[go: up one dir, main page]

CN114841032B - Design method for life stability of thermal component of gas turbine - Google Patents

Design method for life stability of thermal component of gas turbine Download PDF

Info

Publication number
CN114841032B
CN114841032B CN202210313327.9A CN202210313327A CN114841032B CN 114841032 B CN114841032 B CN 114841032B CN 202210313327 A CN202210313327 A CN 202210313327A CN 114841032 B CN114841032 B CN 114841032B
Authority
CN
China
Prior art keywords
design
thermal component
life
individuals
low cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210313327.9A
Other languages
Chinese (zh)
Other versions
CN114841032A (en
Inventor
蓝吉兵
魏佳明
余沛坰
徐睿
邵艳红
屠瑶
隋永枫
潘慧斌
初鹏
郑健生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Steam Turbine Power Group Co Ltd
Original Assignee
Hangzhou Steam Turbine Power Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Steam Turbine Power Group Co Ltd filed Critical Hangzhou Steam Turbine Power Group Co Ltd
Publication of CN114841032A publication Critical patent/CN114841032A/en
Application granted granted Critical
Publication of CN114841032B publication Critical patent/CN114841032B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention discloses a design method for life robustness of a thermal component of a gas turbine, in particular to the technical field of gas turbines, which comprises the following steps of S1: a flow-heat-solid coupling analysis method is adopted to obtain a temperature field, and a transient finite element analysis method is adopted to obtain a cyclic stress-strain curve from the starting of the gas turbine to the checking point of the heat component in the stopping process; step S2: establishing a low cycle fatigue life agent model of the thermal component by adopting a response surface method; step S3: setting a robustness design variable of a thermal component, and establishing a quantile optimization model and constraint conditions of low cycle fatigue life; step S4: and solving the quantile optimization model by adopting a SPEA-II multi-objective optimization algorithm to obtain an objective function value. In the design stage of the thermal component of the gas turbine, the design variable which ensures the service life of the thermal component to have robustness can be searched in a larger design space, the design service life of the thermal component is prolonged, and the maintenance cost in the whole life cycle is reduced.

Description

一种燃气轮机热部件寿命稳健性的设计方法A Design Method for Life Robustness of Gas Turbine Thermal Components

技术领域Technical field

本发明涉及燃气轮机技术领域,尤其是涉及一种燃气轮机热部件寿命稳健性设计方法。The present invention relates to the technical field of gas turbines, and in particular, to a robust design method for the life of gas turbine thermal components.

背景技术Background technique

燃气轮机热部件,特别是涡轮叶片、燃烧室、护环等是地面燃气轮机的高温关键部件。燃气轮机热部件服役在高温、高压、高转速等恶劣环境下,其可靠性对燃机稳定运行至关重要。由于频繁的启动导致工况的变化,热部件将承受较大的低频率变化的离心载荷和较大的热载荷,因此低循环疲劳是限制热部件使用寿命的重要因素。因此,在设计阶段,要确保热部件有足够的低循环疲劳寿命。Thermal components of gas turbines, especially turbine blades, combustion chambers, retaining rings, etc., are high-temperature key components of ground gas turbines. Gas turbine thermal components serve in harsh environments such as high temperature, high pressure, and high speed, and their reliability is crucial to the stable operation of the gas turbine. Due to changes in operating conditions caused by frequent starts, hot components will bear large centrifugal loads with low frequency changes and large thermal loads. Therefore, low cycle fatigue is an important factor that limits the service life of hot components. Therefore, during the design phase, ensure that hot components have adequate low cycle fatigue life.

现有的地面燃气轮机热部件寿命预测多是基于热部件温度场和流场的计算结果,开展确定结构的有限元分析以获得应力/应变分布,然后使用Manson-Coffin(曼森-柯芬_人名)公式得到热部件寿命。然而在热部件制造加工及服役过程中,材料参数、几何结构参数、运行载荷均存在不同程度的不确定性,上述因素使得热部件疲劳寿命存在一个较大概率区间。现有热部件的设计方法,尚未考虑上述因素的波动对热部件寿命的影响,导致热部件的设计寿命无法准确预估。The existing life prediction of hot parts of ground gas turbines is mostly based on the calculation results of the temperature field and flow field of hot parts. Finite element analysis of the determined structure is carried out to obtain the stress/strain distribution, and then Manson-Coffin is used to predict the life of hot parts. ) formula to obtain the thermal component life. However, during the manufacturing, processing and service process of hot parts, there are varying degrees of uncertainty in material parameters, geometric structure parameters, and operating loads. The above factors make the fatigue life of hot parts have a large probability range. Existing design methods for thermal components have not considered the impact of fluctuations in the above factors on the life of the thermal components, resulting in the inability to accurately estimate the design life of the thermal components.

因此有必要对影响热部件寿命可靠性的因素进行合理的控制和优化。开展燃气轮机热部件寿命稳健性设计,可以提高热部件服役寿命,降低热部件疲劳寿命对载荷、材料参数等随机变量的灵敏度,提高寿命预测的准确性及可靠性,最终为燃气轮机大修计划制定提供准确依据。Therefore, it is necessary to reasonably control and optimize the factors that affect the life reliability of hot components. Carrying out robust design of the life of gas turbine hot parts can improve the service life of hot parts, reduce the sensitivity of the fatigue life of hot parts to random variables such as load and material parameters, improve the accuracy and reliability of life prediction, and ultimately provide accurate information for the formulation of gas turbine overhaul plans. in accordance with.

中国专利CN105608316B公开了一种计算发动机主燃烧室火焰筒实际使用寿命的方法。所述计算发动机主燃烧室火焰筒实际使用寿命的方法包括步骤1:获取对比用发动机的设计点状态寿命、起飞点状态寿命以及高温起飞点状态寿命;步骤2:获取对比用发动机的设计点状态寿命、起飞点状态寿命以及的高温起飞点状态寿命;步骤3:获取在第二载荷谱下,待测发动机的设计点状态寿命、起飞点状态寿命以及高温起飞点状态寿命;步骤4:获取第二载荷谱下待测发动机理论首翻期的设计点状态寿命、起飞点状态寿命及高温起飞点状态寿命;步骤5:计算待测发动机的火焰筒实际使用寿命。该发明未考虑不确定因素,如温度载荷、材料参数等会导致火焰筒设计寿命无法准确预估。Chinese patent CN105608316B discloses a method for calculating the actual service life of the flame tube of the main combustion chamber of an engine. The method for calculating the actual service life of the engine main combustion chamber flame tube includes step 1: obtaining the design point state life, take-off point state life and high temperature take-off point state life of the comparison engine; step 2: obtaining the design point state of the comparison engine life, take-off point state life and high-temperature take-off point state life; Step 3: Obtain the design point state life, take-off point state life and high-temperature take-off point state life of the engine to be tested under the second load spectrum; Step 4: Obtain the second load spectrum The design point state life, take-off point state life and high-temperature take-off point state life of the engine to be tested under the theoretical first turning period under the second load spectrum; Step 5: Calculate the actual service life of the flame tube of the engine to be tested. This invention does not take into account uncertain factors, such as temperature load, material parameters, etc., which will lead to the failure to accurately predict the design life of the flame tube.

中国专利CN201910433274.2公开了一种涡轮叶片疲劳-蠕变损伤耦合概率寿命预测计算方法。所述方法包括以下步骤:S1、收集涡轮叶片属性;S2、确定考核部位;S3、对涡轮叶片进行有限元仿真,得到涡轮叶片考核点应力应变信息;S4、计算疲劳损伤:通过低周疲劳寿命模型计算得到疲劳寿命和疲劳损伤信息;S5、计算蠕变损伤:通过蠕变寿命模型计算蠕变寿命和蠕变损伤信息;S6、计算总体损伤并进行寿命分布拟合;S7、基于累积损伤理论,结合多种工况寿命信息得到叶片最终概率寿命分布。虽然该专利考虑了材料、载荷、几何尺寸对寿命的影响,但未公开如何解决提高涡轮叶片寿命设计稳健性的技术问题。Chinese patent CN201910433274.2 discloses a turbine blade fatigue-creep damage coupling probabilistic life prediction calculation method. The method includes the following steps: S1. Collect turbine blade attributes; S2. Determine the assessment location; S3. Perform finite element simulation on the turbine blade to obtain stress and strain information of the turbine blade assessment point; S4. Calculate fatigue damage: through low-cycle fatigue life The model calculates fatigue life and fatigue damage information; S5. Calculate creep damage: Calculate creep life and creep damage information through the creep life model; S6. Calculate overall damage and perform life distribution fitting; S7. Based on cumulative damage theory , combining the life information of multiple operating conditions to obtain the final probability life distribution of the blade. Although the patent considers the impact of materials, loads, and geometric dimensions on life, it does not disclose how to solve the technical problem of improving the robustness of turbine blade life design.

中国专利CN107895088B涉及一种航空发动机燃烧室寿命预测方法,包括:航空发动机燃烧室CFD分析;航空发动机燃烧室弹塑性静力学分析;航空发动机燃烧室载荷谱编制;航空发动机燃烧室基体合金疲劳试验件设计:设计哈氏合金蠕变疲劳实验标准件;航空发动机燃烧室基体合金疲劳试验载荷设计;航空发动机燃烧室基体合金试验;采用支持向量机(SVM)与遗传算法(GA)相结合的方法,建立航空发动机燃烧室基体合金损伤预测模型;航空发动机燃烧室寿命预测。虽然该专利公开了CFD和支持向量机的算法,但是该发明是解决如何预测燃烧室寿命的问题,并未公开如何解决提高燃烧室稳健性及火焰筒寿命的技术问题。Chinese patent CN107895088B involves a method for predicting the life of an aeroengine combustion chamber, including: CFD analysis of the aeroengine combustion chamber; elasto-plastic static analysis of the aeroengine combustion chamber; compilation of the load spectrum of the aeroengine combustion chamber; fatigue test pieces of the aeroengine combustion chamber matrix alloy Design: design of Hastelloy alloy creep fatigue test standard parts; aircraft engine combustion chamber matrix alloy fatigue test load design; aircraft engine combustion chamber matrix alloy test; using a method combining support vector machine (SVM) and genetic algorithm (GA), Establish a damage prediction model for the matrix alloy of the aero-engine combustion chamber; predict the life of the aero-engine combustion chamber. Although the patent discloses the algorithms of CFD and support vector machines, the invention solves the problem of how to predict the life of the combustion chamber, and does not disclose how to solve the technical problem of improving the robustness of the combustion chamber and the life of the flame tube.

发明内容Contents of the invention

为了解决燃气轮机热部件的寿命稳健性低的问题,本发明提供了一种燃气轮机热部件寿命稳健性的设计方法。In order to solve the problem of low lifetime robustness of gas turbine thermal components, the present invention provides a design method for the lifetime robustness of gas turbine thermal components.

为了实现本发明的目的,本发明采用的技术方案如下:In order to achieve the purpose of the present invention, the technical solutions adopted by the present invention are as follows:

一种燃气轮机热部件寿命稳健性的设计方法,包括A design method for the life robustness of gas turbine thermal components, including

步骤S1:采用流-热-固耦合分析方法获得温度场,并采用瞬态有限元分析方法获得燃机起机到停机过程中热部件考核点的循环应力-应变曲线;Step S1: Use the flow-thermal-solid coupling analysis method to obtain the temperature field, and use the transient finite element analysis method to obtain the cyclic stress-strain curve of the thermal component assessment point during the gas turbine startup to shutdown process;

步骤S2:通过循环应力-应变曲线获得热部件考核点的应变幅,根据热部件材料的Manson-Coffin公式以及获得的应变幅,计算热部件的低循环疲劳寿命;且采用响应面法建立热部件低循环疲劳寿命代理模型;Step S2: Obtain the strain amplitude of the thermal component assessment point through the cyclic stress-strain curve. According to the Manson-Coffin formula of the thermal component material and the obtained strain amplitude, calculate the low cycle fatigue life of the thermal component; and use the response surface method to establish the thermal component Low cycle fatigue life surrogate model;

步骤S3:设定热部件的稳健性设计变量,包括可控变量和噪声变量,将热部件低循环疲劳寿命的最大均值和最小标准差设为设计目标,并确定约束条件,建立基于分位数的参数设计优化模型;Step S3: Set the robustness design variables of the thermal component, including controllable variables and noise variables, set the maximum mean and minimum standard deviation of the low cycle fatigue life of the thermal component as the design goal, determine the constraints, and establish a design based on quantile Parametric design optimization model;

进一步地,针对不同的热部件,其约束条件是不一样的;Furthermore, for different thermal components, the constraints are different;

步骤S4:采用SPEA-II多目标优化算法对基于分位数的参数设计优化模型进行求解,得到目标函数值及对应的设计变量。Step S4: Use the SPEA-II multi-objective optimization algorithm to solve the quantile-based parameter design optimization model to obtain the objective function value and corresponding design variables.

进一步地,所述步骤S1中的应力应变曲线获取步骤为:Further, the stress-strain curve acquisition step in step S1 is:

步骤1:通过热力学公式计算得到热部件温度场计算边界条件参数;Step 1: Calculate the thermal component temperature field calculation boundary condition parameters through thermodynamic formulas;

步骤2:采用CFD软件对热部件的流场和固体温度场进行求解,获得热部件从起机到停机过程中温度场的分布;Step 2: Use CFD software to solve the flow field and solid temperature field of the thermal component to obtain the distribution of the temperature field of the thermal component from startup to shutdown;

步骤3:将CFD计算中得到的固体域节点上的温度直接映射到ANSYS计算的热部件固体域节点上,进行热部件应力应变计算;Step 3: Directly map the temperature on the solid domain node obtained in the CFD calculation to the solid domain node of the thermal component calculated by ANSYS to calculate the stress and strain of the thermal component;

步骤4:确定考核点,并得到热部件固体域考核点的循环应力-应变曲线。Step 4: Determine the assessment point and obtain the cyclic stress-strain curve of the assessment point in the solid domain of the thermal component.

进一步地,所述考核点是使热部件发生结构强度失效的区域。Further, the assessment point is an area where structural strength failure occurs in the thermal component.

进一步地,所述步骤S2中获取低循环疲劳寿命代理模型的步骤:Further, the step of obtaining the low cycle fatigue life surrogate model in step S2:

步骤11:选取设计变量X,设定原始样本数量n,并采用正交试验获取原始样本,对热部件进行有限元分析,得到考核点的平均应力和应变幅值,并通过具有平均应力修正的Mason-Coffin公式进行计算:得到低循环疲劳寿命Nf,将计算得出的低循环疲劳寿命Nf称为原始样本点;Step 11: Select the design variable Calculated using the Mason-Coffin formula: The low cycle fatigue life N f is obtained, and the calculated low cycle fatigue life N f is called the original sample point;

步骤12:对设计变量进行变换:其中xi为设计变量X的第i个样本,μi和σi为设计变量的均值和标准差,x′i为空间尺寸变化后的初始样本点;Step 12: Transform the design variables: where x i is the i-th sample of the design variable X, μ i and σ i are the mean and standard deviation of the design variable, x′ i is the initial sample point after the spatial size is changed;

步骤13:随机选取n1个初始样本点,通过响应面法进行机器学习,得出学习模型;Step 13: Randomly select n1 initial sample points, conduct machine learning through response surface method, and obtain the learning model;

步骤14:取剩余的n-n1个初始样本点作为检测样本点,监测学习模型的精度,若通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差大于a%,重复步骤13和步骤14,若监测的学习模型的精度满足通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差≤a%,则进行步骤15;Step 14: Take the remaining n-n1 initial sample points as detection sample points and monitor the accuracy of the learning model. If the error between the low cycle fatigue life calculated by the learning model and the initial sample points is greater than a%, repeat step 13. and step 14, if the accuracy of the monitored learning model meets the error between the low cycle fatigue life calculated by the learning model and the initial sample point ≤ a%, proceed to step 15;

进一步地,误差a≤5;Further, the error a≤5;

步骤15:采用蒙特卡洛抽样法对代理模型进行抽样,得到考核点的低循环疲劳寿命分布曲线。Step 15: Use the Monte Carlo sampling method to sample the agent model to obtain the low cycle fatigue life distribution curve of the assessment point.

进一步地,所述步骤11中的σ′f为疲劳强度系数,σm为平均应力,ε′f为疲劳延性系数,Δε为应变幅,b为疲劳强度指数,c为疲劳延性指数。Further, σ′ f in step 11 is the fatigue strength coefficient, σ m is the average stress, ε′ f is the fatigue ductility coefficient, Δε is the strain amplitude, b is the fatigue strength index, and c is the fatigue ductility index.

进一步地,所述步骤S3中的设定稳健性设计变量,并建立低循环疲劳的分位数优化模型和约束条件包括:Further, setting robustness design variables in step S3 and establishing a quantile optimization model and constraints for low cycle fatigue include:

热部件寿命N=f(y,z),其中y,z为稳健性设计变量;Thermal component life N=f(y,z), where y,z are robust design variables;

设计目标为约束条件为yL≤y≤yUThe design goal is The constraint condition is y L ≤ y ≤ y U ;

gj(y,z)≤0;g j (y,z)≤0;

进一步地,N0.5为概率为0.5的下侧分位数,为概率为P2和P1的下侧分位数之差,μ为寿命均值优化目标,y为可控变量,yU为可控变量的上界限,yL为可控变量的下界限;1≤j≤m,gj(y,z)为m个约束中的第j个约束,z为噪声变量。Further, N 0.5 is the lower quantile with probability 0.5, is the difference between the lower quantiles with probabilities P2 and P1, μ is the life mean optimization target, y is the controllable variable, y U is the upper limit of the controllable variable, y L is the lower limit of the controllable variable; 1≤ j≤m, g j (y, z) is the j-th constraint among m constraints, and z is the noise variable.

进一步地,SPEA-II多目标优化算法的步骤包括:Further, the steps of the SPEA-II multi-objective optimization algorithm include:

步骤a:将稳健性设计变量设为进化个体,同时设定最大进化代数T和群体规模N以及归档集规模M,初始化生成初代进化群体P0和空的归档集Q0,进化代数t=0,设定最大进化代数T;Step a: Set the robustness design variable to the evolved individual, and set the maximum evolutionary generation T, population size N, and archive set size M. Initialize to generate the first-generation evolutionary population P0 and empty archive set Q0. The evolution generation t=0, assuming Determine the maximum evolutionary generation number T;

步骤b:采用SPEA-II多目标优化算法进行计算当前进化群体Pt和归档集Qt中所有个体i的适应度值F(i);Step b: Use the SPEA-II multi-objective optimization algorithm to calculate the fitness value F(i) of all individuals i in the current evolutionary population Pt and archive set Qt;

步骤c:用下一代归档集Qt+1保存当前的进化群体Pt和当前的归档集Qt中所有非支配个体,比较归档集Qt+1中非支配个体的数量与设定的归档集规模M的大小,遵循多退少补的原则,使得归档集Qt+1中的个体数等于M;Step c: Use the next generation archive set Qt+1 to save the current evolutionary group Pt and all non-dominated individuals in the current archive set Qt, and compare the number of non-dominated individuals in the archive set Qt+1 with the set archive set size M The size follows the principle of withdrawing more and making up less, so that the number of individuals in the archive set Qt+1 is equal to M;

步骤d:若进化代数t≥T,或者满足其他终止条件,则进化停止,将Qt+1中的非支配解存入非支配解集NDSet中,输出NDSet和目标函数值;Step d: If the evolution algebra t ≥ T, or other termination conditions are met, the evolution stops, the non-dominated solution in Qt+1 is stored in the non-dominated solution set NDSet, and the NDSet and objective function values are output;

步骤e:采用二元锦标赛选择法对下一代归档集Qt+1进行锦标赛选择,选择合适个体进入配对库;Step e: Use the binary tournament selection method to conduct tournament selection on the next generation archive set Qt+1, and select appropriate individuals to enter the matching library;

步骤f:在配对库中执行进化算法中的交叉和变异操作,并将结果保存到下一代进化群体集合Pt+1中,令进化代数t=t+1,重复步骤b至步骤e直到满足终止条件步骤d。Step f: Perform crossover and mutation operations in the evolutionary algorithm in the paired library, and save the results to the next generation evolutionary population set Pt+1, let the evolutionary generation t=t+1, repeat steps b to e until termination is satisfied. Conditional step d.

进一步地,热部件包括燃气轮机中工作在高温高压环境下的零部件,具体的包括涡轮叶片、火焰筒、护环、轮盘等部件。Further, hot parts include parts in gas turbines that work in high temperature and high pressure environments, specifically including turbine blades, flame tubes, retaining rings, discs and other parts.

与现有技术相比,本发明的有益效果具体体现在:Compared with the prior art, the beneficial effects of the present invention are specifically reflected in:

(1)本发明在燃气轮机热部件设计阶段,由于设计初期引入了噪声因素作为设计变量,因此使设计空间进一步扩展,也即是本发明可在较大的设计空间中寻找使热部件寿命具有稳健性的设计变量;(1) In the design stage of gas turbine thermal components, the present invention introduces noise factors as design variables in the early stage of design, thus further expanding the design space. That is, the present invention can find ways to ensure a robust life span of thermal components in a larger design space. Sexual design variables;

(2)本发明优化目标之一使标准差最小,也即是使波动范围最小,减小燃气轮机热部件寿命分散区间,进而可以更精确地预估热部件低循环疲劳寿命,为燃气轮机大修周期制定提供准确依据;(2) One of the optimization goals of the present invention is to minimize the standard deviation, that is, to minimize the fluctuation range, and reduce the life dispersion interval of gas turbine hot parts, so that the low-cycle fatigue life of hot parts can be more accurately estimated and formulated for the gas turbine overhaul cycle. Provide accurate basis;

(3)本发明延长了热部件服役寿命,减少了维修次数,降低了整个生命周期中的维修成本,提升燃气轮机市场竞争力。(3) The present invention prolongs the service life of thermal components, reduces the number of maintenance times, reduces maintenance costs in the entire life cycle, and enhances the market competitiveness of the gas turbine.

附图说明Description of drawings

图1为本发明燃气轮机热部件寿命稳健性计算方法的流程图;Figure 1 is a flow chart of the method for calculating the life robustness of gas turbine thermal components according to the present invention;

图2为实施例1燃气轮机涡轮叶片特征尺寸示意图;Figure 2 is a schematic diagram of characteristic dimensions of a gas turbine blade in Embodiment 1;

图3为实施例1燃气轮机涡轮叶片稳健性分析结果;Figure 3 shows the robustness analysis results of the gas turbine blades of Embodiment 1;

图4为实施例2燃气轮机火焰筒特征尺寸示意图;Figure 4 is a schematic diagram of the characteristic dimensions of the gas turbine flame tube in Embodiment 2;

图5为实施例2燃气轮机火焰筒寿命稳健性设计结果对比;Figure 5 is a comparison of the life robustness design results of the gas turbine flame tube in Example 2;

具体实施方式Detailed ways

为使本发明的目的和技术方案更加清楚,下面将结合实施例,对本发明的技术方案进行清楚、完整地描述。In order to make the purpose and technical solution of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the embodiments.

实施例1Example 1

根据图1-图3所示的燃气轮机热部件寿命稳健性的设计方法,对某地面燃气轮机涡轮叶片的低循环疲劳寿命进行稳健性设计,具体步骤包括:According to the robust design method of gas turbine thermal component life shown in Figures 1 to 3, the low cycle fatigue life of a ground gas turbine turbine blade is robustly designed. The specific steps include:

步骤S1:对涡轮叶片的流场和固体温度场进行CFD计算,获得涡轮叶片温度场分布,同时采用瞬态有限元分析方法对涡轮叶片固体域进行分析,通过计算结果确定叶身气膜孔边为考核点,进而获得叶身气膜孔边的循环应力-应变曲线;Step S1: Perform CFD calculations on the flow field and solid temperature field of the turbine blades to obtain the temperature field distribution of the turbine blades. At the same time, use the transient finite element analysis method to analyze the solid domain of the turbine blades, and determine the air film hole edge of the blade body through the calculation results. As the assessment point, the cyclic stress-strain curve of the air film hole edge of the blade body is obtained;

具体的,该区域由于温度梯度大,因此应力水平高。Specifically, this region has high stress levels due to the large temperature gradient.

步骤S2:通过循环应力-应变曲线获得涡轮叶片从起机到停机过程中考核点的应变幅,根据材料IN738LC的Manson-Coffin曲线以及获得的应变幅,计算叶片的低循环疲劳寿命;且采用响应面法建立叶片的低循环疲劳寿命代理模型;Step S2: Obtain the strain amplitude of the turbine blade at the assessment point from startup to shutdown through the cyclic stress-strain curve. Based on the Manson-Coffin curve of the material IN738LC and the obtained strain amplitude, calculate the low cycle fatigue life of the blade; and use the response The surface method is used to establish the low cycle fatigue life surrogate model of the blade;

步骤S3:设定叶片的寿命稳健性设计变量,且将叶片低循环疲劳寿命的最大均值和最小标准差设为设计目标,并确定约束条件,建立基于分位数的参数设计优化模型;Step S3: Set the life robustness design variables of the blade, and set the maximum mean and minimum standard deviation of the low cycle fatigue life of the blade as the design goal, determine the constraints, and establish a quantile-based parameter design optimization model;

具体的,所述稳健性设计变量为可控随机变量和噪声变量。建立基于分位数的参数设计优化模型就是为了计算最大均值,且保证最大均值的波动范围最小;Specifically, the robust design variables are controllable random variables and noise variables. The purpose of establishing a quantile-based parameter design optimization model is to calculate the maximum mean and ensure that the fluctuation range of the maximum mean is minimized;

步骤S4:采用SPEA-II多目标优化算法对基于分位数的参数设计优化模型进行优化,得到输出设计变量和目标函数值。Step S4: Use the SPEA-II multi-objective optimization algorithm to optimize the quantile-based parameter design optimization model to obtain the output design variables and objective function values.

具体的,所述步骤S1中的应力应变曲线获取步骤为:Specifically, the steps for obtaining the stress-strain curve in step S1 are:

步骤1:通过燃气轮机总体特性计算得到叶片三维温度场计算的边界条件参数;Step 1: Obtain the boundary condition parameters for blade three-dimensional temperature field calculation through calculation of the overall characteristics of the gas turbine;

步骤2:采用CFD软件对叶片的流场和固体温度场进行求解,获得叶片的起机-额定工况-停机过程中燃烧室内流场和温度场的分布云图;Step 2: Use CFD software to solve the flow field and solid temperature field of the blade, and obtain the distribution cloud diagram of the flow field and temperature field in the combustion chamber during the startup-rated operating conditions-stop process of the blade;

步骤3:使用与CFD计算中相同的固体域网格,将CFD计算中得到的叶片固体域网格节点上的温度直接映射到ANSYS计算的火焰筒固体域网格上;对叶片进行瞬态应力应变分析,循环加载3~4次;Step 3: Use the same solid domain grid as in the CFD calculation to directly map the temperature on the blade solid domain grid nodes obtained in the CFD calculation to the flame tube solid domain grid calculated by ANSYS; conduct transient stress on the blade Strain analysis, cyclic loading 3 to 4 times;

步骤4:根据计算结果确定叶片气膜孔边为考核点,并得到考核点应力-应变曲线。Step 4: According to the calculation results, determine the edge of the blade air film hole as the assessment point, and obtain the stress-strain curve of the assessment point.

具体的,所述步骤4中的考核点是使热部件发生结构强度失效的区域。Specifically, the assessment point in step 4 is the area where the structural strength of the thermal component fails.

具体的,所述步骤S2中获取低循环疲劳寿命代理模型的步骤:Specifically, the step of obtaining the low cycle fatigue life proxy model in step S2 is:

步骤11:选取设计变量,设定原始样本数量32个,并采用拉丁超立方抽样方法获取原始样本,对涡轮叶片进行有限元分析,得到考核点的平均应力和应变幅值,并通过具有平均应力修正的Mason-Coffin公式进行计算:得到低循环疲劳寿命Nf,将计算得出的低循环疲劳寿命Nf称为原始样本点;其中,σ′f为疲劳强度系数,σm为平均应力,ε′f为疲劳延性系数,Δε为应变幅,b为疲劳强度指数,c为疲劳延性指数。Step 11: Select the design variables, set the number of original samples to 32, and use the Latin hypercube sampling method to obtain the original samples. Conduct finite element analysis on the turbine blades to obtain the average stress and strain amplitude of the assessment point, and pass the average stress Calculated using the modified Mason-Coffin formula: The low cycle fatigue life N f is obtained, and the calculated low cycle fatigue life N f is called the original sample point; where σ′ f is the fatigue strength coefficient, σ m is the average stress, ε′ f is the fatigue ductility coefficient, Δε is the strain amplitude, b is the fatigue strength index, and c is the fatigue ductility index.

步骤12:对设计变量进行换算:其中xi为设计变量X的第i个样本,μi和σi为设计变量的均值和标准差,x′i为空间尺寸变化后的初始样本点;而对输入数据进行空间尺寸变换的目的是减少计算机的舍入误差,提高训练支持向量回归机的稳定性和泛化性,基本设计变量作为输入数据由于物理意义和量纲不同,造成各自取值范围的差别较大,在支持向量回归机训练容易出现不稳定现象,所以基本设计变量需要进行尺寸变换,使它们在训练中具有同等重要的地位;Step 12: Convert design variables: where x i is the i -th sample of the design variable It is to reduce the rounding error of the computer and improve the stability and generalization of the training support vector regression machine. The basic design variables are used as input data due to different physical meanings and dimensions, resulting in large differences in their respective value ranges. In support vector regression Machine training is prone to instability, so the basic design variables need to be sized so that they have equal importance in training;

步骤13:随机选取70%的初始样本点,通过响应面法进行机器学习,得出学习模型;Step 13: Randomly select 70% of the initial sample points, conduct machine learning through the response surface method, and obtain the learning model;

步骤14:取剩余的30%的初始样本点作为检测样本点,监测学习模型的精度,若通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差大于5%,重复步骤13和步骤14,若监测的学习模型的精度满足通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差≤5%,则进行步骤15;Step 14: Take the remaining 30% of the initial sample points as detection sample points and monitor the accuracy of the learning model. If the error between the low cycle fatigue life calculated by the learning model and the initial sample points is greater than 5%, repeat steps 13 and Step 14, if the accuracy of the monitored learning model meets the error between the low cycle fatigue life calculated by the learning model and the initial sample point ≤ 5%, proceed to step 15;

具体的,误差体现的是原始样本点的实际响应值与预测值之间的误差;Specifically, the error reflects the error between the actual response value and the predicted value of the original sample point;

步骤15:采用蒙特卡洛抽样法对代理模型进行抽样,得到考核点的低循环疲劳寿命分布曲线;Step 15: Use the Monte Carlo sampling method to sample the agent model to obtain the low cycle fatigue life distribution curve of the assessment point;

具体的,步骤S3中的设定稳健性设计变量,并建立低循环疲劳的分位数优化模型和约束条件包括:Specifically, setting robustness design variables in step S3 and establishing a quantile optimization model and constraint conditions for low cycle fatigue include:

热部件寿命N=f(y,z),其中y,z为稳健性设计变量;Thermal component life N=f(y,z), where y,z are robust design variables;

设计目标为具体的N0.5为概率为0.5的下侧分位数,/>为概率为P2和P1的下侧分位数之差,μ为寿命均值优化目标,此处的P2为0.9999,P1为0.0001,The design goal is The specific N 0.5 is the lower quantile with a probability of 0.5,/> is the difference between the lower quantile of probabilities P2 and P1, μ is the life mean optimization target, where P2 is 0.9999 and P1 is 0.0001,

约束条件为:The constraints are:

最高温度不超过设计值:Ti<T0,The maximum temperature does not exceed the design value: Ti<T0,

截面平均温度不超过许用温度,Tavg<T1;The average cross-section temperature does not exceed the allowable temperature, Tavg<T1;

y为可控变量,y包括气膜孔直径d、气模孔倾斜角a、气模孔复合角β、气膜孔周向间距L1、气膜孔轴向间距L2、In738LC的弹性模量E;y is a controllable variable, y includes the air film hole diameter d, the air mold hole inclination angle a, the air mold hole composite angle β, the air film hole circumferential spacing L1, the air film hole axial spacing L2, and the elastic modulus E of In738LC ;

Z为噪声变量,z包括叶片入口气体温度T、叶片入口气体压力PZ is the noise variable, which includes blade inlet gas temperature T and blade inlet gas pressure P

SPEA-II多目标优化算法的步骤具体包括:The steps of the SPEA-II multi-objective optimization algorithm specifically include:

步骤(1)初始化:设定进化种群的规模N和归档集的规模M以及最大进化代数T,在满足约束条件最高温度Ti<T0,截面平均温度Tavg<T1的前提下,在由变量d,a,β,L1,L2,E,T,P组成的8维变量空间中随机初始化一个进化群体即点集P0和空归档集Q0,令进化代数t=0,设定最大进化代数T。Step (1) Initialization: Set the size of the evolutionary population N, the size of the archive set M, and the maximum evolutionary generation T. Under the premise that the maximum temperature Ti<T0 and the cross-sectional average temperature Tavg<T1 are satisfied, the variable d, Randomly initialize an evolutionary group, namely point set P0 and empty archive set Q0, in the 8-dimensional variable space composed of a, β, L1, L2, E, T, and P. Let the evolutionary algebra t=0 and set the maximum evolutionary algebra T.

步骤(2)适应度分配:将点集P0和Q0的并集中的点代入两个目标函数中,根据各点在由目标函数值组成的目标空间中的相对位置,可以区分支配解与非支配解。根据支配与被支配的关系,计算个体i的强度值S(i),并且依据强度值S(i)初步计算出一个原始适应度值R(i),再通过计算点i在目标空间中与其他点的欧氏距离可以得到该点的密度值D(i),计算当前进化群体Pt和当前归档集Qt中所有个体的适应度值F(i)=R(i)+D(i)。Step (2) Fitness allocation: Substitute the points in the union of point sets P0 and Q0 into the two objective functions , dominated solutions and non-dominated solutions can be distinguished based on the relative position of each point in the objective space composed of objective function values. According to the relationship between domination and dominance, the intensity value S(i) of individual i is calculated, and an original fitness value R(i) is preliminarily calculated based on the intensity value S(i), and then the point i is calculated in the target space and The Euclidean distance of other points can be used to obtain the density value D(i) of the point, and the fitness value F(i)=R(i)+D(i) of all individuals in the current evolutionary group Pt and the current archive set Qt is calculated.

步骤(3)环境选择:用下一代归档集Qt+1保存Pt和Qt中所有的非支配个体。若Qt+1中的个体数超出M,利用个体在目标空间中的相对位置,逐一剔除Qt+1中与其他个体欧氏距离过近的个体,即在目标空间中的密集区域清除部分个体;若Qt+1中的个体数目比M小,则根据个体适应度值,从Pt和Qt中的支配个体顺位选取,填满Qt+1;Step (3) Environment selection: Use the next generation archive set Qt+1 to save all non-dominated individuals in Pt and Qt. If the number of individuals in Qt+1 exceeds M, use the relative position of the individuals in the target space to eliminate individuals in Qt+1 that are too close to other individuals one by one, that is, remove some individuals from dense areas in the target space; If the number of individuals in Qt+1 is smaller than M, then according to the individual fitness value, the dominant individuals in Pt and Qt are selected in order to fill Qt+1;

步骤(4)结束条件:若t≥T,或达到其他结束条件,把Qt+1中的非支配个体保存到NDSet中,作为最终结果,进化过程结束NDSet为最终归档集,输出NDSet和对应的目标函数值;Step (4) End condition: If t≥T, or other end conditions are met, save the non-dominated individuals in Qt+1 to NDSet as the final result. At the end of the evolution process, NDSet is the final archive set, and NDSet and the corresponding objective function value;

步骤(5)配对选择:对Qt+1进行二元锦标赛选择,即随机在Qt+1中选取两个个体,适应度好的个体进入配对库,反复执行选择操作,直到填满配对库。Step (5) Pairing selection: Perform a binary tournament selection on Qt+1, that is, randomly select two individuals in Qt+1, and the individuals with good fitness enter the matching library, and the selection operation is repeated until the matching library is filled.

步骤(6)进化操作:对Qt+1中的个体,两两随机配对,采用二进制编码,通过执行交叉操作,个体也可以通过二进制数位上随机变异(0变为1,1变为0),执行变异操作,并将进化结果保存到Qt+1中,令t=t+1,转步骤(2)。Step (6) Evolution operation: For individuals in Qt+1, pairs are randomly paired and binary coding is used. By performing a crossover operation, individuals can also randomly mutate in binary digits (0 becomes 1, 1 becomes 0), Perform the mutation operation and save the evolution result to Qt+1, let t=t+1, and go to step (2).

实施例2Example 2

根据图1、图4和图5所示的燃气轮机热部件寿命稳健性的设计方法,对某地面燃气轮机火焰筒的低循环疲劳寿命进行稳健性设计,具体步骤包括:According to the robust design method of gas turbine thermal component life shown in Figure 1, Figure 4 and Figure 5, the low cycle fatigue life of a ground gas turbine flame tube is robustly designed. The specific steps include:

步骤S1:采用流-热-固耦合分析方法对火焰筒的流场和固体温度场进行CFD计算,获得火焰筒温度场分布,同时采用瞬态有限元分析方法对燃烧室火焰筒固体域进行分析,通过计算结果获得燃机起机到停机过程中火焰筒气膜孔边的循环应力-应变曲线;Step S1: Use the flow-thermal-solid coupling analysis method to perform CFD calculations on the flow field and solid temperature field of the flame tube to obtain the temperature field distribution of the flame tube. At the same time, use the transient finite element analysis method to analyze the solid domain of the flame tube in the combustion chamber. , through the calculation results, the cyclic stress-strain curve of the flame tube gas film hole edge during the gas turbine startup to shutdown process is obtained;

具体的,该区域由于温度梯度大,因此应力水平高。Specifically, this region has high stress levels due to the large temperature gradient.

步骤S2:通过循环应力-应变曲线获得火焰筒从起机到停机过程中考核点的应变幅,根据火焰筒材料Hastelloy-X的Manson-Coffin公式以及获得的应变幅,计算火焰筒的低循环疲劳寿命;且采用响应面法建立火焰筒低循环疲劳寿命代理模型;Step S2: Obtain the strain amplitude of the flame tube at the assessment point from startup to shutdown through the cyclic stress-strain curve. Calculate the low cycle fatigue of the flame tube based on the Manson-Coffin formula of the flame tube material Hastelloy-X and the obtained strain amplitude. life; and the response surface method is used to establish a proxy model for the low cycle fatigue life of the flame tube;

步骤S3:设定火焰筒的寿命稳健性设计变量,包括可控变量和噪声变量,将火焰筒低循环疲劳寿命的最大均值和最小标准差设为设计目标,并确定约束条件,建立基于分位数的参数设计优化模型;Step S3: Set the life robustness design variables of the flame tube, including controllable variables and noise variables. Set the maximum mean and minimum standard deviation of the low cycle fatigue life of the flame tube as the design goals, determine the constraints, and establish a quantile-based Several parameter design optimization models;

具体的,所述稳健性设计变量为可控随机变量和噪声变量。建立基于分位数的参数设计优化模型就是为了计算最大均值,且保证最大均值的波动范围最小;Specifically, the robust design variables are controllable random variables and noise variables. The purpose of establishing a quantile-based parameter design optimization model is to calculate the maximum mean and ensure that the fluctuation range of the maximum mean is minimized;

步骤S4:采用SPEA-II多目标优化算法对基于分位数的参数设计优化模型进行求解,得到输出设计变量和目标函数值。Step S4: Use the SPEA-II multi-objective optimization algorithm to solve the quantile-based parameter design optimization model to obtain the output design variables and objective function values.

具体的,所述步骤S1中的应力应变曲线获取步骤为:Specifically, the steps for obtaining the stress-strain curve in step S1 are:

步骤1:通过热力学公式计算得到火焰筒三维温度场计算的边界条件参数;Step 1: Calculate the boundary condition parameters for the three-dimensional temperature field calculation of the flame tube through thermodynamic formula calculation;

步骤2:采用CFD软件对燃烧室火焰筒的流场和固体温度场进行求解,获得火焰筒的起机-额定工况-停机过程中燃烧室内流场和温度场的分布云图;Step 2: Use CFD software to solve the flow field and solid temperature field of the combustion chamber flame tube, and obtain the distribution cloud diagram of the flow field and temperature field in the combustion chamber during the startup-rated operating conditions-stop process of the flame tube;

步骤3:使用与CFD计算中相同的固体域网格,将CFD计算中得到的火焰筒固体域网格节点上的温度直接映射到ANSYS计算的火焰筒固体域网格上;对火焰筒进行瞬态应力应变分析,循环加载3~4次;Step 3: Use the same solid domain grid as in the CFD calculation to directly map the temperatures on the flame tube solid domain grid nodes obtained in the CFD calculation to the flame tube solid domain grid calculated by ANSYS; perform instantaneous calculation of the flame tube. State stress and strain analysis, cyclic loading 3 to 4 times;

步骤4:根据计算结果确定气膜孔边为考核点,并得到考核点应力-应变曲线。Step 4: According to the calculation results, determine the edge of the air film hole as the assessment point, and obtain the stress-strain curve of the assessment point.

具体的,所述步骤4中的考核点是使热部件发生结构强度失效的区域。Specifically, the assessment point in step 4 is the area where the structural strength of the thermal component fails.

进一步地,所述步骤S2中获取低循环疲劳寿命代理模型的步骤:Further, the step of obtaining the low cycle fatigue life surrogate model in step S2:

步骤11:选取设计变量,设定原始样本数量32个,并采用拉丁超立方抽样方法获取原始样本,对火焰筒进行有限元分析,得到考核点的平均应力和应变幅值,并通过具有平均应力修正的Mason-Coffin公式进行计算:得到低循环疲劳寿命Nf,将计算得出的低循环疲劳寿命Nf称为原始样本点;其中,σ′f为疲劳强度系数,σm为平均应力,ε′f为疲劳延性系数,Δε为应变幅,b为疲劳强度指数,c为疲劳延性指数。Step 11: Select the design variables, set the number of original samples to 32, and use the Latin hypercube sampling method to obtain the original samples. Conduct finite element analysis on the flame tube to obtain the average stress and strain amplitude of the assessment point, and pass the average stress Calculated using the modified Mason-Coffin formula: The low cycle fatigue life N f is obtained, and the calculated low cycle fatigue life N f is called the original sample point; where σ′ f is the fatigue strength coefficient, σ m is the average stress, ε′ f is the fatigue ductility coefficient, Δε is the strain amplitude, b is the fatigue strength index, and c is the fatigue ductility index.

具体的,设计变量包括火焰筒结构参数、材料参数以及载荷边界条件,具体包括气膜孔直径d、气膜孔周向间距L1、气膜孔轴向间距L2、气膜孔排布角度β、火焰筒壁厚t、H-X的弹性模量E、火焰筒入口气体温度T、火焰筒入口气体压力P、燃料流量m。Specifically, the design variables include flame tube structural parameters, material parameters and load boundary conditions, including the diameter of the air film hole d, the circumferential spacing of the air film holes L1, the axial spacing of the air film holes L2, the air film hole arrangement angle β, The flame tube wall thickness t, the elastic modulus E of H-X, the flame tube inlet gas temperature T, the flame tube inlet gas pressure P, and the fuel flow rate m.

步骤12:对设计变量进行换算:其中xi为设计变量X的第i个样本,μi和σi为设计变量的均值和标准差,x′i为空间尺寸变化后的初始样本点;而对输入数据进行空间尺寸变换的目的是减少计算机的舍入误差,提高训练支持向量回归机的稳定性和泛化性,基本设计变量作为输入数据由于物理意义和量纲不同,造成各自取值范围的差别较大,在支持向量回归机训练容易出现不稳定现象,所以基本设计变量需要进行尺寸变换,使它们在训练中具有同等重要的地位;Step 12: Convert design variables: where x i is the i -th sample of the design variable It is to reduce the rounding error of the computer and improve the stability and generalization of the training support vector regression machine. The basic design variables are used as input data due to different physical meanings and dimensions, resulting in large differences in their respective value ranges. In support vector regression Machine training is prone to instability, so the basic design variables need to be sized so that they have equal importance in training;

步骤13:随机选取70%的初始样本点,通过响应面法进行机器学习,得出学习模型;Step 13: Randomly select 70% of the initial sample points, conduct machine learning through the response surface method, and obtain the learning model;

步骤14:取剩余的30%的初始样本点作为检测样本点,监测学习模型的精度,若通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差大于5%,重复步骤13和步骤14,若监测的学习模型的精度满足通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差≤5%,则进行步骤15;Step 14: Take the remaining 30% of the initial sample points as detection sample points and monitor the accuracy of the learning model. If the error between the low cycle fatigue life calculated by the learning model and the initial sample points is greater than 5%, repeat steps 13 and Step 14, if the accuracy of the monitored learning model meets the error between the low cycle fatigue life calculated by the learning model and the initial sample point ≤ 5%, proceed to step 15;

具体的,误差体现的是原始样本点的实际响应值与预测值之间的误差;Specifically, the error reflects the error between the actual response value and the predicted value of the original sample point;

步骤15:采用蒙特卡洛抽样法对代理模型进行抽样,得到考核点的低循环疲劳寿命分布曲线;Step 15: Use the Monte Carlo sampling method to sample the agent model to obtain the low cycle fatigue life distribution curve of the assessment point;

具体的,步骤S3中的设定稳健性设计变量,并建立低循环疲劳的分位数优化模型和约束条件包括:Specifically, setting robustness design variables in step S3 and establishing a quantile optimization model and constraint conditions for low cycle fatigue include:

热部件寿命N=f(y,z),其中y,z为稳健性设计变量;Thermal component life N=f(y,z), where y,z are robust design variables;

设计目标为具体的N0.5为概率为0.5的下侧分位数,/>为概率为P2和P1的下侧分位数之差,μ为寿命均值优化目标,此处的P2为0.9999,P1为0.0001,The design goal is The specific N 0.5 is the lower quantile with a probability of 0.5,/> is the difference between the lower quantile of probabilities P2 and P1, μ is the life mean optimization target, where P2 is 0.9999 and P1 is 0.0001,

约束条件为:The constraints are:

壁面最高许用温度不超过设计值:Ti<T0,The maximum allowable wall temperature does not exceed the design value: Ti<T0,

壁厚不超过设定值t<t0;The wall thickness does not exceed the set value t<t0;

y为可控变量,y包括气膜孔直径d1、气膜孔周向间距L1、气膜孔轴向间距L2、气膜孔排布角度β、火焰筒壁厚d2、H-X的弹性模量E;y is a controllable variable, y includes the air film hole diameter d1, the air film hole circumferential spacing L1, the air film hole axial spacing L2, the air film hole arrangement angle β, the flame tube wall thickness d2, and the elastic modulus E of H-X ;

噪声设计变量z为:火焰筒入口气体温度T、火焰筒入口气体压力P、燃料流量m;The noise design variables z are: flame tube inlet gas temperature T, flame tube inlet gas pressure P, and fuel flow rate m;

SPEA-II多目标优化算法的步骤具体包括:The steps of the SPEA-II multi-objective optimization algorithm specifically include:

步骤(1)初始化:设定进化种群的规模N和归档集的规模M以及最大进化代数T,在满足约束条件Ti<T0,壁厚t<t0的前提下,在由变量d,L1,L2,β,t,E,T,P,m组成的9维变量空间中随机初始化一个进化群体即点集P0和空归档集Q0,进化代数t=0,设定最大进化代数T。Step (1) Initialization: Set the size of the evolutionary population N, the size of the archive set M, and the maximum evolutionary generation T. Under the premise of satisfying the constraint conditions Ti<T0 and wall thickness t<t0, set the variables d, L1, L2 ,In the 9-dimensional variable space composed of β,t,E,T,P,m, an evolutionary group, namely the point set P0 and the empty archive set Q0, is randomly initialized, the evolutionary generation t=0, and the maximum evolution generation T is set.

步骤(2)适应度分配:将点集P0和Q0的并集中的点代入两个目标函数中,根据各点在由目标函数值组成的目标空间中的相对位置,可以区分支配解与非支配解。根据支配与被支配的关系,计算个体i的强度值S(i),并且依据强度值S(i)初步计算出一个原始适应度值R(i),再通过计算点i在目标空间中与其他点的欧氏距离可以得到该点的密度值D(i),计算当前进化群体Pt和当前归档集Qt中所有个体的适应度值F(i)=R(i)+D(i)。Step (2) Fitness allocation: Substitute the points in the union of point sets P0 and Q0 into the two objective functions , dominated solutions and non-dominated solutions can be distinguished based on the relative position of each point in the objective space composed of objective function values. According to the relationship between domination and dominance, the intensity value S(i) of individual i is calculated, and an original fitness value R(i) is preliminarily calculated based on the intensity value S(i), and then the point i is calculated in the target space and The Euclidean distance of other points can be used to obtain the density value D(i) of the point, and the fitness value F(i)=R(i)+D(i) of all individuals in the current evolutionary group Pt and the current archive set Qt is calculated.

步骤(3)环境选择:用下一代归档集Qt+1保存Pt和Qt中所有的非支配个体。若Qt+1中的个体数超出M,利用个体在目标空间中的相对位置,逐一剔除Qt+1中与其他个体欧氏距离过近的个体,即在目标空间中的密集区域清除部分个体;若Qt+1中的个体数目比M小,则根据个体适应度值,从Pt和Qt中的支配个体顺位选取,填满Qt+1;Step (3) Environment selection: Use the next generation archive set Qt+1 to save all non-dominated individuals in Pt and Qt. If the number of individuals in Qt+1 exceeds M, use the relative position of the individuals in the target space to eliminate individuals in Qt+1 that are too close to other individuals one by one, that is, remove some individuals from dense areas in the target space; If the number of individuals in Qt+1 is smaller than M, then according to the individual fitness value, the dominant individuals in Pt and Qt are selected in order to fill Qt+1;

步骤(4)结束条件:若t≥T,或达到其他结束条件,把Qt+1中的非支配个体保存到NDSet中,作为最终结果,进化过程结束NDSet为最终归档集,输出NDSet和对应的目标函数值;Step (4) End condition: If t≥T, or other end conditions are met, save the non-dominated individuals in Qt+1 to NDSet as the final result. At the end of the evolution process, NDSet is the final archive set, and NDSet and the corresponding objective function value;

步骤(5)配对选择:对Qt+1进行二元锦标赛选择,即随机在Qt+1中选取两个个体,适应度好的个体进入配对库,反复执行选择操作,直到填满配对库。Step (5) Pairing selection: Perform a binary tournament selection on Qt+1, that is, randomly select two individuals in Qt+1, and the individuals with good fitness enter the matching library, and the selection operation is repeated until the matching library is filled.

步骤(6)进化操作:对Qt+1中的个体,两两随机配对,采用二进制编码,通过执行交叉操作,个体也可以通过二进制数位上随机变异(0变为1,1变为0),执行变异操作,并将进化结果保存到Qt+1中,令t=t+1,转步骤(2)。Step (6) Evolution operation: For individuals in Qt+1, pairs are randomly paired and binary coding is used. By performing a crossover operation, individuals can also randomly mutate in binary digits (0 becomes 1, 1 becomes 0), Perform the mutation operation and save the evolution result to Qt+1, let t=t+1, and go to step (2).

以上仅为本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。The above are only embodiments of the present invention. The descriptions are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.

Claims (3)

1.一种燃气轮机热部件寿命稳健性的设计方法,其特征在于,包括1. A design method for the life robustness of gas turbine thermal components, which is characterized by including: 步骤S1:采用流-热-固耦合分析方法获得温度场,并采用瞬态有限元分析方法获得燃机起机到停机过程中热部件考核点的循环应力-应变曲线;Step S1: Use the flow-thermal-solid coupling analysis method to obtain the temperature field, and use the transient finite element analysis method to obtain the cyclic stress-strain curve of the thermal component assessment point during the gas turbine startup to shutdown process; 步骤S2:通过循环应力-应变曲线获得热部件考核点的应变幅,根据热部件材料的Manson-Coffin公式以及获得的应变幅,计算热部件的低循环疲劳寿命;且采用响应面法建立热部件低循环疲劳寿命代理模型;Step S2: Obtain the strain amplitude of the thermal component assessment point through the cyclic stress-strain curve. According to the Manson-Coffin formula of the thermal component material and the obtained strain amplitude, calculate the low cycle fatigue life of the thermal component; and use the response surface method to establish the thermal component Low cycle fatigue life surrogate model; 步骤S3:设定热部件的稳健性设计变量,包括可控变量和噪声变量,将热部件低循环疲劳寿命的最大均值和最小标准差设为设计目标,并确定约束条件,建立基于分位数的参数设计优化模型;Step S3: Set the robustness design variables of the thermal component, including controllable variables and noise variables, set the maximum mean and minimum standard deviation of the low cycle fatigue life of the thermal component as the design goal, determine the constraints, and establish a design based on quantile Parametric design optimization model; 步骤S4:采用SPEA-II多目标优化算法对基于分位数的参数设计优化模型进行求解,得到目标函数值及对应的设计变量;Step S4: Use the SPEA-II multi-objective optimization algorithm to solve the quantile-based parameter design optimization model to obtain the objective function value and corresponding design variables; 其中,步骤S1中的应力应变曲线获取步骤为:Among them, the steps to obtain the stress-strain curve in step S1 are: 步骤1:通过热力学公式计算得到热部件温度场计算边界条件参数;Step 1: Calculate the thermal component temperature field calculation boundary condition parameters through thermodynamic formulas; 步骤2:采用CFD软件对热部件的流场和固体温度场进行求解,获得热部件从起机到停机过程中温度场的分布;Step 2: Use CFD software to solve the flow field and solid temperature field of the thermal component to obtain the distribution of the temperature field of the thermal component from startup to shutdown; 步骤3:将CFD计算中得到的固体域节点上的温度直接映射到ANSYS计算的热部件固体域节点上,进行热部件应力应变计算;Step 3: Directly map the temperature on the solid domain node obtained in the CFD calculation to the solid domain node of the thermal component calculated by ANSYS to calculate the stress and strain of the thermal component; 步骤4:确定考核点,并得到热部件固体域考核点的循环应力-应变曲线;Step 4: Determine the assessment points and obtain the cyclic stress-strain curve of the assessment points in the solid domain of the thermal component; 步骤S2中获取低循环疲劳寿命代理模型的步骤:Steps to obtain the low cycle fatigue life surrogate model in step S2: 步骤11:选取设计变量X,设定原始样本数量n,并采用正交试验获取原始样本,对热部件进行有限元分析,得到考核点的平均应力和应变幅值,并通过具有平均应力修正的Mason-Coffin公式进行计算:,得到低循环疲劳寿命Nf,将计算得出的低循环疲劳寿命Nf称为原始样本点;式中,/>为疲劳强度系数,/>为平均应力,为疲劳延性系数,/>为应变幅,b为疲劳强度指数,c为疲劳延性指数;Step 11: Select the design variable Calculated using the Mason-Coffin formula: , the low cycle fatigue life N f is obtained, and the calculated low cycle fatigue life N f is called the original sample point; in the formula, /> is the fatigue strength coefficient,/> is the average stress, is the fatigue ductility coefficient,/> is the strain amplitude, b is the fatigue strength index, c is the fatigue ductility index; 步骤12:对设计变量进行变换:,其中xi为设计变量X的第i个样本,/>和/>为设计变量的均值和标准差,/>为空间尺寸变化后的初始样本点;Step 12: Transform the design variables: , where x i is the i-th sample of design variable X,/> and/> are the mean and standard deviation of the design variables,/> is the initial sample point after the spatial size is changed; 步骤13:随机选取n1个初始样本点,通过响应面法进行机器学习,得出学习模型;Step 13: Randomly select n1 initial sample points, conduct machine learning through response surface method, and obtain the learning model; 步骤14:取剩余的n-n1个初始样本点作为检测样本点,监测学习模型的精度,若通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差大于a%,重复步骤13和步骤14,若监测的学习模型的精度满足通过学习模型计算得到的低循环疲劳寿命与初始样本点之间的误差≤a%,则进行步骤15;Step 14: Take the remaining n-n1 initial sample points as detection sample points and monitor the accuracy of the learning model. If the error between the low cycle fatigue life calculated by the learning model and the initial sample points is greater than a%, repeat step 13. and step 14, if the accuracy of the monitored learning model meets the error between the low cycle fatigue life calculated by the learning model and the initial sample point ≤ a%, proceed to step 15; 步骤15:采用蒙特卡洛抽样法对代理模型进行抽样,得到考核点的低循环疲劳寿命分布曲线;Step 15: Use the Monte Carlo sampling method to sample the agent model to obtain the low cycle fatigue life distribution curve of the assessment point; 步骤S3中的设定稳健性设计变量,并建立低循环疲劳的分位数优化模型和约束条件包括:In step S3, setting robust design variables and establishing a quantile optimization model and constraints for low cycle fatigue include: 热部件寿命N=f(y,z),其中y,z为稳健性设计变量;Thermal component life N=f(y,z), where y,z are robust design variables; 设计目标为The design goal is ; 约束条件为The constraints are ; gj(y,z)≤0;g j (y,z)≤0; 为概率为0.5的下侧分位数,/>为概率为P2和P1的下侧分位数之差,/>为寿命均值优化目标,y为可控变量,yU为可控变量的上界限,yL为可控变量的下界限;1≤j≤m,gj(y,z)为m个约束中的第j个约束,z为噪声变量; is the lower quantile with probability 0.5,/> is the difference between the lower quantiles with probabilities P2 and P1,/> is the life mean optimization objective, y is the controllable variable, y U is the upper limit of the controllable variable, y L is the lower limit of the controllable variable; 1≤j≤m, gj(y,z) is the m constraint The jth constraint, z is the noise variable; 步骤S4中的SPEA-II多目标优化算法的步骤包括:The steps of the SPEA-II multi-objective optimization algorithm in step S4 include: 步骤(1)初始化:设定进化种群的规模N和归档集的规模M以及最大进化代数T,在满足约束条件最高温度Ti<T0,截面平均温度Tavg<T1的前提下,在由变量d, a,β,L1,L2,E,T,P组成的8维变量空间中随机初始化一个进化群体即点集P0和空归档集Q0,令进化代数t=0,设定最大进化代数T;Step (1) Initialization: Set the size of the evolutionary population N, the size of the archive set M, and the maximum evolutionary generation T. Under the premise that the maximum temperature Ti<T0 and the cross-sectional average temperature Tavg<T1 are satisfied, the variable d, Randomly initialize an evolutionary group, namely point set P0 and empty archive set Q0, in the 8-dimensional variable space composed of a, β, L1, L2, E, T, and P. Let the evolution generation t=0 and set the maximum evolution generation T; 步骤(2)适应度分配:将点集P0和Q0的并集中的点代入两个目标函数中,根据各点在由目标函数值组成的目标空间中的相对位置,区分支配解与非支配解;根据支配与被支配的关系,计算个体i的强度值S(i),并且依据强度值S(i)初步计算出一个原始适应度值R(i),再通过计算点i在目标空间中与其他点的欧氏距离得到该点的密度值D(i),计算当前进化群体Pt和当前归档集Qt中所有个体的适应度值F(i)=R(i)+D(i);Step (2) Fitness allocation: Substitute the points in the union of point sets P0 and Q0 into the two objective functions In , the dominant solution and the non-dominated solution are distinguished according to the relative position of each point in the target space composed of the objective function value; according to the relationship between the dominant and the dominated, the intensity value S(i) of the individual i is calculated, and according to the intensity value S(i) initially calculates an original fitness value R(i), and then calculates the Euclidean distance between point i and other points in the target space to obtain the density value D(i) of the point, and calculates the current evolutionary group Pt and The fitness value F(i)=R(i)+D(i) of all individuals in the current archive set Qt; 步骤(3)环境选择:用下一代归档集Qt+1保存Pt和Qt中所有的非支配个体;若Qt+1中的个体数超出M,利用个体在目标空间中的相对位置,逐一剔除Qt+1中与其他个体欧氏距离过近的个体,即在目标空间中的密集区域清除部分个体;若Qt+1中的个体数目比M小,则根据个体适应度值,从Pt和Qt中的支配个体顺位选取,填满Qt+1;Step (3) Environment selection: Use the next generation archive set Qt+1 to save all non-dominated individuals in Pt and Qt; if the number of individuals in Qt+1 exceeds M, use the relative position of the individuals in the target space to eliminate Qt one by one. Individuals in +1 that are too close to other individuals in Euclidean distance, that is, some individuals are removed from dense areas in the target space; if the number of individuals in Qt+1 is smaller than M, then according to the individual fitness value, some individuals are removed from Pt and Qt The dominant individual is selected in order and filled with Qt+1; 步骤(4)结束条件:若t≥T,或达到其他结束条件,把Qt+1中的非支配个体保存到NDSet中,作为最终结果,进化过程结束NDSet为最终归档集,输出NDSet和对应的目标函数值;Step (4) End condition: If t ≥ T, or other end conditions are met, save the non-dominated individuals in Qt+1 to NDSet as the final result. At the end of the evolution process, NDSet is the final archive set, and output NDSet and the corresponding objective function value; 步骤(5)配对选择:对Qt+1进行二元锦标赛选择,即随机在Qt+1中选取两个个体,适应度好的个体进入配对库,反复执行选择操作,直到填满配对库;Step (5) Pairing selection: Perform a binary tournament selection on Qt+1, that is, randomly select two individuals in Qt+1, and the individuals with good fitness enter the matching library, and the selection operation is repeated until the matching library is filled; 步骤(6)进化操作:对Qt+1中的个体,两两随机配对,采用二进制编码,通过执行交叉操作,个体也可以通过二进制数位上随机变异,执行变异操作,并将进化结果保存到Qt+1中,令t=t+1,转步骤(2)。Step (6) Evolution operation: Randomly pair individuals in Qt+1 using binary coding. By performing crossover operations, individuals can also perform mutation operations through random mutation on binary digits, and save the evolution results to Qt. In +1, let t=t+1 and go to step (2). 2.根据权利要求1中所述的燃气轮机热部件寿命稳健性的设计方法,其特征在于,所述考核点是使热部件发生结构强度失效的区域。2. The design method for the life robustness of gas turbine thermal components according to claim 1, characterized in that the assessment point is an area where structural strength failure of the thermal component occurs. 3.根据权利要求1所述的燃气轮机热部件寿命稳健性的设计方法,其特征在于,所述热部件至少包括涡轮叶片、火焰筒、护环、轮盘。3. The design method for the lifetime robustness of gas turbine thermal components according to claim 1, characterized in that the thermal components at least include turbine blades, flame tubes, retaining rings, and disks.
CN202210313327.9A 2021-09-29 2022-03-28 Design method for life stability of thermal component of gas turbine Active CN114841032B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021111518508 2021-09-29
CN202111151850 2021-09-29

Publications (2)

Publication Number Publication Date
CN114841032A CN114841032A (en) 2022-08-02
CN114841032B true CN114841032B (en) 2024-03-22

Family

ID=82563212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210313327.9A Active CN114841032B (en) 2021-09-29 2022-03-28 Design method for life stability of thermal component of gas turbine

Country Status (1)

Country Link
CN (1) CN114841032B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077302A (en) * 1998-02-12 2000-06-20 Egs, Inc. System and method for analyzing and designing vibration isolators
US7996344B1 (en) * 2010-03-08 2011-08-09 Livermore Software Technology Corporation Multi-objective evolutionary algorithm based engineering design optimization
JP2013198927A (en) * 2012-03-26 2013-10-03 Jfe Steel Corp Method of analyzing press forming
CN108153955A (en) * 2017-12-20 2018-06-12 湖州师范学院 Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm
CN108629092A (en) * 2018-04-20 2018-10-09 北京航空航天大学 One kind being based on the modified turbine disk subregion analysis method for reliability of dimensional effect
CN110175394A (en) * 2019-05-23 2019-08-27 电子科技大学 A kind of turbo blade spleen tissue extracts damage coupling Probabilistic Life Prediction calculation method
CN112270098A (en) * 2020-11-02 2021-01-26 桂林电子科技大学 A robust optimization design method for hot air reflow welding process
CN112417608A (en) * 2020-12-11 2021-02-26 一汽-大众汽车有限公司 Vehicle door model construction method and system, electronic device and storage medium
CN112528540A (en) * 2020-12-08 2021-03-19 中国航空工业集团公司沈阳飞机设计研究所 Structure optimization method based on force-heat coupling calculation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557397B2 (en) * 2000-09-05 2010-10-06 本田技研工業株式会社 Blade shape design method and information medium
US8116990B2 (en) * 2007-10-19 2012-02-14 Ashok Koul Method and system for real-time prognosis analysis and usage based residual life assessment of turbine engine components and display
KR101671946B1 (en) * 2014-12-04 2016-11-16 한국생산기술연구원 Uneven pitch regenerative blower and an optimal design method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077302A (en) * 1998-02-12 2000-06-20 Egs, Inc. System and method for analyzing and designing vibration isolators
US7996344B1 (en) * 2010-03-08 2011-08-09 Livermore Software Technology Corporation Multi-objective evolutionary algorithm based engineering design optimization
JP2013198927A (en) * 2012-03-26 2013-10-03 Jfe Steel Corp Method of analyzing press forming
CN108153955A (en) * 2017-12-20 2018-06-12 湖州师范学院 Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm
CN108629092A (en) * 2018-04-20 2018-10-09 北京航空航天大学 One kind being based on the modified turbine disk subregion analysis method for reliability of dimensional effect
CN110175394A (en) * 2019-05-23 2019-08-27 电子科技大学 A kind of turbo blade spleen tissue extracts damage coupling Probabilistic Life Prediction calculation method
CN112270098A (en) * 2020-11-02 2021-01-26 桂林电子科技大学 A robust optimization design method for hot air reflow welding process
CN112528540A (en) * 2020-12-08 2021-03-19 中国航空工业集团公司沈阳飞机设计研究所 Structure optimization method based on force-heat coupling calculation
CN112417608A (en) * 2020-12-11 2021-02-26 一汽-大众汽车有限公司 Vehicle door model construction method and system, electronic device and storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于混沌粒子群优化算法的压气机盘低循环疲劳寿命概率稳健设计;马林;白广忱;周平;;航空发动机(06);43-47 *
涡轮叶片疲劳-蠕变寿命稳健性优化方法;陈志英,王朝,周平;《航空发动机》;第43卷(第4期);12-16 *
陈志英,王朝,周平.涡轮叶片疲劳-蠕变寿命稳健性优化方法.《航空发动机》.2017,第43卷(第4期),12-16. *

Also Published As

Publication number Publication date
CN114841032A (en) 2022-08-02

Similar Documents

Publication Publication Date Title
Song et al. Dynamic surrogate modeling approach for probabilistic creep-fatigue life evaluation of turbine disks
US11436395B2 (en) Method for prediction of key performance parameter of an aero-engine transition state acceleration process based on space reconstruction
Li et al. Deep learning regression-based stratified probabilistic combined cycle fatigue damage evaluation for turbine bladed disks
WO2018138880A9 (en) Model parameter value estimation device and estimation method, program, recording medium with program recorded thereto, and model parameter value estimation system
Song et al. Multi-surrogate collaboration approach for creep-fatigue reliability assessment of turbine rotor
CN113569504A (en) Prediction method and prediction system for creep fatigue life of combustion chamber of aircraft engine
JP6804128B2 (en) Damage probability calculation device, damage probability calculation method and program
CN112906281A (en) Turbine disc crack propagation reliability analysis method based on quasi-Monte Carlo sampling
Cheng et al. Robust optimization and uncertainty quantification of a micro axial compressor for unmanned aerial vehicles
Wei et al. Dynamic particle swarm optimization-radial function extremum neural network method of HCF probability analysis for compressor blade
Yao et al. Prediction of aerodynamic forces at the tip of the compressor blades based on multi-scale 1DCNN combined with CBAM
CN107229771B (en) Method for carrying out simulation measurement on spring pressing force of nuclear fuel plate
CN114841032B (en) Design method for life stability of thermal component of gas turbine
Wang et al. Reliability analysis of reusable turbine rotor blisk: An application of parametric modelling method under multi-field coupling
Sun et al. Research on balancing method of single-stage rotor blade mass moment based on pointer network
Qiu et al. Performance prediction of gas turbine blade with multi-source random factors using active learning-based neural network
CN109388884A (en) A kind of generalized regression extreme value response phase method calculating coupling leaf dish fatigue life
Brown Reduced order modeling methods for turbomachinery design
CN118153184A (en) Reliability analysis method for high-pressure turbine blade of aero-engine
Huang et al. Reliability assessment for aeroengine blisks under low cycle fatigue with ensemble generalized constraint neural network
CN115577563A (en) Turbine gas-thermal performance uncertainty quantification method based on sampling space compression technology
CN117454735A (en) Model generation method, reliability analysis method, system, equipment and medium
CN114781079B (en) A method and system for obtaining thermal stress of a turbine machinery rotor
Hao et al. Research on the methods of predicting compressor characteristic curve
Wang et al. The Aero‐Engine Component‐Level Modelling Research Based on NSDE Hybrid Damping Newton Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 1188, Dongxin Road, Hangzhou, Zhejiang, 310022

Applicant after: Hangzhou Steam Turbine Holding Co.,Ltd.

Address before: No. 1188, Dongxin Road, Hangzhou, Zhejiang, 310022

Applicant before: HANGZHOU TURBINE POWER GROUP CO.,LTD.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant