CN114807685B - Preparation method of directionally arranged graphene reinforced aluminum matrix composite - Google Patents
Preparation method of directionally arranged graphene reinforced aluminum matrix composite Download PDFInfo
- Publication number
- CN114807685B CN114807685B CN202210683729.8A CN202210683729A CN114807685B CN 114807685 B CN114807685 B CN 114807685B CN 202210683729 A CN202210683729 A CN 202210683729A CN 114807685 B CN114807685 B CN 114807685B
- Authority
- CN
- China
- Prior art keywords
- graphene
- aluminum matrix
- vibration
- reinforced aluminum
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000011159 matrix material Substances 0.000 title claims abstract description 46
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 36
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000005245 sintering Methods 0.000 claims abstract description 44
- 238000000498 ball milling Methods 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims abstract description 10
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 238000001132 ultrasonic dispersion Methods 0.000 claims abstract description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 18
- 239000010439 graphite Substances 0.000 claims description 18
- 239000011812 mixed powder Substances 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 239000000498 cooling water Substances 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 239000011268 mixed slurry Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 238000010907 mechanical stirring Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 13
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/093—Compacting only using vibrations or friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明涉及一种定向排列石墨烯增强铝基复合材料的制备方法,其针对石墨烯在铝基体中分散不均匀、难以与铝基体形成牢固界面结合的情况,以铝为基体、石墨烯为增强体,经球磨、超声分散、混粉、烘干、振动加压、等离子放电烧结,制备了定向排列石墨烯增强铝基复合材料。此制备方法工艺先进,数据精确翔实,工序严密,制备出的定向排列石墨烯增强铝基复合材料硬度达97.7HV,抗拉强度达189MPa,石墨烯在铝基体中定向排列,且与铝基体有良好的界面结合,是先进的定向排列石墨烯增强铝基复合材料的制备方法。
The invention relates to a preparation method of an oriented graphene-reinforced aluminum-based composite material. In view of the uneven dispersion of graphene in an aluminum matrix, and it is difficult to form a firm interface with the aluminum matrix, aluminum is used as the matrix and graphene is used as the reinforcement. After ball milling, ultrasonic dispersion, powder mixing, drying, vibration pressurization, and plasma discharge sintering, aligned graphene-reinforced aluminum matrix composites were prepared. This preparation method has advanced technology, accurate and detailed data, and strict procedures. The prepared oriented graphene reinforced aluminum matrix composite material has a hardness of 97.7HV and a tensile strength of 189MPa. The graphene is oriented in the aluminum matrix and has a certain relationship with the aluminum matrix. Good interfacial bonding is an advanced preparation method for aligning graphene reinforced aluminum matrix composites.
Description
技术领域technical field
本发明涉及一种定向排列石墨烯增强铝基复合材料的制备方法,属于有色金属复合材料制备的技术领域。The invention relates to a method for preparing an aligned graphene-reinforced aluminum-based composite material, which belongs to the technical field of non-ferrous metal composite material preparation.
背景技术Background technique
石墨烯的力学性能优异,是当前制备金属基复合材料的一种增强体。通过向铝基体中添加石墨烯可以提升铝及铝合金的力学性能,从而拓宽铝的应用范围,同时为铝基复合材料工业化发展创造有利条件。但是,石墨烯本身具有易团聚的特性,难以在铝中均匀分散。而且,由于独特的二维结构,石墨烯的性能具有很强的各向异性,容易出现性能差异较大的现象。因此,实现石墨烯的均匀分散和定向排列有利于提升石墨烯增强铝基复合材料的性能。Graphene has excellent mechanical properties and is currently a reinforcement for preparing metal matrix composites. Adding graphene to the aluminum matrix can improve the mechanical properties of aluminum and aluminum alloys, thereby broadening the application range of aluminum and creating favorable conditions for the industrial development of aluminum matrix composites. However, graphene itself is easy to agglomerate, and it is difficult to disperse uniformly in aluminum. Moreover, due to the unique two-dimensional structure, the performance of graphene has strong anisotropy, and it is prone to large performance differences. Therefore, achieving uniform dispersion and orientation of graphene is conducive to improving the performance of graphene-reinforced aluminum matrix composites.
目前,石墨烯增强铝基复合材料主要是采用热压烧结的制备方法,这种制备方法时间长、效率低,且制备的样品内部缺陷较多;另一种常用方法是熔融搅拌铸造法,该方法成型工艺复杂,工艺过程中的温度难以准确控制,石墨烯易发生团聚和被高温烧毁;与之比较,振动等离子烧结对于石墨烯增强铝基复合材料的制备有较多潜在优势,此技术还处于科学研究中。At present, graphene-reinforced aluminum matrix composites are mainly prepared by hot pressing and sintering. This preparation method takes a long time, has low efficiency, and the prepared samples have many internal defects; another common method is the melt-stirring casting method. The forming process of the method is complex, the temperature in the process is difficult to control accurately, and graphene is prone to agglomeration and high temperature burning; in contrast, vibration plasma sintering has many potential advantages for the preparation of graphene-reinforced aluminum matrix composites. under scientific research.
如何将石墨烯均匀分散到铝基体中,并且在不破坏石墨烯的微观结构的情况下使石墨烯和铝基体间形成良好的界面结合,是制备石墨烯增强铝基复合材料的技术难题。同时,引入定向排列的石墨烯,可以有效增强复合材料的强度,更好的调控材料性能。当前,定向排列石墨烯增强铝基复合材料还处于研究阶段,其工艺技术还有待进一步提高。How to uniformly disperse graphene into aluminum matrix and form a good interfacial bond between graphene and aluminum matrix without destroying the microstructure of graphene is a technical problem in the preparation of graphene-reinforced aluminum matrix composites. At the same time, the introduction of aligned graphene can effectively enhance the strength of the composite material and better control the material properties. At present, aligned graphene-reinforced aluminum matrix composites are still in the research stage, and its process technology needs to be further improved.
发明内容Contents of the invention
发明目的purpose of invention
本发明的目的是针对背景技术的状况,以铝为基体、石墨烯为增强体,制备出定向排列石墨烯增强铝基复合材料。The purpose of the present invention is to prepare aligned graphene-reinforced aluminum-based composite materials with aluminum as the matrix and graphene as the reinforcement against the status of the background technology.
技术方案Technical solutions
本发明使用的化学物质材料为:石墨烯、铝、无水乙醇、去离子水、氩气,其组合准备用量如下:以克、毫升、厘米3为计量单位The chemical substance material that the present invention uses is: graphene, aluminum, dehydrated alcohol, deionized water, argon gas, and its combined preparation consumption is as follows: take gram, milliliter, centimeter as unit of measurement
石墨烯:C 固态粉体 1g±0.001gGraphene: C solid powder 1g±0.001g
球形铝粉:Al 固态粉体 100g±0.001gSpherical aluminum powder: Al solid powder 100g±0.001g
无水乙醇:C2H5OH 液态液体 2000mL±10mLAbsolute ethanol: C2h5Oh Liquid liquid 2000mL±10mL
去离子水:H2O 液态液体 1000mL±5mLDeionized water: H 2 O liquid liquid 1000mL±5mL
氩气:Ar 气态气体 2000000cm3±100cm3 Argon: Ar gaseous gas 2000000cm 3 ±100cm 3
制备方法如下:The preparation method is as follows:
1)球磨1) Ball milling
称取球形铝粉99.5g,量取无水乙醇500mL,加入行星式球磨机的球磨罐中;然后,封闭罐口,用真空泵抽出球磨罐中的空气,同时向球磨罐中通入氩气,持续时间为2min;然后,启动行星式球磨机进行球磨,磨球重量为2000g,磨球直径为6mm,球磨转速为200r/min,球磨时间为6h;为避免发生冷焊,每球磨30min,暂停球磨30min以降温,由此制得铝粉浆液;然后,用分样筛将铝粉浆液和磨球进行分离;Weigh 99.5g of spherical aluminum powder, measure 500mL of absolute ethanol, and add them into the ball milling tank of the planetary ball mill; then, close the mouth of the tank, use a vacuum pump to extract the air in the ball milling tank, and simultaneously feed argon into the ball milling tank for continuous The time is 2 minutes; then, start the planetary ball mill for ball milling, the ball weight is 2000g, the ball diameter is 6mm, the ball milling speed is 200r/min, and the ball milling time is 6h; in order to avoid cold welding, every ball mill is 30min, and the ball mill is suspended for 30min To lower the temperature, the aluminum powder slurry is thus prepared; then, the aluminum powder slurry and the grinding balls are separated with a sample sieve;
2)超声分散2) Ultrasonic dispersion
称取石墨烯0.5g±0.001g,量取去离子水300mL,加入容量为500mL的烧杯中,并用玻璃棒进行旋转搅拌;然后,将烧杯放入超声波振荡器中进行超声分散,振荡频率为720W,分散时间为2h,由此制得石墨烯分散液;Weigh 0.5g±0.001g of graphene, measure 300mL of deionized water, add it into a beaker with a capacity of 500mL, and rotate and stir with a glass rod; then, put the beaker into an ultrasonic oscillator for ultrasonic dispersion, and the oscillation frequency is 720W , the dispersion time is 2h, thus the graphene dispersion is prepared;
3)混粉3) Mix powder
将铝粉浆液和石墨烯分散液加入容量为1000mL的烧杯中进行机械搅拌,搅拌速率为300r/min,搅拌时间为50min,由此制得混合浆液;Add the aluminum powder slurry and the graphene dispersion into a beaker with a capacity of 1000mL for mechanical stirring, the stirring rate is 300r/min, and the stirring time is 50min, thus preparing the mixed slurry;
4)烘干4) drying
将盛有混合浆液的烧杯放入真空干燥箱中进行干燥,干燥温度为60℃,干燥时间为24h,由此制得混合粉末;Put the beaker containing the mixed slurry into a vacuum drying oven for drying, the drying temperature is 60°C, and the drying time is 24 hours, thereby preparing the mixed powder;
5)振动加压5) Vibration pressurization
将混合粉末放入振动等离子烧结炉的石墨模具中,固定好模具后关闭炉门,用真空泵抽出炉腔中的空气;然后,启动振动等离子烧结炉的加压装置和振动装置,对石墨模具中的混合粉末进行振动和加压,压强为50MPa,振动频率为10Hz,振动时间为5min;Put the mixed powder into the graphite mold of the vibrating plasma sintering furnace, close the furnace door after fixing the mold, and pump out the air in the furnace cavity with a vacuum pump; then, start the pressurizing device and vibration device of the vibrating plasma sintering furnace, The mixed powder is vibrated and pressurized, the pressure is 50MPa, the vibration frequency is 10Hz, and the vibration time is 5min;
6)等离子放电烧结6) Plasma discharge sintering
关停振动等离子烧结炉的振动装置,并启动等离子放电装置,对石墨模具中的混合粉末进行放电烧结,烧结温度为550℃,烧结时间为10min,烧结升温速率≤100℃/min,由此将石墨模具中的混合粉末烧结成定向排列石墨烯增强铝基复合材料;然后,关停振动等离子烧结炉的加压装置和等离子放电装置,用冷却水对振动等离子烧结炉的炉体进行降温;打开炉门,取出石墨模具中的定向排列石墨烯增强铝基复合材料;Shut down the vibrating device of the vibrating plasma sintering furnace, and start the plasma discharge device to discharge and sinter the mixed powder in the graphite mold. The sintering temperature is 550°C, the sintering time is 10min, and the sintering heating rate is ≤100°C/min. The mixed powder in the graphite mold is sintered into an aligned graphene-reinforced aluminum matrix composite material; then, shut down the pressurization device and plasma discharge device of the vibration plasma sintering furnace, and cool the furnace body of the vibration plasma sintering furnace with cooling water; open Furnace door, take out the aligned graphene-reinforced aluminum matrix composite material in the graphite mold;
7)清理、清洗7) cleaning, cleaning
用无水乙醇清洗定向排列石墨烯增强铝基复合材料,清洗后晾干;Clean the aligned graphene-reinforced aluminum matrix composite with absolute ethanol, and dry it after cleaning;
8)检测、分析、表征8) Detection, analysis, characterization
对定向排列石墨烯增强铝基复合材料的形貌、组织结构、力学性能进行检测、分析、表征;Detect, analyze, and characterize the morphology, structure, and mechanical properties of aligned graphene-reinforced aluminum matrix composites;
用金相分析仪进行金相组织分析;Use a metallographic analyzer to analyze the metallographic structure;
用维氏硬度计进行硬度分析;Hardness analysis with Vickers hardness tester;
用电子万能试验机进行抗拉强度分析;Tensile strength analysis with electronic universal testing machine;
结论:定向排列石墨烯增强铝基复合材料硬度达97.7HV,抗拉强度达189MPa,石墨烯在铝基体中定向排列,且与铝基体有良好的界面结合。Conclusion: The hardness of the oriented graphene reinforced aluminum matrix composite reaches 97.7HV, and the tensile strength reaches 189MPa. The graphene is oriented in the aluminum matrix and has a good interface with the aluminum matrix.
有益效果Beneficial effect
本发明与背景技术相比具有明显的先进性,其针对石墨烯在铝基体中分散不均匀、难以与铝基体形成牢固界面结合的情况,以铝为基体、石墨烯为增强体,经球磨、超声分散、混粉、烘干、振动加压、等离子放电烧结,制备了定向排列石墨烯增强铝基复合材料。此制备方法工艺先进,数据精确翔实,工序严密,制备出的定向排列石墨烯增强铝基复合材料硬度达97.7HV,抗拉强度达189MPa,石墨烯在铝基体中定向排列,且与铝基体有良好的界面结合,是先进的定向排列石墨烯增强铝基复合材料的制备方法。Compared with the background technology, the present invention has obvious advances. It aims at the situation that graphene is not uniformly dispersed in the aluminum matrix, and it is difficult to form a firm interface with the aluminum matrix. Aluminum is used as the matrix and graphene is used as a reinforcement. After ball milling, Aligned graphene-reinforced aluminum matrix composites were prepared by ultrasonic dispersion, powder mixing, drying, vibration pressing, and plasma discharge sintering. This preparation method has advanced technology, accurate and detailed data, and strict procedures. The prepared oriented graphene-reinforced aluminum matrix composite has a hardness of 97.7HV and a tensile strength of 189MPa. Good interfacial bonding is an advanced method for preparing aligned graphene-reinforced aluminum matrix composites.
附图说明Description of drawings
图1为振动加压及等离子放电烧结状态图。Figure 1 is a state diagram of vibration pressurization and plasma discharge sintering.
图2为定向排列石墨烯增强铝基复合材料的组织形貌图。Fig. 2 is a microstructure diagram of aligned graphene-reinforced aluminum matrix composites.
图3为定向排列石墨烯增强铝基复合材料的拉伸性能图。Figure 3 is a diagram of the tensile properties of aligned graphene reinforced aluminum matrix composites.
图中所示,附图标记清单如下:As shown in the figure, the list of reference signs is as follows:
1-PLC控制柜,2-控制柜开关,3-报警器,4-压力控制旋钮,5-温度控制旋钮,6-时间控制旋钮,7-振动频率控制旋钮,8-信号线,9-冷却进水口,10-冷却出水口,11-真空泵,12-抽真空阀,13-振动等离子烧结炉的炉体,14-上液压站,15-下液压站,16-锥形头,17-压杆,18-高频振动器,19-共振器,20-振动等离子烧结炉的石墨模具,21-测温孔,22-热电偶,23-破真空阀,24-真空表,25-正极铜线排,26-负极铜线排,27-高频电源正极,28-高频电源负极,29-电源柜开关,30-电压控制旋钮,31-高频电源柜。1-PLC control cabinet, 2-control cabinet switch, 3-alarm, 4-pressure control knob, 5-temperature control knob, 6-time control knob, 7-vibration frequency control knob, 8-signal line, 9-cooling Water inlet, 10-cooling water outlet, 11-vacuum pump, 12-vacuumizing valve, 13-furnace body of vibration plasma sintering furnace, 14-upper hydraulic station, 15-lower hydraulic station, 16-conical head, 17-pressure Rod, 18-high-frequency vibrator, 19-resonator, 20-graphite mold of vibration plasma sintering furnace, 21-temperature measuring hole, 22-thermocouple, 23-vacuum breaking valve, 24-vacuum gauge, 25-positive copper Line row, 26-negative copper wire row, 27-high frequency power supply positive pole, 28-high frequency power supply negative pole, 29-power cabinet switch, 30-voltage control knob, 31-high frequency power supply cabinet.
具体实施方式Detailed ways
以下结合附图对本发明做进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
图1所示,为振动加压及等离子放电烧结状态图;整套设备包括振动等离子烧结炉、PLC控制柜1、真空泵11、抽真空阀12、破真空阀23、真空表24;As shown in Fig. 1, it is a state diagram of vibration pressurization and plasma discharge sintering; the complete set of equipment includes a vibration plasma sintering furnace, a PLC control cabinet 1, a
振动等离子烧结炉的炉体13上分别设有冷却进水口9、冷却出水口10;The
振动等离子烧结炉的石墨模具20上设有测温孔21;测温孔21内插设有热电偶22;The
振动等离子烧结炉的加压装置包括上液压站14、下液压站15、两个锥形头16、两个压杆17;The pressurizing device of the vibration plasma sintering furnace includes an upper
振动等离子烧结炉的振动装置包括高频振动器18、共振器19;The vibrating device of the vibrating plasma sintering furnace includes a high-
振动等离子烧结炉的等离子放电装置包括正极铜线排25、负极铜线排26、高频电源正极27、高频电源负极28、高频电源柜31;高频电源柜31上分别设有电源柜开关29、电压控制旋钮30;The plasma discharge device of the vibrating plasma sintering furnace includes a positive electrode
PLC控制柜1通过信号线8分别与振动等离子烧结炉的加压装置和振动装置连接;PLC控制柜1上分别设有控制柜开关2、报警器3、压力控制旋钮4、温度控制旋钮5、时间控制旋钮6、振动频率控制旋钮7;The PLC control cabinet 1 is respectively connected to the pressurizing device and the vibration device of the vibrating plasma sintering furnace through the
真空泵11通过抽真空阀12与振动等离子烧结炉的炉腔连通;The
破真空阀23、真空表24均与振动等离子烧结炉的炉腔连通;The
振动加压过程中,将混合粉末放入振动等离子烧结炉的石墨模具20中;然后,关闭炉门,打开抽真空阀12,启动真空泵11,用真空泵11抽出炉腔中的空气,真空度由真空表24监测;然后,通过控制柜开关2启动PLC控制柜1,通过压力控制旋钮4启动振动上液压站14和下液压站15,同时通过振动频率控制旋钮7启动高频振动器18和共振器19;上液压站14和下液压站15分别推动两个压杆17相向运动,两个压杆17分别带动两个锥形头16相向运动,两个锥形头16共同对石墨模具中的混合粉末进行加压;高频振动器18和共振器19一起进行高频振动,并带动石墨模具中的混合粉末进行高频振动;In the vibration pressurization process, the mixed powder is put into the
等离子放电烧结过程中,通过振动频率控制旋钮7关停高频振动器18和共振器19,并通过电源柜开关29启动高频电源柜31,通过电压控制旋钮30设置输出电压,通过温度控制旋钮5和时间控制旋钮6设置烧结温度和烧结时间,高频电源柜31输出的电流依次流经高频电源正极27、正极铜线排25、振动等离子烧结炉的石墨模具20、负极铜线排26、高频电源负极28,并在流经振动等离子烧结炉的石墨模具20时对石墨模具20中的混合粉末进行烧结,烧结温度由热电偶22监测,由此将石墨模具20中的混合粉末烧结成定向排列石墨烯增强铝基复合材料;然后,通过压力控制旋钮4关停振动上液压站14和下液压站15,通过电源柜开关29关停高频电源柜31,向冷却进水口9通入冷却水,冷却水对振动等离子烧结炉的炉体13进行降温后经冷却出水口10排出;然后,关停真空泵11,关闭抽真空阀12,打开破真空阀23,使空气通入振动等离子烧结炉的炉腔,打开炉门,取出石墨模具20中的定向排列石墨烯增强铝基复合材料。During the plasma discharge sintering process, the high-
图2所示,为定向排列石墨烯增强铝基复合材料的组织形貌图;如图所示,材料的组织致密,石墨烯均匀分布,且呈现出定向排列的规律。As shown in Figure 2, it is the microstructure diagram of the aligned graphene-reinforced aluminum matrix composite material; as shown in the figure, the structure of the material is dense, the graphene is evenly distributed, and it shows the regularity of the alignment.
图3所示,为定向排列石墨烯增强铝基复合材料的拉伸性能图。如图所示,定向排列石墨烯增强铝基复合材料的抗拉强度达189MPa。As shown in Fig. 3, it is a diagram of tensile properties of aligned graphene reinforced aluminum matrix composites. As shown in the figure, the tensile strength of aligned graphene-reinforced aluminum matrix composite reaches 189MPa.
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that these are only examples, and the protection scope of the present invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present invention, but these changes and modifications all fall within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210683729.8A CN114807685B (en) | 2022-06-17 | 2022-06-17 | Preparation method of directionally arranged graphene reinforced aluminum matrix composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210683729.8A CN114807685B (en) | 2022-06-17 | 2022-06-17 | Preparation method of directionally arranged graphene reinforced aluminum matrix composite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114807685A CN114807685A (en) | 2022-07-29 |
CN114807685B true CN114807685B (en) | 2022-11-08 |
Family
ID=82521926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210683729.8A Active CN114807685B (en) | 2022-06-17 | 2022-06-17 | Preparation method of directionally arranged graphene reinforced aluminum matrix composite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114807685B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115491538B (en) * | 2022-10-09 | 2023-03-24 | 中北大学 | Preparation method of graphene reinforced aluminum/titanium laminated composite material |
CN117403091A (en) * | 2023-12-13 | 2024-01-16 | 电子科技大学 | A graphene-modified aviation aluminum alloy composite material and its preparation method |
CN119870476A (en) * | 2025-03-25 | 2025-04-25 | 中北大学 | Method for preparing mortise-tenon interface structure laminated material by using high-temperature mould gasification casting method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104032154A (en) * | 2014-06-27 | 2014-09-10 | 武汉大学 | Graphene/metal matrix composite material and preparation method thereof |
CN104831100A (en) * | 2015-05-04 | 2015-08-12 | 北京航空航天大学 | Method for preparing graphene reinforced metal-based composite material through discharge plasma (SPS) sintering |
CN108817388A (en) * | 2018-07-12 | 2018-11-16 | 合肥工业大学 | A kind of method that discharge plasma sintering prepares graphene reinforced aluminum matrix composites |
KR102193589B1 (en) * | 2019-09-02 | 2020-12-21 | 허경삼 | Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190292671A1 (en) * | 2018-03-26 | 2019-09-26 | Nanotek Instruments, Inc. | Metal matrix nanocomposite containing oriented graphene sheets and production process |
-
2022
- 2022-06-17 CN CN202210683729.8A patent/CN114807685B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104032154A (en) * | 2014-06-27 | 2014-09-10 | 武汉大学 | Graphene/metal matrix composite material and preparation method thereof |
CN104831100A (en) * | 2015-05-04 | 2015-08-12 | 北京航空航天大学 | Method for preparing graphene reinforced metal-based composite material through discharge plasma (SPS) sintering |
CN108817388A (en) * | 2018-07-12 | 2018-11-16 | 合肥工业大学 | A kind of method that discharge plasma sintering prepares graphene reinforced aluminum matrix composites |
KR102193589B1 (en) * | 2019-09-02 | 2020-12-21 | 허경삼 | Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity |
Non-Patent Citations (2)
Title |
---|
Microstructure and mechanical properties of graphene nanoplatelets reinforced Al matrix composites fabricated by spark plasma sintering;Bowen Xiong et al.;《Journal of Alloys and Compounds》;20200508;第837卷;第2页 * |
放电等离子烧结石墨烯铝材料的组织与性能;申超等;《中国有色金属学报》;20190430;第29卷(第4期);第710-714页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114807685A (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114807685B (en) | Preparation method of directionally arranged graphene reinforced aluminum matrix composite | |
CN108060321A (en) | A kind of preparation method of graphene reinforced aluminum matrix composites | |
CN104846229B (en) | A kind of preparation method of granule enhancement type aluminium alloy base high-abrasive material | |
CN104846227A (en) | Graphene-reinforced titanium-based composite and preparation method thereof | |
CN115404373B (en) | Method for preparing in-situ synthesis aluminum carbide and titanium trialuminate reinforced aluminum/titanium laminated material | |
CN109402442A (en) | A kind of die casting preparation method of graphene reinforced aluminum matrix composites | |
CN105950897B (en) | A kind of preparation method of copper-based neutron absorber material | |
CN102766774B (en) | Method for strengthening magnesium alloy by doping SiC particles | |
CN108918226A (en) | A kind of preparation method of the titanium sponge detected for GDMS and titanium grain specimens | |
CN206330417U (en) | A kind of ceramic material densification sintering stove of unidirectional oscillation pressure | |
CN111254300B (en) | A kind of preparation method of high performance aluminum matrix composite material component | |
CN102943198A (en) | Preparation method of double-size silicon carbide particle hybrid reinforced magnesium matrix composite material | |
CN1609053A (en) | Sintering method of superfine pure tungsten carbide without binder phase | |
CN103212340A (en) | Supercritical fluid extracting, spraying and granulating system and method | |
Hong et al. | SiC-reinforced aluminium composite made by resistance sintering of mechanically alloyed powders | |
CN115491538B (en) | Preparation method of graphene reinforced aluminum/titanium laminated composite material | |
CN205676526U (en) | A kind of ceramic particle reinforced metal base composites preparation facilities | |
CN116752028A (en) | A preparation method of medium and high volume fraction silicon carbide particle reinforced aluminum matrix composite materials | |
CN112872351B (en) | A preparation method of hybrid synergistically reinforced iron-based wear-resistant material | |
CN115807176B (en) | A magnesium alloy preparation method combining spark plasma sintering and free fluid rapid cooling | |
CN102063992B (en) | Magnetic liquid and preparation method thereof | |
CN101825550B (en) | Method for fast detecting quality of grains-reinforcing composite material sizing agent | |
CN116833414A (en) | Preparation method of boron carbide reinforced aluminum/titanium laminated composite material | |
CN106636704B (en) | A kind of preparation method for the wear-resisting magnesium alloy for adulterating titanium diboride | |
CN113462918B (en) | A kind of preparation method of CNTs/Al-Li high-strength composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |