CN114804209B - Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application - Google Patents
Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application Download PDFInfo
- Publication number
- CN114804209B CN114804209B CN202210461649.8A CN202210461649A CN114804209B CN 114804209 B CN114804209 B CN 114804209B CN 202210461649 A CN202210461649 A CN 202210461649A CN 114804209 B CN114804209 B CN 114804209B
- Authority
- CN
- China
- Prior art keywords
- mno
- burr
- microsphere
- ozone
- sterilization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 67
- 239000004005 microsphere Substances 0.000 title claims abstract description 63
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 24
- 230000001954 sterilising effect Effects 0.000 claims abstract description 20
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000004202 carbamide Substances 0.000 claims abstract description 17
- 239000007772 electrode material Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 40
- 238000003756 stirring Methods 0.000 claims description 31
- 239000007787 solid Substances 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 10
- 239000012456 homogeneous solution Substances 0.000 claims description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 238000005273 aeration Methods 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000002082 metal nanoparticle Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000006722 reduction reaction Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000010612 desalination reaction Methods 0.000 claims description 2
- 150000002696 manganese Chemical class 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 18
- 210000004027 cell Anatomy 0.000 abstract description 12
- 210000000170 cell membrane Anatomy 0.000 abstract description 7
- 230000035484 reaction time Effects 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 4
- 230000002427 irreversible effect Effects 0.000 abstract description 3
- 108020004707 nucleic acids Proteins 0.000 abstract description 3
- 102000039446 nucleic acids Human genes 0.000 abstract description 3
- 150000007523 nucleic acids Chemical class 0.000 abstract description 3
- 230000035699 permeability Effects 0.000 abstract description 3
- 102000004169 proteins and genes Human genes 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 32
- 239000000243 solution Substances 0.000 description 21
- 241000894006 Bacteria Species 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 229910021642 ultra pure water Inorganic materials 0.000 description 12
- 239000012498 ultrapure water Substances 0.000 description 12
- 238000004626 scanning electron microscopy Methods 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002073 nanorod Substances 0.000 description 8
- 230000002195 synergetic effect Effects 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 244000183331 Nephelium lappaceum Species 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 235000007861 rambutan Nutrition 0.000 description 4
- -1 silver ions Chemical class 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100037114 Elongin-C Human genes 0.000 description 2
- 241000194032 Enterococcus faecalis Species 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 101001011859 Homo sapiens Elongin-A Proteins 0.000 description 2
- 101001011846 Homo sapiens Elongin-B Proteins 0.000 description 2
- 101000881731 Homo sapiens Elongin-C Proteins 0.000 description 2
- 101000836005 Homo sapiens S-phase kinase-associated protein 1 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000005276 aerator Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- UMFJAHHVKNCGLG-UHFFFAOYSA-N n-Nitrosodimethylamine Chemical compound CN(C)N=O UMFJAHHVKNCGLG-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
Description
技术领域Technical field
本发明属于电极活性材料技术领域。更具体地,涉及一种毛刺微球型MnO2材料的制备方法及杀菌消毒应用。The invention belongs to the technical field of electrode active materials. More specifically, it relates to a preparation method of burr microsphere MnO 2 material and its sterilization and disinfection application.
背景技术Background technique
随着世界人口的增长以及现有水资源的污染,水资源匮乏已经逐渐成为威胁人类生存的全球性挑战。再生水的利用可有效缓解水资源匮乏问题,但是,水体中存在的致病微生物是再生水高效利用需要面对的一大问题。With the growth of the world's population and the pollution of existing water resources, water scarcity has gradually become a global challenge threatening human survival. The use of recycled water can effectively alleviate the problem of water scarcity. However, the presence of pathogenic microorganisms in water bodies is a major problem that needs to be faced in the efficient use of recycled water.
对于上述问题,目前主要将臭氧应用于饮用水和废水处理中,用以灭活水中的病原体。但是实际应用中发现,臭氧消毒存在一定的局限性:当臭氧投加剂量或接触时间不足时,由于细菌内部的酶和DNA等胞内物质未被充分氧化破坏,细菌可能会进行自我修复,从而造成水质二次污染的风险;为了保证臭氧消毒效果,必须保证较高的臭氧投加剂量和接触时间,以进一步氧化细胞内容物,但与此同时,过量的臭氧会与水中的溴、含氮化合物和有机物生成溴酸盐和N-亚硝基二甲胺(NDMA)等有毒有害副产物,导致更高的运行成本和更多的消毒副产物。为了解决这个问题,臭氧处理通常被用于与其他消毒工艺相结合,如中国专利申请公开了一种水质杀菌处理系统,该系统单独利用臭氧无法完全对水质进行杀菌处理,需要结合银离子、二氧化氯才能提高水质的杀菌效果;但引入的其他消毒工艺同时也会引入其他有害副产物,如重金属离子等,安全性较低。For the above problems, ozone is currently mainly used in drinking water and wastewater treatment to inactivate pathogens in the water. However, it has been found in practical applications that ozone disinfection has certain limitations: when the dosage of ozone or the contact time is insufficient, the bacteria may repair themselves because intracellular substances such as enzymes and DNA within the bacteria are not fully oxidized and destroyed. Causes the risk of secondary pollution of water quality; in order to ensure the ozone disinfection effect, a higher ozone dosage and contact time must be ensured to further oxidize the cell contents. However, at the same time, excessive ozone will interact with bromine and nitrogen in the water. Compounds and organic matter generate toxic and harmful by-products such as bromate and N-nitrosodimethylamine (NDMA), resulting in higher operating costs and more disinfection by-products. In order to solve this problem, ozone treatment is usually used in combination with other disinfection processes. For example, a Chinese patent application discloses a water sterilization treatment system. This system cannot completely sterilize water quality by using ozone alone. It needs to be combined with silver ions and diamine. Oxidizing chlorine can improve the sterilization effect of water quality; however, other disinfection processes introduced will also introduce other harmful by-products, such as heavy metal ions, etc., which are less safe.
因此,迫切需要提供一种安全、高效的水质杀菌消毒方法。Therefore, there is an urgent need to provide a safe and efficient water sterilization and disinfection method.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有单独采用臭氧消毒杀菌方法投加量、处理时间长,安全性低、杀菌消毒效果有限的缺陷和不足,提供一种安全、高效的水质杀菌消毒方法。The technical problem to be solved by the present invention is to overcome the defects and deficiencies of the existing ozone disinfection and sterilization method alone, including dosage, long processing time, low safety, and limited sterilization and disinfection effects, and provide a safe and efficient water quality sterilization and disinfection method.
本发明的目的是提供一种毛刺微球型MnO2材料。The object of the present invention is to provide a burr microsphere type MnO 2 material.
本发明另一目的是提供所述毛刺微球型MnO2材料的制备方法。Another object of the present invention is to provide a method for preparing the burr microsphere type MnO 2 material.
本发明另一目的是提供所述毛刺微球型MnO2材料的应用。Another object of the present invention is to provide the application of the burr microsphere type MnO 2 material.
本发明上述目的通过以下技术方案实现:The above objects of the present invention are achieved through the following technical solutions:
一种毛刺微球型MnO2材料的制备方法,其特征在于,包括以下步骤:A method for preparing burr microsphere MnO 2 material, which is characterized by including the following steps:
S1、将锰盐和尿素置于酸性条件下,制成均相溶液,70~90℃加热回流、搅拌反应完全,得到含有固体MnO2的反应液。优选地,所述加热回流的温度为80℃。S1. Place the manganese salt and urea under acidic conditions to form a homogeneous solution, heat to reflux at 70-90°C, and stir to complete the reaction to obtain a reaction solution containing solid MnO2 . Preferably, the heating and refluxing temperature is 80°C.
S2、将步骤S1所得反应液110~130℃水热反应完全,所得固体洗涤至中性,干燥,即得。优选地,所述水热反应的温度为120℃。本发明采用尿素制备毛刺微球型MnO2材料,在制备过程中,尿素不稳定,在高温、酸性条件下会分解为NH3和CO2,其中分解产物NH3作为碱性催化剂可以加速MnO2晶种的形成,有助于形成内部中空的微球二氧化锰。S2. Complete the hydrothermal reaction of the reaction solution obtained in step S1 at 110 to 130°C, wash the solid obtained until neutral, and dry. Preferably, the temperature of the hydrothermal reaction is 120°C. The present invention uses urea to prepare burr microsphere-type MnO 2 materials. During the preparation process, urea is unstable and will decompose into NH 3 and CO 2 under high temperature and acidic conditions. The decomposition product NH 3 serves as an alkaline catalyst to accelerate MnO 2 The formation of seed crystals helps to form hollow microspheres of manganese dioxide.
进一步地,步骤S1中,所述搅拌反应的时间为10~30min。优选地,所述搅拌反应的时间为20min。Further, in step S1, the stirring reaction time is 10 to 30 minutes. Preferably, the stirring reaction time is 20 minutes.
更进一步地,步骤S2中,所述水热反应的时间为2~12h。优选地,所述水热反应的时间为6h。本发明中通过改变水热反应的时间,可以调控二氧化锰微球上纳米棒的长度。水热反应时间优选6h。这是因为水热6小时制备的R-MnO2微球具有规则稳定的微观结构和更高的比表面积,球体表面的纳米棒长度大约为0.1μm,有助于黏附和刺破细菌的细胞膜,未经水热的R-MnO2-0h表面未生长出MnO2纳米棒,水热时间延长到12h后,R-MnO2-12h微球表面纳米棒的生长开始变得凌乱而没有规则,部分微球结构开始塌陷破碎,导致反应活性表面积的损失。Furthermore, in step S2, the hydrothermal reaction time is 2 to 12 hours. Preferably, the hydrothermal reaction time is 6 hours. In the present invention, by changing the time of the hydrothermal reaction, the length of the nanorods on the manganese dioxide microspheres can be controlled. The hydrothermal reaction time is preferably 6 hours. This is because the R-MnO 2 microspheres prepared by hydrothermal treatment for 6 hours have a regular and stable microstructure and a higher specific surface area. The length of the nanorods on the surface of the spheres is approximately 0.1 μm, which helps to adhere to and puncture the bacterial cell membrane. No MnO 2 nanorods grew on the surface of R-MnO 2 -0h without hydrothermal heating. After the hydrothermal time was extended to 12h, the growth of nanorods on the surface of R-MnO 2 -12h microspheres began to become messy and irregular, and some The microsphere structure begins to collapse and fragment, resulting in a loss of reactive surface area.
进一步地,所述毛刺微球型MnO2材料还有有色金属掺杂,所述有色金属包括金、银、铂、铜。Furthermore, the burr microsphere type MnO 2 material is also doped with non-ferrous metals, and the non-ferrous metals include gold, silver, platinum and copper.
更进一步地,所述有色金属掺杂的毛刺微球型MnO2材料通过化学还原法将有色金属纳米颗粒负载到所述毛刺微球型MnO2表面。Furthermore, the non-ferrous metal-doped burr microsphere MnO 2 material loads non-ferrous metal nanoparticles onto the surface of the burr microsphere MnO 2 through a chemical reduction method.
优选地,所述有色金属掺杂的毛刺微球型MnO2材料中,有色金属的质量分数为0.1%~5.0%。Preferably, in the non-ferrous metal-doped burr microsphere type MnO 2 material, the mass fraction of non-ferrous metal is 0.1% to 5.0%.
具体的,所述通过化学还原法将有色金属纳米颗粒负载到所述毛刺微球型MnO2表面的方法包括以下步骤:Specifically, the method of loading non-ferrous metal nanoparticles onto the surface of the burr microsphere MnO 2 through chemical reduction method includes the following steps:
通过光激发或者还原剂使得金属离子发生还原反应,在MnO2表面生成金属纳米粒子。Through light excitation or reducing agents, metal ions undergo a reduction reaction to generate metal nanoparticles on the surface of MnO 2 .
进一步地,所述尿素的添加量为0.2~0.6mol/L。优选地,所述尿素添加量为0.4mol/L。Further, the added amount of urea is 0.2-0.6 mol/L. Preferably, the added amount of urea is 0.4 mol/L.
更进一步地,所述酸性条件为pH<2。可以通过直接添加无机酸营造酸性环境。优选地,反应中还可以加入氧化剂,如KClO3等。Furthermore, the acidic condition is pH<2. An acidic environment can be created by directly adding inorganic acids. Preferably, an oxidizing agent, such as KClO 3 , etc., can also be added to the reaction.
另外的,本发明还提供了一种由所述制备方法制备得到的毛刺微球型MnO2材料。In addition, the present invention also provides a burr microsphere MnO 2 material prepared by the preparation method.
进一步地,所述毛刺微球型MnO2材料在电极材料、杀菌消毒、电容脱盐中的应用。Further, the burr microsphere type MnO 2 material is used in electrode materials, sterilization and disinfection, and capacitive desalination.
另外的,本发明还提供了一种水质杀菌消毒的方法,其特征在于,将所述毛刺微球型MnO2材料沉积在电极上,电极连接直流电后置于水质中形成回路,施加1.2~1.8V电压处理1~5min后,再用臭氧曝气处理2~10min。In addition, the present invention also provides a method for sterilizing and disinfecting water, which is characterized in that the burr microsphere type MnO 2 material is deposited on an electrode, and the electrode is connected to a direct current and placed in the water to form a loop, and 1.2 to 1.8 is applied. After V voltage treatment for 1 to 5 minutes, use ozone aeration for 2 to 10 minutes.
采用本发明特殊工艺制备得到的毛刺微球型MnO2材料沉积在电极上,对待处理水质先进行电压通电处理,细菌会被吸附到储存有大量电荷的电极上,电极释放的电荷直接破坏细菌的膜电位,增加膜的渗透性并破坏细胞膜的完整性,细菌胞内ROSs浓度上升,细菌处于更加脆弱的状态,此时再用臭氧曝气处理,可以更加轻易地通过细胞膜而直接分解细胞内的蛋白质和核酸等物质,对细胞造成不可逆的致命损害,最终达到显著杀菌消毒的效果。The burr microsphere type MnO 2 material prepared by the special process of the present invention is deposited on the electrode. The water quality to be treated is first subjected to voltage electrification treatment. The bacteria will be adsorbed to the electrode that stores a large amount of charge. The charge released by the electrode directly destroys the bacteria. The membrane potential increases the permeability of the membrane and destroys the integrity of the cell membrane. The concentration of ROSs in the bacterial cell increases and the bacteria are in a more fragile state. At this time, ozone aeration treatment can more easily decompose intracellular ROS directly through the cell membrane. Substances such as proteins and nucleic acids can cause irreversible fatal damage to cells and ultimately achieve significant sterilization and disinfection effects.
进一步地,所述臭氧的投加量为0.2~0.6mg/L。Further, the dosage of ozone is 0.2-0.6 mg/L.
更进一步地,所述臭氧的进气流量为0.2~0.8L/min。Furthermore, the air intake flow rate of the ozone is 0.2-0.8L/min.
本发明一种水质杀菌消毒的方法适用于各种水质中的各种细菌的杀菌消毒,包括但不限于大肠杆菌(E.coli K-12)、金黄色葡萄球菌(S.aureus)、沙门氏菌(Salmonella)、粪肠球菌(E.faecalis);特别适于盐废水、压舱水等水质的消毒处理。The water sterilization and disinfection method of the present invention is suitable for the sterilization and disinfection of various bacteria in various water qualities, including but not limited to Escherichia coli (E.coli K-12), Staphylococcus aureus (S.aureus), Salmonella ( Salmonella) and Enterococcus faecalis (E.faecalis); especially suitable for disinfection of salt wastewater, ballast water and other water quality.
本发明具有以下有益效果:The invention has the following beneficial effects:
本发明一种毛刺微球型MnO2材料,在反应过程中添加尿素,再控制水热反应时间,可以制备得到内部中空且表面有纳米棒,毛刺微球型的MnO2材料,具有规则稳定的微观结构和更高的比表面积;进一步将毛刺微球型MnO2材料沉积在电极上,对待处理水质先进行电压通电处理,改变细胞膜通透性,再用臭氧曝气处理,可以更加轻易地通过细胞膜而直接分解细胞内的蛋白质和核酸等物质,对细胞造成不可逆的致命损害,达到显著杀菌消毒的效果。并且该方法能减少臭氧的投加量和接触时间,从而降低处理成本、减少消毒副产物,更无需添加任何化学试剂,清洁无污染,可以广泛应用于水质中的各种细菌尤其适用于含盐废水、压舱水等水质的消毒处理。The present invention is a burr microsphere type MnO 2 material. By adding urea during the reaction process and then controlling the hydrothermal reaction time, a burr microsphere type MnO 2 material with hollow interior and nanorods on the surface can be prepared, which has regular and stable properties. Microstructure and higher specific surface area; further deposit the burr microsphere type MnO 2 material on the electrode, first apply voltage to the water to be treated, change the permeability of the cell membrane, and then use ozone aeration to make it easier to pass through The cell membrane directly decomposes proteins, nucleic acids and other substances in the cells, causing irreversible fatal damage to the cells and achieving significant sterilization and disinfection effects. Moreover, this method can reduce the dosage and contact time of ozone, thereby reducing treatment costs and disinfection by-products. It does not require the addition of any chemical reagents, is clean and pollution-free, and can be widely used for various bacteria in water quality, especially for salt-containing water. Disinfection of waste water, ballast water and other water quality.
附图说明Description of the drawings
图1为本发明制备得到的R-MnO2(a)、R-MnO2-0h(b)、R-MnO2-12h(c)、U-MnO2(d)材料的扫描电镜SEM图。Figure 1 is a scanning electron microscope SEM image of R-MnO 2 (a), R-MnO 2 -0h (b), R-MnO 2 -12h (c), and U-MnO 2 (d) materials prepared by the present invention.
图2为本发明实施例1制备得到的R-MnO2材料的X射线衍射(XRD)图。Figure 2 is an X-ray diffraction (XRD) pattern of the R-MnO 2 material prepared in Example 1 of the present invention.
图3为本发明应用例中不同阶段细菌的扫描电镜SEM图。Figure 3 is a scanning electron microscope SEM image of bacteria at different stages in application examples of the present invention.
具体实施方式Detailed ways
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The invention will be further described below with reference to the accompanying drawings and specific examples, but the examples do not limit the invention in any way. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in this technical field.
其中,市售MnO2(CAS:1313-13-9,AR,85%)购自阿拉丁。Among them, commercially available MnO 2 (CAS: 1313-13-9, AR, 85%) was purchased from Aladdin.
除非特别说明,以下实施例所用试剂和材料均为市购。本发明中未指明温度的均指在室温下进行。Unless otherwise stated, the reagents and materials used in the following examples were all commercially available. In the present invention, if the temperature is not specified, it means that it is carried out at room temperature.
实施例1毛刺微球型MnO2材料的制备Example 1 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应6h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2-6h,以下简写为R-MnO2)。S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 6 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and The obtained solid was washed repeatedly with absolute ethanol until the filtrate was neutral, and dried at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 -6h, hereinafter abbreviated as R-MnO 2 ). .
对所得R-MnO2进行扫描电镜SEM检测,结果参见图1a。由图可见,经过6h水热制备得到的R-MnO2具有规则的3D微球形状,R-MnO2球体表面生长出许多规整的MnO2纳米棒,球体中心部位为中空构造,整体构成了一个三维中空红毛丹状的微球结构,颗粒直径在600~800nm之间。具有更规则稳定的微观结构和更高的比表面积。The obtained R-MnO 2 was subjected to scanning electron microscopy SEM examination, and the results are shown in Figure 1a. It can be seen from the figure that the R-MnO 2 prepared after 6 hours of hydrothermal preparation has a regular 3D microsphere shape. Many regular MnO 2 nanorods grow on the surface of the R-MnO 2 sphere. The center of the sphere has a hollow structure, and the whole forms a Three-dimensional hollow rambutan-like microsphere structure, with particle diameter between 600 and 800nm. It has a more regular and stable microstructure and a higher specific surface area.
对所得R-MnO2进行X射线衍射(XRD)测试,结果参见图2。由图可见,制备的RMnO2材料与PDF 44-0141相匹配,对应的衍射峰峰值依次为(110)、(200)、(220)、(310),(400)、(2111)、(330)、(301)、(411)、(600)、(521)、(002)、(541)和(631),与α-MnO2的各个晶面一一对应,同时图中没有出现其他的杂峰,衍射峰峰型好,表明制备的R-MnO2具有α-MnO2晶相,品相纯正,没有杂质。The obtained R- MnO2 was subjected to X-ray diffraction (XRD) testing, and the results are shown in Figure 2. It can be seen from the figure that the prepared RMnO 2 material matches PDF 44-0141, and the corresponding diffraction peaks are (110), (200), (220), (310), (400), (2111), (330) ), (301), (411), (600), (521), (002), (541) and (631), corresponding to each crystal face of α-MnO 2 , and no other ones appear in the figure. Impurity peaks and diffraction peaks have good peak shapes, indicating that the prepared R-MnO 2 has an α-MnO 2 crystal phase and is pure in phase without impurities.
实施例2毛刺微球型MnO2材料的制备Example 2 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应12h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2-12h)。S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 12 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and The obtained solid was washed repeatedly with absolute ethanol until the filtrate was neutral, and dried at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 -12h).
对所得R-MnO2-12h材料进行扫描电镜SEM检测,结果参见图1c。由图可见,R-MnO2-12h材料微球表面纳米棒的生长开始变得凌乱而没有规则,部分微球结构开始塌陷破碎。The obtained R-MnO 2 -12h material was subjected to scanning electron microscopy SEM examination. The results are shown in Figure 1c. It can be seen from the figure that the growth of nanorods on the surface of R-MnO 2 -12h material microspheres begins to become messy and irregular, and part of the microsphere structure begins to collapse and break.
实施例3毛刺微球型MnO2材料的制备Example 3 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应6h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2);S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 6 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and Wash the obtained solid repeatedly with absolute ethanol until the filtrate becomes neutral, and dry it at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 );
S3、将步骤S2所得0.1g R-MnO2加入盛有50mL超纯水和50mL异丙醇混合液的烧杯中,充分震荡搅拌形成均匀的悬浮液,使用300W的氙灯光照1h,关闭氙灯后加入50μL的20mM硝酸银溶液,持续搅拌10min;过滤、洗涤和烘干,得到理论掺银量为0.17%的红毛丹二氧化锰(0.17%Ag/R-MnO2)。S3. Add 0.1g R-MnO 2 obtained in step S2 into a beaker containing a mixture of 50mL ultrapure water and 50mL isopropyl alcohol. Shake and stir thoroughly to form a uniform suspension. Use a 300W xenon lamp to illuminate for 1 hour. Turn off the xenon lamp and add 50 μL of 20 mM silver nitrate solution, stir continuously for 10 minutes; filter, wash and dry to obtain rambutan manganese dioxide (0.17% Ag/R-MnO 2 ) with a theoretical silver content of 0.17%.
实施例4毛刺微球型MnO2材料的制备Example 4 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应6h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2);S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 6 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and Wash the obtained solid repeatedly with absolute ethanol until the filtrate becomes neutral, and dry it at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 );
S3、将步骤S2所得0.1g R-MnO2加入盛有50mL超纯水和50mL异丙醇混合液的烧杯中,充分震荡搅拌形成均匀的悬浮液,使用300W的氙灯光照1h,关闭氙灯后加入150μL的20mM硝酸银溶液,持续搅拌10min;过滤、洗涤和烘干,得到理论掺银量为0.51%的红毛丹二氧化锰(0.51%Ag/R-MnO2)。S3. Add 0.1g R-MnO 2 obtained in step S2 into a beaker containing a mixture of 50mL ultrapure water and 50mL isopropyl alcohol. Shake and stir thoroughly to form a uniform suspension. Use a 300W xenon lamp to illuminate for 1 hour. Turn off the xenon lamp and add 150 μL of 20 mM silver nitrate solution, stir continuously for 10 minutes; filter, wash and dry to obtain rambutan manganese dioxide (0.51% Ag/R-MnO 2 ) with a theoretical silver content of 0.51%.
实施例5毛刺微球型MnO2材料的制备Example 5 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应6h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2);S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 6 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and Wash the obtained solid repeatedly with absolute ethanol until the filtrate becomes neutral, and dry it at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 );
S3、将步骤S2所得0.1g R-MnO2加入盛有50mL超纯水和50mL异丙醇混合液的烧杯中,充分震荡搅拌形成均匀的悬浮液,使用300W的氙灯光照1h,关闭氙灯后加入250μL的20mM硝酸银溶液,持续搅拌10min;过滤、洗涤和烘干,得到理论掺银量为0.85%的红毛丹二氧化锰(0.85%Ag/R-MnO2)。S3. Add 0.1g R-MnO 2 obtained in step S2 into a beaker containing a mixture of 50mL ultrapure water and 50mL isopropyl alcohol. Shake and stir thoroughly to form a uniform suspension. Use a 300W xenon lamp to illuminate for 1 hour. Turn off the xenon lamp and add 250 μL of 20 mM silver nitrate solution, stir continuously for 10 minutes; filter, wash and dry to obtain rambutan manganese dioxide (0.85% Ag/R-MnO 2 ) with a theoretical silver content of 0.85%.
实施例6毛刺微球型MnO2材料的制备Example 6 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中120℃水热反应6h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2);S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 120°C for 6 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and Wash the obtained solid repeatedly with absolute ethanol until the filtrate becomes neutral, and dry it at 60°C for 12 hours to obtain three-dimensional rambutan-like hollow microsphere manganese dioxide (R-MnO 2 );
S3、将步骤S2所得0.1g R-MnO2加入10mL HAuCl4(2.5×10-4M)溶液中,常温搅拌3小时,在冰浴条件下加入600μL NaBH4溶液(6mM),冰浴搅拌1小时,金离子被还原金纳米粒子;过滤、洗涤和烘干,水洗、离心并真空干燥12h,得到掺杂金纳米颗粒的红毛丹二氧化锰(Au/R-MnO2)。S3. Add 0.1g R-MnO 2 obtained in step S2 to 10mL HAuCl 4 (2.5×10 -4 M) solution, stir at room temperature for 3 hours, add 600 μL NaBH 4 solution (6mM) under ice bath conditions, and stir in ice bath for 1 hours, gold ions are reduced to gold nanoparticles; filter, wash and dry, wash with water, centrifuge and vacuum dry for 12 hours to obtain rambutan manganese dioxide (Au/R-MnO 2 ) doped with gold nanoparticles.
实施例7毛刺微球型MnO2材料的制备Example 7 Preparation of Burr Microsphere MnO 2 Material
所述毛刺微球型MnO2材料的制备方法包括以下步骤:The preparation method of the burr microsphere type MnO material includes the following steps:
S1、将2.8mmol KMnO4溶于75mL的超纯水中,搅拌10min,在搅拌过程中逐滴加入1mL 37%盐酸,随后加入0.024mol尿素,继续搅拌20min;S1. Dissolve 2.8mmol KMnO 4 in 75mL of ultrapure water, stir for 10min, add 1mL of 37% hydrochloric acid dropwise during the stirring process, then add 0.024mol of urea, and continue stirring for 20min;
S2、将步骤S1所得反应液移至100mL特氟龙内胆的高压水热反应釜中,置于烘箱中110℃水热反应12h;反应结束后自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维海胆状中空微球的U-MnO2。S2. Move the reaction solution obtained in step S1 to a 100 mL Teflon-lined high-pressure hydrothermal reaction kettle, place it in an oven for hydrothermal reaction at 110°C for 12 hours; after the reaction is completed, naturally cool to room temperature, filter, and use ultrapure water and The obtained solid was washed repeatedly with absolute ethanol until the filtrate was neutral, and dried at 60°C for 12 hours to obtain three-dimensional sea urchin-like hollow microspheres of U-MnO 2 .
对所得U-MnO2材料进行扫描电镜SEM检测,结果参见图1d。由图可见,U-MnO2颗粒形貌呈现为空心球形,其表面生长出许多尖刺,颗粒直径为4μm左右,整体形成空心结构的海胆状二氧化锰。The obtained U-MnO 2 material was subjected to scanning electron microscopy SEM examination, and the results are shown in Figure 1d. It can be seen from the figure that the U-MnO 2 particles are hollow spherical in shape, with many spikes growing on the surface. The particle diameter is about 4 μm, forming a hollow structure of sea urchin-like manganese dioxide as a whole.
与U-MnO2相比,R-MnO2颗粒的尺寸更小,比表面积更大,具有较大比表面积的电容材料可以提供更丰富的活性反应位点,有利于捕获溶液中的离子,从而提升电化学性质和提高比电容量;此外,材料表面适当尺寸的尖端毛刺结构更有利于黏附细菌。Compared with U-MnO 2 , R-MnO 2 particles have smaller sizes and larger specific surface areas. Capacitive materials with larger specific surface areas can provide more abundant active reaction sites, which is beneficial to capturing ions in the solution, thereby Improve the electrochemical properties and specific capacitance; in addition, the tip burr structure of appropriate size on the surface of the material is more conducive to the adhesion of bacteria.
对比例1微球型MnO2材料的制备Comparative Example 1 Preparation of Microsphere MnO 2 Material
所述微球型MnO2材料的制备方法包括以下步骤:The preparation method of the microspherical MnO material includes the following steps:
S1、将0.01mol MnSO4和0.015mol KClO3加入盛有60mL浓硝酸的锥形瓶中形成均相溶液,随后加入0.024mol尿素,在80℃水浴条件下剧烈搅拌20min,在锥形瓶的上端设置冷凝回流装置;搅拌的过程中不断有黑色固体MnO2生成;S1. Add 0.01 mol MnSO 4 and 0.015 mol KClO 3 into an Erlenmeyer flask containing 60 mL of concentrated nitric acid to form a homogeneous solution. Then add 0.024 mol urea and stir vigorously for 20 minutes in an 80°C water bath. At the upper end of the Erlenmeyer flask Set up a condensation reflux device; black solid MnO 2 is continuously generated during the stirring process;
S2、将步骤S1所得反应液移自然冷却至室温,过滤,并用超纯水和无水乙醇将所得固体反复洗涤至滤液为中性,60℃环境下干燥12小时,获得三维红毛丹状中空微球二氧化锰(R-MnO2-0h)。S2. Transfer the reaction liquid obtained in step S1 to naturally cool to room temperature, filter, and wash the obtained solid repeatedly with ultrapure water and absolute ethanol until the filtrate becomes neutral, and dry it at 60°C for 12 hours to obtain a three-dimensional rambutan-like hollow Microsphere manganese dioxide (R-MnO 2 -0h).
对所得R-MnO2-0h材料进行扫描电镜SEM检测,结果参见图1b。由图可见,未经水热反应得到的R-MnO2-0h材料形成了粗糙球状结构,表面未生长出MnO2纳米棒。The obtained R-MnO 2 -0h material was subjected to scanning electron microscopy SEM examination. The results are shown in Figure 1b. It can be seen from the figure that the R-MnO 2 -0h material obtained without hydrothermal reaction formed a rough spherical structure, and no MnO 2 nanorods grew on the surface.
应用例1电容-臭氧协同杀菌消毒方法Application example 1 Capacitor-ozone synergistic sterilization method
将实施例1~7、对比例1制备得到的MnO2材料用于电容-臭氧协同杀菌消毒,具体包括以下步骤:The MnO 2 materials prepared in Examples 1 to 7 and Comparative Example 1 are used for capacitor-ozone synergistic sterilization, which specifically includes the following steps:
SI、将实施例1~8制备得到的MnO2材料分别与乙炔黑、聚偏二氟乙烯(PVDF)按照质量比为8:1:1研磨混匀,混匀后逐滴滴加1-甲基-2-吡咯烷酮(C5H9NO,NMP)并搅拌混匀形成颜色均一的浆料后,均匀涂抹在6×3cm2石墨片基底上,涂抹面积为3×3cm2,使沉积在石墨片上的活性材料的质量为20mg,涂好电极片之后将其放入真空干燥箱60℃真空干燥12h;SI. Grind and mix the MnO 2 materials prepared in Examples 1 to 8 with acetylene black and polyvinylidene fluoride (PVDF) at a mass ratio of 8:1:1. After mixing, add 1-methane dropwise. Base-2-pyrrolidone (C 5 H 9 NO, NMP) and stir to form a uniform color slurry, then evenly apply it on the 6×3cm 2 graphite sheet base, with an area of 3×3cm 2 to deposit on the graphite The mass of the active material on the sheet is 20 mg. After coating the electrode sheet, place it in a vacuum drying oven to be vacuum dried at 60°C for 12 hours;
SII、将步骤SII所得沉积有MnO2材料的石墨电极置于电容反应池中,与直流电压电路构成闭合回路,对电极施加的电压为1.5V电压;SII, place the graphite electrode deposited with MnO 2 material obtained in step SII in a capacitive reaction cell, form a closed loop with the DC voltage circuit, and apply a voltage of 1.5V to the electrode;
SIII、采用蠕动泵使含细菌(大肠杆菌E.coli)浓度为106~108CFU/mL的生理盐水在电容反应池中循环流动,溶液的流速为1~100mL/min,电容通电时间为5min;SIII. Use a peristaltic pump to circulate physiological saline containing bacteria (E.coli) with a concentration of 10 6 to 10 8 CFU/mL in the capacitive reaction cell. The flow rate of the solution is 1 to 100 mL/min, and the capacitor energization time is 5min;
SIV、将电容处理后的水溶液取样加入锥形瓶中,臭氧通过微型曝气器连续鼓入装有水样的锥形瓶中,臭氧的进气浓度为0.6mg/L,进气流量为0.5L/min,臭氧与水溶液在磁力搅拌下充分混合,臭氧处理时间为10min。SIV. Sampling the aqueous solution after capacitive treatment and adding it to the Erlenmeyer flask. Ozone is continuously blown into the Erlenmeyer flask containing the water sample through the micro aerator. The inlet concentration of ozone is 0.6mg/L and the inlet flow rate is 0.5 L/min, the ozone and aqueous solution are fully mixed under magnetic stirring, and the ozone treatment time is 10 minutes.
杀菌消毒效果测定:Determination of sterilization and disinfection effects:
杀菌消毒处理后取样50μL,均匀涂布到LB-琼脂培养基上,放入37℃的恒温培养箱中培养12小时,以50μL无菌生理盐水涂布的LB-琼脂培养基作为空白对照,记录培养基上的菌落数,计算所取样品中的活大肠杆菌浓度,结果参见表1。After sterilization and disinfection, take a 50 μL sample, spread it evenly on the LB-agar medium, place it in a constant temperature incubator at 37°C for 12 hours, use 50 μL of sterile saline-coated LB-agar medium as a blank control, and record The number of colonies on the culture medium was used to calculate the concentration of viable E. coli in the sample taken. The results are shown in Table 1.
表1杀菌消毒效果测定结果Table 1 Measurement results of sterilization and disinfection effects
由表可见,本发明制备的MnO2材料制成电极后,对细菌先进行较小的电压处理,再结合臭氧曝气,可以达到显著的杀菌消毒效果,杀菌率在99%以上。It can be seen from the table that after the MnO 2 material prepared in the present invention is made into an electrode, the bacteria are first treated with a smaller voltage, and then combined with ozone aeration, significant sterilization and disinfection effects can be achieved, with a sterilization rate of more than 99%.
对比实施例1~2、7与对比例1可知,电极材料(R-MnO2-6h、R-MnO2-12h和U-MnO2)表面毛刺微观结构使得电容体系具有更优异的杀菌性能,R-MnO2材料中R-MnO2-6h的效果最好,这是由于水热6小时制备的R-MnO2微球具有规则稳定的微观结构和更高的比表面积,说明了电容材料的微观立体三维结构和颗粒表面适当尺寸的毛刺尖端有利于增加电极的电荷储存能力和表面电荷密度,同时增进其与细菌的黏附交互作用,从而提升电容系统的杀菌性能。Comparing Examples 1 to 2 and 7 with Comparative Example 1, it can be seen that the surface burr microstructure of the electrode materials (R-MnO 2 -6h, R-MnO 2 -12h and U-MnO 2 ) makes the capacitor system have better bactericidal performance. Among R-MnO 2 materials, R-MnO 2 -6h has the best effect. This is due to the fact that the R-MnO 2 microspheres prepared by hydrothermal treatment for 6 hours have a regular and stable microstructure and a higher specific surface area, which illustrates the performance of the capacitor material. The microscopic three-dimensional structure and the appropriately sized burr tips on the particle surface are beneficial to increasing the charge storage capacity and surface charge density of the electrode, while also enhancing its adhesion interaction with bacteria, thus improving the bactericidal performance of the capacitive system.
对比实施例1和实施例3~6可知,有色金属掺杂降低了离子和电荷传输阻抗、提高了比电容,使电极能储存更多电荷量,使得电容处理效果更彻底,最大限度降低了水体中病原微生物带来的健康风险,其中杀菌性能最佳的复合材料为实施例4的0.51%Ag/R-MnO2材料,0.51%Ag/R-MnO2电容-臭氧体系的杀菌率高达99.9998%。Comparing Example 1 and Examples 3 to 6, it can be seen that the non-ferrous metal doping reduces the ion and charge transfer impedance, increases the specific capacitance, enables the electrode to store more charges, makes the capacitance treatment effect more thorough, and minimizes the water body Among them, the composite material with the best bactericidal performance is the 0.51% Ag/R-MnO 2 material of Example 4. The sterilization rate of the 0.51% Ag/R-MnO 2 capacitor-ozone system is as high as 99.9998%. .
在实施例1细菌未经处理、臭氧处理完时两个时间点取10mL菌液,加入5mL戊二醛溶液(浓度为2.5%),混匀后置于4℃冷藏过夜,后用无菌水对其进行离心水洗3次,然后分别用30%、50%、70%、90%的乙醇处理10min,离心后再用无水乙醇处理20min;将乙醇脱水后的菌体放入冰箱-20℃冷冻6h,然后冷冻干燥三天,使其成为固体粉末,再进一步进行扫描电镜SEM表征,结果参见图3。Take 10 mL of bacterial liquid at two time points when the bacteria in Example 1 are untreated and after ozone treatment, add 5 mL of glutaraldehyde solution (concentration: 2.5%), mix well, and refrigerate at 4°C overnight, and then use sterile water Centrifuge and wash it with water three times, then treat it with 30%, 50%, 70%, and 90% ethanol for 10 minutes respectively, and then treat it with absolute ethanol for 20 minutes after centrifugation; put the ethanol-dehydrated bacteria into the refrigerator at -20°C Freeze for 6 hours, then freeze-dry for three days to turn it into a solid powder, and then conduct further SEM characterization. The results are shown in Figure 3.
应用例2电容-臭氧协同杀菌消毒方法Application example 2 Capacitor-ozone synergistic sterilization method
将实施例1制备得到的MnO2材料用于电容-臭氧协同杀菌消毒,参考应用例1条件,调整其中电容处理电压、时间和臭氧处理的投加量和处理时间,其余参数与应用例1相同,具体条件及杀菌效果参见表2。The MnO 2 material prepared in Example 1 is used for capacitor-ozone synergistic sterilization and disinfection. Refer to the conditions of Application Example 1 and adjust the capacitive treatment voltage and time and the dosage and treatment time of ozone treatment. The remaining parameters are the same as Application Example 1. , please refer to Table 2 for specific conditions and bactericidal effects.
表2不同条件杀菌消毒效果测定结果Table 2 Results of determination of sterilization and disinfection effects under different conditions
由表可见,本发明制备的MnO2材料制成电极后,对细菌先进行较小的电压处理,再结合臭氧曝气,通过控制电压或臭氧的相关参数,可以达到显著的杀菌消毒效果,杀菌率在95%以上。It can be seen from the table that after the MnO 2 material prepared in the present invention is made into an electrode, the bacteria are first treated with a smaller voltage, and then combined with ozone aeration. By controlling the voltage or ozone-related parameters, significant sterilization and disinfection effects can be achieved. The rate is above 95%.
其中,结合应用例1中实施例1的数据,从序号1~2测定结果可知,在电容预处理中施加的电压的越大,电容处理的时间越长,电容-臭氧协同工艺的对大肠杆菌的杀菌性能越好,在电压达到1.5V预处理5min时,整体杀菌性能达到99.9861%的效果;相较之下,虽然在电压1.8V下,R-MnO2电容-臭氧体系的杀菌率可以达100.0000%,但是过高的电压可能会引起水分解,加大工艺的运行能耗,因而电压1.5V是较优的。Among them, combined with the data of Example 1 in Application Example 1, it can be seen from the measurement results of Nos. 1 to 2 that the greater the voltage applied in the capacitor pretreatment, the longer the capacitor treatment time, and the capacitor-ozone synergistic process has better effects on E. coli The better the sterilization performance. When the voltage reaches 1.5V and pretreated for 5 minutes, the overall sterilization performance reaches 99.9861%. In comparison, although at the voltage of 1.8V, the sterilization rate of the R-MnO 2 capacitor-ozone system can reach 99.9861%. 100.0000%, but too high a voltage may cause water decomposition and increase the energy consumption of the process, so a voltage of 1.5V is optimal.
结合应用例1中实施例1的数据,从序号5~6测定结果可知,电容-臭氧协同工艺的性能随着臭氧投加量的增加而提升,当采用电容预处理后,协同工艺的性能均高于99%。Combined with the data of Example 1 in Application Example 1, it can be seen from the measurement results of Nos. 5 to 6 that the performance of the capacitor-ozone synergistic process improves with the increase of ozone dosage. When capacitor pretreatment is used, the performance of the synergistic process is equal to Higher than 99%.
结合应用例1中实施例1的数据,从序号7~8测定结果可知,在相同的臭氧投加量下,臭氧处理时间越长,杀菌效果越好,但与此同时消毒副产物也会随之增加。Combined with the data of Example 1 in Application Example 1, it can be seen from the measurement results of Nos. 7 to 8 that under the same ozone dosage, the longer the ozone treatment time, the better the sterilization effect, but at the same time, the disinfection by-products will also increase with time. increase.
对比例2单独电容杀菌消毒Comparative Example 2 Single capacitor sterilization and disinfection
将实施例1制备得到的MnO2材料用于电容杀菌消毒,具体包括以下步骤:The MnO material prepared in Example 1 is used for capacitor sterilization, which specifically includes the following steps:
SI、将实施例1制备得到的刺微球型MnO2材料分别与乙炔黑、PVDF按照质量比为8:1:1研磨混匀,混匀后逐滴滴加NMP并搅拌混匀形成颜色均一的浆料后,均匀涂抹在6×3cm2石墨片基底上,涂抹面积为3×3cm2,使沉积在石墨片上的活性材料的质量为20mg,涂好电极片之后将其放入真空干燥箱60℃真空干燥12h;SI. Grind and mix the spined microsphere MnO 2 material prepared in Example 1 with acetylene black and PVDF according to a mass ratio of 8:1:1. After mixing, add NMP drop by drop and stir and mix to form a uniform color. After the slurry is applied, apply it evenly on the 6×3cm 2 graphite sheet base with an area of 3×3cm 2 so that the mass of the active material deposited on the graphite sheet is 20 mg. After the electrode sheet is coated, place it in a vacuum drying box. Vacuum drying at 60°C for 12 hours;
SII、将步骤SII所得沉积有MnO2材料的石墨电极置于电容反应池中,与直流电压电路构成闭合回路,对电极施加的电压为1.5V电压;SII, place the graphite electrode deposited with MnO 2 material obtained in step SII in a capacitive reaction cell, form a closed loop with the DC voltage circuit, and apply a voltage of 1.5V to the electrode;
SIII、采用蠕动泵使含细菌浓度为106~108CFU/mL的生理盐水在电容反应池中循环流动,溶液的流速为1~100mL/min,电容通电时间为5min。SIII. Use a peristaltic pump to circulate physiological saline containing bacteria with a concentration of 10 6 to 10 8 CFU/mL in the capacitive reaction cell. The flow rate of the solution is 1 to 100 mL/min, and the capacitor energization time is 5 minutes.
杀菌消毒效果测定方法参考应用例1,杀菌率为80.6329%。The sterilization and disinfection effect measurement method refers to Application Example 1, and the sterilization rate is 80.6329%.
对比例3单独臭氧杀菌消毒Comparative Example 3 Ozone sterilization alone
取含有大肠杆菌浓度为106~108CFU/mL的水溶液取样加入锥形瓶中,臭氧通过微型曝气器连续鼓入装有水样的锥形瓶中,臭氧的进气浓度为0.6mg/L,进气流量为0.5L/min,臭氧与水溶液在磁力搅拌下充分混合,臭氧处理时间为10min。Take a sample of the aqueous solution containing E. coli with a concentration of 10 6 to 10 8 CFU/mL and add it to the Erlenmeyer flask. Ozone is continuously blown into the Erlenmeyer flask containing the water sample through a micro aerator. The inlet concentration of ozone is 0.6 mg. /L, the air inlet flow rate is 0.5L/min, the ozone and aqueous solution are fully mixed under magnetic stirring, and the ozone treatment time is 10 minutes.
杀菌消毒效果测定方法参考应用例1,杀菌率为90.7759%。The method for measuring the sterilization and disinfection effect refers to Application Example 1, and the sterilization rate is 90.7759%.
在臭氧处理完时取10mL菌液,加入5mL戊二醛溶液(浓度为2.5%),混匀后置于4℃冷藏过夜,后用无菌水对其进行离心水洗3次,然后分别用30%、50%、70%、90%的乙醇处理10min,离心后再用无水乙醇处理20min;将乙醇脱水后的菌体放入冰箱-20℃冷冻6h,然后冷冻干燥三天,使其成为固体粉末,再进一步进行扫描电镜SEM表征,结果参见图3。After ozone treatment, take 10 mL of bacterial solution, add 5 mL of glutaraldehyde solution (concentration: 2.5%), mix well and refrigerate at 4°C overnight, then centrifuge and wash it 3 times with sterile water, and then wash it with 30 %, 50%, 70%, 90% ethanol for 10 minutes, centrifuged and then treated with absolute ethanol for 20 minutes; put the ethanol-dehydrated bacteria into the refrigerator at -20°C for 6 hours, and then freeze-dry for three days to make them The solid powder was further characterized by scanning electron microscopy (SEM). The results are shown in Figure 3.
由图可见,未经处理的大肠杆菌细胞呈饱满杆状,细菌包膜完整;对比例3在单独臭氧处理后,细菌表面出现不同程度的扭曲和起皱,以及形成丝状题,部分细菌膜出现空洞和孔洞,但损伤没有特别那么严重,仍然存在细菌假死和复活的可能性;应用例1中通过电容-臭氧协同处理后,细菌出现严重的皱缩和皲裂,伴随有细胞质泄漏。As can be seen from the picture, the untreated E. coli cells are full rod-shaped and the bacterial envelope is intact; in Comparative Example 3, after ozone treatment alone, the bacterial surface appears distorted and wrinkled to varying degrees, and filaments are formed, and part of the bacterial membrane is Cavities and holes appeared, but the damage was not particularly serious, and there was still the possibility of suspended animation and resurrection of the bacteria. In Application Example 1, after capacitor-ozone collaborative treatment, the bacteria showed severe shrinkage and cracking, accompanied by cytoplasmic leakage.
对比例4电容-臭氧协同杀菌消毒方法Comparative Example 4 Capacitor-Ozone Collaborative Sterilization and Disinfection Method
将应用例1中的MnO2材料替换为市售MnO2用于电容-臭氧协同杀菌消毒,其余参数与应用例1相同。The MnO 2 material in Application Example 1 was replaced with commercially available MnO 2 for capacitor-ozone synergistic sterilization and disinfection, and the remaining parameters were the same as Application Example 1.
杀菌消毒效果测定方法参考应用例1,杀菌率为91.8966%。The method for measuring the sterilization and disinfection effect refers to Application Example 1, and the sterilization rate is 91.8966%.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210461649.8A CN114804209B (en) | 2022-04-28 | 2022-04-28 | Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210461649.8A CN114804209B (en) | 2022-04-28 | 2022-04-28 | Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114804209A CN114804209A (en) | 2022-07-29 |
CN114804209B true CN114804209B (en) | 2023-11-28 |
Family
ID=82510085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210461649.8A Active CN114804209B (en) | 2022-04-28 | 2022-04-28 | Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114804209B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116354464A (en) * | 2023-04-14 | 2023-06-30 | 中山大学 | A spiny photothermal anode material and its application in electro-Fenton system for sterilization |
CN116688982A (en) * | 2023-06-07 | 2023-09-05 | 南通大学 | Preparation method of manganese composite silver hollow catalyst for purifying air pollutants at normal temperature |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102502853A (en) * | 2011-12-18 | 2012-06-20 | 中国科学院电工研究所 | Method for preparing nanometer manganese dioxide by microwave reflux method |
CN103594254A (en) * | 2013-11-26 | 2014-02-19 | 华东理工大学 | Method for preparing manganese dioxide/mesoporous carbon nanometer graded composite electrode material |
CN109650456A (en) * | 2019-01-25 | 2019-04-19 | 安徽益佳通电池有限公司 | A kind of MnO of morphology controllable2The preparation method and application of nano material |
CN112441619A (en) * | 2020-11-05 | 2021-03-05 | 武汉金特明新材料科技有限公司 | Super capacitor electrode material and preparation method and application thereof |
CN114250220A (en) * | 2021-12-24 | 2022-03-29 | 中国科学院兰州化学物理研究所 | Preparation and application of dopamine-coated sea urchin-shaped manganese dioxide hollow microspheres |
-
2022
- 2022-04-28 CN CN202210461649.8A patent/CN114804209B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102502853A (en) * | 2011-12-18 | 2012-06-20 | 中国科学院电工研究所 | Method for preparing nanometer manganese dioxide by microwave reflux method |
CN103594254A (en) * | 2013-11-26 | 2014-02-19 | 华东理工大学 | Method for preparing manganese dioxide/mesoporous carbon nanometer graded composite electrode material |
CN109650456A (en) * | 2019-01-25 | 2019-04-19 | 安徽益佳通电池有限公司 | A kind of MnO of morphology controllable2The preparation method and application of nano material |
CN112441619A (en) * | 2020-11-05 | 2021-03-05 | 武汉金特明新材料科技有限公司 | Super capacitor electrode material and preparation method and application thereof |
CN114250220A (en) * | 2021-12-24 | 2022-03-29 | 中国科学院兰州化学物理研究所 | Preparation and application of dopamine-coated sea urchin-shaped manganese dioxide hollow microspheres |
Non-Patent Citations (2)
Title |
---|
Ling Kang et al."Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors".《Journal of Alloys and Compounds》.2015,第第648卷卷第190-194页. * |
何强等.《食品保藏技术原理》.中国轻工业出版社,2020,第56-57页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114804209A (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114804209B (en) | Burr microsphere type MnO 2 Preparation method of material and sterilization and disinfection application | |
Fan et al. | Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection | |
CN110102269B (en) | A kind of cationic polymer modified porous silica material loaded with essential oil and its preparation method and application | |
CN107511130B (en) | A kind of zeolite-supported nano tourmaline material and preparation method and application thereof | |
WO2021042599A1 (en) | Method for preparing water-purifying charcoal composite material with low loading amount of nano zero-valent iron and nano silver | |
CN107446578A (en) | Nitrogen-doped carbon quantum dot material and preparation method and application thereof | |
CN111034720A (en) | Preparation method of zinc oxide-metal organic framework composite antibacterial material | |
CN115006546A (en) | A kind of disulfide heterojunction material for promoting wound healing and preparation method thereof | |
CN101015860A (en) | Preparing process of water-soluble nano silver powder containing biomass | |
CN110115272A (en) | A kind of Cu nanoparticle coupling graphene hydrogel composite material and its preparation method and application | |
Qi et al. | Improved photocatalytic and sterilization performance of Cu doped sea urchin-like WO 3− x | |
Girgis et al. | Cobalt ferrite nanotubes and porous nanorods for dye removal | |
CN111701584B (en) | Photocatalytic material and preparation method and application thereof | |
CN109647401B (en) | Three-dimensional porous graphene composite material and preparation method and application thereof | |
CN104874353B (en) | Sintered carbon rod | |
CN116570620A (en) | A chitin-based multifunctional nanozyme and its preparation method and application | |
CN110433789A (en) | A method of photocatalysis biology carbon composite is prepared using Eichhornia crassipes accumulation nano zine oxide | |
CN114192770B (en) | Silver colloid and preparation method thereof | |
CN108421527A (en) | Biomass carbon material and its preparation method and application | |
KR101495124B1 (en) | Carbon Nanoparticle for Photocatalyst | |
CN114190401A (en) | Method for preparing cerium oxide nanoenzyme based on laser liquid phase irradiation and application | |
CN107494591B (en) | Method for Improving the Specific Toxicity of Nano Silver Particles | |
CN108033571B (en) | A kind of preparation method and applications of composite nano materials | |
CN106912499B (en) | A kind of high-efficiency sterilization composite material and preparation method thereof | |
CN111732138B (en) | A kind of nitrogen-doped carbon dots/titanate nanotube composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |