CN114793108A - Duty cycle correction circuit and method, crystal oscillator circuit, and electronic equipment - Google Patents
Duty cycle correction circuit and method, crystal oscillator circuit, and electronic equipment Download PDFInfo
- Publication number
- CN114793108A CN114793108A CN202111610187.3A CN202111610187A CN114793108A CN 114793108 A CN114793108 A CN 114793108A CN 202111610187 A CN202111610187 A CN 202111610187A CN 114793108 A CN114793108 A CN 114793108A
- Authority
- CN
- China
- Prior art keywords
- inverter
- output
- circuit
- signal
- duty cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/156—Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Pulse Circuits (AREA)
- Manipulation Of Pulses (AREA)
Abstract
本发明提供了一种占空比校正电路及方法、晶振电路、电子设备,该占空比校正电路包括反相器链、第三反相器和反馈控制模块;反相器链包括反相器组,反相器组包括第一反相器、第二反相器、第一调节电路、第二调节电路,第一反相器的输出端连接第二反相器的输入端,第一调节电路连接第一反相器和反馈控制模块,第二调节电路连接第二反相器和反馈控制模块;第三反相器用于向反馈控制模块输出反相器链的输出信号的反相信号,反馈控制模块用于根据反相器链的输出信号输出第二电压信号以及根据第三反相器的输出信号输出第一电压信号。本发明的占空比校正电路有利于实现较好的稳定速度,且有利于降低电路占用面积和功耗。
The present invention provides a duty cycle correction circuit and method, a crystal oscillator circuit and an electronic device. The duty cycle correction circuit includes an inverter chain, a third inverter and a feedback control module; the inverter chain includes an inverter The inverter group includes a first inverter, a second inverter, a first adjustment circuit, and a second adjustment circuit. The output end of the first inverter is connected to the input end of the second inverter. The first adjustment circuit The circuit is connected to the first inverter and the feedback control module, the second adjustment circuit is connected to the second inverter and the feedback control module; the third inverter is used for outputting the inverted signal of the output signal of the inverter chain to the feedback control module, The feedback control module is used for outputting the second voltage signal according to the output signal of the inverter chain and outputting the first voltage signal according to the output signal of the third inverter. The duty ratio correction circuit of the present invention is beneficial to achieve a better stable speed, and is beneficial to reduce the occupied area and power consumption of the circuit.
Description
技术领域technical field
本发明涉及集成电路技术领域,尤其涉及一种占空比校正电路及方法、晶振电路、电子设备。The present invention relates to the technical field of integrated circuits, and in particular, to a duty cycle correction circuit and method, a crystal oscillator circuit, and an electronic device.
背景技术Background technique
在目前的电子系统中,晶振电路作为参考时钟源,是一种不可或缺的电路模块。如图1所示,目前的晶振电路通常包括晶体振荡器、放大电路、方波转换电路,其工作原理大致如下:由晶体振荡器产生正弦波信号,经过放大电路放大后再由方波转换电路转换成方波信号。In the current electronic system, the crystal oscillator circuit is an indispensable circuit module as a reference clock source. As shown in Figure 1, the current crystal oscillator circuit usually includes a crystal oscillator, an amplifier circuit, and a square wave conversion circuit. Converted to a square wave signal.
但目前的晶振电路,由于受PVT(Process Voltage and Temperature,工艺、电压和温度)特性的影响,容易产生振荡幅度变化、电路工作点偏移等问题,进而容易导致晶振电路输出的方波信号的占空比发生变化,即造成晶振电路输出的方波信号的占空比较不稳定,难以直接用于高性能时钟系统设计。However, due to the influence of PVT (Process Voltage and Temperature) characteristics, the current crystal oscillator circuit is prone to problems such as oscillation amplitude change and circuit operating point offset, which easily lead to the square wave signal output by the crystal oscillator circuit. The change of the duty cycle means that the duty cycle of the square wave signal output by the crystal oscillator circuit is relatively unstable, and it is difficult to directly use it in the design of a high-performance clock system.
公布号为CN110957998A的专利文献提供了一种精确校正时钟信号占空比的电路,该电路包括反相器链、延时单元、相位检测单元以及低通滤波器,通过反相器链调整输入信号的占空比,并通过延时单元、相位检测单元输出表征反相器链输出信号的占空比是否达到目标值的指示信号,该指示信号经过低通滤波器滤波后可以输出至反相器链中一PMOS管的栅极(该PMOS管连接在电源电压VDD与一反相器之间),从而实现占空比的校准,但这种方式由于采用了延时单元,不仅占用面积较大,功耗较高,且不利于实现较好的校正速度,电路稳定时间较长。The patent document with the publication number CN110957998A provides a circuit for accurately correcting the duty cycle of a clock signal, the circuit includes an inverter chain, a delay unit, a phase detection unit and a low-pass filter, and the input signal is adjusted through the inverter chain The duty cycle of the inverter chain, and the delay unit and the phase detection unit output an indication signal indicating whether the duty cycle of the output signal of the inverter chain reaches the target value. The indication signal can be output to the inverter after being filtered by a low-pass filter. The gate of a PMOS tube in the chain (the PMOS tube is connected between the power supply voltage VDD and an inverter), so as to realize the calibration of the duty cycle, but this method not only occupies a large area due to the use of a delay unit , the power consumption is high, and it is not conducive to achieving a better correction speed, and the circuit stabilization time is long.
发明内容SUMMARY OF THE INVENTION
基于上述现状,本发明的主要目的在于提供一种占空比校正电路及方法、晶振电路、电子设备,有利于实现较好的稳定速度,且有利于降低电路占用面积和功耗。Based on the above status quo, the main purpose of the present invention is to provide a duty cycle correction circuit and method, a crystal oscillator circuit, and an electronic device, which are conducive to achieving better stable speed and reducing circuit occupation area and power consumption.
为实现上述目的,本发明的技术方案提供了一种方波时钟信号的占空比校正电路,包括反相器链、第三反相器和反馈控制模块;To achieve the above purpose, the technical solution of the present invention provides a duty cycle correction circuit for a square wave clock signal, comprising an inverter chain, a third inverter and a feedback control module;
所述反相器链包括反相器组,所述反相器组包括第一反相器、第二反相器、第一调节电路、第二调节电路,所述第一反相器的输出端连接所述第二反相器的输入端,所述第一调节电路连接所述第一反相器和所述反馈控制模块,以根据所述反馈控制模块输出的第一电压信号调节所述第一反相器的输出信号,所述第一反相器的输出信号的占空比大小与所述第一电压信号的大小呈负相关,所述第二调节电路连接所述第二反相器和所述反馈控制模块,以根据所述反馈控制模块输出的第二电压信号调节所述第二反相器的输出信号,所述第二反相器的输出信号的占空比大小与所述第二电压信号的大小呈负相关;The inverter chain includes an inverter group, the inverter group includes a first inverter, a second inverter, a first adjustment circuit, and a second adjustment circuit, and the output of the first inverter The terminal is connected to the input terminal of the second inverter, and the first adjustment circuit is connected to the first inverter and the feedback control module to adjust the first voltage signal output by the feedback control module. The output signal of the first inverter, the size of the duty cycle of the output signal of the first inverter is negatively correlated with the size of the first voltage signal, and the second adjustment circuit is connected to the second inverter and the feedback control module, so as to adjust the output signal of the second inverter according to the second voltage signal output by the feedback control module, and the duty cycle of the output signal of the second inverter is the same as that of the second inverter. The magnitude of the second voltage signal is negatively correlated;
所述第三反相器用于向所述反馈控制模块输出所述反相器链的输出信号的反相信号,所述反馈控制模块用于根据所述反相器链的输出信号输出所述第二电压信号以及根据所述第三反相器的输出信号输出所述第一电压信号,其中,所述第二电压信号的大小与所述反相器链的输出信号的占空比大小呈正相关,所述第一电压信号的大小与所述第三反相器的输出信号的占空比大小呈正相关。The third inverter is configured to output an inverted signal of the output signal of the inverter chain to the feedback control module, and the feedback control module is configured to output the first inverter according to the output signal of the inverter chain. Two voltage signals and outputting the first voltage signal according to the output signal of the third inverter, wherein the magnitude of the second voltage signal is positively correlated with the duty cycle of the output signal of the inverter chain , the magnitude of the first voltage signal is positively correlated with the duty cycle of the output signal of the third inverter.
进一步地,所述第一调节电路包括第一电流源和第二电流源,所述第一电流源连接所述第一反相器的电源端以调节所述第一反相器的上拉能力,所述第二电流源连接所述第一反相器的接地端以调节所述第一反相器的下拉能力,所述第一电流源的电流大小与所述第一电压信号的大小呈负相关,所述第二电流源的电流大小与所述第一电压信号的大小呈正相关;Further, the first adjustment circuit includes a first current source and a second current source, the first current source is connected to the power supply terminal of the first inverter to adjust the pull-up capability of the first inverter , the second current source is connected to the ground terminal of the first inverter to adjust the pull-down capability of the first inverter, and the magnitude of the current of the first current source is proportional to the magnitude of the first voltage signal Negative correlation, the magnitude of the current of the second current source is positively correlated with the magnitude of the first voltage signal;
所述第二调节电路包括第三电流源和第四电流源,所述第三电流源连接所述第二反相器的电源端以调节所述第二反相器的上拉能力,所述第四电流源连接所述第二反相器的接地端以调节所述第二反相器的下拉能力,所述第三电流源的电流大小与所述第二电压信号的大小呈负相关,所述第四电流源的电流大小与所述第二电压信号的大小呈正相关。The second adjustment circuit includes a third current source and a fourth current source, the third current source is connected to the power supply terminal of the second inverter to adjust the pull-up capability of the second inverter, the The fourth current source is connected to the ground terminal of the second inverter to adjust the pull-down capability of the second inverter, and the current of the third current source is negatively correlated with the second voltage signal, The magnitude of the current of the fourth current source is positively correlated with the magnitude of the second voltage signal.
进一步地,所述反相器链包括多个依次串联的反相器组。Further, the inverter chain includes a plurality of inverter groups connected in series.
进一步地,所述反馈控制模块被配置为通过以下方式得到所述第一电压信号和所述第二电压信号:通过对所述第三反相器的输出信号进行低通滤波处理得到第三电压信号,通过对所述反相器链的输出信号进行低通滤波处理得到第四电压信号,然后对所述第三电压信号和所述第四电压信号进行全差分放大处理,从而得到所述第一电压信号和所述第二电压信号。Further, the feedback control module is configured to obtain the first voltage signal and the second voltage signal in the following manner: obtaining a third voltage by performing low-pass filtering on the output signal of the third inverter signal, a fourth voltage signal is obtained by performing low-pass filtering on the output signal of the inverter chain, and then fully differential amplification is performed on the third voltage signal and the fourth voltage signal, so as to obtain the fourth voltage signal. a voltage signal and the second voltage signal.
进一步地,所述反馈控制模块包括第一低通滤波单元、第二低通滤波单元和全差分放大器;Further, the feedback control module includes a first low-pass filtering unit, a second low-pass filtering unit and a fully differential amplifier;
所述第一低通滤波单元的输入端连接所述反相器链的输出端,以接收所述反相器链的输出信号;The input end of the first low-pass filtering unit is connected to the output end of the inverter chain to receive the output signal of the inverter chain;
所述第二低通滤波单元的输入端连接所述第三反相器的输出端,以接收所述第三反相器的输出信号;The input end of the second low-pass filtering unit is connected to the output end of the third inverter to receive the output signal of the third inverter;
所述全差分放大器的正输入端连接所述第一低通滤波单元的输出端,所述全差分放大器的负输入端连接所述第二低通滤波单元的输出端,所述全差分放大器的正输出端用于输出所述第二电压信号,所述全差分放大器的负输出端用于输出所述第一电压信号。The positive input terminal of the fully differential amplifier is connected to the output terminal of the first low-pass filtering unit, the negative input terminal of the fully differential amplifier is connected to the output terminal of the second low-pass filtering unit, and the fully differential amplifier is connected to the output terminal of the second low-pass filtering unit. The positive output terminal is used for outputting the second voltage signal, and the negative output terminal of the fully differential amplifier is used for outputting the first voltage signal.
进一步地,所述反馈控制模块还包括共模电路,所述共模电路的输出端连接所述全差分放大器的参考电压端,以向所述全差分放大器提供共模参考电压,所述共模电路提供的共模参考电压可变。Further, the feedback control module further includes a common mode circuit, the output end of the common mode circuit is connected to the reference voltage terminal of the fully differential amplifier, so as to provide a common mode reference voltage to the fully differential amplifier, the common mode circuit is connected to the reference voltage terminal of the fully differential amplifier. The common mode reference voltage provided by the circuit is variable.
进一步地,所述反相器链的输出端与所述反馈控制模块之间设置有第一缓冲器,以平衡所述第三反相器的信号延迟时间。Further, a first buffer is arranged between the output end of the inverter chain and the feedback control module to balance the signal delay time of the third inverter.
为实现上述目的,本发明的技术方案还提供了一种晶振电路,包括晶体振荡器、放大电路、方波转换电路和上述的占空比校正电路,其中,所述晶体振荡器的输出端连接所述放大电路的输入端,所述放大电路的输出端连接所述方波转换电路的输入端,所述方波转换电路的输出端连接所述占空比校正电路。In order to achieve the above purpose, the technical solution of the present invention also provides a crystal oscillator circuit, including a crystal oscillator, an amplifier circuit, a square wave conversion circuit and the above-mentioned duty cycle correction circuit, wherein the output end of the crystal oscillator is connected to The input end of the amplifying circuit and the output end of the amplifying circuit are connected to the input end of the square wave conversion circuit, and the output end of the square wave conversion circuit is connected to the duty ratio correction circuit.
进一步地,还包括二倍频电路,所述二倍频电路连接所述反相器链的输出端,以对所述反相器链的输出信号进行二倍频处理,所述二倍频电路包括延迟单元、异或门,所述异或门的第一输入端连接所述反相器链的输出端,所述异或门的第二输入端连接所述延迟单元的输出端,所述延迟单元的输入端连接所述反相器链的输出端。Further, it also includes a frequency doubling circuit, the frequency doubling circuit is connected to the output end of the inverter chain to perform frequency doubling processing on the output signal of the inverter chain, and the frequency doubling circuit It includes a delay unit and an XOR gate, the first input terminal of the XOR gate is connected to the output terminal of the inverter chain, the second input terminal of the XOR gate is connected to the output terminal of the delay unit, and the The input of the delay unit is connected to the output of the inverter chain.
进一步地,所述二倍频电路包括还包括第二缓冲器,所述异或门的第一输入端通过所述第二缓冲器连接所述反相器链的输出端。Further, the frequency doubling circuit further includes a second buffer, and the first input terminal of the XOR gate is connected to the output terminal of the inverter chain through the second buffer.
进一步地,所述晶振电路还包括PLL锁相环,所述PLL锁相环的输入端连接所述二倍频电路的输出端,以对所述二倍频电路的输出信号进行倍频处理。Further, the crystal oscillator circuit further includes a PLL phase-locked loop, and the input end of the PLL phase-locked loop is connected to the output end of the frequency doubling circuit, so as to perform frequency doubling processing on the output signal of the frequency doubling circuit.
进一步地,所述放大电路包括第五电流源、第一PMOS管、第一NMOS管、第一电阻、第一电容和第二电容;Further, the amplifying circuit includes a fifth current source, a first PMOS transistor, a first NMOS transistor, a first resistor, a first capacitor, and a second capacitor;
所述第五电流源的正端连接电源,所述第五电流源的负端连接所述第一PMOS管的源极,所述第一PMOS管的栅极、所述第一电阻的第一端、所述第一NMOS管的栅极、所述第一电容的第一端连接所述晶体振荡器的第一端和所述方波转换电路的输入端,所述第一PMOS管的漏极、所述第一电阻的第二端、所述第一NMOS管的漏极、所述第二电容的第一端连接所述晶体振荡器的第二端,第一NMOS管的源极、所述第一电容的第二端、所述第二电容的第二端接地;The positive terminal of the fifth current source is connected to the power supply, the negative terminal of the fifth current source is connected to the source of the first PMOS transistor, the gate of the first PMOS transistor, and the first terminal of the first resistor. terminal, the gate of the first NMOS transistor, and the first terminal of the first capacitor are connected to the first terminal of the crystal oscillator and the input terminal of the square wave conversion circuit, and the drain of the first PMOS transistor pole, the second end of the first resistor, the drain of the first NMOS transistor, the first end of the second capacitor are connected to the second end of the crystal oscillator, the source of the first NMOS transistor, the second end of the first capacitor and the second end of the second capacitor are grounded;
所述方波转换电路包括第三电容、第二PMOS管、第二NMOS管、第二电阻;The square wave conversion circuit includes a third capacitor, a second PMOS transistor, a second NMOS transistor, and a second resistor;
所述第三电容的第一端作为所述方波转换电路的输入端连接所述放大电路,所述第二PMOS管的栅极、所述第二电阻的第一端、所述第二NMOS管的栅极连接所述第三电容的第二端,所述第二PMOS管的漏极、所述第二电阻的第二端、所述第二NMOS管的漏极连接在一起作为所述方波转换电路的输出端。The first end of the third capacitor is connected to the amplifying circuit as the input end of the square wave conversion circuit, the gate of the second PMOS transistor, the first end of the second resistor, and the second NMOS The gate of the transistor is connected to the second end of the third capacitor, the drain of the second PMOS transistor, the second end of the second resistor, and the drain of the second NMOS transistor are connected together as the The output of the square wave conversion circuit.
为实现上述目的,本发明的技术方案还提供了一种电子设备,包括上述的占空比校正电路或者包括上述的晶振电路。In order to achieve the above object, the technical solution of the present invention also provides an electronic device including the above-mentioned duty cycle correction circuit or the above-mentioned crystal oscillator circuit.
为实现上述目的,本发明的技术方案还提供了一种方波时钟信号的占空比校正方法,应用于占空比校正电路,所述占空比校正电路包括反相器链、第三反相器和反馈控制模块,所述反相器链包括反相器组,所述反相器组包括第一反相器、第二反相器、第一调节电路、第二调节电路,所述第一反相器的输出端连接所述第二反相器的输入端,所述第三反相器用于向所述反馈控制模块输出所述反相器链的输出信号的反相信号,所述方法包括:In order to achieve the above purpose, the technical solution of the present invention also provides a duty cycle correction method for a square wave clock signal, which is applied to a duty cycle correction circuit, wherein the duty cycle correction circuit includes an inverter chain, a third inverter an inverter and a feedback control module, the inverter chain includes an inverter group, the inverter group includes a first inverter, a second inverter, a first regulating circuit, and a second regulating circuit, the The output end of the first inverter is connected to the input end of the second inverter, and the third inverter is used to output the inverted signal of the output signal of the inverter chain to the feedback control module, so The methods described include:
所述第一调节电路根据所述反馈控制模块输出的第一电压信号调节所述第一反相器的输出信号,以及所述第二调节电路根据所述反馈控制模块输出的第二电压信号调节所述第二反相器的输出信号,其中,所述第一反相器的输出信号的占空比大小与所述第一电压信号的大小呈负相关,所述第二反相器的输出信号的占空比大小与所述第二电压信号的大小呈负相关;The first regulating circuit regulates the output signal of the first inverter according to the first voltage signal output by the feedback control module, and the second regulating circuit regulates the output signal according to the second voltage signal output by the feedback control module The output signal of the second inverter, wherein the size of the duty cycle of the output signal of the first inverter is negatively correlated with the size of the first voltage signal, and the output of the second inverter The size of the duty cycle of the signal is negatively correlated with the size of the second voltage signal;
所述反馈控制模块根据所述反相器链的输出信号输出所述第二电压信号以及根据所述第三反相器的输出信号输出所述第一电压信号,其中,所述第二电压信号的大小与所述反相器链的输出信号的占空比大小呈正相关,所述第一电压信号的大小与所述第三反相器的输出信号的占空比大小呈正相关。The feedback control module outputs the second voltage signal according to the output signal of the inverter chain and outputs the first voltage signal according to the output signal of the third inverter, wherein the second voltage signal The magnitude of , is positively correlated with the duty cycle of the output signal of the inverter chain, and the magnitude of the first voltage signal is positively correlated with the duty cycle of the output signal of the third inverter.
本发明提供的占空比校正电路,通过反馈控制模块向反相器链输出第一电压信号和第二电压信号,第一电压信号的大小与反相器链的输出信号的反相信号的占空比大小呈正相关,第二电压信号的大小与反相器链的输出信号的占空比大小呈正相关,同时通过反相器链中的第一调节电路根据第一电压信号VN调节第一反相器INV3的输出信号的占空比大小,通过第二调节电路根据第二电压信号VN调节第二反相器INV4的输出信号的占空比大小,且第一反相器INV3的输出信号的占空比大小与第一电压信号VN的大小呈负相关,第二反相器INV4的输出信号的占空比大小与第二电压信号VP的大小呈负相关,这样当反相器链的输出信号的占空比大小大于目标值时,通过反相器链中的第一调节电路、第二调节电路可以快速的降低反相器链的输出信号的占空比大小,当反相器链的输出信号的占空比大小小于目标值时,通过第一调节电路、第二调节电路可以快速的增大反相器链的输出信号的占空比大小,使占空比校正电路快速的进入稳定状态,有利于实现较好的稳定速度,减少电路进入稳定状态所需的时间,并且相比现有技术,占空比校正电路的实现可以不需要延时单元,有利于降低电路占用面积和功耗。The duty cycle correction circuit provided by the present invention outputs the first voltage signal and the second voltage signal to the inverter chain through the feedback control module, and the magnitude of the first voltage signal is related to the duty cycle of the inverted signal of the output signal of the inverter chain. The magnitude of the duty cycle is positively correlated, and the magnitude of the second voltage signal is positively correlated with the duty cycle of the output signal of the inverter chain. At the same time, the first adjustment circuit in the inverter chain adjusts the first inverter according to the first voltage signal VN. The duty cycle of the output signal of the inverter INV3 is adjusted by the second adjustment circuit according to the second voltage signal VN, and the duty cycle of the output signal of the second inverter INV4 is adjusted. The size of the duty cycle is negatively correlated with the size of the first voltage signal VN, and the size of the duty cycle of the output signal of the second inverter INV4 is negatively correlated with the size of the second voltage signal VP, so that when the output of the inverter chain is negatively correlated When the duty cycle of the signal is greater than the target value, the first adjustment circuit and the second adjustment circuit in the inverter chain can quickly reduce the duty cycle of the output signal of the inverter chain. When the duty cycle of the output signal is smaller than the target value, the first regulation circuit and the second regulation circuit can quickly increase the duty cycle of the output signal of the inverter chain, so that the duty cycle correction circuit can quickly enter into a stable state. It is beneficial to achieve a better stable speed and reduce the time required for the circuit to enter a stable state. Compared with the prior art, the implementation of the duty cycle correction circuit does not require a delay unit, which is beneficial to reduce the circuit occupation area and power consumption. consumption.
附图说明Description of drawings
以下将参照附图对根据本申请的优选实施方式进行描述。图中:Preferred embodiments according to the present application will be described below with reference to the accompanying drawings. In the picture:
图1为现有技术中的晶振电路的示意图;1 is a schematic diagram of a crystal oscillator circuit in the prior art;
图2是本发明实施例提供的一种空比校正电路的示意图;2 is a schematic diagram of an empty ratio correction circuit provided by an embodiment of the present invention;
图3是本发明实施例提供的另一种空比校正电路的示意图;3 is a schematic diagram of another empty ratio correction circuit provided by an embodiment of the present invention;
图4是本发明实施例提供的一种晶振电路的示意图;4 is a schematic diagram of a crystal oscillator circuit provided by an embodiment of the present invention;
图5是本发明实施例提供的另一种晶振电路的示意图。FIG. 5 is a schematic diagram of another crystal oscillator circuit provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下基于实施例对本申请进行描述,但是本申请并不仅仅限于这些实施例。在下文对本申请的细节描述中,详尽描述了一些特定的细节部分,为了避免混淆本申请的实质,公知的方法、过程、流程、元件并没有详细叙述。The present application is described below based on examples, but the present application is not limited to these examples only. In the following detailed description of the present application, some specific details are described in detail. In order to avoid obscuring the essence of the present application, well-known methods, procedures, procedures and elements are not described in detail.
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and are not necessarily drawn to scale.
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。Unless clearly required by the context, words such as "including", "comprising" and the like throughout the specification and claims should be construed in an inclusive rather than an exclusive or exhaustive sense; that is, "including but not limited to" meaning.
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present application, it should be understood that the terms "first", "second" and the like are used for descriptive purposes only, and should not be construed as indicating or implying relative importance. Also, in the description of this application, unless otherwise specified, "plurality" means two or more.
参见图2,图2是本发明实施例提供的一种方波时钟信号的占空比校正电路的示意图,该占空比校正电路包括反相器链、第三反相器INV5和反馈控制模块10;Referring to FIG. 2, FIG. 2 is a schematic diagram of a duty cycle correction circuit of a square wave clock signal provided by an embodiment of the present invention. The duty cycle correction circuit includes an inverter chain, a third inverter INV5 and a
其中,该反相器链用于接收待校正的方波时钟信号,并根据所述反馈控制模块10输出的电压信号对所述待校正的方波时钟信号的占空比进行校正,反相器链的输出信号Fref为校正后的时钟信号(也即占空比校正电路的输出信号),该反相器链包括一反相器组,该反相器组包括第一反相器INV3、第二反相器INV4、第一调节电路、第二调节电路,所述第一反相器INV3的输出端连接所述第二反相器INV4的输入端,所述第一调节电路连接所述第一反相器INV3和所述反馈控制模块10,以根据所述反馈控制模块10输出的第一电压信号VN调节所述第一反相器INV3的输出信号,所述第一反相器INV3的输出信号的占空比大小与所述第一电压信号VN的大小呈负相关,所述第二调节电路连接所述第二反相器INV4和所述反馈控制模块10,以根据所述反馈控制模块10输出的第二电压信号VP调节所述第二反相器INV4的输出信号,所述第二反相器INV4的输出信号的占空比大小与所述第二电压信号VP的大小呈负相关,该实施例中,第一反相器INV3的输入端即为反相器链的输入端,输入的待校正的方波时钟信号可以是晶振电路中方波转换电路的输出信号,第二反相器INV4的输出端即为反相器链的输出端;The inverter chain is used to receive the square-wave clock signal to be corrected, and to correct the duty cycle of the square-wave clock signal to be corrected according to the voltage signal output by the
所述第三反相器INV5用于向所述反馈控制模块10输出所述反相器链的输出信号的反相信号,该第三反相器INV5的输入端连接反相器链的输出端,第三反相器INV5的输出端连接反馈控制模块10,该反馈控制模块10用于根据所述反相器链的输出信号输出所述第二电压信号VP以及根据所述第三反相器INV5的输出信号输出所述第一电压信号VN,其中,所述第二电压信号VP的大小与所述反相器链的输出信号的占空比大小呈正相关,所述第一电压信号VN的大小与所述第三反相器INV5的输出信号的占空比大小呈正相关,例如,反馈控制模块10可以通过对反相器链的输出信号、第三反相器INV5的输出信号分别进行低通滤波处理,然后进行相应的放大处理,得到第二电压信号VP、第一电压信号VN。The third inverter INV5 is used to output the inverted signal of the output signal of the inverter chain to the
本发明实施例提供的占空比校正电路,通过反馈控制模块向反相器链输出第一电压信号和第二电压信号,第一电压信号的大小与反相器链的输出信号的反相信号的占空比大小呈正相关,第二电压信号的大小与反相器链的输出信号的占空比大小呈正相关,同时通过反相器链中的第一调节电路根据第一电压信号VN调节第一反相器INV3的输出信号的占空比大小,通过第二调节电路根据第二电压信号VN调节第二反相器INV4的输出信号的占空比大小,且第一反相器INV3的输出信号的占空比大小与第一电压信号VN的大小呈负相关,第二反相器INV4的输出信号的占空比大小与第二电压信号VP的大小呈负相关,这样当反相器链的输出信号的占空比大小大于目标值(即稳定状态下该占空比校正电路的输出信号的占空比)时,通过反相器链中的第一调节电路、第二调节电路可以快速的降低反相器链的输出信号的占空比大小,当反相器链的输出信号的占空比大小小于目标值时,通过第一调节电路、第二调节电路可以快速的增大反相器链的输出信号的占空比大小,使占空比校正电路快速的进入稳定状态,有利于实现较好的稳定速度,减少电路进入稳定状态所需的时间,并且相比现有技术,占空比校正电路的实现可以不需要延时单元,有利于降低电路占用面积和功耗。The duty cycle correction circuit provided by the embodiment of the present invention outputs a first voltage signal and a second voltage signal to the inverter chain through the feedback control module, and the magnitude of the first voltage signal is the inversion signal of the output signal of the inverter chain. The size of the duty cycle of the inverter chain is positively correlated, and the size of the second voltage signal is positively correlated with the size of the duty cycle of the output signal of the inverter chain. At the same time, the first adjustment circuit in the inverter chain adjusts the first voltage signal VN according to the The duty ratio of the output signal of an inverter INV3 is adjusted by the second adjusting circuit according to the second voltage signal VN. The duty ratio of the output signal of the second inverter INV4 is adjusted, and the output of the first inverter INV3 The duty cycle of the signal is negatively correlated with the magnitude of the first voltage signal VN, and the duty cycle of the output signal of the second inverter INV4 is negatively correlated with the magnitude of the second voltage signal VP, so that when the inverter chain is When the duty cycle of the output signal is greater than the target value (that is, the duty cycle of the output signal of the duty cycle correction circuit in a steady state), the first adjustment circuit and the second adjustment circuit in the inverter chain can quickly reduce the duty cycle of the output signal of the inverter chain, when the duty cycle of the output signal of the inverter chain is smaller than the target value, the first adjustment circuit and the second adjustment circuit can quickly increase the inversion The size of the duty cycle of the output signal of the converter chain makes the duty cycle correction circuit enter a stable state quickly, which is conducive to achieving a better stable speed, reducing the time required for the circuit to enter a stable state, and compared with the prior art, it takes up less time The realization of the duty ratio correction circuit may not require a delay unit, which is beneficial to reduce the area occupied by the circuit and the power consumption.
其中,本发明实施例中,反相器链中的第一调节电路、第二调节电路可以采用电流源实现,通过电流源可以调节第一调节电路的上、下拉能力和第二调节电路的上、下拉能力,进而控制第一反相器INV3的输出信号的占空比和第二反相器INV4的输出信号的占空比。Among them, in the embodiment of the present invention, the first adjustment circuit and the second adjustment circuit in the inverter chain can be implemented by using a current source, and the pull-up and pull-down capabilities of the first adjustment circuit and the pull-up capability of the second adjustment circuit can be adjusted through the current source. , pull-down capability, and then control the duty cycle of the output signal of the first inverter INV3 and the duty cycle of the output signal of the second inverter INV4.
例如,在图2所示的实施例中,所述第一调节电路可以包括第一电流源I6和第二电流源I7,所述第一电流源I6连接所述第一反相器INV3的电源端以调节所述第一反相器的上拉能力(第一电流源I6的一端接电源VDD,另一端接第一反相器的电源端,第一反相器的上拉能力与第一电流源I6的电流呈正相关),所述第二电流源I7连接所述第一反相器的接地端以调节所述第一反相器的下拉能力(第二电流源I7的一端接第一反相器的接地端,另一端接地,第一反相器的下拉能力与第一电流源I7的电流呈正相关),所述第一电流源的电流大小与所述第一电压信号VN的大小呈负相关,所述第二电流源的电流大小与所述第一电压信号VN的大小呈正相关,可以理解的是,第一反相器的上拉能力越大,第一反相器的输出信号的占空比越大,第一反相器的下拉能力越大,第一反相器的输出信号的占空比越小,这样,第一电压信号VN的电压大小越大,通过第一调节电路可以使第一反相器的输出信号的占空比越小,第一电压信号VN的电压大小越小,通过第一调节电路可以使第一反相器的输出信号的占空比越大,并且通过第一电流源I6和第二电流源I7的共同作用,可以提高第一调节电路对第一反相器的调节速度;For example, in the embodiment shown in FIG. 2 , the first regulating circuit may include a first current source I6 and a second current source I7 , and the first current source I6 is connected to the power supply of the first inverter INV3 terminal to adjust the pull-up capability of the first inverter (one end of the first current source I6 is connected to the power supply VDD, the other end is connected to the power supply terminal of the first inverter, the pull-up capability of the first inverter is the same as that of the first inverter. The current of the current source I6 is positively correlated), the second current source I7 is connected to the ground terminal of the first inverter to adjust the pull-down capability of the first inverter (one end of the second current source I7 is connected to the first inverter The ground terminal of the inverter is grounded, and the other terminal is grounded. The pull-down capability of the first inverter is positively correlated with the current of the first current source I7), and the magnitude of the current of the first current source is related to the magnitude of the first voltage signal VN. is negatively correlated, and the magnitude of the current of the second current source is positively correlated with the magnitude of the first voltage signal VN. It can be understood that the greater the pull-up capability of the first inverter, the higher the output of the first inverter. The larger the duty cycle of the signal, the greater the pull-down capability of the first inverter, and the smaller the duty cycle of the output signal of the first inverter. In this way, the voltage of the first voltage signal VN is larger. The adjustment circuit can make the duty cycle of the output signal of the first inverter smaller and the voltage of the first voltage signal VN smaller, and the first adjustment circuit can make the duty cycle of the output signal of the first inverter smaller. is large, and through the joint action of the first current source I6 and the second current source I7, the adjustment speed of the first inverter by the first adjustment circuit can be improved;
所述第二调节电路可以包括第三电流源I8和第四电流源I9,所述第三电流源I8连接所述第二反相器INV4的电源端以调节所述第二反相器INV4的上拉能力(第三电流源I8的一端接电源VDD,另一端接第二反相器INV4的电源端,第二反相器INV4的上拉能力与第三电流源I8的电流呈正相关),所述第四电流源I9连接所述第二反相器INV4的接地端以调节所述第二反相器INV4的下拉能力(第四电流源I9的一端接第二反相器INV4的接地端,另一端接地,第二反相器的下拉能力与第四电流源I9的电流呈正相关),所述第三电流源I8的电流大小与所述第二电压信号VP的大小呈负相关,所述第四电流源I9的电流大小与所述第二电压信号VP的大小呈正相关,可以理解的是,第二反相器的上拉能力越大,第二反相器的输出信号的占空比越大,第二反相器的下拉能力越大,第二反相器的输出信号的占空比越小,这样,第二电压信号VP的电压大小越大,通过第二调节电路可以使第二反相器的输出信号的占空比越小,第二电压信号VP的电压大小越小,通过第二调节电路可以使第二反相器的输出信号的占空比越大,并且通过第三电流源I8和第四电流源I9的共同作用,可以提高第二调节电路对第二反相器的调节速度。The second adjustment circuit may include a third current source I8 and a fourth current source I9, the third current source I8 is connected to the power supply terminal of the second inverter INV4 to adjust the voltage of the second inverter INV4. Pull-up capability (one end of the third current source I8 is connected to the power supply VDD, and the other end is connected to the power supply end of the second inverter INV4, the pull-up capability of the second inverter INV4 is positively correlated with the current of the third current source I8), The fourth current source I9 is connected to the ground terminal of the second inverter INV4 to adjust the pull-down capability of the second inverter INV4 (one end of the fourth current source I9 is connected to the ground terminal of the second inverter INV4 , the other end is grounded, the pull-down capability of the second inverter is positively correlated with the current of the fourth current source I9), the current of the third current source I8 is negatively correlated with the magnitude of the second voltage signal VP, so The magnitude of the current of the fourth current source I9 is positively correlated with the magnitude of the second voltage signal VP. It can be understood that, the greater the pull-up capability of the second inverter, the greater the duty cycle of the output signal of the second inverter. The larger the ratio is, the larger the pull-down capability of the second inverter is, and the smaller the duty cycle of the output signal of the second inverter is. In this way, the voltage of the second voltage signal VP is larger, and the second adjustment circuit can make the The smaller the duty cycle of the output signal of the second inverter, the smaller the voltage of the second voltage signal VP, the larger the duty cycle of the output signal of the second inverter can be made by the second adjustment circuit, and the The joint action of the third current source I8 and the fourth current source I9 can improve the adjustment speed of the second inverter by the second adjustment circuit.
其中,本发明实施例中,电流源可以由MOS管或三极管实现。Wherein, in the embodiment of the present invention, the current source may be implemented by a MOS transistor or a triode.
此外,本发明实施例中,为了平衡第三反相器INV5带来的信号延迟时间,反相器链的输出端与反馈控制模块10之间设置有第一缓冲器Buffer1,有利于使反馈控制模块输入的两信号为相位完全相反的两信号,具体地,第一缓冲器Buffer1与第三反相器INV5具有大致相同的信号延迟时间。In addition, in the embodiment of the present invention, in order to balance the signal delay time caused by the third inverter INV5, a first buffer Buffer1 is arranged between the output end of the inverter chain and the
其中,本发明实施例中,反相器链中的第一反相器和第二反相器可以均为由PMOS管和NMOS管组成的反相器,可以是CMOS反相器。Wherein, in the embodiment of the present invention, the first inverter and the second inverter in the inverter chain may be inverters composed of PMOS transistors and NMOS transistors, and may be CMOS inverters.
本发明实施例中,占空比校正电路的目标值(即稳定状态下该占空比校正电路的输出信号的占空比)可由占空比校正电路中各部分的特性参数决定,即可以通过改变占空比校正电路中器件的特性参数改变占空比校正电路的目标值。例如,占空比校正电路的目标值可以是50%,当占空比校正电路的输出信号的占空比大于50%时,相比稳定状态下,第二电压信号VP的电压大小增大,第一电压信号VN的电压大小减小,进而可以使第一电流源I6的导通能力增大,电流增大,第二电流源I7的导通能力下降,电流减小,因而使第一反相器INV3的上拉能力加强,加大INV3的输出信号的占空比;同时,由于第二电压信号VP电压的增大,也会导致第四电流源I9的导通能力加强,第三电流源I8的导通能力减弱,因而使第二反相器INV4的下拉能力加强,降低INV4的输出信号的占空比,INV3的输出信号经过INV4反相后将进一步扩展方波信号的低电平脉宽,从而降低输出的方波信号的占空比,达到占空比校准目标值。In the embodiment of the present invention, the target value of the duty cycle correction circuit (that is, the duty cycle of the output signal of the duty cycle correction circuit in a stable state) can be determined by the characteristic parameters of each part in the duty cycle correction circuit, that is, it can be determined by Changing the characteristic parameter of the device in the duty cycle correction circuit changes the target value of the duty cycle correction circuit. For example, the target value of the duty cycle correction circuit may be 50%. When the duty cycle of the output signal of the duty cycle correction circuit is greater than 50%, the voltage of the second voltage signal VP increases compared to the steady state, The magnitude of the voltage of the first voltage signal VN is reduced, so that the conduction capability of the first current source I6 can be increased, and the current can be increased. The pull-up capability of the phase device INV3 is strengthened, and the duty cycle of the output signal of INV3 is increased; at the same time, due to the increase in the voltage of the second voltage signal VP, the conduction capability of the fourth current source I9 is also enhanced, and the third current The conduction ability of the source I8 is weakened, so the pull-down ability of the second inverter INV4 is strengthened, and the duty cycle of the output signal of INV4 is reduced. After the output signal of INV3 is inverted by INV4, the low level of the square wave signal will be further expanded. pulse width, thereby reducing the duty cycle of the output square wave signal and reaching the target value of the duty cycle calibration.
例如,在一实施例中,反馈控制模块10被配置为通过以下方式得到所述第一电压信号VN和所述第二电压信号VP:通过对所述第三反相器的输出信号进行低通滤波处理得到第三电压信号,通过对所述反相器链的输出信号进行低通滤波处理得到第四电压信号,然后对所述第三电压信号和所述第四电压信号进行全差分放大处理,从而得到所述第一电压信号VN和所述第二电压信号VP。For example, in one embodiment, the
例如,反馈控制模块10可以包括第一低通滤波单元、第二低通滤波单元和全差分放大器;For example, the
所述第一低通滤波单元的输入端连接所述反相器链的输出端,以接收所述反相器链的输出信号;The input end of the first low-pass filtering unit is connected to the output end of the inverter chain to receive the output signal of the inverter chain;
所述第二低通滤波单元的输入端连接所述第三反相器的输出端,以接收所述第三反相器的输出信号;The input end of the second low-pass filtering unit is connected to the output end of the third inverter to receive the output signal of the third inverter;
所述全差分放大器的正输入端连接所述第一低通滤波单元的输出端,所述全差分放大器的负输入端连接所述第二低通滤波单元的输出端,所述全差分放大器的正输出端用于输出所述第二电压信号,所述全差分放大器的负输出端用于输出所述第一电压信号。通过全差分放大器,可以保证VP、VN的共模点,提供增益,保证反馈回路的稳定性。另外,反馈控制模块中的全差分放大器也可以采用其他放大器实现。The positive input terminal of the fully differential amplifier is connected to the output terminal of the first low-pass filtering unit, the negative input terminal of the fully differential amplifier is connected to the output terminal of the second low-pass filtering unit, and the fully differential amplifier is connected to the output terminal of the second low-pass filtering unit. The positive output terminal is used for outputting the second voltage signal, and the negative output terminal of the fully differential amplifier is used for outputting the first voltage signal. Through the fully differential amplifier, the common mode point of VP and VN can be guaranteed, the gain can be provided, and the stability of the feedback loop can be guaranteed. In addition, the fully differential amplifier in the feedback control module can also be implemented with other amplifiers.
优选地,在一实施例中,为了加快占空比校正速度,反相器链可以包括多个依次串联(级联)的反相器组,每一反相器组包括一第一反相器、一第二反相器、一第一调节电路、一第二调节电路,同一反相器组内,所述第一反相器的输出端连接所述第二反相器的输入端,所述第一调节电路连接所述第一反相器和所述反馈控制模块,以根据所述反馈控制模块输出的第一电压信号调节所述第一反相器的输出信号,所述第一反相器的输出信号的占空比大小与所述第一电压信号的大小呈负相关,所述第二调节电路连接所述第二反相器和所述反馈控制模块,以根据所述反馈控制模块输出的第二电压信号调节所述第二反相器的输出信号,所述第二反相器的输出信号的占空比大小与所述第二电压信号的大小呈负相关。Preferably, in an embodiment, in order to speed up the duty cycle correction, the inverter chain may include a plurality of inverter groups sequentially connected in series (cascaded), and each inverter group includes a first inverter , a second inverter, a first adjustment circuit, and a second adjustment circuit, in the same inverter group, the output end of the first inverter is connected to the input end of the second inverter, so The first adjustment circuit is connected to the first inverter and the feedback control module, so as to adjust the output signal of the first inverter according to the first voltage signal output by the feedback control module, and the first inverter The size of the duty cycle of the output signal of the inverter is negatively correlated with the size of the first voltage signal, and the second adjustment circuit is connected to the second inverter and the feedback control module to control the feedback according to the feedback The second voltage signal output by the module adjusts the output signal of the second inverter, and the magnitude of the duty cycle of the output signal of the second inverter is negatively correlated with the magnitude of the second voltage signal.
例如,反相器链中反相器组的数量可以是2、3、4等。For example, the number of inverter banks in the inverter chain can be 2, 3, 4, etc.
参见图3,图3是本发明实施例提供的另一种方波时钟信号的占空比校正电路的示意图,该占空比校正电路包括反相器链、第三反相器INV5、第一缓冲器Buffer1和反馈控制模块;Referring to FIG. 3 , FIG. 3 is a schematic diagram of another duty cycle correction circuit of a square wave clock signal provided by an embodiment of the present invention. The duty cycle correction circuit includes an inverter chain, a third inverter INV5 , a first Buffer Buffer1 and feedback control module;
该反相器链包括两个串联(级联)的反相器组,第一个反相器组包括第一反相器INV1、第二反相器INV2、由第一电流源I2和第二电流源I3构成的第一调节电路、由第三电流源I4和第四电流源I5构成的第二调节电路,第二个反相器组包括第一反相器INV3、第二反相器INV4、由第一电流源I6和第二电流源I7构成的第一调节电路、由第三电流源I8和第四电流源I9构成的第二调节电路,该实施例中,第一反相器INV1的输入端即为反相器链的输入端,输入的待校正的方波时钟信号可以是晶振电路中方波转换电路的输出信号,第二反相器INV4的输出端即为反相器链的输出端,用于输出校正后的信号Fref;The inverter chain includes two series (cascaded) inverter groups, the first inverter group includes a first inverter INV1, a second inverter INV2, a first current source I2 and a second inverter INV2. A first regulating circuit composed of a current source I3, a second regulating circuit composed of a third current source I4 and a fourth current source I5, and the second inverter group includes a first inverter INV3 and a second inverter INV4 , a first regulating circuit composed of a first current source I6 and a second current source I7, a second regulating circuit composed of a third current source I8 and a fourth current source I9, in this embodiment, the first inverter INV1 The input end of the inverter chain is the input end of the inverter chain, the input square wave clock signal to be corrected can be the output signal of the square wave conversion circuit in the crystal oscillator circuit, and the output end of the second inverter INV4 is the inverter chain. , which is used to output the corrected signal Fref;
第一缓冲器Buffer1设置在反相器链的输出端与反馈控制模块之间,以平衡第三反相器INV5带来的延迟,使反馈控制模块输入的两信号为相位完全相反的两信号;The first buffer Buffer1 is arranged between the output end of the inverter chain and the feedback control module to balance the delay brought by the third inverter INV5, so that the two signals input by the feedback control module are two signals with completely opposite phases;
反馈控制模块包括第一低通滤波单元、第二低通滤波单元和全差分放大器11;The feedback control module includes a first low-pass filtering unit, a second low-pass filtering unit and a fully
其中,第一低通滤波单元的输入端通过第一缓冲器Buffer1连接所述反相器链的输出端,以获取所述反相器链的输出信号Fref,该第一低通滤波单元可以是RC滤波电路,包括电阻R3和电容C4,反相器链的输出信号的占空比越大,第一低通滤波单元的输出信号vp1(第四电压信号)的电压越大;Wherein, the input end of the first low-pass filtering unit is connected to the output end of the inverter chain through the first buffer Buffer1 to obtain the output signal Fref of the inverter chain, and the first low-pass filtering unit may be The RC filter circuit includes a resistor R3 and a capacitor C4. The larger the duty cycle of the output signal of the inverter chain, the larger the voltage of the output signal vp1 (the fourth voltage signal) of the first low-pass filter unit;
第二低通滤波单元的输入端连接所述第三反相器INV5的输出端,以接收所述第三反相器INV5的输出信号,该第二低通滤波单元可以是RC滤波电路,包括电阻R4和电容C5,第三反相器INV5的输出信号(反相器链的输出信号的反相信号)的占空比越大,第二低通滤波单元的输出信号vn1(第三电压信号)的电压越大;The input terminal of the second low-pass filtering unit is connected to the output terminal of the third inverter INV5 to receive the output signal of the third inverter INV5. The second low-pass filtering unit may be an RC filter circuit, including Resistor R4 and capacitor C5, the larger the duty cycle of the output signal of the third inverter INV5 (the inverted signal of the output signal of the inverter chain), the greater the duty cycle of the output signal vn1 of the second low-pass filtering unit (the third voltage signal ) the greater the voltage;
全差分放大器11的正输入端连接所述第一低通滤波单元的输出端,以接收信号vp1,所述全差分放大器的负输入端连接所述第二低通滤波单元的输出端,以接收信号vn1,所述全差分放大器的正输出端用于输出所述第二电压信号VP,所述全差分放大器的负输出端用于输出所述第一电压信号VN。The positive input terminal of the fully
电流源I2、I3、I6、I7、I4、I5、I8、I9均为受控电流源,其中,电流源I4、I5、I8、I9连接放大器11的正输出端,以获取第二电压信号VP,受控电流源I2、I3、I6、I7连接放大器11的负输出端VN,以获取第一电压信号VN。当占空比校正电路的输出信号的占空比稳定(即处于稳定状态)时,VP、VN电压保持恒定,经过反相器INV1、INV2、INV3、INV4的电流也保持恒定,方波信号的上升、下降沿也将不再变化。INV1、INV2和I2~I5构成第一级的反相器组,VN连接INV1的上、下电流源I2、I3,VP连接INV2上下电流源I4、I5。当占空比校正电路的输出信号的占空比大于目标值时,相比稳定状态下,VP电压增大,VN电压减小,进而使反相器INV1的上电流源I2导通能力增大,电流增大,下电流源I3的导通能力下降,电流减小,因而反相器INV1的上拉能力加强,从而加大INV1的输出信号的占空比;而由于VP电压的增大导致反相器INV2的下拉电流源I5的导通能力加强,上拉电流源I4的导通能力减弱,INV1的输出信号经过INV2反相后将进一步扩展方波信号的低电平脉宽,从而降低方波信号的占空比达到占空比校准目的。另外,INV3、INV4和I6~I9为第二级的反相器组,校正方式和第一级的反相器组相同,能够加快占空比校正速度。The current sources I2, I3, I6, I7, I4, I5, I8, and I9 are all controlled current sources, wherein the current sources I4, I5, I8, and I9 are connected to the positive output terminal of the
其中,对于反馈控制模块,反相器链的输出信号Fref信号分别经过Buffer1、第三反相器INV5后,分别连接RC滤波器。R3、C4构成的低通滤波器,R4、C5构成的低通滤波器分别连接Fref信号的同相、反相信号,当Fref的占空比达到目标值(如50%)时,Fref的同相、反相信号经过低通滤波器后可以输出相等的电压信号vp1、vn1,否则vp1大于或小于vn1。vp1、vn1经过全差分放大器11后输出VP、VN信号,当占空比稳定为50%时,输出的电压信号VP、VN恒定,受控电流源的电流大小不再变化,进而占空比校正电路输出的信号Fref的占空比能够保持恒定。Among them, for the feedback control module, the output signal Fref signal of the inverter chain is respectively connected to the RC filter after passing through Buffer1 and the third inverter INV5 respectively. The low-pass filter composed of R3 and C4, and the low-pass filter composed of R4 and C5 are respectively connected to the in-phase and inverse signals of the Fref signal. The inverted signal can output equal voltage signals vp1 and vn1 after passing through the low-pass filter, otherwise vp1 is larger or smaller than vn1. After vp1 and vn1 pass through the fully
优选地,本实施例中,反馈控制模块还可以包括共模电路12,共模电路12的输出端连接全差分放大器11的参考电压端,以向全差分放大器11提供共模参考电压,共模电路12提供的共模参考电压可变。本实施例中,VP、VN信号可受共模参考电压的影响,通过调节共模电路12输出不同的共模参考电压,输出VP、VN信号不同,从而可实现占空比可调的目的。例如,在一实施例中,为实现50%的目标值,共模电路12提供的共模参考电压可以是VDD/2,需要的目标值增大时可以使共模参考电压增大,需要的目标值减小时可以使共模参考电压减小,VDD为上述反相器组的电源VDD的电压大小。另外,也可以通过改变差分放大器11的特性参数调节占空比校正电路的目标值。Preferably, in this embodiment, the feedback control module may further include a
本发明实施例的占空比校正电路,可以产生占空比50%的方波信号,另外,通过调整不同共模电压,可稳定输出不同占空比的方波信号。并且相比现有技术,占空比校正电路的实现可以不需要延时单元,有利于降低电路占用面积和功耗,同时还利于提高稳定速度。The duty ratio correction circuit of the embodiment of the present invention can generate a square wave signal with a duty ratio of 50%. In addition, by adjusting different common mode voltages, it can stably output square wave signals with different duty ratios. In addition, compared with the prior art, the implementation of the duty cycle correction circuit may not require a delay unit, which is beneficial to reducing the area occupied by the circuit and the power consumption, and at the same time, it is also beneficial to improve the stabilization speed.
本发明实施例还提供了一种晶振电路,包括晶体振荡器、放大电路、方波转换电路和上述的占空比校正电路,其中,所述晶体振荡器的输出端连接所述放大电路的输入端,所述放大电路的输出端连接所述方波转换电路的输入端,所述方波转换电路的输出端连接所述占空比校正电路。An embodiment of the present invention further provides a crystal oscillator circuit, including a crystal oscillator, an amplifier circuit, a square wave conversion circuit and the above duty cycle correction circuit, wherein the output end of the crystal oscillator is connected to the input of the amplifier circuit The output end of the amplifying circuit is connected to the input end of the square wave conversion circuit, and the output end of the square wave conversion circuit is connected to the duty cycle correction circuit.
参见图4,图4是本发明实施例提供的一种晶振电路的示意图,该晶振电路包括晶体振荡器104、放大电路103、方波转换电路102和上述的占空比校正电路101,其中,所述晶体振荡器104的输出端连接所述放大电路103的输入端,所述放大电路103的输出端连接所述方波转换电路102的输入端,所述方波转换电路102的输出端连接所述占空比校正电路101的输入端,晶体振荡器104可以产生正弦波信号;Referring to FIG. 4, FIG. 4 is a schematic diagram of a crystal oscillator circuit provided by an embodiment of the present invention. The crystal oscillator circuit includes a
该晶振电路包括还包括二倍频电路200,所述二倍频电路200连接占空比校正电路101的输出端(即其中反相器链的输出端),以对所述反相器链的输出信号进行二倍频处理,所述二倍频电路200包括延迟单元201、异或门XOR,异或门XOR的第一输入端连接所述反相器链的输出端,所述异或门XOR的第二输入端连接所述延迟单元201的输出端,所述延迟单元201的输入端连接所述反相器链的输出端。二倍频电路200的输出信号的频率是信号Fref的频率的2倍,例如,占空比校正电路101能够输出占空比恒定在50%的Fref信号,该信号通过二倍频电路后也可输出恒定在50%占空比的2*Fref方波信号;The crystal oscillator circuit further includes a
优选地,二倍频电路200包括还包括第二缓冲器Buffer2,异或门XOR的第一输入端通过所述第二缓冲器Buffer2连接所述反相器链的输出端,通过第二缓冲器Buffer2可以使输出信号更接近方波。Preferably, the
其中,放大电路103包括第五电流源I1、第一PMOS管MP1、第一NMOS管MN1、第一电阻R1、第一电容C1和第二电容C2,其中,电容C1、C2为调谐电容,电流源I1与MN1、MP1构成推挽结构的放大器,用于提供增益,R1为反馈电阻,该放大电路为晶体振荡器提供足够的增益,达到稳定起振的目的,电容C1、C2为容值完全相同的调谐电容,用于调谐晶体振荡器的频率,晶体振荡器经过放大电路后可以提供足够幅度的正弦波信号;The
所述第五电流源I1的正端连接电源,所述第五电流源I1的负端连接所述第一PMOS管MP1的源极,所述第一PMOS管MP1的栅极、所述第一电阻的第一端、所述第一NMOS管MN1的栅极、所述第一电容C1的第一端连接所述晶体振荡器104的第一端和所述方波转换电路102的输入端,所述第一PMOS管MP1的漏极、所述第一电阻R1的第二端、所述第一NMOS管MN1的漏极、所述第二电容C2的第一端连接所述晶体振荡器104的第二端,第一NMOS管MN1的源极、所述第一电容C1的第二端、所述第二电容C2的第二端接地;The positive terminal of the fifth current source I1 is connected to the power supply, the negative terminal of the fifth current source I1 is connected to the source of the first PMOS transistor MP1, the gate of the first PMOS transistor MP1, the first The first end of the resistor, the gate of the first NMOS transistor MN1, and the first end of the first capacitor C1 are connected to the first end of the
所述方波转换电路102包括第三电容C3、第二PMOS管MP2、第二NMOS管MN2、第二电阻R2,其中C3为耦合电容,用于隔离放大电路与方波转换电路的直流点,MN2、MP2组成反相器,电阻R2为反馈电阻,用于提供反相器输入端的直流偏置电压;The square
所述第三电容C3的第一端作为所述方波转换电路102的输入端连接所述放大电路103,所述第二PMOS管MP2的栅极、所述第二电阻R2的第一端、所述第二NMOS管MN2的栅极连接所述第三电容C3的第二端,所述第二PMOS管MP2的漏极、所述第二电阻R2的第二端、所述第二NMOS管MN2的漏极连接在一起作为所述方波转换电路的输出端,第二PMOS管MP2的源极接电源,第二NMOS管MN2的源极接地。The first end of the third capacitor C3 is connected to the amplifying
本发明实施例提供的晶振电路,可产生占空比50%的信号,且能输出2倍频的方波信号,具有在高性能时钟系统应用中成本低的优点,且通过调整不同共模参考电压,可稳定输出不同占空比的方波信号,在高性能时钟系统设计中,有利于提高可靠性,并降低功耗和成本。The crystal oscillator circuit provided by the embodiment of the present invention can generate a signal with a duty cycle of 50%, and can output a square wave signal with a frequency multiplied by 2, which has the advantage of low cost in the application of a high-performance clock system, and can be adjusted by different common mode references. voltage, can stably output square wave signals with different duty cycles, which is beneficial to improve reliability and reduce power consumption and cost in the design of high-performance clock systems.
上述的晶振电路,经过二倍频电路后可得到占空比稳定的2*Fref参考时钟源,可以给高性能时钟系统提供参考时钟源,例如,在一实施例中,参见图5,所述晶振电路还包括PLL锁相环300,PLL锁相环300的输入端连接所述二倍频电路200的输出端,以对所述二倍频电路的输出信号进行N倍频处理,PLL锁相环300可以输出频率为2*N*Fref的时钟信号,实现高性能时钟系统。The above-mentioned crystal oscillator circuit can obtain a 2*Fref reference clock source with a stable duty cycle after the frequency doubling circuit, which can provide a reference clock source for a high-performance clock system. For example, in an embodiment, referring to FIG. 5, the The crystal oscillator circuit further includes a PLL phase-locked
在目前的晶振电路中,为了实现高性能时钟系统,通常采用两个级联的PLL锁相环,例如,第一级PLL倍频后可输出占空比稳定的M’*Fref’信号(Fref为第一级PLL的输入信号的频率),再供给第二级PLL做参考时钟使用,通过第二级PLL得到M’*N’*Fref’。两个级联的PLL锁相环容易造成电路占用面积和功耗较大的问题。本发明实施例提供的晶振电路,通过二倍频电路,输出2倍频的时钟信号,可以省去一个PLL级联,有利于降低电路占用面积和功耗。In the current crystal oscillator circuit, in order to realize a high-performance clock system, two cascaded PLL phase-locked loops are usually used. is the frequency of the input signal of the first-stage PLL), and then supplies it to the second-stage PLL for use as a reference clock, and obtains M'*N'*Fref' through the second-stage PLL. Two cascaded PLL phase-locked loops are likely to cause problems of large circuit occupation area and power consumption. The crystal oscillator circuit provided by the embodiment of the present invention outputs a clock signal with a double frequency through the double frequency circuit, which can save a PLL cascade connection, which is beneficial to reduce the occupied area and power consumption of the circuit.
本发明实施例提供了一种电子设备,其包括上述的占空比校正电路或者上述的晶振电路。例如,该电子设备可以是蓝牙耳机、蓝牙音箱等电子设备。An embodiment of the present invention provides an electronic device, which includes the above-mentioned duty cycle correction circuit or the above-mentioned crystal oscillator circuit. For example, the electronic device may be an electronic device such as a Bluetooth headset, a Bluetooth speaker, and the like.
本发明实施例还提供了一种方波时钟信号的占空比校正方法,应用于占空比校正电路,所述占空比校正电路包括反相器链、第三反相器和反馈控制模块,所述反相器链包括反相器组,所述反相器组包括第一反相器、第二反相器、第一调节电路、第二调节电路,所述第一反相器的输出端连接所述第二反相器的输入端,所述第三反相器用于向所述反馈控制模块输出所述反相器链的输出信号的反相信号,所述方法包括:An embodiment of the present invention further provides a duty cycle correction method for a square wave clock signal, which is applied to a duty cycle correction circuit, where the duty cycle correction circuit includes an inverter chain, a third inverter and a feedback control module , the inverter chain includes an inverter group, and the inverter group includes a first inverter, a second inverter, a first adjustment circuit, and a second adjustment circuit. The output terminal is connected to the input terminal of the second inverter, and the third inverter is configured to output the inverted signal of the output signal of the inverter chain to the feedback control module, and the method includes:
所述第一调节电路根据所述反馈控制模块输出的第一电压信号调节所述第一反相器的输出信号,以及所述第二调节电路根据所述反馈控制模块输出的第二电压信号调节所述第二反相器的输出信号,其中,所述第一反相器的输出信号的占空比大小与所述第一电压信号的大小呈负相关,所述第二反相器的输出信号的占空比大小与所述第二电压信号的大小呈负相关;The first regulating circuit regulates the output signal of the first inverter according to the first voltage signal output by the feedback control module, and the second regulating circuit regulates the output signal according to the second voltage signal output by the feedback control module The output signal of the second inverter, wherein the size of the duty cycle of the output signal of the first inverter is negatively correlated with the size of the first voltage signal, and the output of the second inverter The size of the duty cycle of the signal is negatively correlated with the size of the second voltage signal;
所述反馈控制模块根据所述反相器链的输出信号输出所述第二电压信号以及根据所述第三反相器的输出信号输出所述第一电压信号,其中,所述第二电压信号的大小与所述反相器链的输出信号的占空比大小呈正相关,所述第一电压信号的大小与所述第三反相器的输出信号的占空比大小呈正相关。The feedback control module outputs the second voltage signal according to the output signal of the inverter chain and outputs the first voltage signal according to the output signal of the third inverter, wherein the second voltage signal The magnitude of , is positively correlated with the duty cycle of the output signal of the inverter chain, and the magnitude of the first voltage signal is positively correlated with the duty cycle of the output signal of the third inverter.
本领域的技术人员能够理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。Those skilled in the art can understand that, under the premise of no conflict, the above preferred solutions can be freely combined and superimposed.
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本发明的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本发明的权利要求范围内。It should be understood that the above-mentioned embodiments are only exemplary rather than restrictive, and those skilled in the art can make various obvious or equivalent to the above-mentioned details without departing from the basic principles of the present invention. Modifications or substitutions will be included within the scope of the claims of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111610187.3A CN114793108B (en) | 2021-12-27 | 2021-12-27 | Duty cycle correction circuit and method, crystal oscillator circuit and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111610187.3A CN114793108B (en) | 2021-12-27 | 2021-12-27 | Duty cycle correction circuit and method, crystal oscillator circuit and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114793108A true CN114793108A (en) | 2022-07-26 |
CN114793108B CN114793108B (en) | 2024-06-04 |
Family
ID=82460033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111610187.3A Active CN114793108B (en) | 2021-12-27 | 2021-12-27 | Duty cycle correction circuit and method, crystal oscillator circuit and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114793108B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118041308A (en) * | 2024-01-26 | 2024-05-14 | 珠海市杰理科技股份有限公司 | Crystal oscillator circuit and clock signal generation method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090261877A1 (en) * | 2008-04-18 | 2009-10-22 | Hsien-Sheng Huang | Duty cycle correction circuit with wide-frequency working range |
US20110291724A1 (en) * | 2010-05-25 | 2011-12-01 | Freescale Semiconductor, Inc. | Duty cycle correction circuit |
CN104124968A (en) * | 2014-08-06 | 2014-10-29 | 西安电子科技大学 | Clock duty ratio calibration circuit for streamlined analog-digital converter |
US9118308B1 (en) * | 2014-02-07 | 2015-08-25 | Via Technologies, Inc. | Duty cycle corrector |
CN105958971A (en) * | 2016-06-02 | 2016-09-21 | 泰凌微电子(上海)有限公司 | Clock duty ratio calibration circuit |
US20190149141A1 (en) * | 2017-11-15 | 2019-05-16 | Texas Instruments Incorporated | Clock doublers with duty cycle correction |
CN110957998A (en) * | 2019-12-02 | 2020-04-03 | 翱捷智能科技(上海)有限公司 | Circuit for accurately correcting duty ratio of clock signal |
CN112187218A (en) * | 2020-08-28 | 2021-01-05 | 芯创智(北京)微电子有限公司 | Accurate clock signal duty ratio correction circuit |
-
2021
- 2021-12-27 CN CN202111610187.3A patent/CN114793108B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090261877A1 (en) * | 2008-04-18 | 2009-10-22 | Hsien-Sheng Huang | Duty cycle correction circuit with wide-frequency working range |
US20110291724A1 (en) * | 2010-05-25 | 2011-12-01 | Freescale Semiconductor, Inc. | Duty cycle correction circuit |
US9118308B1 (en) * | 2014-02-07 | 2015-08-25 | Via Technologies, Inc. | Duty cycle corrector |
CN104124968A (en) * | 2014-08-06 | 2014-10-29 | 西安电子科技大学 | Clock duty ratio calibration circuit for streamlined analog-digital converter |
CN105958971A (en) * | 2016-06-02 | 2016-09-21 | 泰凌微电子(上海)有限公司 | Clock duty ratio calibration circuit |
US20190149141A1 (en) * | 2017-11-15 | 2019-05-16 | Texas Instruments Incorporated | Clock doublers with duty cycle correction |
CN110957998A (en) * | 2019-12-02 | 2020-04-03 | 翱捷智能科技(上海)有限公司 | Circuit for accurately correcting duty ratio of clock signal |
CN112187218A (en) * | 2020-08-28 | 2021-01-05 | 芯创智(北京)微电子有限公司 | Accurate clock signal duty ratio correction circuit |
Non-Patent Citations (2)
Title |
---|
邓红辉;储松;赵鹏程;: "一种高速高精度时钟占空比稳定电路", 微电子学, no. 05, 20 October 2017 (2017-10-20) * |
青旭东;王永禄;秦少宏;钟黎;: "一种新型超高速高精度时钟占空比校准电路", 微电子学, no. 02, 20 April 2018 (2018-04-20) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118041308A (en) * | 2024-01-26 | 2024-05-14 | 珠海市杰理科技股份有限公司 | Crystal oscillator circuit and clock signal generation method |
Also Published As
Publication number | Publication date |
---|---|
CN114793108B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7400183B1 (en) | Voltage controlled oscillator delay cell and method | |
CN101588178B (en) | Self-biased phase-locked loop | |
CN101557213B (en) | Delay unit, annular oscillator and PLL circuit | |
KR20050072547A (en) | Current reference circuit with voltage-current converter having auto-tuning function | |
CN106911330B (en) | A duty cycle stabilization circuit | |
CN118041308B (en) | Crystal oscillator circuit and clock signal generation method | |
WO2020019184A1 (en) | Clock driver circuit | |
WO2018145612A1 (en) | Charge pump circuit and phase-locked loop | |
US10205445B1 (en) | Clock duty cycle correction circuit | |
US10693446B1 (en) | Clock adjustment circuit and clock adjustment method | |
CN109995363B (en) | A Ring Voltage Controlled Oscillator with Self-biased Structure | |
US7965118B2 (en) | Method and apparatus for achieving 50% duty cycle on the output VCO of a phased locked loop | |
CN104135277B (en) | Reference clock produces circuit and method on a kind of piece | |
CN101425803B (en) | Voltage controlled oscillator for loop circuit | |
JP4160503B2 (en) | Differential ring oscillator stage | |
CN114793108B (en) | Duty cycle correction circuit and method, crystal oscillator circuit and electronic equipment | |
CN202617095U (en) | Phase locked loop charge pump circuit with low current mismatch | |
CN102723912B (en) | Broadband annular oscillator | |
US10999055B2 (en) | SerDes systems and differential comparators | |
KR20070020596A (en) | Differential Amplifier Circuit Suitable for Ring Oscillator | |
US7642867B2 (en) | Simple technique for reduction of gain in a voltage controlled oscillator | |
JP2005160093A (en) | Method and apparatus for generating oscillation signal according to control current | |
CN110830007B (en) | A Low Phase Noise Broadband Ring Oscillator | |
US10554199B2 (en) | Multi-stage oscillator with current voltage converters | |
CN218526309U (en) | Double-charge-pump PLL circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |