CN114814381A - Electromagnetic field spatial distribution measuring method and system - Google Patents
Electromagnetic field spatial distribution measuring method and system Download PDFInfo
- Publication number
- CN114814381A CN114814381A CN202110119865.XA CN202110119865A CN114814381A CN 114814381 A CN114814381 A CN 114814381A CN 202110119865 A CN202110119865 A CN 202110119865A CN 114814381 A CN114814381 A CN 114814381A
- Authority
- CN
- China
- Prior art keywords
- electromagnetic field
- atom probe
- rydberg atom
- parameters
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005672 electromagnetic field Effects 0.000 title claims abstract description 168
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000523 sample Substances 0.000 claims abstract description 133
- 238000005259 measurement Methods 0.000 claims abstract description 103
- 230000003287 optical effect Effects 0.000 claims abstract description 37
- 230000000694 effects Effects 0.000 claims abstract description 16
- 230000033001 locomotion Effects 0.000 claims description 15
- 238000013500 data storage Methods 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0878—Sensors; antennas; probes; detectors
- G01R29/0885—Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本发明提供一种电磁场空间分布测量方法及系统,包括:获取各位置的位置参数,根据位置参数,获取与位置参数相应的空间坐标;接收里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析光信号将其还原为相应的电磁场参数;将各位置所对应的电磁场参数和空间坐标相结合,构建预设区域的电磁场空间分布,供输出。本发明可检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。本发明最大程度地避免了电磁场空间测量系统对被测电磁场的干扰,使得能够实现对被测电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。
The invention provides a method and system for measuring the spatial distribution of an electromagnetic field, comprising: acquiring position parameters of each position, and obtaining spatial coordinates corresponding to the position parameters according to the position parameters; receiving Rydberg atom probes at each position based on quantum effect conversion to be Measure the optical signal obtained by the electromagnetic field signal, and analyze the optical signal to restore it to the corresponding electromagnetic field parameters; combine the electromagnetic field parameters corresponding to each position with the spatial coordinates to construct the electromagnetic field spatial distribution of the preset area for output. The present invention can detect the electromagnetic field parameters and spatial coordinates of each position, and combine the electromagnetic field parameters with the spatial coordinates to obtain the electromagnetic field spatial distribution of the preset area for the user to view. The invention avoids the interference of the electromagnetic field spatial measurement system to the measured electromagnetic field to the greatest extent, so that the high-precision measurement of the measured electromagnetic field can be realized, and the high-precision measurement and construction of the electromagnetic field spatial distribution can be conveniently realized.
Description
技术领域technical field
本发明涉及一种电磁场的测量技术领域,特别是涉及一种电磁场空间分布测量方法及系统。The invention relates to the technical field of electromagnetic field measurement, in particular to a method and system for measuring the spatial distribution of electromagnetic field.
背景技术Background technique
处于里德堡激发态的原子被称为里德堡原子,这类原子具有极化率高、场电离阈值低和电偶极矩大的特点,对外部电磁场十分敏感。将里德堡原子封装于测量棒末端的小腔室内用于电磁场测量的装置被称为里德堡原子探头,里德堡原子探头内封装有小至微米尺寸的铷原子气体,可用于MHz到THz范围的电磁波的电磁场的强度、频率与方向等参数的精密测量。Atoms in the Rydberg excited state are called Rydberg atoms, which have the characteristics of high polarizability, low field ionization threshold and large electric dipole moment, and are very sensitive to external electromagnetic fields. The device that encapsulates Rydberg atoms in a small chamber at the end of the measuring rod for electromagnetic field measurement is called the Rydberg atom probe. The Rydberg atom probe is encapsulated with rubidium atomic gas as small as micron size, which can be used in MHz to Precise measurement of parameters such as the intensity, frequency and direction of the electromagnetic field of electromagnetic waves in the THz range.
里德堡原子探头基于其量子特性,可以用来进行高精度的电磁场测量,且其相比于传统的金属偶极天线探头具有对被测电磁场干扰小、不需要校准、探头尺寸小、测量频率范围广等优点。不但学术界已经对其进行了大量的研究,美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)、中国国家计量院、广州省计量院等也正在进行利用里德堡原子探头做电磁场测量基准的探索。而美国的里德堡技术有限责任公司(Rydberg Technologies Inc.)和中国的瓦科光电等公司已推出了以其为基础的商业化产品。Based on its quantum properties, the Rydberg atom probe can be used for high-precision electromagnetic field measurement. Compared with the traditional metal dipole antenna probe, it has less interference to the measured electromagnetic field, no need for calibration, small probe size, and measurement frequency. Wide range and so on. Not only academia has carried out a lot of research on it, but also the National Institute of Standards and Technology (NIST), China National Metrology Institute, Guangzhou Metrology Institute, etc. are also using the Rydberg atom probe to do so. Exploring benchmarks for electromagnetic field measurements. And companies such as Rydberg Technologies Inc. of the United States and Waco Optoelectronics of China have launched commercial products based on them.
现有技术中,使用里德堡原子探头做电磁场测量,一般是将里德堡原子探头手动放置在某一个固定的位置,对该位置的电磁场进行测量,再使用某种位置测量装置对探头位置进行测量。采用这种方案,不仅测量过程繁琐,也无法获得高精度的电磁场空间分布。In the prior art, the Rydberg atom probe is used for electromagnetic field measurement. Generally, the Rydberg atom probe is manually placed at a certain fixed position, the electromagnetic field at the position is measured, and then a certain position measuring device is used to measure the position of the probe. Take measurements. With this scheme, not only the measurement process is cumbersome, but also the spatial distribution of the electromagnetic field with high precision cannot be obtained.
因此,如何设计一种集成里德堡原子探头与位置测量于一体的系统,同时获取电磁信号及位置信号,达到在一维,二维或三维(1D,2D,3D)空间对电磁场的空间分布进行高精度测量和重建,成为急需解决的问题。Therefore, how to design a system that integrates the Rydberg atom probe and position measurement, acquires electromagnetic signals and position signals at the same time, and achieves the spatial distribution of electromagnetic fields in one-dimensional, two-dimensional or three-dimensional (1D, 2D, 3D) space Performing high-precision measurements and reconstructions has become an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种电磁场空间分布测量方法及系统,用于解决现有技术中基于里德堡原子探头的电磁场测量,电磁信号及位置信号分开测量,导致测量过程繁琐,也无法获得高精度的电磁场空间分布的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method and system for measuring the spatial distribution of an electromagnetic field, which is used to solve the electromagnetic field measurement based on the Rydberg atom probe in the prior art, and the electromagnetic signal and the position signal are measured separately. , resulting in a cumbersome measurement process and the inability to obtain high-precision spatial distribution of the electromagnetic field.
为实现上述目的及其他相关目的,本发明提供一种电磁场空间分布测量方法,所述方法适用于里德堡原子探头,且所述里德堡原子探头可在预设区域内移动,包括:In order to achieve the above object and other related objects, the present invention provides a method for measuring the spatial distribution of an electromagnetic field. The method is suitable for a Rydberg atom probe, and the Rydberg atom probe can move within a preset area, including:
获取各位置的位置参数,根据所述位置参数,获取与所述位置参数相应的空间坐标;Obtain the position parameters of each position, and obtain the spatial coordinates corresponding to the position parameters according to the position parameters;
接收所述里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析所述光信号将其还原为相应的电磁场参数;Receive the optical signal obtained by converting the electromagnetic field signal to be measured by the Rydberg atom probe at each position based on the quantum effect, and analyze the optical signal to restore it to corresponding electromagnetic field parameters;
将所述空间坐标和各位置所对应的所述电磁场参数相结合,构建预设区域的电磁场空间分布,供输出。Combining the spatial coordinates with the electromagnetic field parameters corresponding to each position, the electromagnetic field spatial distribution of the preset area is constructed for output.
于本发明的一实施例中,所述获取各位置的位置参数,根据所述位置参数,得到该位置的空间坐标包括:周期性发射脉冲激光到所述里德堡原子探头所处位置;其中,脉冲激光的发射位置在预设区域内,且是已知的;获取反射的脉冲光斑位置,计算所述反射的脉冲光斑位置与预设的标定点的偏离距离;根据所述偏离距离调整脉冲激光的发射角度,直至脉冲激光的发射光路与反射光路相平行;计算从发射脉冲激光到接收到反射的脉冲光斑的时间差,根据所述时间差及光速,获取脉冲激光的发射位置与所述里德堡原子探头的距离,根据所述距离及所述脉冲激光的发射角度,获取所述里德堡原子探头所在位置的空间坐标。In an embodiment of the present invention, the obtaining the position parameters of each position, and obtaining the spatial coordinates of the position according to the position parameters includes: periodically transmitting a pulsed laser to the position where the Rydberg atom probe is located; wherein , the emission position of the pulsed laser is within the preset area and is known; obtain the reflected pulse spot position, calculate the deviation distance between the reflected pulse spot position and the preset calibration point; adjust the pulse according to the deviation distance The emission angle of the laser, until the emission optical path of the pulsed laser is parallel to the reflection optical path; calculate the time difference from the emission of the pulsed laser to the reception of the reflected pulsed spot, and obtain the emission position of the pulsed laser and the reed according to the time difference and the speed of light. For the distance of the Rydberg atom probe, the spatial coordinates of the location of the Rydberg atom probe are obtained according to the distance and the emission angle of the pulsed laser.
本发明还提供一种电磁场空间分布测量系统,所述系统应用于里德堡原子探头,且所述里德堡原子探头可在预设区域内移动,包括:The present invention also provides an electromagnetic field spatial distribution measurement system, the system is applied to the Rydberg atom probe, and the Rydberg atom probe can move in a preset area, including:
空间定位装置,用于获取各位置的位置参数;A spatial positioning device for obtaining the position parameters of each position;
定位测量控制模块,用于根据所述位置参数,获取与所述位置参数相应的空间坐标;a positioning measurement control module, configured to obtain spatial coordinates corresponding to the position parameters according to the position parameters;
探头测量控制模块,用于接收所述里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析所述光信号将其还原为相应的电磁场参数;The probe measurement control module is used to receive the optical signal obtained by the Rydberg atom probe converting the electromagnetic field signal to be measured based on the quantum effect at each position, and analyze the optical signal to restore it to corresponding electromagnetic field parameters;
重构分析模块,用于将各位置所对应的所述电磁场参数和所述空间坐标相结合,构建预设区域的电磁场空间分布,供输出。The reconstruction analysis module is used for combining the electromagnetic field parameters corresponding to each position with the spatial coordinates to construct the electromagnetic field spatial distribution of the preset area for output.
于本发明的一实施例中,所述空间定位装置包括:In an embodiment of the present invention, the spatial positioning device includes:
脉冲激光发射器,用于根据所述定位测量控制模块的控制信号,发射脉冲激光到球状介质膜反射镜;其中,脉冲激光发射器的位置在预设区域内,且是已知的;a pulsed laser transmitter, used for transmitting a pulsed laser to the spherical dielectric film mirror according to the control signal of the positioning measurement control module; wherein, the position of the pulsed laser transmitter is within a preset area and is known;
球状介质膜反射镜,与所述里德堡原子探头固定连接,用于对射入的脉冲激光进行反射;A spherical dielectric film mirror, fixedly connected with the Rydberg atom probe, for reflecting the incoming pulsed laser light;
激光感应板,用于接收所述球状介质膜反射镜反射的脉冲光斑,并将所述反射的脉冲光斑位置信息传输至所述定位测量控制模块;a laser sensor board, used for receiving the pulsed spot reflected by the spherical dielectric film mirror, and transmitting the position information of the reflected pulsed spot to the positioning measurement control module;
激光角度调整器,用于根据所述定位测量控制模块的控制信号,调整所述脉冲激光发射器的激光发射角度;a laser angle adjuster, used for adjusting the laser emission angle of the pulsed laser transmitter according to the control signal of the positioning measurement control module;
所述定位测量控制模块,还用于输出控制信号到所述脉冲激光发射器;还用于根据所述反射的脉冲光斑位置信息,计算所述反射的脉冲光斑位置与预设的标定点的偏离距离,根据所述偏离距离输出控制信号到所述激光角度调整器,调整脉冲激光的发射角度,直至脉冲激光的发射光路与反射光路相平行;其中,所述预设的标定点位于所述激光感应板上;The positioning measurement control module is further configured to output a control signal to the pulsed laser transmitter; and is also configured to calculate the deviation of the reflected pulse spot position from the preset calibration point according to the reflected pulse spot position information distance, output a control signal to the laser angle adjuster according to the deviation distance, and adjust the emission angle of the pulsed laser until the emission optical path of the pulsed laser is parallel to the reflection optical path; wherein, the preset calibration point is located at the laser induction board;
还用于计算从发射脉冲激光到接收到反射的脉冲光斑的时间差,根据所述时间差及光速,获取脉冲激光的发射位置与所述里德堡原子探头的距离,根据所述距离及所述脉冲激光的发射角度,获取所述里德堡原子探头所在位置的空间坐标。It is also used to calculate the time difference from when the pulsed laser is emitted to when the reflected pulsed spot is received. According to the time difference and the speed of light, the distance between the emission position of the pulsed laser and the Rydberg atom probe is obtained. According to the distance and the pulse The emission angle of the laser is obtained, and the spatial coordinates of the position of the Rydberg atom probe are obtained.
于本发明的一实施例中,还包括探头运动控制模块,所述探头运动控制模块与所述里德堡原子探头电连接,用于移动所述里德堡原子探头。In an embodiment of the present invention, a probe motion control module is further included, the probe motion control module is electrically connected with the Rydberg atom probe, and is used for moving the Rydberg atom probe.
于本发明的一实施例中,还包括前端交互模块,用于接收用户指令,并将所述用户指令分发给所述探头运动控制模块、所述探头测量控制模块及所述定位测量控制模块;In an embodiment of the present invention, it further includes a front-end interaction module for receiving user instructions and distributing the user instructions to the probe motion control module, the probe measurement control module and the positioning measurement control module;
还用于接收所述重构分析模块传输的数据,向用户展示预设区域的电磁场空间分布。It is also used for receiving the data transmitted by the reconstruction analysis module, and showing the electromagnetic field spatial distribution of the preset area to the user.
于本发明的一实施例中,还包括数据存储模块,用于保存所述电磁场参数及所述空间坐标,并将所述电磁场参数及所述空间坐标提供给所述重构分析模块。In an embodiment of the present invention, a data storage module is further included for storing the electromagnetic field parameters and the spatial coordinates, and providing the electromagnetic field parameters and the spatial coordinates to the reconstruction analysis module.
本发明还提供一种电磁场空间分布测量方法,所述方法适用于里德堡原子探头,且所述里德堡原子探头可在预设区域内移动,包括:The present invention also provides a method for measuring the spatial distribution of an electromagnetic field. The method is suitable for a Rydberg atom probe, and the Rydberg atom probe can move within a preset area, including:
接收所述里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析所述光信号将其还原为相应的电磁场参数;接收所述里德堡原子探头在各位置处的拍摄图像,对所述拍摄图像进行分析处理,获取所述里德堡原子探头所在位置的空间坐标;将各位置所对应的所述电磁场参数和所述空间坐标相结合,得到预设区域的电磁场空间分布,供输出。Receive the optical signal obtained by the Rydberg atom probe converting the electromagnetic field signal to be measured based on the quantum effect at each position, and analyze the optical signal to restore it to the corresponding electromagnetic field parameters; receive the Rydberg atom probe in each position. The captured image at the location is analyzed and processed to obtain the spatial coordinates of the location where the Rydberg atom probe is located; the electromagnetic field parameters corresponding to each location are combined with the spatial coordinates to obtain a preset The spatial distribution of the electromagnetic field in the area for output.
本发明还提供一种电磁场空间分布测量系统,所述系统应用于里德堡原子探头,且所述里德堡原子探头可在预设区域内移动,包括:The present invention also provides an electromagnetic field spatial distribution measurement system, the system is applied to the Rydberg atom probe, and the Rydberg atom probe can move in a preset area, including:
探头测量控制模块,用于接收所述里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析所述光信号将其还原为相应的电磁场参数;The probe measurement control module is used to receive the optical signal obtained by the Rydberg atom probe converting the electromagnetic field signal to be measured based on the quantum effect at each position, and analyze the optical signal to restore it to corresponding electromagnetic field parameters;
多个摄像头,各所述摄像头设置于预设区域的不同位置,且各所述摄像头的位置已知;a plurality of cameras, each of which is set at a different position in the preset area, and the position of each of the cameras is known;
各所述摄像头,用于同时对某一位置的所述里德堡原子探头进行拍摄,并将拍摄的图像传输至定位测量控制模块;Each of the cameras is used to photograph the Rydberg atomic probe at a certain position at the same time, and transmit the photographed images to the positioning measurement control module;
定位测量控制模块,用于对所述拍摄的图像进行分析计算,获取所述里德堡原子探头所在位置的空间坐标;a positioning measurement control module, used for analyzing and calculating the captured image, and obtaining the spatial coordinates of the location of the Rydberg atom probe;
重构分析模块,用于将各位置所对应的所述电磁场参数和所述空间坐标相结合,构建预设区域的电磁场空间分布,供输出。The reconstruction analysis module is used for combining the electromagnetic field parameters corresponding to each position with the spatial coordinates to construct the electromagnetic field spatial distribution of the preset area for output.
于本发明的一实施例中,还包括数据存储模块,用于保存所述电磁场参数、所述拍摄的图像及所述空间坐标,并将所述电磁场参数及所述空间坐标提供给所述重构分析模块。In an embodiment of the present invention, it further includes a data storage module for storing the electromagnetic field parameters, the captured image and the spatial coordinates, and providing the electromagnetic field parameters and the spatial coordinates to the replay. Structure analysis module.
如上所述,本发明的一种电磁场空间分布测量方法及系统,具有以下有益效果:As mentioned above, a method and system for measuring the spatial distribution of electromagnetic fields of the present invention have the following beneficial effects:
将里德堡原子探头在预设区域内移动,并检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。Move the Rydberg atom probe in the preset area, and detect the electromagnetic field parameters and spatial coordinates of each position, and combine the electromagnetic field parameters with the spatial coordinates to obtain the electromagnetic field spatial distribution of the preset area for users to view.
本发明最大程度地避免了电磁场空间测量系统对被测电磁场的干预,使得能够实现对被测电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。The invention avoids the interference of the electromagnetic field spatial measurement system to the measured electromagnetic field to the greatest extent, so that the high-precision measurement of the measured electromagnetic field can be realized, and the high-precision measurement and construction of the electromagnetic field spatial distribution can be conveniently realized.
附图说明Description of drawings
图1显示为本发明第一实施方式公开的一种电气连接框图。FIG. 1 shows a block diagram of an electrical connection disclosed in the first embodiment of the present invention.
图2显示为本发明第一实施方式公开的另一种电气连接框图。FIG. 2 shows another electrical connection block diagram disclosed in the first embodiment of the present invention.
图3显示为本发明第一实施方式公开的前端交互模块的电气连接框图。FIG. 3 is a block diagram showing the electrical connection of the front-end interaction module disclosed in the first embodiment of the present invention.
图4显示为本发明第一实施方式公开的空间定位装置的电气连接框图。FIG. 4 is a block diagram showing the electrical connection of the spatial positioning device disclosed in the first embodiment of the present invention.
图5显示为本发明第一实施方式中公开的空间定位装置的工作原理示意图。FIG. 5 is a schematic diagram showing the working principle of the spatial positioning device disclosed in the first embodiment of the present invention.
图6显示为本发明第一实施方式中公开的工作流程图。FIG. 6 shows a working flow chart disclosed in the first embodiment of the present invention.
图7显示为本发明第二实施方式中公开的工作流程图。FIG. 7 shows a flow chart of the work disclosed in the second embodiment of the present invention.
元件标号说明:Component label description:
1-里德堡原子探头;2-探头测量控制模块;3-空间定位装置;4-定位测量控制模块;1-Rydberg atom probe; 2-Probe measurement control module; 3-Space positioning device; 4-Positioning measurement control module;
5-重构分析模块;6-探头运动控制模块;7-数据存储模块;8-前端交互模块;5-reconstruction analysis module; 6-probe motion control module; 7-data storage module; 8-front-end interaction module;
201-脉冲激光发射器;202-球状介质膜反射镜;203-激光感应板;204-激光角度调整器。201-pulse laser transmitter; 202-spherical dielectric film mirror; 203-laser induction board; 204-laser angle adjuster.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in the following embodiments are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and size of the components in actual implementation. For drawing, the type, quantity and proportion of each component can be arbitrarily changed during actual implementation, and the layout of components may also be more complicated.
请参阅图1,本发明的第一实施方式提供一种电磁场空间分布测量系统,应用于里德堡原子探头1,且里德堡原子探头1可在预设区域内移动,其中,预设区域和移动的坐标点可根据用户需要自行设置,本方案对此不做限定。系统包括:探头测量控制模块2、空间定位装置3、定位测量控制模块4及重构分析模块5。Referring to FIG. 1 , the first embodiment of the present invention provides an electromagnetic field spatial distribution measurement system, which is applied to the
探头测量控制模块2,用于接收里德堡原子探头1在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析所述光信号将其还原为相应的电磁场参数;其中,电磁场参数包括电磁场的强度、方向及频率等。The probe
此外,探头测量控制模块2还可通过光纤为里德堡原子探头1传输测量所需的激光,用于驱动、控制里德堡原子探头1的工作。In addition, the probe
为了降低干扰,探头测量控制模块2与里德堡原子探头1通过光纤连接,利用光纤低损耗低干扰的特性,可以在远距离屏蔽测控系统对被测电磁场干扰的情况下操纵探头进行测量。In order to reduce the interference, the probe
空间定位装置3,用于在微干扰的前提下对里德堡原子探头1的位置进行精确地测量。其实现的技术实现方案可结合具体的使用场景及条件进行选择,潜在技术方案包括:球状介质膜激光定位方案、光学多摄像头视觉定位方案、卫星定位去干扰方案、小型精密惯性制导方案等。The
本实施方式中采用球状介质膜激光定位方案,并进行详细说明。In this embodiment, the spherical dielectric film laser positioning scheme is adopted and described in detail.
请参阅图4,空间定位装置3包括脉冲激光发生器201、球状介质膜反射镜202、激光感应板203及激光角度调整器204。Referring to FIG. 4 , the
脉冲激光发射器201,用于根据定位测量控制模块4的控制信号,发射脉冲激光到球状介质膜反射镜202;其中,脉冲激光发射器201的位置在预设区域内,且该位置是已知的。The
需要说明的是,脉冲激光发射器可根据外部的控制信号,实时发射脉冲激光;也可根据用户的设定,周期性的发射脉冲激光,以实现对球状介质膜反射镜的实时追踪。此外,为进一步降低激光的发射对测量的干扰,可在测量时暂停激光发射。It should be noted that the pulsed laser transmitter can emit pulsed lasers in real time according to external control signals; it can also periodically emit pulsed lasers according to user settings to achieve real-time tracking of spherical dielectric film mirrors. In addition, in order to further reduce the interference of the laser emission on the measurement, the laser emission can be suspended during the measurement.
球状介质膜反射镜202,与里德堡原子探头1固定连接,用于对射入的脉冲激光进行反射。本方案中通过定位反射镜球心的位置可以获得里德堡原子探头1的位置。The spherical
需要说明的是,球状介质膜反射镜(dielectric mirror)由多层不同折射率的电介质组成,只会对选定频率附近的电磁波产生强烈的反射。在本实施方式中,介质膜的目标电磁波为可见光波段的激光,其频率量级为1014Hz,与里德堡原子探头的工作频率(107-1012Hz)相去甚远,因此该反射镜对于被测电磁波而言几乎透明,产生的干扰极小。It should be noted that the spherical dielectric mirror (dielectric mirror) is composed of multiple layers of dielectrics with different refractive indices, and only strongly reflects electromagnetic waves near a selected frequency. In this embodiment, the target electromagnetic wave of the dielectric film is a laser in the visible light band, and its frequency is on the order of 10 14 Hz, which is far from the operating frequency (10 7 -10 12 Hz) of the Rydberg atom probe. Therefore, this reflection The mirror is almost transparent to the electromagnetic wave under test and produces very little interference.
激光感应板203,用于接收球状介质膜反射镜202反射的脉冲光斑,并将反射的脉冲光斑位置信息传输至定位测量控制模块4。The
激光角度调整器204,用于根据定位测量控制模块4的控制信号,调整脉冲激光发射器201的激光发射角度。The
定位测量控制模块4,用于根据空间定位装置3采集的位置参数,获取该位置相应的空间坐标。The positioning
定位测量控制模块4与脉冲激光发射器201、激光感应板203及激光角度调整器204电连接。The positioning
请参阅图5及图6,定位测量控制模块4用于输出控制信号到脉冲激光发射器201,发射激光到球状介质膜反射镜202,激光感应板203接收到球状介质膜反射镜202反射的脉冲,将反射的脉冲光斑位置信息传输至定位测量控制模块4,定位测量控制模块4根据该位置信息,计算反射的脉冲光斑位置与预设的标定点的偏离距离,根据偏离距离调整脉冲激光的发射角度,重复上述步骤,直至脉冲激光的发射光路与反射光路相平行。Please refer to FIG. 5 and FIG. 6 , the positioning
移动里德堡原子探头1,重复上述操作,得到不同位置信息及电磁场信息,供重构分析模块5构建完整的电磁场空间分布。Move the
需要说明的是,在里德堡原子探头移动过程中,上述脉冲激光的角度调整过程保持工作,而不是在移动的过程中停止工作在移动完成后再重新启动,由此可确保激光始终锁定球心。It should be noted that during the movement of the Rydberg atom probe, the above-mentioned angle adjustment process of the pulsed laser keeps working, instead of stopping during the movement and restarting after the movement is completed, thus ensuring that the laser is always locked to the ball. Heart.
其中,预设的标定点为激光感应板203上事先选定的一个坐标点,由于球状介质膜反射镜202与脉冲激光发射器201的距离远远大于标定点与脉冲激光发射器201的距离,当反射光斑落在标定点时激光的入射光路与反射光路几乎完全平行,也就意味着脉冲激光发射器201几乎正对着球状介质膜反射镜202的球心。The preset calibration point is a pre-selected coordinate point on the
定位测量控制模块4,还用于计算从发射脉冲激光到接收到反射的脉冲光斑的时间差,根据时间差及光速,获取脉冲激光的发射位置与里德堡原子探头1的距离,根据距离及脉冲激光的发射角度,获取里德堡原子探头1所在位置的空间坐标。The positioning
假设脉冲激光发射器201发射激光的时刻为T1,激光感应板203接收到反射激光的时刻为T2,则距离=(T2-T1)×光速/2;再结合此时脉冲激光发射器201的角度,即可计算出里德堡原子探头1所在位置的空间坐标。Assuming that the time when the
继续说明,重构分析模块5,用于将各位置所对应的电磁信号和空间坐标相结合,构建预设区域的电磁场空间分布,供输出,用户可在此基础上根据需要进行进一步的分析处理。Continuing to explain, the
请参阅图2,本实施方式的电磁场空间分布测量系统,还可包括探头运动控制模块6,探头运动控制模块6与重构分析模块5电连接,用于移动里德堡原子探头1。用户可在预设区域内设定多个移动点,并铺设导轨,采用电机驱动方式移动里德堡原子探头1。为减少干扰,也可手动移动里德堡原子探头1。Referring to FIG. 2 , the electromagnetic field spatial distribution measurement system of this embodiment may further include a probe
本实施方式的电磁场空间分布测量系统,还包括前端交互模块8,用于接收用户指令,还可用于向用户展示预设区域的电磁场空间分布。The electromagnetic field spatial distribution measurement system of this embodiment further includes a front-
请参阅图3,前端交互模块8分别与探头测量控制模块2、定位测量控制模块4、重构分析模块5及探头运动控制模块6通讯连接,将接收的用户指令传输到探头测量控制模块2、定位测量控制模块4及探头运动控制模块6,可确定探头测量方式、定位系统工作模式、探头移动方式或脉冲输出方式;前端交互模块8还用于接收重构分析模块5的传输数据,向用户展示预设区域的电磁场空间分布。Please refer to FIG. 3, the front-
本实施方式的电磁场空间分布测量系统,还包括数据存储模块7。The electromagnetic field spatial distribution measurement system in this embodiment further includes a
请参阅图2,数据存储模块7与探头测量控制模块2及定位测量控制模块4电连接,用于保存电磁场参数及空间坐标,并将电磁场参数及空间坐标提供给重构分析模块5。Referring to FIG. 2 , the
请参阅图4及图6,本实施方式的电磁场空间分布测量系统对应一种电磁场空间分布测量方法,包括:Please refer to FIG. 4 and FIG. 6 , the electromagnetic field spatial distribution measurement system of this embodiment corresponds to a method for measuring electromagnetic field spatial distribution, including:
步骤401、获取各位置的位置参数,根据位置参数,获取与所述位置参数相应的空间坐标;Step 401: Obtain the position parameters of each position, and obtain the spatial coordinates corresponding to the position parameters according to the position parameters;
具体的说,周期性发射脉冲激光到里德堡原子探头所处位置;其中,脉冲激光的发射位置在预设区域内,且是固定的;Specifically, the pulsed laser is periodically emitted to the position where the Rydberg atom probe is located; wherein, the emission position of the pulsed laser is within a preset area and is fixed;
获取反射的脉冲光斑位置,计算反射的脉冲光斑位置与预设的标定点的偏离距离;Obtain the reflected pulse spot position, and calculate the deviation distance between the reflected pulse spot position and the preset calibration point;
根据偏离距离调整调整脉冲激光的发射角度,直至脉冲激光的发射光路与反射光路相平行;Adjust and adjust the emission angle of the pulsed laser according to the deviation distance, until the emission optical path of the pulsed laser is parallel to the reflected optical path;
计算从发射脉冲激光到接收到反射的脉冲光斑的时间差,根据时间差及光速,获取脉冲激光的发射位置与里德堡原子探头的距离,根据距离及脉冲激光的发射角度,获取里德堡原子探头所在位置的空间坐标。Calculate the time difference from transmitting the pulsed laser to receiving the reflected pulsed spot, obtain the distance between the emission position of the pulsed laser and the Rydberg atom probe according to the time difference and the speed of light, and obtain the Rydberg atomic probe according to the distance and the emission angle of the pulsed laser The spatial coordinates of the location.
步骤402、接收里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析该光信号将其还原为相应的电磁场参数。Step 402: Receive an optical signal obtained by converting the electromagnetic field signal to be measured by the Rydberg atom probe at each position based on the quantum effect, and analyze the optical signal to restore it to corresponding electromagnetic field parameters.
步骤403、将各位置所对应的电磁场参数和空间坐标相结合,构建预设区域的电磁场空间分布,供输出。Step 403: Combine the electromagnetic field parameters corresponding to each position with the spatial coordinates to construct the electromagnetic field spatial distribution of the preset area for output.
第一实施方式通过如下几个方面确保了定位系统对被测电磁波的极低干扰:The first embodiment ensures extremely low interference of the positioning system to the measured electromagnetic waves through the following aspects:
(1)除被测电磁场外,唯一需要存在的电磁波只有方向性、单色性极高且频率位于探测频率之外的可见光波段激光,避免了普通电磁波波束扩散角度大、频谱成分复杂的问题,且可在无光照的暗室条件下进行测量;(1) In addition to the measured electromagnetic field, the only electromagnetic wave that needs to exist is only the visible light band laser with high directional, monochromatic and frequency outside the detection frequency, which avoids the problems of large diffusion angle and complex spectral composition of ordinary electromagnetic wave beams. And can be measured under dark room conditions without light;
(2)所采用的介质膜反射镜由非金属材料构成,只对激光频率的电磁通过干涉效应形成反射,而对被测电磁场几乎完全透明。避免了传统金属反射镜无差别反射电磁波造成的潜在干扰;(2) The dielectric film mirror used is made of non-metallic materials, which only reflect the electromagnetic frequency of the laser frequency through the interference effect, but is almost completely transparent to the measured electromagnetic field. Avoid potential interference caused by indiscriminate reflection of electromagnetic waves by traditional metal mirrors;
(3)除启动阶段之外,在里德堡原子探头移动的整个过程中,反馈跟踪系统可以确保激光始终锁定在反射镜的球心而不会照射到其他方向,进一步避免了对测量的潜在干扰。(3) Except for the start-up stage, during the whole process of the movement of the Rydberg atom probe, the feedback tracking system can ensure that the laser is always locked at the spherical center of the mirror and will not be irradiated in other directions, further avoiding the potential for measurement interference.
可见,本实施方式将里德堡原子探头在预设区域内移动,并检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。本发明采用采用球状介质膜激光定位方案采集里德堡原子探头位置,最大程度地避免了对被测电磁场的干扰,使得能够实现对被测电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。It can be seen that in this embodiment, the Rydberg atom probe is moved in the preset area, and the electromagnetic field parameters and spatial coordinates of each position are detected, and the electromagnetic field parameters and the spatial coordinates are combined to obtain the electromagnetic field spatial distribution of the preset area for the user to view. . The invention adopts the spherical dielectric film laser positioning scheme to collect the position of the Rydberg atom probe, which avoids the interference to the measured electromagnetic field to the greatest extent, so that the high-precision measurement of the measured electromagnetic field can be realized, and the spatial distribution of the electromagnetic field can be conveniently realized. Perform high-precision measurement and construction.
本发明的第二实施方式提供一种电磁场空间分布测量系统,第二实施方式是在第一实施方式的基础上进行了改进,主要改进之处在于采用了不同的空间定位装置来获取里德堡原子探头的位置:第一实施方式中的空间定位装置3替换为多个摄像头。The second embodiment of the present invention provides an electromagnetic field spatial distribution measurement system. The second embodiment is improved on the basis of the first embodiment. The main improvement lies in the use of different spatial positioning devices to obtain Rydberg Position of the atom probe: The
各摄像头设置于预设区域的不同位置,且各摄像头的位置固定。The cameras are arranged at different positions in the preset area, and the positions of the cameras are fixed.
摄像头,用于同时对某一位置的里德堡原子探头1进行拍摄,并将拍摄的图像传输至定位测量控制模块4,相应的,本实施方式中的定位测量控制模块4的用途进行了相应的改变,用于对拍摄的图像进行分析计算,利用不同位置的摄像头拍摄里德堡原子探头1时产生的视差,计算里德堡原子探头1所在位置的空间坐标。The camera is used to shoot the
相应的,本实施方式中的数据存储模块7,还用于存储拍摄的图像。Correspondingly, the
请参阅图7,本实施方式的电磁场空间分布测量系统对应一种电磁场空间分布测量方法,包括:Referring to FIG. 7 , the electromagnetic field spatial distribution measurement system of this embodiment corresponds to a method for measuring electromagnetic field spatial distribution, including:
步骤501、接收里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析该光信号将其还原为相应的电磁场参数;其中,电磁场参数包括电磁场的强度、方向及频率等。步骤502、接收里德堡原子探头在各位置处的拍摄图像,对拍摄图像进行分析处理,获取里德堡原子探头所在位置的空间坐标;Step 501: Receive the optical signal obtained by converting the electromagnetic field signal to be measured by the Rydberg atom probe at each position based on the quantum effect, and analyze the optical signal to restore it to corresponding electromagnetic field parameters; wherein, the electromagnetic field parameters include the intensity and direction of the electromagnetic field and frequency, etc. Step 502: Receive the captured images of the Rydberg atom probe at each position, analyze and process the captured images, and obtain the spatial coordinates of the position of the Rydberg atom probe;
步骤503、将各位置所对应的电磁场参数和空间坐标相结合,得到预设区域的电磁场空间分布,供输出。Step 503: Combine the electromagnetic field parameters corresponding to each position with the spatial coordinates to obtain the electromagnetic field spatial distribution of the preset area for output.
可见,本实施方式将里德堡原子探头在预设区域内移动,并实时检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。本发明采用摄像头采集里德堡原子探头位置,最大程度地避免了被测电磁场的干预,使得能够实现对被测电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。It can be seen that in this embodiment, the Rydberg atom probe is moved in the preset area, and the electromagnetic field parameters and spatial coordinates of each position are detected in real time, and the electromagnetic field parameters and the spatial coordinates are combined to obtain the electromagnetic field spatial distribution of the preset area for users. Check. The invention adopts the camera to collect the position of the Rydberg atom probe, which avoids the interference of the measured electromagnetic field to the greatest extent, so that the high-precision measurement of the measured electromagnetic field can be realized, and the high-precision measurement and construction of the spatial distribution of the electromagnetic field can be conveniently realized. .
本发明的第三实施方式提供一种电磁场空间分布测量系统,第三实施方式是在第一实施方式的基础上进行了改进,主要改进之处在于采用了不同的空间定位装置来获取里德堡原子探头的位置:第一实施方式中的空间定位装置3替换为卫星定位装置,适用的卫星定位装置包括GPS、北斗、伽利略或GLONASS。该实施方式可以满足室外大空间尺度下的定位要求。The third embodiment of the present invention provides an electromagnetic field spatial distribution measurement system. The third embodiment is improved on the basis of the first embodiment, and the main improvement lies in that different spatial positioning devices are used to obtain Rydberg Position of the atomic probe: The
卫星定位装置与里德堡原子探头1的相对位置固定,且测量过程中,里德堡原子探头1与卫星定位装置共同移动,卫星定位装置将位置坐标发送给定位测量控制模块4,获知了卫星定位装置所在位置即可获得里德堡原子探头1的位置。The relative position of the satellite positioning device and the Rydberg
需要说明的是,为了避免接受卫星定位信号的装置本身或接受卫星定位信号的过程中,对测量的干扰,电磁场空间分布测量系统需要支持在仅有里德堡原子探头的情况下对所在位置的电磁场进行测量,在此过程中卫星定位信号的装置处于静默状态,从而最大程度的避免对待测电磁场的影响。It should be noted that, in order to avoid the interference to the measurement of the device itself or the process of receiving the satellite positioning signal, the electromagnetic field spatial distribution measurement system needs to support the location measurement in the case of only the Rydberg atom probe. The electromagnetic field is measured, and the satellite positioning signal device is in a silent state during this process, so as to avoid the influence of the electromagnetic field to be measured to the greatest extent.
此外,为了避免卫星定位信号对测量的干扰,如果待测电磁场的存在与否可以控制,则在没有待测电磁场和有待测电磁场的两种情况下,分别对里德堡原子探头所在位置的电磁场进行测量,并将前者测得的电磁场从后者中扣除,从而得到未受干扰的待测电磁场;该数据处理可通过重构分析模块5完成。In addition, in order to avoid the interference of the satellite positioning signal to the measurement, if the presence or absence of the electromagnetic field to be measured can be controlled, in the absence of the electromagnetic field to be measured and the electromagnetic field to be measured The electromagnetic field is measured, and the electromagnetic field measured by the former is deducted from the latter to obtain an undisturbed electromagnetic field to be measured; the data processing can be completed by the
本实施方式的电磁场空间分布测量系统对应一种电磁场空间分布测量方法,包括:The electromagnetic field spatial distribution measurement system of this embodiment corresponds to a method for measuring the electromagnetic field spatial distribution, including:
步骤601、接收里德堡原子探头在各位置处基于量子效应转换待测电磁场信号得到的光信号,并解析该光信号将其还原为相应的电磁场参数;其中,电磁场参数包括电磁场的强度、方向及频率等。Step 601: Receive the optical signal obtained by converting the electromagnetic field signal to be measured by the Rydberg atom probe at each position based on the quantum effect, and analyze the optical signal to restore it to the corresponding electromagnetic field parameters; wherein, the electromagnetic field parameters include the intensity and direction of the electromagnetic field and frequency, etc.
步骤602、接收卫星定位装置的位置坐标,从而获取里德堡原子探头所在位置的空间坐标;Step 602: Receive the position coordinates of the satellite positioning device, thereby obtaining the spatial coordinates of the location of the Rydberg atom probe;
步骤603、将各位置所对应的电磁场参数和空间坐标相结合,得到预设区域的电磁场空间分布,供输出。Step 603: Combine the electromagnetic field parameters corresponding to each position with the spatial coordinates to obtain the electromagnetic field spatial distribution of the preset area for output.
可见,本实施方式将里德堡原子探头在预设区域内移动,并实时检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。本发明采用卫星定位装置采集里德堡原子探头位置,最大程度地避免了被测电场电磁场的干预,使得能够实现对被测电场电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。It can be seen that in this embodiment, the Rydberg atom probe is moved in the preset area, and the electromagnetic field parameters and spatial coordinates of each position are detected in real time, and the electromagnetic field parameters and the spatial coordinates are combined to obtain the electromagnetic field spatial distribution of the preset area for users. Check. The invention adopts the satellite positioning device to collect the position of the Rydberg atom probe, which avoids the interference of the measured electric field and electromagnetic field to the greatest extent, so that the high-precision measurement of the measured electric field and electromagnetic field can be realized, and the high-precision spatial distribution of the electromagnetic field can be conveniently realized. measurement and construction.
需要说明的是,上述实施方式中出现的探头测量控制模块、定位测量控制模块及重构分析模块均配备有相应的处理器,各处理器通常是整个微电脑数显传感处理器系统的中央处理器(Central Processing Unit,CPU),可以配置相应的操作系统,以及控制接口等,具体地,可以是单片机、DSP(Digital Signal Processing,数字信号处理)、ARM(Advanced RISCMachines,ARM处理器)等能够用于自动化控制的数字逻辑处理器,可以将控制指令随时加载到内存进行储存与执行,同时,可以内置CPU指令及资料内存、输入输出单元、电源模组、数字模拟等单元,具体可以根据实际使用情况进行设置,本方案对此不进行限制。It should be noted that the probe measurement control module, the positioning measurement control module and the reconstruction analysis module appearing in the above embodiments are all equipped with corresponding processors, and each processor is usually the central processing unit of the entire microcomputer digital display sensor processor system. A processor (Central Processing Unit, CPU) can be configured with a corresponding operating system, as well as a control interface, etc. The digital logic processor used for automatic control can load the control instructions into the memory for storage and execution at any time. At the same time, it can have built-in CPU instructions and data memory, input and output units, power modules, digital simulation and other units. The usage is set, and this scheme does not limit this.
综上所述,本发明的一种电磁场空间分布测量方法及系统,将里德堡原子探头在预设区域内移动,并检测各位置的电磁场参数及空间坐标,将电磁场参数与空间坐标相结合,得到预设区域的电磁场空间分布,供用户查看。本发明的技术方案可同时满足室内较小空间与室外广阔空间的测量需求;可同时满足实时连续测量定位与间隔采样测量定位的需求,可根据具体的测量需求进行选择;本发明最大程度地避免了电磁场空间测量系统对被测电磁场的干扰,使得能够实现对被测电磁场的高精度测量,可以方便的实现对电磁场空间分布进行高精度的测量及构建。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, a method and system for measuring the spatial distribution of an electromagnetic field of the present invention moves the Rydberg atom probe in a preset area, detects the electromagnetic field parameters and spatial coordinates of each position, and combines the electromagnetic field parameters with the spatial coordinates to obtain the electromagnetic field spatial distribution of the preset area for users to view. The technical scheme of the present invention can simultaneously meet the measurement requirements of a small indoor space and a wide outdoor space; it can simultaneously meet the requirements of real-time continuous measurement and positioning and interval sampling measurement and positioning, and can be selected according to specific measurement requirements; the present invention avoids to the greatest extent The interference of the electromagnetic field spatial measurement system to the measured electromagnetic field is eliminated, so that the high-precision measurement of the measured electromagnetic field can be realized, and the high-precision measurement and construction of the electromagnetic field spatial distribution can be easily realized. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110119865.XA CN114814381A (en) | 2021-01-28 | 2021-01-28 | Electromagnetic field spatial distribution measuring method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110119865.XA CN114814381A (en) | 2021-01-28 | 2021-01-28 | Electromagnetic field spatial distribution measuring method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114814381A true CN114814381A (en) | 2022-07-29 |
Family
ID=82526878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110119865.XA Pending CN114814381A (en) | 2021-01-28 | 2021-01-28 | Electromagnetic field spatial distribution measuring method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114814381A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006017631A (en) * | 2004-07-02 | 2006-01-19 | Ntt Docomo Inc | Electromagnetic field spatial distribution measuring device |
US20110273559A1 (en) * | 2007-08-29 | 2011-11-10 | Satoshi Yagitani | Electromagnetic field space distribution visualizing device, electromagnetic field space distribution visualizing method, and program thereof |
WO2014002466A1 (en) * | 2012-06-25 | 2014-01-03 | 国立大学法人金沢大学 | Electromagnetic field measuring and display device, electromagnetic measuring and display method, program, and recording medium |
CN104299493A (en) * | 2014-10-29 | 2015-01-21 | 上海大学 | Electromagnetic field teaching and experiment system based on augmented reality |
US20150293162A1 (en) * | 2012-10-24 | 2015-10-15 | Nec Corporation | Electromagnetic field feature classification and presentation device |
CN109164430A (en) * | 2018-10-31 | 2019-01-08 | 北京理工大学 | Utilize the system and method for return laser beam and laser spot detection target position and posture |
-
2021
- 2021-01-28 CN CN202110119865.XA patent/CN114814381A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006017631A (en) * | 2004-07-02 | 2006-01-19 | Ntt Docomo Inc | Electromagnetic field spatial distribution measuring device |
US20110273559A1 (en) * | 2007-08-29 | 2011-11-10 | Satoshi Yagitani | Electromagnetic field space distribution visualizing device, electromagnetic field space distribution visualizing method, and program thereof |
WO2014002466A1 (en) * | 2012-06-25 | 2014-01-03 | 国立大学法人金沢大学 | Electromagnetic field measuring and display device, electromagnetic measuring and display method, program, and recording medium |
US20150293162A1 (en) * | 2012-10-24 | 2015-10-15 | Nec Corporation | Electromagnetic field feature classification and presentation device |
CN104299493A (en) * | 2014-10-29 | 2015-01-21 | 上海大学 | Electromagnetic field teaching and experiment system based on augmented reality |
CN109164430A (en) * | 2018-10-31 | 2019-01-08 | 北京理工大学 | Utilize the system and method for return laser beam and laser spot detection target position and posture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105136434B (en) | A device for testing the law of two-dimensional motion of a planar mechanism | |
CN105928689B (en) | Laser far field divergence measuring method and device in a kind of satellite laser ranging (SLR) | |
CN101776760A (en) | Laser three-dimensional imaging device based on single-photon detector | |
CN102230788A (en) | Self-calibration device and method for measuring parallelism of laser receiving and transmitting optical axes | |
CN109725325A (en) | Laser tracking measurement system and method | |
CN103308903B (en) | A kind of distance accuracy proving installation of range finder using laser and method | |
CN208765707U (en) | Dual laser ranging device | |
CN111458108A (en) | Device and method for measuring parallelism of transmitting and receiving optical axes | |
CN112946673B (en) | Laser ranging method, focusing method, laser ranging system and focusing system | |
CN109141236A (en) | Laser strobe dimensional visual measurement system and method based on vibration mirror scanning | |
CN108226902A (en) | A kind of face battle array lidar measurement system | |
EP0340632B1 (en) | Position locating apparatus for an underwater moving body | |
CN108051182B (en) | A kind of laser subsystem comprehensive test equipment | |
US20210223022A1 (en) | System and method | |
CN208765704U (en) | single laser distance measuring device | |
CN114814381A (en) | Electromagnetic field spatial distribution measuring method and system | |
Wallace et al. | 3D imaging and ranging by time-correlated single photon counting | |
WO2018201566A1 (en) | Laser detection device, and application method thereof | |
CN117629403A (en) | Active single photon detection array non-field imaging system | |
CN207937596U (en) | An area array laser radar measurement system | |
CN208887575U (en) | A refraction displacement sensor | |
CN215813342U (en) | Depth data measuring head and partial depth data measuring apparatus | |
CN109443211A (en) | A kind of spatial three-dimensional position measuring device | |
CN211927241U (en) | Device for measuring parallelism of transmitting and receiving optical axes | |
CN105136030A (en) | Automatic detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230826 Address after: Room 201, Building 2, Huayang Company Office Building, No. 3 Yan'an Road, Baohe District, Hefei City, Anhui Province, 230000 Applicant after: Anhui Hezeli Environmental Technology Co.,Ltd. Address before: 201210 room 2f-a229, block a, building 1, No. 800, Naxian Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Applicant before: Shanghai Kunfeng Quantum Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240202 Address after: 230000, Room 525, Building A3, Phase I, Zhong'an Chuanggu Science and Technology Park, No. 900 Wangjiang West Road, Hefei High tech Zone, China (Anhui) Pilot Free Trade Zone, Hefei City, Anhui Province Applicant after: Hefei Yiwei Quantum Technology Co.,Ltd. Country or region after: China Address before: Room 201, Building 2, Huayang Company Office Building, No. 3 Yan'an Road, Baohe District, Hefei City, Anhui Province, 230000 Applicant before: Anhui Hezeli Environmental Technology Co.,Ltd. Country or region before: China |