CN114815436A - Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis - Google Patents
Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis Download PDFInfo
- Publication number
- CN114815436A CN114815436A CN202210437250.6A CN202210437250A CN114815436A CN 114815436 A CN114815436 A CN 114815436A CN 202210437250 A CN202210437250 A CN 202210437250A CN 114815436 A CN114815436 A CN 114815436A
- Authority
- CN
- China
- Prior art keywords
- matrix
- phased array
- neighborhood
- array elements
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000010168 coupling process Methods 0.000 title claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 21
- 230000003287 optical effect Effects 0.000 title claims abstract description 19
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 11
- 230000008878 coupling Effects 0.000 title claims description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 48
- 239000013598 vector Substances 0.000 claims abstract description 27
- 238000011156 evaluation Methods 0.000 claims abstract description 14
- 230000006870 function Effects 0.000 claims abstract description 13
- 230000009466 transformation Effects 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims abstract description 5
- 238000012804 iterative process Methods 0.000 claims description 5
- 230000010363 phase shift Effects 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 5
- 238000002474 experimental method Methods 0.000 claims description 2
- 238000013507 mapping Methods 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 12
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/292—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/18—Function characteristic adaptive optics, e.g. wavefront correction
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法,包括降维和迭代两个过程,降维包括以下步骤:S1、计算相控阵每个阵元对应的驱动电压;S2、得到邻域采样矩阵X;S3、计算X的协方差矩阵C;S4、计算C的特征值和特征向量,将特征向量按行拼接得到矩阵U;S5、特征值从大到小排序,对U矩阵中的特征向量也对应进行排序,得到空间变换矩阵P;S6、使用P矩阵左乘电压向量,得到新的向量
迭代包括以下步骤:S7、得到更新后的电压向量并加载到相控阵的阵元上;S8、采集评价函数的值J,依据评价函数的改变量δJ对的前K个值进行更新。本发明可以极大地降低优化过程的迭代维数,提高收敛速度,提高系统运行的鲁棒性。The invention discloses a mutual-coupling compensation method for optical phased array elements based on neighborhood sampling principal component analysis, which includes two processes of dimensionality reduction and iteration. The dimensionality reduction includes the following steps: S1. S2, obtain the neighborhood sampling matrix X; S3, calculate the covariance matrix C of X; S4, calculate the eigenvalues and eigenvectors of C, and splicing the eigenvectors in rows to obtain matrix U; S5, eigenvalues from large To the small order, the eigenvectors in the U matrix are also sorted correspondingly, and the space transformation matrix P is obtained; S6, use the P matrix to multiply the voltage vector to the left to obtain a new vector
The iteration includes the following steps: S7, obtain the updated voltage vector and load it on the array element of the phased array; S8, collect the value J of the evaluation function, according to the change of the evaluation function δJ Update the top K values of . The invention can greatly reduce the iterative dimension of the optimization process, improve the convergence speed, and improve the robustness of system operation.Description
技术领域technical field
属于光学相控阵控制、自适应光学优化算法技术领域,具体涉及一种基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法。The invention belongs to the technical field of optical phased array control and adaptive optics optimization algorithm, in particular to a mutual coupling compensation method of optical phased array array elements based on neighborhood sampling principal component analysis.
背景技术Background technique
光学相控阵是实现非机械光束偏转的理想方法,应用于许多领域,如光探测与测距、自由空间通信、目标跟踪和遥感等。但是,许多光学相控阵都面临着阵元间相互耦合的问题,如液晶相控阵的横向电场、硅基相控阵的热串扰等,这会导致近场波前的相位误差,从而导致远场偏转光束质量的恶化。这些由器件结构引起的耦合问题,仅靠改进制造工艺或材料是很难解决的。因此,常用的方法是通过某些基于迭代的自适应优化算法,例如遗传算法、粒子群算法、随机并行梯度下降算法等,对相差进行补偿。然而,这些算法的迭代收敛速率,会随着阵元数量的增加而大大降低。这是由于这些迭代算法对相控阵的每个阵元进行独立的优化,因此迭代变量的维数等于阵元数,而高维空间通过迭代法寻找到全局最优解是非常困难的,甚至可能落入局部最优解而造成无法完成收敛。因此,迭代收敛速度慢,成为了制约优化算法在实际系统中应用的主要障碍。Optical phased arrays are ideal for non-mechanical beam deflection and are used in many fields, such as light detection and ranging, free-space communications, target tracking, and remote sensing. However, many optical phased arrays face the problem of mutual coupling between array elements, such as the lateral electric field of liquid crystal phased arrays, the thermal crosstalk of silicon-based phased arrays, etc. Deterioration of far-field deflection beam quality. These coupling problems caused by the device structure are difficult to solve only by improving the manufacturing process or materials. Therefore, the commonly used method is to compensate the phase difference through some iterative-based adaptive optimization algorithms, such as genetic algorithm, particle swarm algorithm, stochastic parallel gradient descent algorithm, etc. However, the iterative convergence rate of these algorithms decreases greatly as the number of array elements increases. This is because these iterative algorithms optimize each element of the phased array independently, so the dimension of the iterative variable is equal to the number of array elements, and it is very difficult to find the global optimal solution through the iterative method in high-dimensional space, and even It may fall into a local optimal solution and fail to complete the convergence. Therefore, the slow iterative convergence speed has become the main obstacle restricting the application of optimization algorithms in practical systems.
为了提高优化算法的收敛速度,目前主要的方法有三种。第一种方法是阵元解耦合,即通过数值计算的方法,对阵元之间的耦合关系进行建模,从而剥离出单个阵元对评价函数的影响。但在实际系统中,对阵元之间的耦合关系进行精确建模是十分困难的,因此这一方法大多停留在理论层面,实际工程中少有应用。第二种方法是相差建模,即依据相差理论对系统的相差进行建模,建立起相差和评价函数之间的关系,然后对相差产生的原因进行有针对性的优化。这一方法能系统的优化速度,但所建立的模型只能应用于特定场景,不同场景需要不同的模型,而且某些场景下难以对相差进行准确的建模。第三种方法是机器学习建模,通过大量的样本训练构建起相控阵器件的误差模型,然后对器件进行优化。但这一方法需要大量的样本用于预先训练模型,而且模型在不同的器件之间并不通用。In order to improve the convergence speed of the optimization algorithm, there are three main methods at present. The first method is decoupling of array elements, that is, through numerical calculation, the coupling relationship between array elements is modeled, so as to strip out the influence of a single array element on the evaluation function. However, in the actual system, it is very difficult to accurately model the coupling relationship between the elements, so this method mostly stays at the theoretical level and is rarely applied in practical engineering. The second method is phase difference modeling, which is to model the phase difference of the system according to the phase difference theory, establish the relationship between the phase difference and the evaluation function, and then optimize the cause of the phase difference. This method can optimize the speed of the system, but the established model can only be applied to specific scenarios, different scenarios require different models, and it is difficult to accurately model the phase difference in some scenarios. The third method is machine learning modeling, which builds the error model of the phased array device through a large number of sample training, and then optimizes the device. But this approach requires a large number of samples for pre-training the model, and the model is not universal across different devices.
总的来说,目前仍然缺少一种实用的算法,能够针对光学相控阵阵元间耦合问题带来的相位误差,进行自适应迭代优化、实现相位补偿,在保证收敛速度快、支持在线运行的同时兼顾通用性。In general, there is still a lack of a practical algorithm that can perform adaptive iterative optimization and phase compensation for the phase error caused by the coupling problem between optical phased array elements, while ensuring fast convergence speed and supporting online operation. while taking into account the versatility.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种可以极大地降低优化过程的迭代维数,避免落入局部最优解,提高收敛速度,提高系统运行的鲁棒性的基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a neighborhood sampling based neighborhood sampling that can greatly reduce the iterative dimension of the optimization process, avoid falling into the local optimal solution, improve the convergence speed, and improve the robustness of the system operation. Principal component analysis method for mutual coupling compensation of optical phased array elements.
本发明的目的是通过以下技术方案来实现的:基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法,包括降维和迭代两个过程,所述降维过程包括以下步骤:The object of the present invention is achieved through the following technical solutions: a method for mutual coupling compensation of optical phased array elements based on neighborhood sampling principal component analysis, including two processes of dimensionality reduction and iteration, and the dimensionality reduction process includes the following steps:
S1、根据偏转的目标角度,通过相控阵公式及电压-相位关系,计算相控阵每个阵元对应的驱动电压,将所有阵元的驱动电压记为一个N维列向量其中N为相控阵的阵元总数;S1. According to the deflection target angle, through the phased array formula and the voltage-phase relationship, calculate the driving voltage corresponding to each array element of the phased array, and record the driving voltage of all the array elements as an N-dimensional column vector where N is the total number of elements of the phased array;
S2、在目标角度的一个邻域内,设置K-1个采样点,并计算每个采样点对应的电压向量将它们与按列拼接,得到邻域采样矩阵记为X,其中K为电压向量总数;S2. Set K-1 sampling points in a neighborhood of the target angle, and calculate the voltage vector corresponding to each sampling point combine them with Concatenate by column to get the neighborhood sampling matrix Denoted as X, where K is the total number of voltage vectors;
S3、计算邻域采样矩阵X的协方差矩阵C=XXT;S3, calculate the covariance matrix C=XX T of the neighborhood sampling matrix X;
S4、计算协方差矩阵C的特征值和特征值对应的特征向量,将特征向量按行拼接得到矩阵U;S4. Calculate the eigenvalues of the covariance matrix C and the eigenvectors corresponding to the eigenvalues, and splicing the eigenvectors in rows to obtain the matrix U;
S5、将协方差矩阵C的特征值从大到小排序,同时对U矩阵中的特征向量也对应进行排序,得到空间变换矩阵P;S5, sort the eigenvalues of the covariance matrix C from large to small, and also sort the eigenvectors in the U matrix correspondingly to obtain the space transformation matrix P;
S6、使用P矩阵左乘电压向量对其进行空间变换,得到新的向量 S6. Use the P matrix to left multiply the voltage vector space transform it to get a new vector
所述迭代过程包括以下步骤:The iterative process includes the following steps:
S7、对的前K个维度施加随机微扰对更新后的使用空间变化矩阵P的逆矩阵进行反变换,得到更新后的电压向量并将加载到相控阵的阵元上;S7, yes Apply random perturbations to the first K dimensions of to the updated Inverse transform using the inverse of the space-varying matrix P to get the updated voltage vector and will Loaded on the element of the phased array;
S8、采集评价函数的值J,依据评价函数的改变量δJ对的前K个值进行更新,更新公式为:其中表示第n次迭代的数据,γ为迭代步长。S8. Collect the value J of the evaluation function, according to the change amount δJ of the evaluation function to The first K values of , are updated, and the update formula is: in Indicates the data of the nth iteration, and γ is the iteration step size.
进一步地,所述步骤S1具体实现方法为:相控阵公式是指相控阵相邻阵元之间的移相量ΔΦ与目标角度θ之间的关系式,即ΔΦ=2π/λ·dsinθ,其中λ为入射激光的波长,d为相控阵阵元中心间距;所述电压-相位关系是指相控阵移相量ΔΦ与驱动电压之间的关系曲线,由实验测得,用于将移相量ΔΦ映射为电压值,进而得到每个阵元所需的驱动电压。Further, the specific implementation method of step S1 is: the phased array formula refers to the relationship between the phase shift amount ΔΦ between adjacent array elements of the phased array and the target angle θ, that is, ΔΦ=2π/λ·dsinθ , where λ is the wavelength of the incident laser light, and d is the center-to-center spacing of the phased array elements; the voltage-phase relationship refers to the relationship curve between the phased array phasor ΔΦ and the driving voltage, which is measured experimentally and used for The phasor ΔΦ is mapped to a voltage value, and then the driving voltage required by each array element is obtained.
进一步地,所述步骤S2中的目标角度的一个邻域是指以目标角度θ为中心,位于[θ-δθ,θ+δθ]的角度范围,其中δθ满足:|sin(θ+δθ)-sin(θ)|<λ/(Nd),其中λ为入射激光的波长,d为相控阵阵元中心间距。Further, a neighborhood of the target angle in the step S2 refers to the angular range of [θ-δθ, θ+δθ] centered on the target angle θ, where δθ satisfies: |sin(θ+δθ)- sin(θ)|<λ/(Nd), where λ is the wavelength of the incident laser light, and d is the center-to-center spacing of the phased array elements.
本发明的有益效果是:本发明通过主成分分析提取出光学相控阵的结构信息,同时用少量的维度对其进行近似,通过在低维空间中对光学相控阵阵元驱动电压进行自适应优化,实现对阵元互耦带来的相差的补偿;在此基础上,通过在目标角度的邻域内的多次采样,获得不同维度上的耦合信息,提高线性近似的精度。可以极大地降低优化过程的迭代维数,避免落入局部最优解,提高收敛速度,提高系统运行的鲁棒性;与此同时,该算法不依赖于任何特定的器件结构或是应用场景,可应用于任何具有阵元间耦合问题的相控阵系统,具有极强的普适性。The beneficial effects of the present invention are as follows: the present invention extracts the structural information of the optical phased array through principal component analysis, approximates it with a small number of dimensions at the same time, and automatically conducts the driving voltage of the optical phased array element in a low-dimensional space by self-reporting. Adaptive optimization realizes the compensation of the phase difference caused by the mutual coupling of the antenna elements; on this basis, through multiple sampling in the neighborhood of the target angle, the coupling information in different dimensions is obtained, and the accuracy of the linear approximation is improved. It can greatly reduce the iterative dimension of the optimization process, avoid falling into the local optimal solution, improve the convergence speed, and improve the robustness of the system operation; at the same time, the algorithm does not depend on any specific device structure or application scenario, It can be applied to any phased array system with coupling problems between array elements, and has strong universality.
附图说明Description of drawings
图1为本发明的基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法的流程图。FIG. 1 is a flow chart of a mutual coupling compensation method for optical phased array elements based on neighborhood sampling principal component analysis of the present invention.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的技术方案。The technical solutions of the present invention are further described below with reference to the accompanying drawings.
如图1所示,本发明的一种基于邻域采样主成分分析的光学相控阵阵元互耦补偿方法,包括降维和迭代两个过程,其中降维过程利用主成分分析法,提取光学相控阵的结构信息,并通过特征值、特征向量排序产生空间变换矩阵,在新空间中用少数几个维度对其进行近似,从而对高维数据进行降维;在此基础上,通过在目标角度的邻域内的多次采样,获得不同维度上的耦合信息,提高线性近似的精度;迭代过程采用随机并行梯度下降算法,对降维后的数据进行迭代优化,从而对光学相控阵阵元互耦带来的相位误差进行补偿。As shown in Figure 1, a method for mutual coupling compensation of optical phased array elements based on neighborhood sampling principal component analysis of the present invention includes two processes of dimensionality reduction and iteration, wherein the dimensionality reduction process uses principal component analysis to extract optical The structure information of the phased array is obtained, and the space transformation matrix is generated by sorting the eigenvalues and eigenvectors, and it is approximated by a few dimensions in the new space, so as to reduce the dimension of the high-dimensional data; Multiple sampling in the neighborhood of the target angle to obtain coupling information in different dimensions and improve the accuracy of linear approximation; the iterative process adopts stochastic parallel gradient descent algorithm to iteratively optimize the dimensionality-reduced data, so as to optimize the optical phased array array. The phase error caused by the element mutual coupling is compensated.
所述降维过程对每个目标角度的优化只需运行一次,包括以下步骤:The dimensionality reduction process only needs to be run once for the optimization of each target angle, and includes the following steps:
S1、根据偏转的目标角度,通过相控阵公式及电压-相位关系,计算相控阵每个阵元对应的驱动电压,将所有阵元的驱动电压记为一个N维列向量 S1. According to the deflection target angle, through the phased array formula and the voltage-phase relationship, calculate the driving voltage corresponding to each array element of the phased array, and record the driving voltage of all the array elements as an N-dimensional column vector
其中N为相控阵的阵元总数;where N is the total number of elements of the phased array;
具体实现方法为:相控阵公式是指相控阵相邻阵元之间的移相量ΔΦ与目标角度θ之间的关系式,即ΔΦ=2π/λ·dsinθ,其中λ为入射激光的波长,d为相控阵阵元中心间距;所述电压-相位关系是指相控阵移相量ΔΦ与驱动电压之间的关系曲线,由实验测得,用于将移相量ΔΦ映射为电压值,进而得到每个阵元所需的驱动电压。The specific implementation method is: the phased array formula refers to the relationship between the phase shift amount ΔΦ between adjacent elements of the phased array and the target angle θ, that is, ΔΦ=2π/λ·dsinθ, where λ is the incident laser wavelength, d is the distance between the centers of the phased array elements; the voltage-phase relationship refers to the relationship curve between the phased array phasor ΔΦ and the driving voltage, which is measured by experiments and used to map the phasor ΔΦ as voltage value, and then obtain the driving voltage required by each array element.
S2、在目标角度的一个邻域内,设置K-1个采样点,并计算每个采样点对应的电压向量将它们与按列拼接,得到邻域采样矩阵记为X,其中K为电压向量总数;目标角度的一个邻域是指以目标角度θ为中心,位于[θ-δθ,θ+δθ]的角度范围,其中δθ满足:|sin(θ+δθ)-sin(θ)|<λ/(Nd),其中λ为入射激光的波长,d为相控阵阵元中心间距。S2. Set K-1 sampling points in a neighborhood of the target angle, and calculate the voltage vector corresponding to each sampling point combine them with Concatenate by column to get the neighborhood sampling matrix Denoted as X, where K is the total number of voltage vectors; a neighborhood of the target angle refers to the angular range of [θ-δθ, θ+δθ] centered on the target angle θ, where δθ satisfies: |sin(θ+δθ )-sin(θ)|<λ/(Nd), where λ is the wavelength of the incident laser, and d is the center-to-center spacing of the phased array elements.
S3、计算邻域采样矩阵X的协方差矩阵C=XXT,上标T表示转置,得到的协方差矩阵C是一个N维实对称矩阵,其对角元素为X各维度的方差,非对角元素为协方差;S3. Calculate the covariance matrix C=XX T of the neighborhood sampling matrix X, and the superscript T means transposition. The obtained covariance matrix C is an N-dimensional real symmetric matrix, and its diagonal elements are the variances of each dimension of X. The diagonal elements are the covariance;
S4、计算协方差矩阵C的特征值{λ1,λ2...λN}和特征值对应的特征向量ξ1,ξ2...ξN,将特征向量按行拼接得到矩阵U;由实对称矩阵的性质可知,C满足:S4. Calculate the eigenvalues {λ 1 , λ 2 ... λ N } of the covariance matrix C and the eigenvectors ξ 1 , ξ 2 ... ξ N corresponding to the eigenvalues, and splicing the eigenvectors in rows to obtain the matrix U; From the properties of real symmetric matrices, C satisfies:
D=UCUT D = UCU T
其中U是由C的特征向量作为行向量拼接而成的矩阵;D是对角矩阵,对角元素依次为C的每一个特征值,即:where U is a matrix formed by splicing the eigenvectors of C as row vectors; D is a diagonal matrix, and the diagonal elements are each eigenvalue of C in turn, namely:
S5、将协方差矩阵C的特征值{λ1,λ2...λN}从大到小排序,同时对U矩阵中的特征向量也对应进行排序,得到空间变换矩阵P,使得值越大的特征值对应的特征向量,排在P矩阵中越靠前的行;S5. Sort the eigenvalues {λ 1 , λ 2 ... λ N } of the covariance matrix C from large to small, and also sort the eigenvectors in the U matrix correspondingly to obtain the spatial transformation matrix P, so that the higher the value is The eigenvector corresponding to the larger eigenvalue is placed in the higher row in the P matrix;
S6、使用P矩阵左乘电压向量对其进行空间变换,得到新的向量 S6. Use the P matrix to left multiply the voltage vector space transform it to get a new vector
所述S1~S6的降维过程原理是:特征向量构成了一组新的正交基底,S6中使用矩阵P左乘原始电压向量相当于定义了这样一种空间变换,即将的每个元素映射到这组新的基底上,新基底中每个维度上的值对应为的每个元素。根据协方差矩阵C的定义,特征向量对应的特征值越大,代表该维度上数据的方差越大,其在空间变换后涵盖的信息量也越大。因此,通过对特征值进行排序,将信息量较大的特征向量对应的维度排到靠前的位置,实现对相控阵结构信息的线性近似,亦即保留了主要的信息;在迭代过程中只对这些维度进行优化,相较于直接对原始电压向量的N维空间进行优化,即为实现了降维;其余维度由于对应较小的特征值,因此涵盖的信息量较小,是相对次要的信息,予以忽略有助于提高优化的效率。The principle of the dimensionality reduction process of S1 to S6 is: the eigenvectors constitute a new set of orthogonal bases, and the matrix P is used to multiply the original voltage vector left in S6 It is equivalent to defining such a space transformation, namely Each element of is mapped to this new set of bases, and the value of each dimension in the new base corresponds to of each element. According to the definition of the covariance matrix C, the larger the eigenvalue corresponding to the eigenvector, the larger the variance of the data in this dimension, and the larger the amount of information it covers after spatial transformation. Therefore, by sorting the eigenvalues, the dimension corresponding to the eigenvectors with larger amount of information is arranged to the front, and the linear approximation of the phased array structure information is realized, that is, the main information is retained; in the iterative process Only these dimensions are optimized, compared to directly optimizing the N-dimensional space of the original voltage vector, which is to achieve dimensionality reduction; the remaining dimensions, because they correspond to smaller eigenvalues, cover a smaller amount of information, which is relatively inferior. The necessary information, ignoring it helps to improve the efficiency of optimization.
本发明在S2中引入邻域采样是由于对于同一个光学相控阵,不同的角度对应了不同的电压向量,阵元间相互耦合的程度也不同。因此,每一个额外的电压向量都为主成分分析引入了新的维度信息。The present invention introduces neighborhood sampling in S2 because for the same optical phased array, different angles correspond to different voltage vectors, and the degree of mutual coupling between array elements is also different. Therefore, each additional voltage vector introduces new dimensional information into the PCA.
所述协方差矩阵C是一个N维实对称方阵,其秩等于邻域采样点数K,又等于非零的特征值个数;由于空间变换矩阵是通过特征向量构成的,因此采样点数K越大,能够得到的非零特征值对应的特征向量越多,对相控阵结构信息的近似越精确,但计算速度也会越慢。在实际应用中,应合理选择采样点数,在精度与速度两者间寻求平衡。The covariance matrix C is an N-dimensional real symmetric square matrix, and its rank is equal to the number of sampling points K in the neighborhood, and is also equal to the number of non-zero eigenvalues; since the space transformation matrix is composed of eigenvectors, the more the number of sampling points K Larger, the more eigenvectors corresponding to the non-zero eigenvalues that can be obtained, the more accurate the approximation of the phased array structure information, but the slower the calculation speed. In practical applications, the number of sampling points should be selected reasonably, and a balance should be sought between accuracy and speed.
所述迭代过程需要重复运行,直至达到预设的收敛条件,即为完成优化,包括以下步骤:The iterative process needs to be run repeatedly until a preset convergence condition is reached, that is, to complete the optimization, the following steps are included:
S7、对的前K个维度施加随机微扰对更新后的使用空间变化矩阵P的逆矩阵进行反变换,得到更新后的电压向量并将加载到相控阵的阵元上;S7, yes Apply random perturbations to the first K dimensions of to the updated Inverse transform using the inverse of the space-varying matrix P to get the updated voltage vector and will Loaded on the element of the phased array;
S8、采集评价函数的值J,依据评价函数的改变量δJ对的前K个值进行更新,更新公式为:其中表示第n次迭代的数据,γ为迭代步长。评价函数,是指对当前远场光强分布状况的一个评价函数,常用的评价函数包括偏转效率、边模抑制比和主瓣半高全宽等,可根据实际需求进行选用。S8. Collect the value J of the evaluation function, according to the change amount δJ of the evaluation function to The first K values of , are updated, and the update formula is: in Indicates the data of the nth iteration, and γ is the iteration step size. The evaluation function refers to an evaluation function for the current far-field light intensity distribution. Common evaluation functions include deflection efficiency, side mode suppression ratio, and full width at half maximum of the main lobe, which can be selected according to actual needs.
直至达到预设的收敛条件,如期望的收敛值或者达到设定的迭代次数,或者是微扰引起的评价函数改变量达到设定值等,停止迭代。The iteration is stopped until the preset convergence condition is reached, such as the expected convergence value or the set number of iterations, or the change of the evaluation function caused by the perturbation reaches the set value, etc.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist readers in understanding the principles of the present invention, and it should be understood that the scope of protection of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teaching disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210437250.6A CN114815436B (en) | 2022-04-21 | 2022-04-21 | Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210437250.6A CN114815436B (en) | 2022-04-21 | 2022-04-21 | Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114815436A true CN114815436A (en) | 2022-07-29 |
CN114815436B CN114815436B (en) | 2023-05-19 |
Family
ID=82508244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210437250.6A Active CN114815436B (en) | 2022-04-21 | 2022-04-21 | Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114815436B (en) |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584413B1 (en) * | 2001-06-01 | 2003-06-24 | Sandia Corporation | Apparatus and system for multivariate spectral analysis |
US6675106B1 (en) * | 2001-06-01 | 2004-01-06 | Sandia Corporation | Method of multivariate spectral analysis |
US20090046340A1 (en) * | 2007-08-13 | 2009-02-19 | Reimer Christopher | Light steering using an array of tunable phase delay elements |
CN105026970A (en) * | 2013-01-08 | 2015-11-04 | 麻省理工学院 | Optical Phased Array |
US20150332081A1 (en) * | 2014-05-19 | 2015-11-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hyperspectral image acquisition system and method |
CN106125445A (en) * | 2016-09-06 | 2016-11-16 | 电子科技大学 | A liquid crystal optical phased array diffraction efficiency optimization system and method |
CN106154681A (en) * | 2016-08-26 | 2016-11-23 | 电子科技大学 | A kind of phased laser array Multibeam synthesis system and method |
CN107273917A (en) * | 2017-05-26 | 2017-10-20 | 电子科技大学 | A kind of Method of Data with Adding Windows based on parallelization Principal Component Analysis Algorithm |
CN108363051A (en) * | 2018-01-26 | 2018-08-03 | 北京航空航天大学 | A kind of self-adapting calibration system for the scanning of optical phased array light beam |
CN108646430A (en) * | 2018-03-22 | 2018-10-12 | 浙江大学 | A kind of multi-thread scanning system of Single wavelength based on thermo-optical switch and silicon optical phased array |
CN110275364A (en) * | 2019-08-07 | 2019-09-24 | 华中科技大学 | A heterogeneous integrated two-dimensional optical phased array |
WO2019222185A1 (en) * | 2018-05-15 | 2019-11-21 | Lightmatter, Inc. | Photonic processing systems and methods |
CN110749855A (en) * | 2019-09-10 | 2020-02-04 | 杭州电子科技大学 | A Method for Estimating Direction of Arrival for Uniform Linear Arrays Based on Covariance Domain Zeroing |
CN110765651A (en) * | 2019-11-12 | 2020-02-07 | 中国电子科技集团公司第二十九研究所 | Modeling and intelligent design method of microstrip direct coupling filter |
CN112034657A (en) * | 2020-09-10 | 2020-12-04 | 中国科学院空天信息创新研究院 | All-solid-state chip high-angle optical beamforming system |
CN112051560A (en) * | 2020-08-07 | 2020-12-08 | 深圳市速腾聚创科技有限公司 | Phased array phase error calibration method and device, storage medium and laser radar |
CN112347681A (en) * | 2020-11-20 | 2021-02-09 | 中国舰船研究设计中心 | Robust beam forming method based on mutual coupling characteristic prediction of macro-basis function array |
CN113128618A (en) * | 2021-05-10 | 2021-07-16 | 江西理工大学 | Parallel spectrum clustering method based on KD tree and chaotic mayfly optimization algorithm |
CN113163201A (en) * | 2021-03-04 | 2021-07-23 | 北京理工大学 | Video multi-frame reconstruction method and device based on single-pixel camera |
WO2022021359A1 (en) * | 2020-07-31 | 2022-02-03 | 深圳市速腾聚创科技有限公司 | Phase calibration method and apparatus for phased array, and storage medium and system |
-
2022
- 2022-04-21 CN CN202210437250.6A patent/CN114815436B/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6675106B1 (en) * | 2001-06-01 | 2004-01-06 | Sandia Corporation | Method of multivariate spectral analysis |
US6584413B1 (en) * | 2001-06-01 | 2003-06-24 | Sandia Corporation | Apparatus and system for multivariate spectral analysis |
US20090046340A1 (en) * | 2007-08-13 | 2009-02-19 | Reimer Christopher | Light steering using an array of tunable phase delay elements |
CN105026970A (en) * | 2013-01-08 | 2015-11-04 | 麻省理工学院 | Optical Phased Array |
US20150332081A1 (en) * | 2014-05-19 | 2015-11-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hyperspectral image acquisition system and method |
CN106154681A (en) * | 2016-08-26 | 2016-11-23 | 电子科技大学 | A kind of phased laser array Multibeam synthesis system and method |
CN106125445A (en) * | 2016-09-06 | 2016-11-16 | 电子科技大学 | A liquid crystal optical phased array diffraction efficiency optimization system and method |
CN107273917A (en) * | 2017-05-26 | 2017-10-20 | 电子科技大学 | A kind of Method of Data with Adding Windows based on parallelization Principal Component Analysis Algorithm |
CN108363051A (en) * | 2018-01-26 | 2018-08-03 | 北京航空航天大学 | A kind of self-adapting calibration system for the scanning of optical phased array light beam |
CN108646430A (en) * | 2018-03-22 | 2018-10-12 | 浙江大学 | A kind of multi-thread scanning system of Single wavelength based on thermo-optical switch and silicon optical phased array |
WO2019222185A1 (en) * | 2018-05-15 | 2019-11-21 | Lightmatter, Inc. | Photonic processing systems and methods |
CN110275364A (en) * | 2019-08-07 | 2019-09-24 | 华中科技大学 | A heterogeneous integrated two-dimensional optical phased array |
CN110749855A (en) * | 2019-09-10 | 2020-02-04 | 杭州电子科技大学 | A Method for Estimating Direction of Arrival for Uniform Linear Arrays Based on Covariance Domain Zeroing |
CN110765651A (en) * | 2019-11-12 | 2020-02-07 | 中国电子科技集团公司第二十九研究所 | Modeling and intelligent design method of microstrip direct coupling filter |
CN111832195A (en) * | 2019-11-12 | 2020-10-27 | 中国电子科技集团公司第二十九研究所 | A Modeling and Intelligent Design Method of Microstrip Directly Coupled Filters |
WO2022021359A1 (en) * | 2020-07-31 | 2022-02-03 | 深圳市速腾聚创科技有限公司 | Phase calibration method and apparatus for phased array, and storage medium and system |
CN112051560A (en) * | 2020-08-07 | 2020-12-08 | 深圳市速腾聚创科技有限公司 | Phased array phase error calibration method and device, storage medium and laser radar |
CN112034657A (en) * | 2020-09-10 | 2020-12-04 | 中国科学院空天信息创新研究院 | All-solid-state chip high-angle optical beamforming system |
CN112347681A (en) * | 2020-11-20 | 2021-02-09 | 中国舰船研究设计中心 | Robust beam forming method based on mutual coupling characteristic prediction of macro-basis function array |
CN113163201A (en) * | 2021-03-04 | 2021-07-23 | 北京理工大学 | Video multi-frame reconstruction method and device based on single-pixel camera |
CN113128618A (en) * | 2021-05-10 | 2021-07-16 | 江西理工大学 | Parallel spectrum clustering method based on KD tree and chaotic mayfly optimization algorithm |
Non-Patent Citations (8)
Title |
---|
BEATTIE, J. R., & ESMONDE-WHITE, F. W.: "Exploration of principal component analysis: deriving principal component analysis visually using spectra", 《APPLIED SPECTROSCOPY》 * |
P. K. CHEO AND G. G. KING: "Clad-pumped Yb, Er codoped fiber lasers", 《EEE PHOTONICS TECHNOLOGY LETTERS》 * |
WANG, X., XU, J., HUANG, Z., WU, L., ZHANG, T., WU, S., & QIU,: "Theoretical model and experimental verification on the PID tracking method using liquid crystal optical phased array", 《IN FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXIX》 * |
WU, L., WANG, X., XIONG, C., HUANG, Z., ZHUO, R., RAO, J., & TAN, Q: "Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays", 《CHINESE OPTICS LETTERS》 * |
孔令讲;陈君;朱颖;杨建宇;: "基于迭代修正的液晶相控阵激光雷达波控数据获取", 《强激光与粒子束》 * |
李飚,汪相如: "基于自适应梯度倒数滤波红外弱小目标场景背景抑制", 《光电工程》 * |
杨镇铭;孔令讲;肖锋;陈建;杨晓波;汪相如;: "基于液晶相控阵的聚焦式相干合成建模及性能", 《强激光与粒子束》 * |
汪相如;谭庆贵;黄子强;孔令讲;杨若夫;幺周石;: "液晶光学相控阵的双波束成形和2维扫描技术", 《激光技术》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114815436B (en) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Levinson et al. | An analysis of svd for deep rotation estimation | |
CN108375752B (en) | Amplitude and phase error single radiation source direction finding method based on full angle search | |
CN112881972B (en) | Direction-of-arrival estimation method based on neural network under array model error | |
CN104076332B (en) | A kind of radar uniform linear array amplitude and the method for estimation of phase place | |
Kim et al. | Efficient nonlinear manifold reduced order model | |
CN103971029B (en) | Alternant iteration method for DOA (direction of arrival) estimation under grid mismatch | |
US11681006B2 (en) | Method for jointly estimating gain-phase error and direction of arrival (DOA) based on unmanned aerial vehicle (UAV) array | |
CN110109050A (en) | The DOA estimation method of unknown mutual coupling under nested array based on sparse Bayesian | |
CN112379327A (en) | Two-dimensional DOA estimation and cross coupling correction method based on rank loss estimation | |
CN110161452B (en) | Direction-of-arrival estimation method based on cross-prime L-shaped electromagnetic vector sensor array | |
CN104407335B (en) | DOA estimation method of 3-axis cross array | |
CN103049003B (en) | A kind of two dimension weighting vector tracking of the coherent signal based on parallel even linear array and device | |
CN108983127B (en) | A kind of bloodstone magnetism rate detection method based on spectroscopic data | |
CN113791379B (en) | Orthogonal matching pursuit DOA estimation method in nested array non-Gaussian environment | |
CN113627084A (en) | Electronic nose signal drift compensation subspace alignment method based on extreme learning machine | |
Yang et al. | A structure optimization framework for feed-forward neural networks using sparse representation | |
CN113219402A (en) | Sparse array DOA estimation method based on Modified-ALM algorithm | |
CN109298382A (en) | A Method for Estimating Direction of Arrival Angle of Non-Uniform Linear Array Based on Expectation Maximum Algorithm | |
CN114815436B (en) | Mutual coupling compensation method of optical phased array elements based on neighborhood sampling principal component analysis | |
CN115392029A (en) | A spatio-temporal modeling method for lithium battery thermal process based on KWLTSA | |
CN112904270B (en) | Direction-of-arrival estimation method based on fitting model under array model error | |
CN109271735A (en) | Array pattern integrated approach based on the heuristic gravitation search algorithm of quantum | |
CN113392591A (en) | MEMS accelerometer temperature drift error estimation method based on silicon microstructure analysis | |
CN108828503A (en) | It is a kind of based on quantum mould because of the beam space direction-finding method of evolution mechanism | |
Cho et al. | Efficient grid deformation using deterministic sampling‐based data reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |