CN114823285A - Ultrathin chip and flattening method and application thereof - Google Patents
Ultrathin chip and flattening method and application thereof Download PDFInfo
- Publication number
- CN114823285A CN114823285A CN202210362697.1A CN202210362697A CN114823285A CN 114823285 A CN114823285 A CN 114823285A CN 202210362697 A CN202210362697 A CN 202210362697A CN 114823285 A CN114823285 A CN 114823285A
- Authority
- CN
- China
- Prior art keywords
- chip
- ultra
- thin
- silicon substrate
- functional layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 72
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 71
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 71
- 239000010703 silicon Substances 0.000 claims abstract description 71
- 239000002346 layers by function Substances 0.000 claims abstract description 70
- 239000010408 film Substances 0.000 claims abstract description 35
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 230000001681 protective effect Effects 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 239000002861 polymer material Substances 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 22
- 238000004806 packaging method and process Methods 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910004541 SiN Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02035—Shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
Abstract
本发明涉及一种超薄芯片及其平整化方法和应用。该平整化方法包括以下步骤:提供芯片,所述芯片包括层叠设置的硅衬底以及功能层,所述芯片的边缘朝所述功能层的方向翘曲;对所述芯片进行预压缩,使所述芯片的边缘朝所述硅衬底的方向翘曲;以及在所述硅衬底远离所述功能层的表面形成厚度小于或等于5μm的薄膜,得到平整化的超薄芯片。该平整化方法能够提高相同厚度薄膜所引入的永久拉应力,从而在增加较少厚度的基础上,改善超薄芯片的翘曲程度,进而提高超薄芯片的封装良率以及可靠性。
The invention relates to an ultra-thin chip and a planarization method and application thereof. The planarization method includes the following steps: providing a chip, the chip including a silicon substrate and a functional layer arranged in layers, and the edge of the chip is warped in the direction of the functional layer; pre-compressing the chip to make the The edge of the chip is warped in the direction of the silicon substrate; and a thin film with a thickness of less than or equal to 5 μm is formed on the surface of the silicon substrate away from the functional layer to obtain a flattened ultra-thin chip. The planarization method can increase the permanent tensile stress introduced by the film of the same thickness, thereby improving the warpage degree of the ultra-thin chip on the basis of increasing the thickness less, thereby improving the packaging yield and reliability of the ultra-thin chip.
Description
技术领域technical field
本发明涉及芯片技术领域,特别是涉及超薄芯片及其平整化方法和应用。The invention relates to the field of chip technology, in particular to an ultra-thin chip and a planarization method and application thereof.
背景技术Background technique
超薄芯片具有广阔的应用前景,当超薄芯片的厚度低于50μm时,超薄芯片具备良好的柔性,可应用于柔性电子。然而,随着超薄芯片的厚度降低,其弯曲刚度呈指数下降,此时,超薄芯片背面损伤层引入的残余应力以及正面功能层引入的失配应变均会导致超薄芯片发生翘曲,进而导致封装良率低,可靠性差等问题。Ultra-thin chips have broad application prospects. When the thickness of ultra-thin chips is less than 50 μm, ultra-thin chips have good flexibility and can be applied to flexible electronics. However, as the thickness of the ultra-thin chip decreases, its bending stiffness decreases exponentially. At this time, the residual stress introduced by the damage layer on the back of the ultra-thin chip and the mismatch strain introduced by the front functional layer will cause the ultra-thin chip to warp. This leads to problems such as low packaging yield and poor reliability.
超薄芯片背面的损伤层可以通过化学机械抛光工艺去除,正面的功能层是超薄芯片的有源区,无法去除,因此,传统的超薄芯片的平整化方法是在背面沉积薄膜,但是,薄膜的永久拉应力随着薄膜的厚度增加而提高,因此,在增加较少厚度的基础上,难以改善超薄芯片的翘曲程度。The damage layer on the back of the ultra-thin chip can be removed by chemical mechanical polishing process. The functional layer on the front is the active area of the ultra-thin chip and cannot be removed. Therefore, the traditional flattening method of the ultra-thin chip is to deposit a thin film on the back. However, The permanent tensile stress of the film increases as the thickness of the film increases, so it is difficult to improve the warpage of ultra-thin chips on the basis of adding less thickness.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述问题,提供一种超薄芯片及其平整化方法和应用,该平整化方法能够提高相同厚度薄膜所引入的永久拉应力,从而在增加较少厚度的基础上,改善超薄芯片的翘曲程度,进而提高超薄芯片的封装良率以及可靠性。Based on this, it is necessary to provide an ultra-thin chip and a planarization method and application thereof in view of the above problems. The planarization method can increase the permanent tensile stress introduced by the film of the same thickness, so as to improve the thickness on the basis of increasing less thickness. The degree of warpage of ultra-thin chips, thereby improving the packaging yield and reliability of ultra-thin chips.
本发明提供了一种超薄芯片的平整化方法,包括以下步骤:The present invention provides a method for flattening an ultra-thin chip, comprising the following steps:
提供芯片,所述芯片包括层叠设置的硅衬底以及功能层,所述芯片的边缘朝所述功能层的方向翘曲;A chip is provided, the chip includes a stacked silicon substrate and a functional layer, and the edge of the chip is warped toward the direction of the functional layer;
对所述芯片进行预压缩,使所述芯片的边缘朝所述硅衬底的方向翘曲;以及pre-compressing the chip to warp the edge of the chip in the direction of the silicon substrate; and
在所述硅衬底远离所述功能层的表面形成厚度小于或等于5μm的薄膜,得到平整化的超薄芯片。A thin film with a thickness of less than or equal to 5 μm is formed on the surface of the silicon substrate away from the functional layer to obtain a planarized ultra-thin chip.
在一实施方式中,所述芯片的边缘朝所述功能层的方向翘曲时,翘曲度为α,α的取值范围为10μm-1000μm。In one embodiment, when the edge of the chip is warped in the direction of the functional layer, the warpage degree is α, and the value range of α is 10 μm-1000 μm.
在一实施方式中,所述芯片的边缘朝所述硅衬底的方向翘曲时,翘曲度为β,β的取值范围为10μm-1000μm。In one embodiment, when the edge of the chip is warped in the direction of the silicon substrate, the warpage degree is β, and the value of β ranges from 10 μm to 1000 μm.
在一实施方式中,α与β的差的绝对值为小于或等于100μm。In one embodiment, the absolute value of the difference between α and β is less than or equal to 100 μm.
在一实施方式中,对所述芯片进行预压缩的步骤包括:在所述功能层远离所述硅衬底的表面形成保护膜,然后用夹具固定所述带有保护膜的芯片,在所述硅衬底远离所述保护膜的表面施加压力进行预压缩。In one embodiment, the step of pre-compressing the chip includes: forming a protective film on the surface of the functional layer away from the silicon substrate, and then fixing the chip with the protective film with a clamp, The surface of the silicon substrate away from the protective film is pre-compressed by applying pressure.
在一实施方式中,所述薄膜的材料选自金属、SiN、SiO2或高分子材料中的至少一种。In one embodiment, the material of the thin film is selected from at least one of metal, SiN, SiO 2 or polymer materials.
在一实施方式中,所述高分子材料选自晶片黏结薄膜、聚酰亚胺或聚对二甲苯中的至少一种。In one embodiment, the polymer material is selected from at least one of wafer bonding film, polyimide or parylene.
在一实施方式中,所述芯片的厚度小于或等于50μm。In one embodiment, the thickness of the chip is less than or equal to 50 μm.
一种超薄芯片,由芯片经如上述的平整化方法平整后得到。An ultra-thin chip is obtained after the chip is flattened by the above-mentioned flattening method.
一种柔性电子,包括如上述的超薄芯片。A flexible electronics, including the above-mentioned ultra-thin chip.
本发明提供的超薄芯片的平整化方法,通过对芯片进行预压缩,在芯片中引入临时压缩应力,从而在硅衬底远离功能层的表面形成薄膜的步骤中,相同厚度薄膜所引入的永久拉应力提高,芯片背面薄膜的拉应力增大,进而在增加较少厚度的基础上,改善超薄芯片的翘曲程度,实现超薄芯片的平整化。The flattening method for an ultra-thin chip provided by the present invention introduces temporary compressive stress into the chip by pre-compressing the chip, so that in the step of forming a thin film on the surface of the silicon substrate away from the functional layer, the permanent compressive stress introduced by the thin film of the same thickness The tensile stress increases, and the tensile stress of the film on the back of the chip increases, and then on the basis of adding less thickness, the warpage degree of the ultra-thin chip is improved, and the flattening of the ultra-thin chip is realized.
附图说明Description of drawings
图1为边缘朝功能层方向翘曲的芯片的示意图;Fig. 1 is the schematic diagram of the chip whose edge is warped toward the direction of the functional layer;
图2为超薄芯片的平整化方法的流程示意图;FIG. 2 is a schematic flowchart of a planarization method for an ultra-thin chip;
图中,10、芯片;101、硅衬底;102、功能层;20、薄膜;30、超薄芯片。In the figure, 10, chip; 101, silicon substrate; 102, functional layer; 20, thin film; 30, ultra-thin chip.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully below with reference to the relevant embodiments. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that a thorough and complete understanding of the present disclosure is provided.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
以下将对本发明提供的超薄芯片30及其平整化方法和应用作进一步说明。The
如图1和图2所示,本发明提供的超薄芯片30的平整化方法,包括以下步骤:As shown in FIG. 1 and FIG. 2 , the planarization method of the
S10,提供芯片10,芯片10包括层叠设置的硅衬底101以及功能层102,芯片10的边缘朝功能层102的方向翘曲;S10, a
S20,对芯片10进行预压缩,使芯片10的边缘朝硅衬底101的方向翘曲;以及S20, pre-compressing the
S30,在硅衬底101远离功能层102的表面形成厚度小于或等于5μm的薄膜20,得到平整化的超薄芯片30。S30 , a
可以理解的,硅衬底101远离功能层102的表面为芯片10的背面,功能层102远离硅衬底101的表面为芯片10的正面,在一实施方式中,硅衬底101远离功能层102的表面存在损伤层,功能层102包括层叠设置的器件掺杂层、中间金属介质层以及钝化层,硅衬底101与器件掺杂层贴合。It can be understood that the surface of the
芯片10中,损伤层会引入残余应力,器件掺杂层、中间金属介质层以及钝化层的形成工艺会引入失配应变,例如:晶格错配,缺陷,生长应力,热应变等;残余应力以及失配应变均会导致芯片10发生翘曲。In the
步骤S10中,硅衬底101为芯片10的凸面,功能层102为芯片10的凹面,应予说明的是,凸面的定义为:凸面的表面上任意一点做切面,表面总是在切面的下方;凹面的定义是:凹面的表面上任意一点做切面,表面总是在切面的土方。In step S10, the
芯片10作为超薄芯片30的平整化方法的原料,可以通过购买得到,也可以自行制备,在一实施方式中,芯片10通过背面磨削减薄得到,芯片10的厚度小于或等于50μm。The
在一实施方式中,芯片10呈单轴翘曲,即芯片10面内方向中两条相互垂直的棱边,其中一条棱边的曲率为0,另一条棱边的曲率则大于0,此时,弯曲方向平行于芯片10的一条棱边,而一条棱边几乎无翘曲。In one embodiment, the
芯片10的边缘朝功能层102的方向翘曲时,芯片10的翘曲度为α,α的取值范围为10μm-1000μm,进一步优选为500μm-900μm。When the edge of the
步骤S20中,通过对芯片10进行预压缩,在芯片10中引入临时压缩应力,从而在步骤S30的步骤中,相同厚度薄膜20所引入的永久拉应力提高,进而在增加较少厚度的基础上,改善超薄芯片30的翘曲程度,实现超薄芯片30的平整化。In step S20, by pre-compressing the
应予说明的是,步骤S20的芯片10中,功能层102为芯片10的凸面,硅衬底101为芯片10的凹面;芯片10的边缘朝硅衬底101的方向翘曲时,芯片10的翘曲度为β,β的取值范围为10μm-1000μm,进一步优选为500μm-900μm。It should be noted that, in the
应予说明的是,本发明不对芯片10预压缩的方式做特别限制,在一实施方式中,对芯片10进行预压缩的步骤包括:在功能层102远离硅衬底101的表面形成保护膜,然后用夹具固定带有保护膜的芯片10,在硅衬底101远离保护膜的表面施加压力进行预压缩,可选的,夹具选自凹形夹具,将保护膜贴合于凹形夹具的表面实现固定并同时引入临时压缩应力。It should be noted that the present invention does not specifically limit the method of pre-compressing the
α的取值与β的取值可以相同也可以不同,为了更好的平衡应力以及防止芯片反方向翘曲过大而碎裂,在一实施方式中,α与P的差的绝对值小于或等于100μm,优选的,α与β的差的绝对值小于或等于70μm,进一步优选的,α与β的差的绝对值小于或等于30μm。The value of α and the value of β can be the same or different. In order to better balance the stress and prevent the chip from warping too much and breaking in the opposite direction, in one embodiment, the absolute value of the difference between α and P is less than or It is equal to 100 μm, preferably, the absolute value of the difference between α and β is less than or equal to 70 μm, and further preferably, the absolute value of the difference between α and β is less than or equal to 30 μm.
在一实施方式中,在硅衬底101远离功能层102的表面形成薄膜20的步骤之前,还包括对硅衬底101远离功能层102的表面进行抛光,去除硅衬底101的损伤层,可以理解的,损伤层的厚度小于超薄芯片30中硅衬底101的厚度。In one embodiment, before the step of forming the
在一实施方式中,薄膜20的材料选自金属、SiN、SiO2或高分子材料中的至少一种,其中,高分子材料相对于其他材料,具备更好柔性,更有利于超薄芯片30在柔性电子中的应用,并且高分子材料可以在超薄芯片30后续贴装中可直接和柔性电路板键合,因此,薄膜20的材料优选自高分子材料,在一实施方式中,高分子材料选自晶片黏结薄膜(DAF)、聚酰亚胺或聚对二甲苯中的至少一种。In one embodiment, the material of the
当薄膜20的材料选自金属时,在硅衬底101远离功能层102的表面形成薄膜20的步骤包括,在在硅衬底101远离功能层102的表面依次形成第一金属薄膜20和第二金属薄膜20,在一实施方式中,第一金属薄膜20的材料与硅衬底101具有高剥离强度的钛,第二金属薄膜20的材料选自铜、镍或银中的至少一种。When the material of the
为了更好的降低超薄芯片30的翘曲度,在一实施方式中,薄膜20的厚度基于大变形板桥理论或薄膜基底系统理论计算得到,具体的,大变形板桥理论用来解析系统的几何方程,薄膜基底系统理论将失配应变引入几何方程,最终通过能量最低原理给出系统翘曲曲率为零时满足的控制方程。In order to better reduce the warpage of the
在一实施方式中,通过原子层沉积法(ALD)或气相沉积法(CVD)在硅衬底101远离功能层102的表面形成薄膜20。In one embodiment, the
在一实施方式中,在硅衬底101远离功能层102的表面形成薄膜20的步骤之后,释放临时压缩应力,得到超薄芯片30。In one embodiment, after the step of forming the
本发明提供的超薄芯片30的平整化方法能够提高相同厚度薄膜20所引入的永久拉应力,从而在增加较少厚度的基础上,改善超薄芯片30的翘曲程度,进而提高超薄芯片30的封装良率以及可靠性。The flattening method of the
本发明提供了一种超薄芯片30,该超薄芯片30由芯片10经如上述的平整化方法平整后得到。The present invention provides an
本发明提供的超薄芯片30具备良好的柔性以及平整性,能够很好的应用于柔性电子。The
在一实施方式中,超薄芯片30的厚度低于50μm,进一步优选为20μm-50μm。In one embodiment, the thickness of the
在一实施方式中,超薄芯片30的翘曲度小于或等于100μm,进一步优选为30μm-70μm。In one embodiment, the degree of warpage of the
本发明还提供了一种柔性电子,包括如上述的超薄芯片30。The present invention also provides a flexible electronics comprising the
在一实施方式中,柔性电子还包括柔性基底,柔性基底用于集成上述超薄芯片30。In one embodiment, the flexible electronics further includes a flexible substrate, and the flexible substrate is used to integrate the above-mentioned
在一实施方式中,柔性基板的材料为柔性材料,包括聚二甲基硅氧烷、脂肪族-芳香族共聚酯、水凝胶或生物兼容性敷料,可以根据实际需求进行确定,在此不作限制。In one embodiment, the material of the flexible substrate is a flexible material, including polydimethylsiloxane, aliphatic-aromatic copolyester, hydrogel or biocompatible dressing, which can be determined according to actual needs, here No restrictions apply.
本发明提供的柔性电子具有优异的柔性以及平整性,且能够实现产品的大规模量产化,可以被广泛地应用于可穿戴电子设备、纸基显示和健康监视系统等诸多领域。The flexible electronics provided by the present invention has excellent flexibility and flatness, can realize mass production of products, and can be widely used in many fields such as wearable electronic devices, paper-based displays and health monitoring systems.
以下,将通过以下具体实施例对超薄芯片30及其平整化方法和应用做进一步的说明。Hereinafter, the
实施例1-8以及对比例1-4提供的超薄芯片30的平整化方法中,超薄芯片30包括硅衬底101,以及层叠设置于硅衬底101表面的器件掺杂层、中间金属介质层以及钝化层,其中,器件掺杂层、中间金属介质层以及钝化层共同组成芯片10的功能层102,硅衬底101远离功能层102的表面为芯片10的背面,功能层102远离硅衬底101的表面为芯片10的正面。In the planarization method of the
实施例1Example 1
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为800μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积DAF,基于大变形板桥理论,计算得到DAF的厚度为5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为100μm。Choose to deposit DAF on the surface of the
实施例2Example 2
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为800μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积SiO2,基于薄膜20基底系统理论,计算得到SiO2的厚度为5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为200μm。Select to deposit SiO 2 on the surface of the
实施例3Example 3
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为800μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积SiN,基于薄膜20基底系统理论,计算得到SiN的厚度为5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为150μm。Choose to deposit SiN on the surface of the
实施例4Example 4
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为800μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积铜,由于铜与硅衬底101的黏附性较差,容易脱落,因此在沉积铜之前,先沉积钛,基于大变形板桥理论,计算得到钛的厚度为0.5μm,铜的厚度为4.5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为250μm。Choose to deposit copper on the surface of the
实施例5Example 5
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为1600μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积DAF,基于大变形板桥理论,计算得到DAF的厚度为5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝硅衬底101的方向翘曲,翘曲度为300μm。Choose to deposit DAF on the surface of the
实施例6Example 6
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
将芯片10的正面临时键合在保护膜上,然后将芯片10的保护膜贴在凹形的夹具上引入临时压缩应力,使得芯片10的功能层102为芯片10的凸面,芯片10的硅衬底101为芯片10的凹面,翘曲度为100μm。The front side of the
选择在硅衬底101远离功能层102的表面沉积DAF,基于大变形板桥理论,计算得到DAF的厚度为5μm,沉积结束后,通过紫外灯照射解胶,释放临时压缩应力,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为300μm。Choose to deposit DAF on the surface of the
对比例1Comparative Example 1
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
选择在硅衬底101远离功能层102的表面沉积5μm的DAF,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为400μm。A DAF of 5 μm is deposited on the surface of the
对比例2Comparative Example 2
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
选择在硅衬底101远离功能层102的表面沉积5μm的Siθ2,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为500μm。5μm Siθ 2 is deposited on the surface of the
对比例3Comparative Example 3
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
选择在硅衬底101远离功能层102的表面沉积5μm的SiN,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为450μm。Select to deposit 5 μm SiN on the surface of the
对比例4Comparative Example 4
提供芯片10,芯片10的厚度为25μm,翘曲度为800μm,芯片10的硅衬底101为芯片10的凸面,芯片10的功能层102为芯片10的凹面。The
选择在硅衬底101远离功能层102的表面依次沉积0.5μm的钛和4.5μm的铜,得到厚度为30μm的超薄芯片30,超薄芯片30的边缘朝功能层102的方向翘曲,翘曲度为550μm。Select to deposit 0.5 μm of titanium and 4.5 μm of copper on the surface of the
需要说明的是,本发明所涉及的术语“第一”、“第二”仅仅是区别类似的对象,不代表针对对象的特定排序,“第一”、“第二”在允许的情况下可以互换特定的顺序或先后次序。可以理解地,“第一”、“第二”区分的对象在适当情况下可以互换,以使这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。It should be noted that the terms "first" and "second" involved in the present invention are only to distinguish similar objects, and do not represent a specific order of objects. "First" and "second" may be used when permitted Swap a particular order or precedence. It is understood that "first" and "second" distinctions may be interchanged under appropriate circumstances to enable the embodiments of the invention described herein to be practiced in sequences other than those illustrated or described herein.
本文所使用的术语仅出于描述特定实施例的目的,并不旨在限制本申请。如本文所使用的,单数形式“一”,“一个”和“该”也旨在包括复数形式,除非上下文另外明确指出。还将理解的是,当在本说明书中使用术语“包括”时,指的是存在特征、步骤、操作、元件和/或部件,但不排除一个或多个其他特征、步骤、操作、元件、部件和/或其组合的存在。“可选的”或“可选地”意指后续描述的事件或情况可能发生也可能不发生,并且描述包括发生以及不发生该事件的情况。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the application. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that when the term "comprising" is used in this specification, it refers to the presence of features, steps, operations, elements and/or components, but does not exclude one or more other features, steps, operations, elements, the presence of components and/or combinations thereof. "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
以上示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。The implementations described in the above exemplary embodiments do not represent all implementations consistent with the present invention. Rather, they are merely examples of apparatus and methods consistent with some aspects of the invention as recited in the appended claims. The terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, product or device comprising a list of elements includes not only those elements, but also other not expressly listed elements, or also include elements inherent to such a process, method, product or device. Without further limitation, it does not preclude the presence of additional identical or equivalent elements in a process, method, product or apparatus comprising the stated elements.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to simplify the description, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above examples only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210362697.1A CN114823285B (en) | 2022-04-07 | 2022-04-07 | Ultra-thin chip and planarization method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210362697.1A CN114823285B (en) | 2022-04-07 | 2022-04-07 | Ultra-thin chip and planarization method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114823285A true CN114823285A (en) | 2022-07-29 |
CN114823285B CN114823285B (en) | 2025-02-18 |
Family
ID=82534677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210362697.1A Active CN114823285B (en) | 2022-04-07 | 2022-04-07 | Ultra-thin chip and planarization method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114823285B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115863198A (en) * | 2022-12-06 | 2023-03-28 | 上海中欣晶圆半导体科技有限公司 | A method for reducing warpage of semiconductor silicon wafer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06132358A (en) * | 1992-06-12 | 1994-05-13 | Hitachi Cable Ltd | Spacer tape for film carrier and winding structure of film carrier |
JP2006269742A (en) * | 2005-03-24 | 2006-10-05 | Seiko Epson Corp | Exposure apparatus and exposure method |
FR2941968A1 (en) * | 2009-02-12 | 2010-08-13 | Commissariat Energie Atomique | CRYSTALLIZATION PROCESS WITH CONTROL OF CRYSTAL GRAIN ORIENTATION |
DE112015000877T5 (en) * | 2015-02-04 | 2016-12-22 | Xiamen Pinnacle Electrical Co., Ltd. | Power connection structure of a top and bottom film of a membrane keyboard and manufacturing method thereof |
CN107946215A (en) * | 2017-11-23 | 2018-04-20 | 长江存储科技有限责任公司 | Silicon wafer warpage state adjustment method |
CN112908907A (en) * | 2021-03-25 | 2021-06-04 | 深圳中科飞测科技股份有限公司 | Warp correction device, warp correction apparatus, and warp correction method |
CN113707564A (en) * | 2021-08-31 | 2021-11-26 | 浙江同芯祺科技有限公司 | Ultrathin semiconductor substrate processing technology |
-
2022
- 2022-04-07 CN CN202210362697.1A patent/CN114823285B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06132358A (en) * | 1992-06-12 | 1994-05-13 | Hitachi Cable Ltd | Spacer tape for film carrier and winding structure of film carrier |
JP2006269742A (en) * | 2005-03-24 | 2006-10-05 | Seiko Epson Corp | Exposure apparatus and exposure method |
FR2941968A1 (en) * | 2009-02-12 | 2010-08-13 | Commissariat Energie Atomique | CRYSTALLIZATION PROCESS WITH CONTROL OF CRYSTAL GRAIN ORIENTATION |
DE112015000877T5 (en) * | 2015-02-04 | 2016-12-22 | Xiamen Pinnacle Electrical Co., Ltd. | Power connection structure of a top and bottom film of a membrane keyboard and manufacturing method thereof |
CN107946215A (en) * | 2017-11-23 | 2018-04-20 | 长江存储科技有限责任公司 | Silicon wafer warpage state adjustment method |
CN112908907A (en) * | 2021-03-25 | 2021-06-04 | 深圳中科飞测科技股份有限公司 | Warp correction device, warp correction apparatus, and warp correction method |
CN113707564A (en) * | 2021-08-31 | 2021-11-26 | 浙江同芯祺科技有限公司 | Ultrathin semiconductor substrate processing technology |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115863198A (en) * | 2022-12-06 | 2023-03-28 | 上海中欣晶圆半导体科技有限公司 | A method for reducing warpage of semiconductor silicon wafer |
Also Published As
Publication number | Publication date |
---|---|
CN114823285B (en) | 2025-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20250007531A (en) | Low temperature direct bonding | |
TWI635632B (en) | Composite substrate, elastic wave device, and method for manufacturing elastic wave device | |
JPS61112345A (en) | Manufacturing method of semiconductor device | |
JP2016119489A (en) | Method for manufacturing composite substrate | |
CN103177935B (en) | The method and intermediate structure and flexible structure for preparing flexible structure are shifted by layer | |
CN107004573A (en) | The manufacture method and composite base plate of composite base plate | |
JP2006528422A5 (en) | ||
CN107108218A (en) | Composite base plate, the preparation method of nano-carbon film and nano-carbon film | |
TW201908124A (en) | High thermal conductivity element substrate and method of manufacturing same | |
US10979013B2 (en) | Method of manufacturing piezoelectric thin film resonator on non-silicon substrate | |
CN111684579B (en) | Wafer holding table | |
CN114823285A (en) | Ultrathin chip and flattening method and application thereof | |
JP2018501641A (en) | Via bottom-up electrolytic plating method | |
US6776050B2 (en) | Support for bending test of flexible substrates | |
US12052921B2 (en) | Method for manufacturing a film on a flexible sheet | |
JPH04333266A (en) | Coated or laminated diamond substrate | |
JP6550741B2 (en) | Manufacturing method of semiconductor device | |
CN108511384A (en) | The material and its preparation method and application of interim bonding/solution bonding | |
CN113193109A (en) | Preparation method of composite film and composite film | |
CN116936338A (en) | Ultra-thin chip and preparation method and application thereof | |
US6972049B2 (en) | Method for fabricating a diamond film having low surface roughness | |
JP7262421B2 (en) | Piezoelectric composite substrate and manufacturing method thereof | |
JP2002290182A (en) | Method for manufacturing substrate for surface acoustic wave device | |
JP2019153902A (en) | Method for manufacturing composite substrate | |
CN118308699B (en) | Preparation method of ultralow-stress metal film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |