber or Several, the sunscreen powder is one or more of silicon carbide powder, titanium oxide powder, zirconium oxide powder, zirconium silicate powder, chromium oxide powder, and iron oxide powder.
优选地,所述可焓变纳米隔热内衬的组分及其密度根据如下方法确定:Preferably, the components and density of the enthalpy-changeable nano thermal insulation lining are determined according to the following method:
S1、设置可焓变纳米隔热材料的初始整体密度;S1. Set the initial overall density of the enthalpy-changeable nano-insulation material;
S2、根据被保护数据芯片的耐温许用温度选择可焓变材料纳米粉末,在潜焓变温度高于被保护数据芯片的耐温许用温度的范围内选择潜焓热值最高的可焓变材料纳米粉末;S2. Select the enthalpy-changeable material nanopowder according to the temperature-resistant allowable temperature of the protected data chip, and select the enthalpy-changing material nanopowder with the highest latent enthalpy heating value within the range where the latent enthalpy change temperature is higher than the temperature-resistant allowable temperature of the protected data chip. Variable material nanopowders;
S3、按照预设的比例,制备出可焓变纳米隔热材料样件使得可焓变纳米隔热材料的密度为步骤S1确定的初始整体密度;S3. According to the preset ratio, prepare a sample of the enthalpy-changeable nano-insulation material so that the density of the enthalpy-changeable nano-insulation material is the initial overall density determined in step S1;
S4、对可焓变纳米隔热材料样件进行热导率测试和差热分析,得到可焓变纳米隔热材料的实际热导率、潜焓变温度点和潜焓热值;S4. Conduct thermal conductivity testing and differential thermal analysis on the enthalpy-changeable nano-insulation material samples to obtain the actual thermal conductivity, latent enthalpy change temperature point and latent enthalpy heat value of the enthalpy-changeable nano-insulation material;
S5、根据可焓变纳米隔热材料样件的实际热导率、潜焓变温度点和潜焓热值,采用火烧试验热场仿真流程,进行火烧试验热场仿真,得到使被保护数据芯片的温度不超过耐温许用温度的可焓变纳米隔热内衬厚度;S5. Based on the actual thermal conductivity, latent enthalpy change temperature point and latent enthalpy heat value of the enthalpy-changeable nano-insulation material sample, use the fire test thermal field simulation process to conduct the fire test thermal field simulation to obtain the protected data chip The thickness of the enthalpy-changeable nano thermal insulation lining whose temperature does not exceed the allowable temperature resistance temperature;
S6、判断可焓变纳米隔热内衬厚度是否满足预设厚度要求,如果满足,则进入步骤S7,如果不满足,增大可焓变材料的填加比例,重新执行步骤S3~步骤S6;S6. Determine whether the thickness of the enthalpy-changeable nano thermal insulation lining meets the preset thickness requirements. If it meets the preset thickness requirements, proceed to step S7. If not, increase the proportion of the enthalpy-changeable material and re-execute steps S3 to S6;
S7、进行实际火烧试验考核,若火烧试验后被保护数据芯片最终温度Tc,ex低于被保护数据芯片耐温许用温度,则进入步骤S8;若芯片超出芯片耐温许用温度,比较火烧试验后被保护数据芯片最终温度Tc,ex与步骤S5仿真计算得到的被保护数据芯片最终温度Tc之差是否低于许用偏差ΔT,若|Tc,ex-Tc|>ΔT,对步骤的仿真模型中热场环境温度进行修正,重新执行步骤S5~S7;若|Tc,ex-Tc|<ΔT,增大可焓变纳米隔热材料整体密度ρ,重新执行S3~S7,直至火烧试验后被保护数据芯片最终温度低于芯片耐温许用温度。S7. Carry out actual fire test assessment. If the final temperature Tc,ex of the protected data chip after the fire test is lower than the allowable temperature resistance of the protected data chip, proceed to step S8; if the chip exceeds the allowable temperature resistance of the chip, compare the fire Whether the difference between the final temperature T c,ex of the protected data chip after the test and the final temperature T c calculated by the simulation in step S5 is lower than the allowable deviation ΔT, if |T c,ex -T c |>ΔT, Correct the thermal field environment temperature in the simulation model of step, and re-execute steps S5~S7; if |T c,ex -T c |<ΔT, increase the overall density ρ of the enthalpy-changeable nano-insulation material, and re-execute S3~ S7, until the final temperature of the protected data chip is lower than the allowable temperature of the chip after the fire test.
优选地,所述初始整体密度与整体密度上限的关系为:ρ0=(0.7~0.9)ρmax,可焓变纳米隔热材料的整体密度上限ρmax,根据飞行参数记录器热防护套整体重量要求推断得到,不超过飞行参数记录器热防护套整体密度。Preferably, the relationship between the initial overall density and the upper limit of the overall density is: ρ 0 = (0.7 ~ 0.9) ρ max , the upper limit of the overall density of the enthalpy-changeable nano-insulation material ρ max , according to the overall density of the flight parameter recorder thermal protective sleeve Weight requirements are extrapolated and do not exceed the overall density of the flight parameter recorder thermal jacket.
优选地,所述步骤S3中可焓变纳米隔热材料样件中各组分预设比例为:可焓变材料纳米粉末初始添加比例为20~40wt%,其余组分为高温纳米粉末,占比40~65wt%、陶瓷增强纤维占比为5~10wt%以及遮光剂粉末占比为5~10wt%。Preferably, the preset proportion of each component in the enthalpy changeable nano thermal insulation material sample in step S3 is: the initial addition proportion of the enthalpy changeable material nano powder is 20 to 40 wt%, and the remaining components are high temperature nano powder, accounting for The ratio is 40 to 65wt%, the ceramic reinforcing fiber is 5 to 10wt%, and the sunscreen powder is 5 to 10wt%.
优选地,所述制备可焓变纳米隔热内衬的步骤如下:Preferably, the steps for preparing the enthalpy-changeable nano thermal insulation lining are as follows:
S3.1、将可焓变材料纳米粉末与耐高温纳米粉末按照质量比例2:1进行混合及分散;S3.1. Mix and disperse the enthalpy changeable material nanopowder and high temperature resistant nanopowder according to the mass ratio of 2:1;
S3.2、使用球磨机对分散后的混合粉末进行研磨,使其中的可焓变材料纳米粉末研磨至800nm粒径以下;S3.2. Use a ball mill to grind the dispersed mixed powder to grind the enthalpy changeable material nanopowder to a particle size of less than 800 nm;
S3.3、将研磨后的混合粉末与剩余的耐高温纳米粉末、遮光剂粉末以及陶瓷增强纤维进行混料;S3.3. Mix the ground mixed powder with the remaining high-temperature resistant nanopowder, opacifier powder and ceramic reinforcing fiber;
S3.4、根据可焓变纳米隔热材料的初始整体密度,将混合后的原料进行干法模压成型,制备成可焓变纳米隔热材料,作为可焓变纳米隔热内衬的毛坯;S3.4. According to the initial overall density of the enthalpy-changeable nano-thermal insulation material, the mixed raw materials are dry-molded to prepare the enthalpy-changeable nano-thermal insulation material, which is used as the blank of the enthalpy-changeable nano-thermal insulation lining;
S3.5、根据可焓变纳米隔热内衬厚度,采用铣床加工制备出的可焓变纳米隔热内衬的毛坯,铣出用于装配内密封壳体的形状。S3.5. According to the thickness of the enthalpy-changeable nano-insulation lining, use a milling machine to process the blank of the enthalpy-changeable nano-insulation lining, and mill out the shape for assembling the inner sealing shell.
本发明与现有技术相比的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
(1)、本发明使用隔热/吸热一体化的可焓变纳米隔热材料制作飞行参数记录器热防护结构,可以同时实现隔热(热导率<0.03W/(m·K))和焓变吸热(潜焓吸热量>600kJ/kg),从而有效降低流入飞行参数记录器的热量;(1) The present invention uses heat-insulation/heat-absorption integrated enthalpy-changeable nano-insulation materials to make the thermal protection structure of the flight parameter recorder, which can achieve heat insulation at the same time (thermal conductivity <0.03W/(m·K)) and enthalpy change heat absorption (latent enthalpy heat absorption >600kJ/kg), thereby effectively reducing the heat flowing into the flight parameter recorder;
(2)、本发明使用可焓变纳米隔热材料整合替代了单一相变隔热材料和单一隔热材料,可以取消相变材料与隔热材料的分隔装置,减少飞行参数记录器的重量;(2) The present invention uses enthalpy-changeable nano thermal insulation materials to integrate and replace single phase change thermal insulation materials and single thermal insulation materials. It can eliminate the separation device between phase change materials and thermal insulation materials and reduce the weight of the flight parameter recorder;
(3)、本发明使用可焓变纳米隔热材料,固-气相变的物理吸热过程或热解放气的化学吸热过程。相变后的气态相变产物或化学反应的气化产物可以通过高温透气孔排出,在飞行参数记录器表面形成气膜,降低高温火焰对飞行参数记录器的传热量;(3) The present invention uses enthalpy-changeable nano-insulation materials to perform the physical endothermic process of solid-gas phase change or the chemical endothermic process of thermal liberation of gas. The gaseous phase change products or vaporization products of chemical reactions after phase change can be discharged through the high-temperature ventilation holes, forming a gas film on the surface of the flight parameter recorder to reduce the heat transfer of the high-temperature flame to the flight parameter recorder;
(4)、本发明使用的可焓变纳米隔热材料将吸热的可焓变材料复合到隔热材料中,无需再在飞行参数记录器中封装相变材料,降低了工艺复杂性和成本;(4) The enthalpy-changeable nano thermal insulation material used in the present invention combines the heat-absorbing enthalpy-changeable material into the thermal insulation material, eliminating the need to encapsulate phase change materials in the flight parameter recorder, reducing process complexity and cost. ;
(5)、本发明所使用的可焓变纳米隔热材料与热反射涂层属于无机材料,均不会发生老化变质,可以确保飞行参数记录器热防护功能的长期有效。(5) The enthalpy-changeable nano-insulation materials and heat-reflective coatings used in the present invention are inorganic materials and will not age or deteriorate, ensuring the long-term effectiveness of the thermal protection function of the flight parameter recorder.
附图说明Description of the drawings
图1为本发明实施例基于可焓变纳米隔热材料的飞行参数记录器热防护壳体结构示意图。Figure 1 is a schematic structural diagram of the thermal protection shell of a flight parameter recorder based on enthalpy-changeable nano-insulation materials according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细的描述:The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments:
图1为一种基于可焓变纳米隔热材料的飞行参数记录器热防护套结构示意图,由图1可知,本发明提供的一种基于可焓变纳米隔热材料的飞行参数记录器热防护套,包括可焓变纳米隔热内衬3、外结构壳体2、热反射涂层1、内密封壳体7、内密封填料6和N个透气通道4,N大于等于1。其中,可焓变纳米隔热内衬3安装在外结构壳体2内部,内密封壳体7的外侧,与外结构壳体2和内密封壳体7直接接触。被保护数据芯片5安装于内密封壳体7的中心位置,被保护数据芯片5与内密封壳体7之间填充密封填料6;各透气通道4设置在外结构壳体2结构中,透气通道4内开口与可焓变纳米隔热内衬3接触,外开口与外界接触,透气通道4内填充密封材料,常温下,该密封材料用于气密密封。Figure 1 is a schematic structural diagram of a thermal protective sleeve for a flight parameter recorder based on enthalpy-changeable nano-insulation materials. As can be seen from Figure 1, the thermal protection sleeve for a flight parameter recorder based on enthalpy-changeable nano-insulation materials provided by the present invention The set includes an enthalpy-changeable nano thermal insulation lining 3, an outer structural shell 2, a heat reflective coating 1, an inner sealing shell 7, an inner sealing filler 6 and N ventilation channels 4, where N is greater than or equal to 1. Among them, the enthalpy-changeable nano thermal insulation lining 3 is installed inside the outer structural shell 2 , and is in direct contact with the outer structural shell 2 and the inner sealing shell 7 on the outside of the inner sealing shell 7 . The protected data chip 5 is installed in the center of the inner sealing case 7 , and sealing filler 6 is filled between the protected data chip 5 and the inner sealing case 7 ; each ventilation channel 4 is arranged in the structure of the outer structural shell 2 , and the ventilation channel 4 The inner opening is in contact with the enthalpy-changeable nano-insulation lining 3, the outer opening is in contact with the outside world, and the breathable channel 4 is filled with sealing material. At normal temperature, the sealing material is used for airtight sealing.
可焓变纳米隔热内衬3兼具隔热和焓变吸热作用,其焓变后的气态产物在飞行参数记录器外结构壳体2表面形成气膜,减缓火焰对飞行参数记录器的对流传热,密封填料6用于防止焓变后的气态产物渗透进内密封壳体7从而与被保护数据芯片5接触;透气通道4内的密封材料烧蚀、挥发后,使透气通道4连通外界空间与可焓变纳米隔热内衬3。The enthalpy-changeable nano thermal insulation lining 3 has both heat insulation and enthalpy change endothermic effects. The gaseous product after the enthalpy change forms a gas film on the surface of the outer structural shell 2 of the flight parameter recorder, slowing down the damage of the flame to the flight parameter recorder. Convective heat transfer, the sealing filler 6 is used to prevent the gaseous product after enthalpy change from penetrating into the inner sealing case 7 and contacting the protected data chip 5; after the sealing material in the breathable channel 4 is ablated and volatilized, the breathable channel 4 is connected External space and enthalpy changeable nano thermal insulation lining 3.
本发明的飞行参数记录器热防护套综合使用纳米隔热技术、相变/热解吸热技术、热面热反射技术和表面气膜阻隔热对流的隔热手段。其中,可焓变纳米隔热材料兼具纳米隔热、相变/热解吸热、气膜阻隔热对流的功能,表面热反射涂层可以实现表面热反射功能。The thermal protective cover of the flight parameter recorder of the present invention comprehensively uses nano-heat insulation technology, phase change/thermal desorption heat absorption technology, hot surface heat reflection technology and heat insulation means of surface air film blocking heat convection. Among them, enthalpy-changeable nano-thermal insulation materials have the functions of nano-thermal insulation, phase change/thermal desorption heat, and air film blocking thermal convection. The surface heat-reflective coating can realize the surface heat-reflective function.
可焓变纳米隔热内衬3材质为可焓变纳米隔热材料,由耐高温纳米粉末(纳米氧化硅、纳米氧化铝、纳米莫来石中的一种或几种)、可焓变材料纳米粉末(氢氧化铝、硼酸、水合氯化镁、碳酸钙、碳酸锂的一种或几种)、陶瓷增强纤维(石英短切纤维、玻璃短切纤维、氧化锆纤维、氮化硅短切纤维、莫来石纤维、氧化铝纤维、高硅氧纤维、玄武岩纤维、碳化硅纤维中的一种或几种)、遮光剂粉末(碳化硅粉末、氧化钛粉末、氧化锆粉末、硅酸锆粉末、氧化铬粉末、氧化铁粉末中的一种或几种)构成,将耐高温纳米粉末、焓变纳米粉末和遮光剂颗粒、增强纤维混合均匀后,经干法模压成型制备出隔热性能优异的可焓变纳米隔热材料,再经机加工成型为所需形状的可焓变纳米隔热内衬3。The material of the enthalpy-changeable nano-insulation lining 3 is an enthalpy-changeable nano-insulation material, which is composed of high-temperature-resistant nanopowder (one or more of nano-silicon oxide, nano-alumina, and nano-mullite), enthalpy-change material Nanopowder (one or more of aluminum hydroxide, boric acid, hydrated magnesium chloride, calcium carbonate, lithium carbonate), ceramic reinforced fiber (quartz chopped fiber, glass chopped fiber, zirconia fiber, silicon nitride chopped fiber, One or more of mullite fiber, alumina fiber, high silica fiber, basalt fiber, silicon carbide fiber), opacifier powder (silicon carbide powder, titanium oxide powder, zirconium oxide powder, zirconium silicate powder, Composed of one or more of chromium oxide powder and iron oxide powder, the high-temperature resistant nanopowder, enthalpy change nanopowder, sunscreen agent particles, and reinforcing fibers are evenly mixed, and then dry molded to prepare a product with excellent thermal insulation properties. The enthalpy-changeable nano-insulation material is then machined and formed into the enthalpy-changeable nano-insulation lining 3 of the desired shape.
所述可焓变纳米隔热内衬3的组分及其密度根据如下方法确定:The components and density of the enthalpy-changeable nano thermal insulation lining 3 are determined according to the following method:
S1、设置可焓变纳米隔热材料的初始整体密度;所述初始整体密度与整体密度上限的关系为:ρ0=(0.7~0.9)ρmax,可焓变纳米隔热材料的整体密度上限ρmax,根据飞行参数记录器热防护套整体重量要求推断得到,不超过飞行参数记录器热防护套整体密度。S1. Set the initial overall density of the enthalpy-changeable nano-insulation material; the relationship between the initial overall density and the upper limit of the overall density is: ρ 0 = (0.7 ~ 0.9) ρ max , the upper limit of the overall density of the enthalpy-changeable nano-insulation material ρ max is inferred based on the overall weight requirements of the thermal protective sleeve of the flight parameter recorder, and does not exceed the overall density of the thermal protective sleeve of the flight parameter recorder.
S2、根据被保护数据芯片5的耐温许用温度选择可焓变材料纳米粉末,在潜焓变温度高于被保护数据芯片5的耐温许用温度的范围内选择潜焓热值最高的可焓变材料纳米粉末;S2. Select the enthalpy-changeable material nanopowder according to the temperature-resistant allowable temperature of the protected data chip 5, and select the one with the highest latent enthalpy heating value within the range where the latent enthalpy change temperature is higher than the temperature-resistant allowable temperature of the protected data chip 5. Enthalpy changeable material nanopowder;
S3、按照预设的比例,制备出可焓变纳米隔热材料样件使得可焓变纳米隔热材料的密度为步骤S1确定的初始整体密度;S3. According to the preset ratio, prepare a sample of the enthalpy-changeable nano-insulation material so that the density of the enthalpy-changeable nano-insulation material is the initial overall density determined in step S1;
可焓变纳米隔热材料样件中各组分预设比例为:可焓变材料纳米粉末初始添加比例为20~40wt%,其余组分为高温纳米粉末,占比40~65wt%、陶瓷增强纤维占比为5~10wt%以及遮光剂粉末占比为5~10wt%。The preset proportions of each component in the enthalpy changeable nano thermal insulation material sample are: the initial addition proportion of enthalpy changeable material nano powder is 20-40wt%, the remaining components are high-temperature nanopowder, accounting for 40-65wt%, ceramic reinforcement The fiber accounts for 5-10wt% and the sunscreen powder accounts for 5-10wt%.
S4、对可焓变纳米隔热材料样件进行热导率测试和差热分析,得到可焓变纳米隔热材料的实际热导率、潜焓变温度点和潜焓热值;S4. Conduct thermal conductivity testing and differential thermal analysis on the enthalpy-changeable nano-insulation material samples to obtain the actual thermal conductivity, latent enthalpy change temperature point and latent enthalpy heat value of the enthalpy-changeable nano-insulation material;
S5、根据可焓变纳米隔热材料样件的实际热导率、潜焓变温度点和潜焓热值,采用火烧试验热场仿真流程,进行火烧试验热场仿真,得到使被保护数据芯片5的温度不超过耐温许用温度的可焓变纳米隔热内衬3厚度;S5. Based on the actual thermal conductivity, latent enthalpy change temperature point and latent enthalpy heat value of the enthalpy-changeable nano-insulation material sample, use the fire test thermal field simulation process to conduct the fire test thermal field simulation to obtain the protected data chip The temperature of 5 does not exceed the allowable temperature resistance temperature of the enthalpy changeable nano thermal insulation lining 3 thickness;
S6、判断可焓变纳米隔热内衬3厚度是否满足预设厚度要求,如果满足,则进入步骤S7,如果不满足,增大可焓变材料的填加比例,重新执行步骤S3~步骤S6;S6. Determine whether the thickness of the enthalpy-changeable nano thermal insulation lining 3 meets the preset thickness requirements. If it meets the preset thickness requirements, proceed to step S7. If not, increase the proportion of the enthalpy-changeable material and re-execute steps S3 to S6. ;
S7、进行实际火烧试验考核,若火烧试验后被保护数据芯片5最终温度Tc,ex低于被保护数据芯片5耐温许用温度,则进入步骤S8;若芯片超出芯片耐温许用温度,比较火烧试验后被保护数据芯片5最终温度Tc,ex与步骤S5仿真计算得到的被保护数据芯片5最终温度Tc之差是否低于许用偏差ΔT,若|Tc,ex-Tc|>ΔT,对步骤5的仿真模型中热场环境温度进行修正,重新执行步骤S5~S7;若|Tc,ex-Tc|<ΔT,增大可焓变纳米隔热材料整体密度ρ,重新执行S3~S7,直至火烧试验后被保护数据芯片5最终温度低于芯片耐温许用温度。S7. Conduct actual fire test assessment. If the final temperature Tc,ex of the protected data chip 5 after the fire test is lower than the allowable temperature resistance of the protected data chip 5, then proceed to step S8; if the chip exceeds the allowable temperature resistance of the chip, Compare whether the difference between the final temperature T c,ex of the protected data chip 5 after the fire test and the final temperature T c of the protected data chip 5 calculated by the simulation in step S5 is lower than the allowable deviation ΔT, if |T c,ex -T c |>ΔT, correct the thermal field environment temperature in the simulation model in step 5, and re-execute steps S5~S7; if |T c,ex -T c |<ΔT, increase the overall density ρ of the enthalpy-changeable nano-insulation material , execute S3 to S7 again until the final temperature of the protected data chip 5 after the fire test is lower than the allowable temperature of the chip.
透气通道4在未经火烧条件下为封闭状态,内部填充密封填料(硅橡胶、柔性石墨、氟橡胶、聚四氟乙烯、合成树脂中的一种或几种)。在火烧状态下,即外结构壳体温度高于可焓变纳米隔热材料的潜焓变温度点时,密封填料失效,连通可焓变纳米隔热材料与外界,排出气体产物,在外结构壳体2的外表面形成气膜保护层,阻碍高温火焰对外结构壳体2的表面对流传热。The breathable channel 4 is in a closed state without fire, and is filled with sealing filler (one or more of silicone rubber, flexible graphite, fluororubber, polytetrafluoroethylene, and synthetic resin). In the fire state, that is, when the temperature of the outer structural shell is higher than the latent enthalpy change temperature point of the enthalpy-changeable nano-insulation material, the sealing filler fails, connects the enthalpy-changeable nano-insulation material and the outside world, discharges gas products, and the outer structural shell The outer surface of the body 2 forms a gas film protective layer, which blocks the high-temperature flame from convection heat transfer to the surface of the outer structural shell 2 .
外结构壳体2为采用铸造工艺制作,钢材冶炼时加入Mo、Al、Nb、Ta等强化元素,构成一种马氏体沉淀硬化不锈钢,经过固溶和时效处理后,同时具有强度与高韧性。外结构壳体2的抗拉强度≥1310MPa、冲击韧性≥126J/cm2。The outer structural shell 2 is made by a casting process. Mo, Al, Nb, Ta and other strengthening elements are added during the smelting of the steel to form a martensitic precipitation hardening stainless steel. After solid solution and aging treatment, it has both strength and high toughness. . The tensile strength of the outer structural shell 2 is ≥1310MPa and the impact toughness is ≥126J/cm 2 .
热反射涂层1附着在外结构壳体2表面,厚度为20-80μm,热辐射系数高于0.85,具备耐湿热、酸碱腐蚀和耐老化性能。The heat reflective coating 1 is attached to the surface of the outer structural shell 2, has a thickness of 20-80 μm, a thermal radiation coefficient higher than 0.85, and is resistant to moisture and heat, acid and alkali corrosion and aging.
优选地,所述透气通道4有内螺纹结构,所述内置密封材料的透气通道4在常温下能够通过0.4MPa/1h气密密封试验考核。Preferably, the breathable channel 4 has an internal thread structure, and the breathable channel 4 with built-in sealing material can pass the 0.4MPa/1h airtight sealing test at normal temperature.
优选地,1100℃高温火烧条件下,透气通道4内的密封材料能够在10min内烧蚀、挥发,使得透气通道4的开孔面积比例大于80%。Preferably, under the high temperature fire condition of 1100°C, the sealing material in the ventilation channel 4 can be ablated and volatilized within 10 minutes, so that the open area ratio of the ventilation channel 4 is greater than 80%.
优选地,所述可焓变纳米隔热内衬3的密度为0.45~0.8g/cm3,常温热导率小于0.03W/(m·K),抗压强度大于0.5MPa,潜焓吸热量>600kJ/kg。Preferably, the density of the enthalpy-changeable nano thermal insulation lining 3 is 0.45-0.8g/cm 3 , the thermal conductivity at room temperature is less than 0.03W/(m·K), the compressive strength is greater than 0.5MPa, and the latent enthalpy absorbs heat Amount>600kJ/kg.
所述制备可焓变纳米隔热内衬3的步骤如下:The steps for preparing the enthalpy-changeable nano thermal insulation lining 3 are as follows:
S3.1、将可焓变材料纳米粉末与耐高温纳米粉末按照质量比例2:1进行混合及分散;S3.1. Mix and disperse the enthalpy changeable material nanopowder and high temperature resistant nanopowder according to the mass ratio of 2:1;
S3.2、使用球磨机对分散后的混合粉末进行研磨,使其中的可焓变材料纳米粉末研磨至800nm粒径以下;S3.2. Use a ball mill to grind the dispersed mixed powder to grind the enthalpy changeable material nanopowder to a particle size of less than 800 nm;
S3.3、将研磨后的混合粉末与剩余的耐高温纳米粉末、遮光剂粉末以及陶瓷增强纤维进行混料;S3.3. Mix the ground mixed powder with the remaining high-temperature resistant nanopowder, opacifier powder and ceramic reinforcing fiber;
S3.4、根据可焓变纳米隔热材料的初始整体密度,将混合后的原料进行干法模压成型,制备成可焓变纳米隔热材料,作为可焓变纳米隔热内衬3的毛坯;S3.4. According to the initial overall density of the enthalpy-changeable nano-insulation material, the mixed raw materials are dry-molded to prepare the enthalpy-change nano-insulation material, which is used as the blank of the enthalpy-change nano-insulation lining 3. ;
S3.5、根据可焓变纳米隔热内衬3厚度,采用铣床加工制备出的可焓变纳米隔热内衬3的毛坯,铣床刀速不低于5000r/min,慢速进刀,铣出用于装配内密封壳体7的空间。S3.5. According to the thickness of the enthalpy-changeable nano-insulation lining 3, use a milling machine to prepare the blank of the enthalpy-changeable nano-insulation lining 3. The cutting speed of the milling machine is not less than 5000r/min, and the cutting speed is slow. A space for assembling the inner sealing housing 7 is created.
飞行参数记录器热防护套具体制作实施例及步骤如下:The specific manufacturing examples and steps of the flight parameter recorder thermal protective sleeve are as follows:
实施例1:Example 1:
步骤一:step one:
制作可焓变纳米隔热内衬3,具体如下:Make enthalpy changeable nano thermal insulation lining 3, the details are as follows:
根据上述方法,确定所需可焓变的纳米隔热材料的热导率及密度。According to the above method, determine the thermal conductivity and density of the required enthalpy-changeable nano-insulation material.
根据材料密度制备可焓变纳米隔热材料。称取240g焓变材料粉末与120g纳米氧化硅粉末进行混合及分散,再使用球磨机对分散后的混合粉末进行研磨,使得可焓变材料粉末研磨至800nm粒径以下。将研磨后的焓变材料与纳米氧化硅的混合物与195g纳米氧化硅粉末、61g遮光剂粉末以及50g陶瓷增强纤维进行混料。根据所需密度,将混合后的原料进行模压,制备成可焓变纳米隔热材料,作为可焓变纳米隔热内衬3的毛坯。Preparation of enthalpy-changeable nano-insulation materials based on material density. Weigh 240g of enthalpy changeable material powder and 120g of nanometer silicon oxide powder, mix and disperse them, and then use a ball mill to grind the dispersed mixed powder so that the enthalpy changeable material powder is ground to a particle size of less than 800 nm. The mixture of the ground enthalpy change material and nano-silica was mixed with 195 g of nano-silica powder, 61 g of opacifier powder and 50 g of ceramic reinforcing fibers. According to the required density, the mixed raw materials are molded to prepare the enthalpy-changeable nano-insulation material, which is used as the blank of the enthalpy-change nano-insulation lining 3.
制备出的可焓变纳米隔热材料的性能为:热导率0.0246W/(m·K)、潜焓变化温度200-260℃、潜焓变量680J/kg。The properties of the prepared enthalpy-changeable nano-insulation material are: thermal conductivity 0.0246W/(m·K), latent enthalpy change temperature 200-260°C, and latent enthalpy variable 680J/kg.
采用铣床加工制备出的可焓变纳米隔热内衬3的毛坯,铣床刀速不低于5000r/min,慢速进刀,铣出用于装配内密封壳体7的空间。加工完成后,可焓变纳米隔热内衬3的切削面均匀一致,无明显凹坑与裂纹。The blank of the enthalpy-changeable nano thermal insulation lining 3 is prepared by using a milling machine. The cutting speed of the milling machine is not less than 5000 r/min. The cutting speed is slow and the space for assembling the inner sealing shell 7 is milled out. After the processing is completed, the cutting surface of the enthalpy-changeable nano-insulation lining 3 is uniform and has no obvious pits or cracks.
步骤二:Step 2:
制作的外结构壳体2及热反射涂层1,具体如下:The outer structural shell 2 and the heat reflective coating 1 are produced, as follows:
采用铸造工艺或3D打印方式制作外结构壳体2,材质为耐高温马氏体钢、耐高温奥氏体钢、耐高温钛合金中的一种。制成的外结构壳体2的抗拉强度≥1310MPa,冲击韧性≥126J/cm2。外结构壳体2也可由满足强度与韧性要求的高温合金等材料替代。The outer structural shell 2 is made using a casting process or a 3D printing method, and the material is one of high temperature resistant martensitic steel, high temperature resistant austenitic steel, and high temperature resistant titanium alloy. The tensile strength of the outer structural shell 2 is ≥1310MPa, and the impact toughness is ≥126J/cm 2 . The outer structural shell 2 can also be replaced by materials such as high-temperature alloys that meet strength and toughness requirements.
在外结构壳体2外表面制作热反射涂层1,制作方法参照中国专利CN106228636。涂层总厚度20-80μm,室温干燥24h固化,固化后热反射涂层的热辐射系数大于0.85,颜色为灰色。The heat reflective coating 1 is made on the outer surface of the outer structural shell 2, and the making method refers to Chinese patent CN106228636. The total thickness of the coating is 20-80 μm, and it is dried at room temperature and cured for 24 hours. After curing, the thermal radiation coefficient of the heat reflective coating is greater than 0.85, and the color is gray.
在外结构壳体2上制作高温透气通道4,加工方式为转孔加工。高温透气通道4为通孔,直径为2.5mm,内部有螺纹结构。通孔内侧连接可焓变纳米隔热内衬3,外侧连接外环境。在机加工出的通孔内侧灌注环氧树脂密封材料。环氧树脂通过抽真空灌注,灌注完成后在常温、常压下静置4小时进行固化。常温状态下,高温透气通道4保持密封状态,可以通过0.4MPa/24h气密密封试验考核。1100℃高温火烧条件下,高温透气通道4内的密封材料可在10min内烧蚀、挥发,开孔面积比例大于80%。A high-temperature ventilation channel 4 is made on the outer structural shell 2, and the processing method is rotary drilling. The high-temperature breathable channel 4 is a through hole with a diameter of 2.5mm and a threaded structure inside. The inner side of the through hole is connected to the enthalpy changeable nano thermal insulation lining 3, and the outer side is connected to the external environment. The inside of the machined through hole is filled with epoxy sealant. The epoxy resin is poured by vacuuming. After the infusion is completed, it is allowed to stand for 4 hours at normal temperature and pressure to solidify. Under normal temperature, the high-temperature breathable channel 4 remains sealed and can pass the 0.4MPa/24h airtight sealing test assessment. Under high-temperature fire conditions of 1100°C, the sealing material in the high-temperature breathable channel 4 can be ablated and volatilized within 10 minutes, and the open area ratio is greater than 80%.
步骤三:Step three:
制作内密封壳体7与安装数据芯片5。内密封壳体7材质为不锈钢、钛合金、铝合金材质中的一种,分为内密封壳体底盖和内密封壳体底盖罐体两部分。先将数据芯片5封装在绝缘硅胶密封材料中,再安装至内密封壳体底盖罐体中心位置,随后内密封壳体底盖与内密封壳体罐体连接。连接方式为螺纹密封连接,连接缝位置涂抹绝缘硅胶进一步密封。一个批次的内密封壳体7在总数中抽样5%,进行60MPa/30d水密密封试验,观察有无水渗入罐体内部。通过密封标准后可以安装至飞行参数记录器内部。Make the inner sealing case 7 and install the data chip 5 . The material of the inner sealing shell 7 is one of stainless steel, titanium alloy, and aluminum alloy, and is divided into two parts: the inner sealing shell bottom cover and the inner sealing shell bottom cover tank body. The data chip 5 is first encapsulated in an insulating silicone sealing material, and then installed at the center of the inner sealing case bottom cover, and then the inner sealing case bottom cover is connected to the inner sealing case can. The connection method is a threaded sealing connection, and insulating silicone is applied to the connection seam for further sealing. Sampling 5% of the inner sealing shells 7 of a batch from the total number, conduct a 60MPa/30d watertight sealing test to observe whether water penetrates into the tank interior. After passing the sealing standard, it can be installed inside the flight parameter recorder.
实施例2:Example 2:
步骤一:step one:
制作可焓变纳米隔热内衬3,具体如下:Make enthalpy changeable nano thermal insulation lining 3, the details are as follows:
根据上述分析方法,确定所需可焓变的纳米隔热材料的热导率及密度。According to the above analysis method, determine the thermal conductivity and density of the required enthalpy-changeable nano-insulation material.
根据材料密度制备可焓变纳米隔热材料。称取180g焓变材料粉末与90g纳米氧化铝粉末进行混合及分散,再使用球磨机对分散后的混合粉末进行研磨,使得可焓变材料粉末研磨至800nm粒径以下。将研磨后的焓变材料与纳米氧化硅的混合物与260g纳米氧化铝粉末、59g遮光剂粉末以及55g陶瓷增强纤维进行混料。根据所需密度,将混合后的原料进行模压,制备成可焓变纳米隔热材料,作为可焓变纳米隔热内衬3的毛坯。Preparation of enthalpy-changeable nano-insulation materials based on material density. Weigh 180g of enthalpy change material powder and 90g of nano-alumina powder, mix and disperse them, and then use a ball mill to grind the dispersed mixed powder so that the enthalpy change material powder can be ground to a particle size of less than 800 nm. The mixture of the ground enthalpy change material and nano-silica was mixed with 260 g of nano-alumina powder, 59 g of opacifier powder and 55 g of ceramic reinforcing fibers. According to the required density, the mixed raw materials are molded to prepare the enthalpy-changeable nano-insulation material, which is used as the blank of the enthalpy-change nano-insulation lining 3.
制备出的可焓变纳米隔热材料的性能为:热导率0.0248W/(m·K)、潜焓变化温度110-180℃、潜焓变量750kJ/kg。The properties of the prepared enthalpy-changeable nano-insulation material are: thermal conductivity 0.0248W/(m·K), latent enthalpy change temperature 110-180°C, and latent enthalpy variable 750kJ/kg.
采用铣床加工制备出的可焓变纳米隔热内衬3的毛坯,铣床刀速不低于5000r/min,慢速进刀,铣出用于装配内密封壳体7的空间。加工完成后,可焓变纳米隔热内衬3的切削面均匀一致,无明显凹坑与裂纹。The blank of the enthalpy-changeable nano thermal insulation lining 3 is prepared by using a milling machine. The cutting speed of the milling machine is not less than 5000 r/min. The cutting speed is slow and the space for assembling the inner sealing shell 7 is milled out. After the processing is completed, the cutting surface of the enthalpy-changeable nano-insulation lining 3 is uniform and has no obvious pits or cracks.
步骤二:Step two:
制作的外结构壳体2及热反射涂层1,具体如下:The outer structural shell 2 and the heat reflective coating 1 are produced, as follows:
采用铸造工艺或3D打印方式制作外结构壳体2,材质为耐高温马氏体钢、耐高温奥氏体钢、耐高温钛合金中的一种。制成的外结构壳体2的抗拉强度≥1310MPa,冲击韧性≥126J/cm2。外结构壳体2也可由满足强度与韧性要求的高温合金等材料替代。The outer structural shell 2 is made using a casting process or a 3D printing method, and the material is one of high temperature resistant martensitic steel, high temperature resistant austenitic steel, and high temperature resistant titanium alloy. The tensile strength of the outer structural shell 2 is ≥1310MPa, and the impact toughness is ≥126J/cm 2 . The outer structural shell 2 can also be replaced by materials such as high-temperature alloys that meet strength and toughness requirements.
在外结构壳体2外表面制作热反射涂层1,制作方法参照中国专利CN106228636。涂层总厚度20-80μm,室温干燥24h固化,固化后热反射涂层的热辐射系数大于0.85,颜色为灰色。The heat reflective coating 1 is made on the outer surface of the outer structural shell 2, and the making method refers to Chinese patent CN106228636. The total thickness of the coating is 20-80 μm, and it is dried at room temperature and cured for 24 hours. After curing, the thermal radiation coefficient of the heat reflective coating is greater than 0.85, and the color is gray.
在外结构壳体2上制作高温透气通道4,加工方式为转孔加工。高温透气通道4为通孔,直径为2.5mm,内部有螺纹结构。通孔内侧连接可焓变纳米隔热内衬3,外侧连接外环境。在机加工出的通孔内侧灌注室温硫化硅橡胶密封材料。室温硫化硅橡胶通过抽真空灌注,灌注完成后在常温、常压下进行硫化,硫化4小时后固化成型。常温状态下,高温透气通道4保持密封状态,可以通过0.4MPa/24h气密密封试验考核。1100℃高温火烧条件下,高温透气通道4内的密封材料可在10min内烧蚀、挥发,开孔面积比例大于70%。A high-temperature ventilation channel 4 is made on the outer structural shell 2, and the processing method is rotary drilling. The high-temperature breathable channel 4 is a through hole with a diameter of 2.5mm and a threaded structure inside. The inner side of the through hole is connected to the enthalpy changeable nano thermal insulation lining 3, and the outer side is connected to the external environment. Pour room temperature vulcanized silicone rubber sealing material inside the machined through hole. Room temperature vulcanized silicone rubber is poured by vacuuming. After the filling is completed, it is vulcanized at normal temperature and pressure. After vulcanization for 4 hours, it solidifies. Under normal temperature, the high-temperature breathable channel 4 remains sealed and can pass the 0.4MPa/24h airtight sealing test assessment. Under high-temperature fire conditions of 1100°C, the sealing material in the high-temperature breathable channel 4 can be ablated and volatilized within 10 minutes, and the open area ratio is greater than 70%.
步骤三:Step three:
制作内密封壳体7与安装数据芯片5。内密封壳体7材质为不锈钢、钛合金、铝合金材质中的一种,分为内密封壳体底盖和内密封壳体底盖罐体两部分。先将数据芯片5封装在绝缘硅胶密封材料中,再安装至内密封壳体底盖罐体中心位置,随后内密封壳体底盖与内密封壳体罐体连接。连接方式为螺纹密封连接,连接缝位置涂抹绝缘硅胶进一步密封。一个批次的内密封壳体7在总数中抽样5%,进行60MPa/30d水密密封试验,观察有无水渗入罐体内部。通过密封标准后可以安装至飞行参数记录器内部。Make the inner sealing case 7 and install the data chip 5 . The material of the inner sealing shell 7 is one of stainless steel, titanium alloy, and aluminum alloy, and is divided into two parts: the inner sealing shell bottom cover and the inner sealing shell bottom cover tank body. The data chip 5 is first encapsulated in an insulating silicone sealing material, and then installed at the center of the inner sealing case bottom cover, and then the inner sealing case bottom cover is connected to the inner sealing case can. The connection method is a threaded sealing connection, and insulating silicone is applied to the connection seam for further sealing. Sampling 5% of the inner sealing shells 7 of a batch from the total number, conduct a 60MPa/30d watertight sealing test to observe whether water penetrates into the tank interior. After passing the sealing standard, it can be installed inside the flight parameter recorder.
实施例3:Example 3:
步骤一:step one:
制作可焓变纳米隔热内衬3,具体如下:Make enthalpy changeable nano thermal insulation lining 3, the details are as follows:
根据上述分析方法,确定所需可焓变的纳米隔热材料的热导率及密度。According to the above analysis method, determine the thermal conductivity and density of the required enthalpy-changeable nano-insulation material.
根据材料密度制备可焓变纳米隔热材料。称取155g焓变材料粉末与80g纳米氧化铝粉末进行混合及分散,再使用球磨机对分散后的混合粉末进行研磨,使得可焓变材料粉末研磨至900nm粒径以下。将研磨后的焓变材料与纳米氧化硅的混合物与320g纳米氧化铝粉末、59g遮光剂粉末以及52g陶瓷增强纤维进行混料。根据所需密度,将混合后的原料进行模压,制备成可焓变纳米隔热材料,作为可焓变纳米隔热内衬3的毛坯。Preparation of enthalpy-changeable nano-insulation materials based on material density. Weigh 155g of enthalpy changeable material powder and 80g of nano-alumina powder, mix and disperse them, and then use a ball mill to grind the dispersed mixed powder so that the enthalpy changeable material powder is ground to a particle size of less than 900 nm. The mixture of the ground enthalpy change material and nano-silica was mixed with 320 g of nano-alumina powder, 59 g of opacifier powder and 52 g of ceramic reinforcing fibers. According to the required density, the mixed raw materials are molded to prepare the enthalpy-changeable nano-insulation material, which is used as the blank of the enthalpy-change nano-insulation lining 3.
制备出的可焓变纳米隔热材料的性能为:热导率0.0247W/(m·K)、潜焓变化温度116-240℃、潜焓变量755kJ/kg。The properties of the prepared enthalpy-changeable nano-insulation material are: thermal conductivity 0.0247W/(m·K), latent enthalpy change temperature 116-240°C, and latent enthalpy variable 755kJ/kg.
采用铣床加工制备出的可焓变纳米隔热内衬3的毛坯,铣床刀速不低于5000r/min,慢速进刀,铣出用于装配内密封壳体7的空间。加工完成后,可焓变纳米隔热内衬3的切削面均匀一致,无明显凹坑与裂纹。The blank of the enthalpy-changeable nano thermal insulation lining 3 is prepared by using a milling machine. The cutting speed of the milling machine is not less than 5000 r/min. The cutting speed is slow and the space for assembling the inner sealing shell 7 is milled out. After the processing is completed, the cutting surface of the enthalpy-changeable nano-insulation lining 3 is uniform and has no obvious pits or cracks.
步骤二:Step two:
制作的外结构壳体2及热反射涂层1,具体如下:The outer structural shell 2 and the heat reflective coating 1 are produced, as follows:
采用铸造工艺或3D打印方式制作外结构壳体2,材质为耐高温马氏体钢、耐高温奥氏体钢、耐高温钛合金中的一种。制成的外结构壳体2的抗拉强度≥1310MPa,冲击韧性≥126J/cm2。外结构壳体2也可由满足强度与韧性要求的高温合金等材料替代。The outer structural shell 2 is made using a casting process or a 3D printing method, and the material is one of high temperature resistant martensitic steel, high temperature resistant austenitic steel, and high temperature resistant titanium alloy. The tensile strength of the outer structural shell 2 is ≥1310MPa, and the impact toughness is ≥126J/cm 2 . The outer structural shell 2 can also be replaced by materials such as high-temperature alloys that meet strength and toughness requirements.
在外结构壳体2外表面制作热反射涂层1,制作方法参照中国专利CN106228636。涂层总厚度20-80μm,室温干燥24h固化,固化后热反射涂层的热辐射系数大于0.85,颜色为灰色。The heat reflective coating 1 is made on the outer surface of the outer structural shell 2, and the making method refers to Chinese patent CN106228636. The total thickness of the coating is 20-80 μm, and it is dried at room temperature and cured for 24 hours. After curing, the thermal radiation coefficient of the heat reflective coating is greater than 0.85, and the color is gray.
在外结构壳体2上制作高温透气通道4,加工方式为转孔加工。高温透气通道4为通孔,直径为2.5mm,内部有螺纹结构。通孔内侧连接可焓变纳米隔热内衬3,外侧连接外环境。在机加工出的通孔内侧灌注室温硫化硅橡胶密封材料。室温硫化硅橡胶通过抽真空灌注,灌注完成后在常温、常压下进行硫化,硫化4小时后固化成型。常温状态下,高温透气通道4保持密封状态,可以通过0.4MPa/24h气密密封试验考核。1100℃高温火烧条件下,高温透气通道4内的密封材料可在10min内烧蚀、挥发,开孔面积比例大于70%。A high-temperature ventilation channel 4 is made on the outer structural shell 2, and the processing method is rotary drilling. The high-temperature breathable channel 4 is a through hole with a diameter of 2.5mm and a threaded structure inside. The inner side of the through hole is connected to the enthalpy changeable nano thermal insulation lining 3, and the outer side is connected to the external environment. Pour room temperature vulcanized silicone rubber sealing material inside the machined through hole. Room temperature vulcanized silicone rubber is poured by vacuuming. After the filling is completed, it is vulcanized at normal temperature and pressure. After vulcanization for 4 hours, it is cured and formed. Under normal temperature, the high-temperature breathable channel 4 remains sealed and can pass the 0.4MPa/24h airtight sealing test assessment. Under high-temperature fire conditions of 1100°C, the sealing material in the high-temperature breathable channel 4 can be ablated and volatilized within 10 minutes, and the open area ratio is greater than 70%.
步骤三:Step three:
制作内密封壳体7与安装数据芯片5。内密封壳体7材质为不锈钢、钛合金、铝合金材质中的一种,分为内密封壳体底盖和内密封壳体底盖罐体两部分。先将数据芯片5封装在绝缘硅胶密封材料中,再安装至内密封壳体底盖罐体中心位置,随后内密封壳体底盖与内密封壳体罐体连接。连接方式为螺纹密封连接,连接缝位置涂抹绝缘硅胶进一步密封。一个批次的内密封壳体7在总数中抽样5%,进行60MPa/30d水密密封试验,观察有无水渗入罐体内部。通过密封标准后可以安装至飞行参数记录器内部。Make the inner sealing case 7 and install the data chip 5 . The material of the inner sealing shell 7 is one of stainless steel, titanium alloy, and aluminum alloy, and is divided into two parts: the inner sealing shell bottom cover and the inner sealing shell bottom cover tank body. The data chip 5 is first encapsulated in an insulating silicone sealing material, and then installed at the center of the inner sealing case bottom cover, and then the inner sealing case bottom cover is connected to the inner sealing case can. The connection method is a threaded sealing connection, and insulating silicone is applied to the connection seam for further sealing. Sampling 5% of the inner sealing shells 7 of a batch from the total number, conduct a 60MPa/30d watertight sealing test to observe whether water penetrates into the tank interior. After passing the sealing standard, it can be installed inside the flight parameter recorder.
综上所述,本发明的飞行参数记录器使用可焓变组分的纳米隔热材料构造隔热/吸变一体化飞行参数记录器热防护套。纳米隔热材料具有优异的隔热性能,热导率低至0.03W/(m·K)以下,与纳米粒径的可焓变材料复合后形成隔热/吸热一体化隔热材料,其制成的飞行参数记录器热防护套可以兼具隔热性能和高焓值吸热性能,同时焓变过程为固-气变化过程,潜焓吸热量>600kJ/kg,吸热后可以放出气体产物,并在飞行参数记录器表面形成隔热气膜,减缓火焰对飞行参数记录器的对流传热。所述飞行参数记录器热防护结构可以提高飞行参数记录器热防护性能的同时使飞行参数记录器结构更加紧凑,实现整体体积和重量的最小化。To sum up, the flight parameter recorder of the present invention uses nano-insulation materials with enthalpy changeable components to construct a heat insulation/change absorption integrated flight parameter recorder thermal protective sleeve. Nano thermal insulation materials have excellent thermal insulation properties, with thermal conductivity as low as 0.03W/(m·K). They are combined with nano-sized enthalpy changeable materials to form thermal insulation/heat absorption integrated thermal insulation materials. The made thermal protective sleeve of the flight parameter recorder can have both thermal insulation performance and high enthalpy heat absorption performance. At the same time, the enthalpy change process is a solid-gas change process, and the latent enthalpy heat absorption is >600kJ/kg, and it can be released after absorbing heat. The gas product forms a heat-insulating air film on the surface of the flight parameter recorder, slowing down the convective heat transfer from the flame to the flight parameter recorder. The thermal protection structure of the flight parameter recorder can improve the thermal protection performance of the flight parameter recorder while making the structure of the flight parameter recorder more compact, thereby minimizing the overall volume and weight.
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above are only the best specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of changes or modifications within the technical scope disclosed in the present invention. All substitutions are within the scope of the present invention.
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。Contents not described in detail in the specification of the present invention belong to the well-known techniques of those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210281717.2A CN114842572B (en) | 2022-03-21 | 2022-03-21 | Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210281717.2A CN114842572B (en) | 2022-03-21 | 2022-03-21 | Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114842572A CN114842572A (en) | 2022-08-02 |
CN114842572B true CN114842572B (en) | 2024-03-15 |
Family
ID=82562721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210281717.2A Active CN114842572B (en) | 2022-03-21 | 2022-03-21 | Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114842572B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932839A (en) * | 1997-11-04 | 1999-08-03 | Ren; Jane | Method for dissipating heat away from a heat sensitive device using bicarbonate compositions |
US6235216B1 (en) * | 1995-09-07 | 2001-05-22 | Claude Q. C. Hayes | Heat absorbing temperature control devices and method |
CN1754937A (en) * | 2004-09-28 | 2006-04-05 | 北京巨龙博方科学技术研究院 | Preparation method of phase change energy storage material |
CN104608942A (en) * | 2015-02-13 | 2015-05-13 | 中国科学院宁波材料技术与工程研究所 | Ultra-high speed aircraft thermal protection and drag reduction method and system |
CN106228636A (en) * | 2016-07-15 | 2016-12-14 | 航天材料及工艺研究所 | A kind of flight data recor der thermal protection structure |
CN107891970A (en) * | 2017-11-10 | 2018-04-10 | 北京卫星环境工程研究所 | The active thermal protection system of hypersonic aircraft gaseous film control |
CN108555231A (en) * | 2018-01-23 | 2018-09-21 | 广西欧迪姆重工科技有限公司 | A kind of humble carbon-iron alloy casting metal mold environmental protection coating material and its preparation process based on phase transformation reaction |
CN111848209A (en) * | 2020-06-28 | 2020-10-30 | 航天材料及工艺研究所 | A kind of normal pressure drying nanometer thermal insulation material and preparation process thereof |
-
2022
- 2022-03-21 CN CN202210281717.2A patent/CN114842572B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6235216B1 (en) * | 1995-09-07 | 2001-05-22 | Claude Q. C. Hayes | Heat absorbing temperature control devices and method |
US5932839A (en) * | 1997-11-04 | 1999-08-03 | Ren; Jane | Method for dissipating heat away from a heat sensitive device using bicarbonate compositions |
CN1754937A (en) * | 2004-09-28 | 2006-04-05 | 北京巨龙博方科学技术研究院 | Preparation method of phase change energy storage material |
CN104608942A (en) * | 2015-02-13 | 2015-05-13 | 中国科学院宁波材料技术与工程研究所 | Ultra-high speed aircraft thermal protection and drag reduction method and system |
CN106228636A (en) * | 2016-07-15 | 2016-12-14 | 航天材料及工艺研究所 | A kind of flight data recor der thermal protection structure |
CN107891970A (en) * | 2017-11-10 | 2018-04-10 | 北京卫星环境工程研究所 | The active thermal protection system of hypersonic aircraft gaseous film control |
CN108555231A (en) * | 2018-01-23 | 2018-09-21 | 广西欧迪姆重工科技有限公司 | A kind of humble carbon-iron alloy casting metal mold environmental protection coating material and its preparation process based on phase transformation reaction |
CN111848209A (en) * | 2020-06-28 | 2020-10-30 | 航天材料及工艺研究所 | A kind of normal pressure drying nanometer thermal insulation material and preparation process thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114842572A (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Illampas et al. | Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar | |
CN106587931B (en) | A kind of light high-strength haydite and preparation method thereof | |
CN104877303B (en) | A kind of antiscour ablation resistant material suitable for oxygen-enriched environment | |
CN106228636B (en) | A kind of flight data recor der thermal protection structure | |
KR20090120516A (en) | Core-sheath particles for use as filler for feeder compositions | |
CN114842572B (en) | Flight parameter recorder heat protection sleeve based on enthalpy change nanometer heat insulation material | |
CN105817569B (en) | High temperature resistant casting model powder and preparation method thereof | |
CN109251340A (en) | A kind of anti-heat-insulation integrative composite material and preparation method | |
CN102229765B (en) | Composite heat insulation thin layer emulsion paint for building exterior wall | |
CN108178851A (en) | A kind of thermal insulation nitrile rubber of resistance to ablation and preparation method thereof | |
CN106082882A (en) | A kind of high-strength insulation concrete and preparation method thereof | |
CN104086116A (en) | Nano microporous heat insulation board and preparation method thereof | |
CN110903102A (en) | SiCf/SiC core-clad tube port CaO-Y2O3-Al2O3-SiO2 glass encapsulation method | |
PAN et al. | Microstructure and property of thermal insulation coating on the carbon fiber reinforced epoxy resin composites | |
CN104016691B (en) | A kind of magnesia-spinel brick for RH vacuum refining furnace and preparation method thereof | |
CN113666685A (en) | Low-hydration-heat high-heat-conductivity radiation-proof concrete and preparation method thereof | |
Srinivasaraonaik et al. | Studies on thermal properties of microencapsulated eutectic phase change material incorporated different mortar mixes | |
CN206372825U (en) | A kind of high-strength corrosion-resisting glassed steel reaction vessels | |
CN107722814A (en) | A kind of damping paint for forming multi-layer compound structure | |
CN105670218A (en) | High-temperature-resistant phenolic aldehyde powder encapsulating material and preparation method thereof | |
CN112960986B (en) | Heat-preservation coating material for propane dehydrogenation device and preparation method thereof | |
US3988161A (en) | Foamed sodium silicate ceramic and method of manufacturing the same | |
CN108863230A (en) | A kind of fire-proof heat-insulating material and preparation method thereof | |
CN114106674A (en) | High-permeability inner wall heat-insulation waterproof slurry for renovation of old houses | |
CN103803942B (en) | Composite Nano aluminum oxyhydroxide fire-retardant heat insulation plate, preparation method and its usage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |