CN114792115B - Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network - Google Patents
Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network Download PDFInfo
- Publication number
- CN114792115B CN114792115B CN202210542432.XA CN202210542432A CN114792115B CN 114792115 B CN114792115 B CN 114792115B CN 202210542432 A CN202210542432 A CN 202210542432A CN 114792115 B CN114792115 B CN 114792115B
- Authority
- CN
- China
- Prior art keywords
- signal data
- deconvolution
- telemetry signal
- layer
- reconstruction network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000012549 training Methods 0.000 claims abstract description 52
- 238000010276 construction Methods 0.000 claims abstract description 16
- 230000015654 memory Effects 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 21
- 230000004913 activation Effects 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000012795 verification Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2433—Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Selective Calling Equipment (AREA)
Abstract
本发明实施例公开了一种基于反卷积重建网络的遥测信号野值去除方法、装置及介质;该方法包括:基于卷积构建与反卷积重建构造一反卷积重建网络;通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络进行训练,获得训练后的反卷积重建网络;将原始遥测信号数据时间戳输入至所述训练后的反卷积重建网络,以获得与所述原始遥测信号数据时间戳对应的预测的遥测信号数据;计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离;当所述距离大于设定的阈值,确定所述原始遥测信号数据时间戳对应的原始遥测信号数据为野值,并将所述野值进行去除。
The embodiment of the present invention discloses a method, device and medium for removing outliers of telemetry signals based on a deconvolution reconstruction network; the method includes: constructing a deconvolution reconstruction network based on convolution construction and deconvolution reconstruction; The training data composed of the actual measured telemetry signal data and the corresponding time stamp of the measured telemetry signal data is used to train the deconvolution reconstruction network to obtain the trained deconvolution reconstruction network; the original telemetry signal data time stamp is input to the The deconvolution reconstruction network after the training is used to obtain the predicted telemetry signal data corresponding to the original telemetry signal data timestamp; and the predicted telemetry signal data corresponding to the original telemetry signal data timestamp is calculated. The distance between signal data; when the distance is greater than a set threshold, it is determined that the original telemetry signal data corresponding to the time stamp of the original telemetry signal data is an outlier value, and the outlier value is removed.
Description
技术领域technical field
本发明实施例涉及航天器数据处理技术领域,尤其涉及一种基于反卷积重建网络的遥测信号野值去除方法、装置及介质。Embodiments of the present invention relate to the technical field of spacecraft data processing, in particular to a method, device and medium for removing outliers of telemetry signals based on a deconvolution reconstruction network.
背景技术Background technique
航天器的遥测数据是重要的战略资源,利用遥测数据,可以对航天器的运行状态进行实时监测与异常预测,从而保证航天器的稳定运行。但是由于航天器运行空间的噪声干扰、数据丢失、传感器失灵等原因,遥测数据会发生瞬时跳变或错误,从而生成异常点,即遥测信号野值。因此,为了获得更加高质量的航天器遥测数据,需要对这些遥测信号野值进行识别和剔除。The telemetry data of the spacecraft is an important strategic resource. Using the telemetry data, the operating status of the spacecraft can be monitored in real time and anomalies can be predicted, so as to ensure the stable operation of the spacecraft. However, due to noise interference in the space where the spacecraft operates, data loss, sensor failure, etc., the telemetry data will undergo instantaneous jumps or errors, thereby generating abnormal points, that is, outliers of the telemetry signal. Therefore, in order to obtain higher-quality spacecraft telemetry data, it is necessary to identify and eliminate the outliers of these telemetry signals.
航天器的遥测信号野值通常包含以下两种类型:第一种属于孤立野值,也就是说在早时间序列中存在跳跃式的尖峰,而相邻的数据都远小于或远大于野值;第二种属于孤立的连续野值,这种类型的野值一般在时间序列中也是一个很大的尖峰,且连续出现的几个野值的左邻和右邻的数据都远小于或远大于野值。Telemetry signal outliers of spacecraft usually include the following two types: the first type is isolated outliers, that is to say, there are jumping spikes in the early time series, and the adjacent data are much smaller or larger than the outliers; The second type belongs to isolated continuous outliers. This type of outlier is generally a large spike in the time series, and the data of the left and right neighbors of several outliers that appear continuously are much smaller or larger than wild value.
目前去除遥测信号野值的常规方案包括基于递归的方法、基于统计的方法和基于拟合的方法;其中,基于递推关系的方法通常有前向差分算法、53H算法、小波变换、改进卡尔曼滤波算法等。基于统计的方法主要包括3-sigma准则、罗曼洛夫斯基准则、狄克松准则、格拉布斯准则、基于模糊的置信度方法等。基于拟合的方法主要有多项式拟合,最小二乘拟合,基于数据驱动的拟合等。上述三类方法通常具有一定的局限性,而这些局限性则影响了遥测信号野值的去除效果。At present, conventional schemes for removing outliers of telemetry signals include recursive-based methods, statistical-based methods, and fitting-based methods; among them, methods based on recursive relations usually include forward difference algorithm, 53H algorithm, wavelet transform, and improved Kalman filtering algorithm, etc. Statistical-based methods mainly include 3-sigma criterion, Romanowski criterion, Dixon criterion, Grubbs criterion, fuzzy-based confidence method, etc. Fitting-based methods mainly include polynomial fitting, least-squares fitting, and data-driven fitting. The above three types of methods usually have certain limitations, and these limitations affect the removal effect of outliers in telemetry signals.
发明内容Contents of the invention
有鉴于此,本发明实施例期望提供一种基于反卷积重建网络的遥测信号野值去除方法、装置及介质;能够在反卷积重建网络能够快速学习的情况下提高遥测信号野值的去除效果。In view of this, the embodiment of the present invention expects to provide a method, device and medium for removing outliers of telemetry signals based on a deconvolution reconstruction network; it can improve the removal of outliers of telemetry signals when the deconvolution reconstruction network can learn quickly Effect.
本发明实施例的技术方案是这样实现的:The technical scheme of the embodiment of the present invention is realized like this:
第一方面,本发明实施例提供了一种基于反卷积重建网络的遥测信号野值去除方法,包括:In the first aspect, an embodiment of the present invention provides a method for removing outliers of telemetry signals based on a deconvolution reconstruction network, including:
基于卷积构建与反卷积重建构造一反卷积重建网络;Construct a deconvolution reconstruction network based on convolution construction and deconvolution reconstruction;
通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络进行训练,获得训练后的反卷积重建网络;The deconvolution reconstruction network is trained by using the training data composed of the existing measured telemetry signal data and the corresponding time stamp of the measured telemetry signal data to obtain the deconvolution reconstruction network after training;
将原始遥测信号数据时间戳输入至所述训练后的反卷积重建网络,以获得与所述原始遥测信号数据时间戳对应的预测的遥测信号数据;inputting raw telemetry signal data timestamps into the trained deconvolution reconstruction network to obtain predicted telemetry signal data corresponding to the raw telemetry signal data timestamps;
计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离;calculating the distance between the original telemetry signal data corresponding to the original telemetry signal data time stamp and the predicted telemetry signal data;
当所述距离大于设定的阈值,确定所述原始遥测信号数据时间戳对应的原始遥测信号数据为野值,并将所述野值进行去除。When the distance is greater than the set threshold, it is determined that the original telemetry signal data corresponding to the time stamp of the original telemetry signal data is an outlier value, and the outlier value is removed.
第二方面,本发明实施例提供了一种基于反卷积重建网络的遥测信号野值去除装置,所述装置包括:构造部分、反卷积重建网络、训练部分、计算部分、判定部分和去除部分;其中,In the second aspect, the embodiment of the present invention provides a device for removing outliers of telemetry signals based on a deconvolution reconstruction network. part; of which,
所述构造部分,经配置为基于卷积构建与反卷积重建构造一反卷积重建网络;The construction part is configured to construct a deconvolution reconstruction network based on convolution construction and deconvolution reconstruction;
所述训练部分,经配置为通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络进行训练,获得训练后的反卷积重建网络;The training part is configured to train the deconvolution reconstruction network through training data composed of existing measured telemetry signal data and corresponding time stamps of the measured telemetry signal data, to obtain a trained deconvolution reconstruction network ;
所述反卷积重建网络,用于输入原始遥测信号数据时间戳,以获得与所述原始遥测信号数据时间戳对应的预测的遥测信号数据;said deconvolution reconstruction network for inputting raw telemetry signal data timestamps to obtain predicted telemetry signal data corresponding to said raw telemetry signal data timestamps;
所述计算部分,经配置为计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离;the calculation section configured to calculate a distance between raw telemetry signal data corresponding to a timestamp of the raw telemetry signal data and the predicted telemetry signal data;
所述判定部分,经配置为将所述距离与设定的阈值进行比较,以及当所述距离大于设定的阈值时,确定所述原始遥测信号数据时间戳对应的原始遥测信号数据为野值,并触发所述去除部分;The determination part is configured to compare the distance with a set threshold, and when the distance is greater than the set threshold, determine that the original telemetry signal data corresponding to the original telemetry signal data time stamp is an outlier , and trigger the removal part;
所述去除部分,经配置为将所述野值进行去除。The removal part is configured to remove the outlier.
第三方面,本发明实施例提供了一种计算设备,所述计算设备包括:通信接口,存储器和处理器,各个组件通过总线系统耦合在一起;其中,In a third aspect, an embodiment of the present invention provides a computing device, the computing device includes: a communication interface, a memory, and a processor, and each component is coupled together through a bus system; wherein,
所述通信接口,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;The communication interface is used for receiving and sending signals during the process of sending and receiving information with other external network elements;
所述存储器,用于存储能够在所述处理器上运行的计算机程序;said memory for storing a computer program capable of running on said processor;
所述处理器,用于在运行所述计算机程序时,执行第一方面所述基于反卷积重建网络的遥测信号野值去除方法的步骤。The processor is configured to, when running the computer program, execute the steps of the method for removing outliers of telemetry signals based on a deconvolution reconstruction network in the first aspect.
第四方面,本发明实施例提供了一种计算机存储介质,所述计算机存储介质存储有基于反卷积重建网络的遥测信号野值去除程序,所述基于反卷积重建网络的遥测信号野值去除程序被至少一个处理器执行时实现第一方面所述基于反卷积重建网络的遥测信号野值去除方法的步骤。In a fourth aspect, an embodiment of the present invention provides a computer storage medium, the computer storage medium stores a program for removing outliers of telemetry signals based on a deconvolution reconstruction network, and the outlier values of telemetry signals based on a deconvolution reconstruction network When the removal program is executed by at least one processor, the steps of the method for removing outliers of telemetry signals based on the deconvolution reconstruction network described in the first aspect are realized.
本发明实施例提供了一种基于反卷积重建网络的遥测信号野值去除方法、装置及介质;通过实测遥测信号数据训练完毕的反卷积重建网络对时间戳对应的遥测数据进行预测,并根据预测值与真实值之间的距离判定是否为野值。相较于常规方案,避免人为的插值和过多的参数设定,消除了统计分布以及时间跨度所产生的局限性,在反卷积重建网络能够快速学习的情况下提高了野值的去除效果和可靠性。Embodiments of the present invention provide a method, device, and medium for removing outliers of telemetry signals based on a deconvolution reconstruction network; the telemetry data corresponding to the time stamp is predicted by the deconvolution reconstruction network that has been trained on the measured telemetry signal data, and Determine whether it is an outlier according to the distance between the predicted value and the real value. Compared with the conventional scheme, it avoids artificial interpolation and excessive parameter setting, eliminates the limitations caused by statistical distribution and time span, and improves the removal effect of outliers when the deconvolution reconstruction network can learn quickly and reliability.
附图说明Description of drawings
图1为本发明实施例提供的基于反卷积重建网络的遥测信号野值去除方法流程示意图;FIG. 1 is a schematic flow chart of a method for removing outliers of telemetry signals based on a deconvolution reconstruction network provided by an embodiment of the present invention;
图2为本发明实施例提供的反卷积重建网络结构示意图;FIG. 2 is a schematic diagram of a deconvolution reconstruction network structure provided by an embodiment of the present invention;
图3为本发明实施例提供的训练与验证的损失迭代情况示意图;FIG. 3 is a schematic diagram of loss iterations of training and verification provided by an embodiment of the present invention;
图4为本发明实施例提供的距离直方图与核密度估计曲线示意图;4 is a schematic diagram of a distance histogram and a kernel density estimation curve provided by an embodiment of the present invention;
图5为本发明实施例提供的采用训练完毕后的DRN进行野值去除的过程示意图;FIG. 5 is a schematic diagram of the process of removing outliers by using the trained DRN provided by the embodiment of the present invention;
图6为本发明实施例提供的轨道半长轴的归一化距离对比示意图;Fig. 6 is a schematic diagram of the normalized distance comparison of the semi-major axis of the orbit provided by the embodiment of the present invention;
图7为本发明实施例提供的轨道半长轴遥测数据的训练和验证损失对比示意图;Fig. 7 is a schematic diagram of the comparison of training and verification losses of the track semi-major axis telemetry data provided by the embodiment of the present invention;
图8为本发明实施例提供的一种基于反卷积重建网络的遥测信号野值去除装置组成示意图;FIG. 8 is a schematic diagram of the composition of a telemetry signal outlier removal device based on a deconvolution reconstruction network provided by an embodiment of the present invention;
图9为本发明实施例提供的另一种基于反卷积重建网络的遥测信号野值去除装置组成示意图;FIG. 9 is a schematic composition diagram of another device for removing outliers of telemetry signals based on a deconvolution reconstruction network provided by an embodiment of the present invention;
图10为本发明实施例提供的一种计算设备的具体硬件结构示意图。FIG. 10 is a schematic diagram of a specific hardware structure of a computing device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.
对于目前常规的野值去除方法,详细来说,首先,基于递归的方法通常要求被处理的数据是连续的,而真实的卫星遥测信号由于地面站位置限制和数据丢包等原因通常是不连续的,所以这些方法需要先对丢失数据进行插值才能进行。而带有野值的数据的会大大影响插值的效果;另外,基于递推关系的方法有许多需要人为设定的超参数,比如阈值,参与递推的点的个数等等,所以这类方法具有一定的局限性。其次,基于统计的方法对于变化幅度较大的遥测信号野值去除效果有一定的局限性。因为这样的数据所呈现的统计学规律十分多样。可能在某个时段的遥测数据满足一种分布,下一个时间段就满足另外一种分布。此外,基于拟合的方法对于时间戳跨度较长的遥测信号野值去除效果会变差,所以通常采用局部拟合的方式。For the current conventional outlier removal methods, in detail, first of all, the recursive-based method usually requires the processed data to be continuous, while the real satellite telemetry signal is usually discontinuous due to ground station location constraints and data packet loss. , so these methods need to interpolate the missing data before proceeding. Data with wild values will greatly affect the effect of interpolation; in addition, methods based on recursive relationships have many hyperparameters that need to be set manually, such as thresholds, the number of points participating in recursive, etc., so this type of method has certain limitations. Secondly, statistical methods have certain limitations in removing outliers of telemetry signals with large variations. This is because the statistical laws presented by such data are very diverse. It may be that the telemetry data of a certain period of time satisfies one distribution, and the next time period satisfies another distribution. In addition, the fitting-based method will be less effective in removing outliers for telemetry signals with longer time stamp spans, so local fitting is usually used.
基于上述常规方案所表现的局限性,参见图1,其示出了本发明实施例提供的一种基于反卷积重建网络(DRN,Deconvolutional Reconstruction Network)的遥测信号野值去除方法,该方法可以包括:Based on the limitations shown by the above-mentioned conventional solutions, see FIG. 1 , which shows a method for removing outliers in telemetry signals based on a Deconvolutional Reconstruction Network (DRN, Deconvolutional Reconstruction Network) provided by an embodiment of the present invention. include:
S101:基于卷积构建与反卷积重建构造一反卷积重建网络;S101: Construct a deconvolution reconstruction network based on convolution construction and deconvolution reconstruction;
S102:通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络进行训练,获得训练后的反卷积重建网络;S102: Train the deconvolution reconstruction network by using the training data composed of the existing measured telemetry signal data and the corresponding time stamp of the measured telemetry signal data, to obtain the trained deconvolution reconstruction network;
S103:将原始遥测信号数据时间戳输入至所述训练后的反卷积重建网络,以获得与所述原始遥测信号数据时间戳对应的预测的遥测信号数据;S103: Input the time stamp of original telemetry signal data into the trained deconvolution reconstruction network, so as to obtain predicted telemetry signal data corresponding to the time stamp of the original telemetry signal data;
S104:计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离;S104: Calculate the distance between the original telemetry signal data corresponding to the time stamp of the original telemetry signal data and the predicted telemetry signal data;
S105:当所述距离大于设定的阈值,确定所述原始遥测信号数据时间戳对应的原始遥测信号数据为野值,并将所述野值进行去除。S105: When the distance is greater than a set threshold, determine that the original telemetry signal data corresponding to the time stamp of the original telemetry signal data is an outlier value, and remove the outlier value.
通过图1所示的技术方案,通过实测遥测信号数据训练完毕的反卷积重建网络对时间戳对应的遥测数据进行预测,并根据预测值与真实值之间的距离判定是否为野值。相较于常规方案,避免人为的插值和过多的参数设定,消除了统计分布以及时间跨度所产生的局限性,提高了野值的去除效果和可靠性。Through the technical solution shown in Figure 1, the telemetry data corresponding to the time stamp is predicted by the deconvolution reconstruction network trained by the measured telemetry signal data, and whether it is an outlier is determined according to the distance between the predicted value and the real value. Compared with the conventional scheme, it avoids artificial interpolation and excessive parameter setting, eliminates the limitations caused by statistical distribution and time span, and improves the removal effect and reliability of outliers.
对于图1所示的技术方案,需要说明的是,本发明实施例选择包括有卷积构建部分与反卷积重建部分的反卷积重建网络,其中,该卷积构建部分能够对输入该网络的数据进行增维处理,再将高维张量通过反卷积重建部分进行降维操作已适配遥测信号数据,而且该网络中没有潜向量的存在。在一些示例中,如图2所示,所述反卷积重建网络包括:输入(Input)层、批标准化的全连接(FC(BN),Full Connection(Batch Normalization))层、第一重建Reshape层、第一卷积Conv层、基于批量标准化BN与修正的线型单元激活函数(ReLU,Rectified Linear Unit activation)的第二卷积层(ConV(BN+ReLU))、第一反卷积DeConV层、基于批量标准化BN与修正的线型单元激活函数ReLU的第二反卷积层(DeConV(BN+ReLU))、第三反卷积DeConV层、第二重建Reshape层以及全连接FC的输出(Output)层。从图2可以看出,从输入层至ConV(BN+ReLU)层属于卷积构建(Convolutional Construction)部分,从第一反卷积DeConV层至Output(FC)层属于反卷积重建(DeconvolutionalReconstruction)部分。For the technical solution shown in Figure 1, it should be noted that the embodiment of the present invention selects a deconvolution reconstruction network including a convolution construction part and a deconvolution reconstruction part, wherein the convolution construction part can input the network The data is increased in dimension, and then the high-dimensional tensor is reconstructed through deconvolution to perform dimensionality reduction operation to adapt to the telemetry signal data, and there is no latent vector in the network. In some examples, as shown in Figure 2, the deconvolution reconstruction network includes: input (Input) layer, batch normalized full connection (FC (BN), Full Connection (Batch Normalization)) layer, the first reconstruction Reshape Layer, the first convolution Conv layer, the second convolution layer (ConV(BN+ReLU)) based on batch normalization BN and the corrected linear unit activation function (ReLU, Rectified Linear Unit activation), the first deconvolution DeConV Layer, the second deconvolution layer (DeConV(BN+ReLU)) based on batch normalization BN and the modified linear unit activation function ReLU, the third deconvolution DeConV layer, the second reconstruction Reshape layer and the output of the fully connected FC (Output) layer. As can be seen from Figure 2, from the input layer to the ConV (BN+ReLU) layer belongs to the convolutional construction (Convolutional Construction) part, from the first deconvolution DeConV layer to the Output (FC) layer belongs to the deconvolutional reconstruction (Deconvolutional Reconstruction) part.
对于图2所示的DRN,在一些示例中,所述输入层的输出信号标识为X0,输出形状为1,参数个数为0;FC(BN)层的输出信号标识为X1,输出形状为16,参数个数为96;第一重建层的输出信号标识为X2,输出形状为(4,4,1),参数个数为0;第一卷积层的输出信号标识为X3,输出形状为(4,4,16),参数个数为32;基于批量标准化与修正的线型单元激活函数的第二卷积层的输出信号标识为X4,输出形状为(4,4,32),参数个数为672;第一反卷积层的输出信号标识为X5,输出形状为(4,4,32),参数个数为1056;基于批量标准化与修正的线型单元激活函数的第二反卷积层的输出信号标识为X6,输出形状为(4,4,16),参数个数为592;第三反卷积层的输出信号标识为X7,输出形状为(4,4,1),参数个数为17;第二重建层的输出信号标识为X8,输出形状为16,参数个数为0;全连接的输出层的输出信号标识为X9,输出形状为1,参数个数为17。通过上述示例,可以看出,由于针对的是卫星遥测信号数据,因此整个DRN的参数总数量并不多,所以DRN的结构较为简单且能够实现快速训练。For the DRN shown in Figure 2, in some examples, the output signal of the input layer is identified as X 0 , the output shape is 1, and the number of parameters is 0; the output signal of the FC (BN) layer is identified as X 1 , and the output The shape is 16, the number of parameters is 96; the output signal of the first reconstruction layer is marked as X 2 , the output shape is (4,4,1), and the number of parameters is 0; the output signal of the first convolutional layer is marked as X 3 , the output shape is (4,4,16), and the number of parameters is 32; the output signal of the second convolutional layer based on the batch normalization and modified linear unit activation function is identified as X 4 , and the output shape is (4, 4,32), the number of parameters is 672; the output signal of the first deconvolution layer is identified as X 5 , the output shape is (4,4,32), and the number of parameters is 1056; the line type based on batch normalization and correction The output signal of the second deconvolution layer of the unit activation function is marked as X 6 , the output shape is (4,4,16), and the number of parameters is 592; the output signal of the third deconvolution layer is marked as X 7 , and the output The shape is (4,4,1), the number of parameters is 17; the output signal of the second reconstruction layer is marked as X 8 , the output shape is 16, and the number of parameters is 0; the output signal of the fully connected output layer is marked as X 9 , the output shape is 1, and the number of parameters is 17. From the above example, it can be seen that the total number of parameters of the entire DRN is not large because it is aimed at satellite telemetry signal data, so the structure of the DRN is relatively simple and fast training can be achieved.
对于图1所示的技术方案,在一些示例中,所述通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络进行训练,获得训练后的反卷积重建网络,包括:For the technical solution shown in Fig. 1, in some examples, the deconvolution reconstruction network is trained by using the training data consisting of the existing measured telemetry signal data and the corresponding time stamp of the measured telemetry signal data to obtain The trained deconvolution reconstruction network includes:
针对初始化后的反卷积重建网络,将所述实测遥测信号数据时间戳作为输入数据输入至所述反卷积重建网络;For the initialized deconvolution reconstruction network, the time stamp of the measured telemetry signal data is input to the deconvolution reconstruction network as input data;
根据所述反卷积重建网络的输出以及所述实测遥测信号数据时间戳对应的实测遥测信号数据对所述反卷积重建网络进行训练,确定所述反卷积重建网络所包含的每个层对应的参数,以得到所述训练后的反卷积重建网络。According to the output of the deconvolution reconstruction network and the measured telemetry signal data corresponding to the time stamp of the measured telemetry signal data, the deconvolution reconstruction network is trained, and each layer included in the deconvolution reconstruction network is determined. Corresponding parameters to obtain the trained deconvolution reconstruction network.
对于上述示例,需要说明的是,在已有的实测遥测信号数据中,野值仅占整个数据的极小部分,因此,实测遥测信号数据是适用于DRN网络进行训练的,并不需要采用剔除野值后的遥测数据对DRN进行训练。For the above example, it needs to be explained that in the existing measured telemetry signal data, outliers only account for a very small part of the entire data. Therefore, the measured telemetry signal data is suitable for DRN network training and does not need to be eliminated DRN is trained on telemetry data after outliers.
基于上述示例,在对所述反卷积重建网络进行训练过程中,针对DRN网络训练的参数被设置为:学习率=0.01、优化方法为Adam算法、学习率衰减规则为若5代不更新训练集则学习率就降低为原来的一半。Based on the above example, during the training process of the deconvolution reconstruction network, the parameters for the DRN network training are set to: learning rate = 0.01, the optimization method is the Adam algorithm, and the learning rate decay rule is that if the training is not updated for 5 generations Then the learning rate is reduced to half of the original.
对于图1所示的技术方案,在一些示例中,所述方法还包括:根据野值与正常遥测信号数据之间距离的分部直方图与核密度估计曲线,确定用于进行去除野值判定的所述阈值。For the technical solution shown in Fig. 1, in some examples, the method further includes: according to the subdivision histogram and kernel density estimation curve of the distance between the outlier and the normal telemetry signal data, determine the The threshold of .
对于上述示例,需要说明的是,针对已训练完毕的DRN,对于遥测信号数据中的正常数据来说,其输入与输出之间的距离能够反映在DRN网络的预测误差内;而对于野值,其距离将不符合正常数据的训练规则,即会远大于预测误差,因此,可以通过分析所有差异的分布水平,从而确定用于区分正常数据与野值的阈值。关于差异分布水平来说,核密度估计用于估计未知密度函数,是非参数测试方法之一,核密度估计包括有多个直方图指标,在本发明实施例中,正常数据的距离均处在阈值=0.03之内。For the above example, it should be noted that for the trained DRN, for the normal data in the telemetry signal data, the distance between its input and output can be reflected in the prediction error of the DRN network; and for the outlier value, Its distance will not meet the training rules of normal data, that is, it will be much larger than the prediction error. Therefore, the threshold for distinguishing normal data from outliers can be determined by analyzing the distribution levels of all differences. Regarding the difference distribution level, the kernel density estimation is used to estimate the unknown density function, which is one of the non-parametric test methods. The kernel density estimation includes multiple histogram indicators. In the embodiment of the present invention, the distance of the normal data is at the threshold = within 0.03.
对于图1所示的技术方案,在一些示例中,对于卫星遥测信号数据来说,两个数据之间的距离可以认为是两个数据之差,因此,所述计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离,包括:计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的差值。For the technical solution shown in Figure 1, in some examples, for the satellite telemetry signal data, the distance between the two data can be considered as the difference between the two data, therefore, the calculation of the original telemetry signal data time Stamping the distance between the original telemetry signal data corresponding to the predicted telemetry signal data, comprising: calculating the difference between the original telemetry signal data corresponding to the timestamp of the original telemetry signal data and the predicted telemetry signal data .
基于前述技术方案,本发明实施例通过对某型号高光谱卫星的6个不同的类型的遥测信号数据进行仿真实验,该仿真实验中的遥测信号数据采用J2000坐标系表示,这6个类型包括:在J2000坐标系下X轴位置(X position)、在J2000坐标系下Y轴位置(Yposition)、在J2000坐标系下Z轴位置(Z position)、在J2000坐标系下X轴速度(XVelocity)、在J2000坐标系下Y轴速度(Y Velocity)和在J2000坐标系下Z轴速度(ZVelocity)。由于该型号卫星没有延迟下载数据的功能,因此,这些遥测信号数据受限于地面观测站的位置,将以一段时间内的离散数据点的组成形式出现。对于训练数据集来说,每批训练数据为32个,且训练数据中的训练training集与验证validation集的比例为3:1,每个训练轮次epoch之后验证验证集,对于每组数据,分别训练20个轮次epochs。本发明实施例中所使用的训练数据详情如表1所示:Based on the foregoing technical solution, the embodiment of the present invention performs a simulation experiment on 6 different types of telemetry signal data of a certain type of hyperspectral satellite. The telemetry signal data in the simulation experiment is represented by the J2000 coordinate system. These 6 types include: X-axis position (X position) in J2000 coordinate system, Y-axis position (Yposition) in J2000 coordinate system, Z-axis position (Z position) in J2000 coordinate system, X-axis velocity (XVelocity) in J2000 coordinate system, The Y-axis velocity (Y Velocity) in the J2000 coordinate system and the Z-axis velocity (ZVelocity) in the J2000 coordinate system. Because this type of satellite does not have the function of delaying the download of data, these telemetry signal data will be limited by the location of the ground observation station and will appear in the form of discrete data points over a period of time. For the training data set, each batch of training data is 32, and the ratio of the training training set in the training data to the verification validation set is 3:1, and the verification set is verified after each training round epoch. For each set of data, Train for 20 rounds of epochs respectively. The details of the training data used in the embodiment of the present invention are shown in Table 1:
表1Table 1
训练和验证的损失(loss)迭代情况如图3所示,从图3可以看出,在对DRN进行训练过程中,训练和验证损失极少出现波动,并且在20个轮次内均能够迅速收敛。此外,对于用于确定阈值的距离直方图与核密度估计曲线来说,如图4所示,从6个类型数据的直方图与核密度估计曲线可以看出,阈值优选为0.03。The iterative situation of loss (loss) for training and verification is shown in Figure 3. From Figure 3, it can be seen that during the training process of DRN, the training and verification losses rarely fluctuate, and can be quickly achieved within 20 rounds. convergence. In addition, for the distance histogram and kernel density estimation curve used to determine the threshold, as shown in Figure 4, it can be seen from the histograms and kernel density estimation curves of the six types of data that the threshold is preferably 0.03.
在本仿真实验中,采用训练完毕后的DRN进行野值去除的过程如图5所示,在图5中,(a1)至(a6)分别表示在J2000坐标系下X,Y,Z轴位置以及在J2000坐标系下X,Y,Z轴速度的原始离散信号数据;(b1)至(b6)分别表示在J2000坐标系下X,Y,Z轴位置以及在J2000坐标系下X,Y,Z轴速度对应的归一化预测值与归一化原始离散信号数据之间的距离,从(b1)至(b6)中可以看出,野值可以通过阈值0.03进行去除。在J2000坐标系下X,Y,Z轴位置以及在J2000坐标系下X,Y,Z轴速度对应的去除野值后的离散信号数据分别如(c1)至(c6)所示,从图5中可以看出,野值的距离均远远大于正常数据的距离,在极端情况下,若DRN充分学习了真实的轨道动力学以及控制规律,那么就能够完美你和原始数据中的正常数据,那么正常数据的距离将会等于0。In this simulation experiment, the process of removing outliers by using the DRN after training is shown in Figure 5. In Figure 5, (a1) to (a6) respectively represent the X, Y, and Z axis positions in the J2000 coordinate system And the original discrete signal data of the X, Y, and Z-axis speeds in the J2000 coordinate system; (b1) to (b6) represent the X, Y, and Z-axis positions in the J2000 coordinate system and the X, Y, and The distance between the normalized predicted value corresponding to the Z-axis speed and the normalized original discrete signal data, it can be seen from (b1) to (b6) that the outlier value can be removed by the threshold of 0.03. The discrete signal data corresponding to the positions of X, Y, and Z axes in the J2000 coordinate system and the speed of the X, Y, and Z axes in the J2000 coordinate system after removing outliers are shown in (c1) to (c6), respectively, from Figure 5 It can be seen from the figure that the distance of the outliers is far greater than the distance of the normal data. In extreme cases, if the DRN has fully learned the real orbital dynamics and control laws, it can perfect the normal data in the original data and you. Then the normal data distance will be equal to 0.
除了上述数据仿真以外,为了更加体现本发明实施例所提出的技术方案的优越性,采用轨道的半主轴遥测数据,将前述技术方案提出的基于反卷积重建网络的遥测信号野值去除方法(以下可简称DRN),与MLP自动编码器网络(MLP-AE)和卷积自动编码器网络(CAE)进行仿真比较,仿真条件与前述数据仿真实验一致。三个网络训练完毕后的轨道半长轴的归一化距离如图6所示,从图6可以看出,尽管三个网络都能识别大部分的野值,但是DRN的性能更好。这是因为DRN相比于MLP-AE和CAE能够找到更多的野值。此外,如图7所示,DRN比MLP-AE和CAE在轨道半长轴遥测数据的训练和验证损失更低,也就说明DRN比其他两个网络具有更好的训练效果,因此也就能够找到更多的野值。In addition to the above data simulation, in order to further reflect the superiority of the technical solution proposed by the embodiment of the present invention, the semi-axis telemetry data of the track is used, and the method for removing the outlier value of the telemetry signal based on the deconvolution reconstruction network proposed by the aforementioned technical solution ( Hereinafter referred to as DRN), compared with MLP autoencoder network (MLP-AE) and convolutional autoencoder network (CAE), the simulation conditions are consistent with the aforementioned data simulation experiments. The normalized distance of the semi-major axis of the track after the training of the three networks is shown in Figure 6. It can be seen from Figure 6 that although the three networks can recognize most of the outliers, the performance of DRN is better. This is because DRN can find more outliers than MLP-AE and CAE. In addition, as shown in Figure 7, DRN has lower training and verification losses than MLP-AE and CAE on orbit semi-major axis telemetry data, which means that DRN has better training effect than the other two networks, so it can Find more outliers.
参见图8,其示出了本发明实施例提供的一种基于反卷积重建网络的遥测信号野值去除装置80,所述装置80包括:构造部分801、反卷积重建网络802、训练部分803、计算部分804、判定部分805和去除部分806;其中,Referring to FIG. 8 , it shows a telemetry signal
所述构造部分801,经配置为基于卷积构建与反卷积重建构造一反卷积重建网络802;The construction part 801 is configured to construct a deconvolution reconstruction network 802 based on convolution construction and deconvolution reconstruction;
所述训练部分803,经配置为通过由已有的实测遥测信号数据及对应的实测遥测信号数据时间戳组成的训练数据对所述反卷积重建网络802进行训练,获得训练后的反卷积重建网络802;The training part 803 is configured to train the deconvolution reconstruction network 802 through the training data composed of the existing measured telemetry signal data and the corresponding time stamp of the measured telemetry signal data, and obtain the deconvolution reconstruction network 802 after training. rebuild network 802;
所述反卷积重建网络802,用于输入原始遥测信号数据时间戳,以获得与所述原始遥测信号数据时间戳对应的预测的遥测信号数据;The deconvolution reconstruction network 802 is configured to input raw telemetry signal data timestamps to obtain predicted telemetry signal data corresponding to the raw telemetry signal data timestamps;
所述计算部分804,经配置为计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的距离;The calculation part 804 is configured to calculate the distance between the original telemetry signal data corresponding to the original telemetry signal data time stamp and the predicted telemetry signal data;
所述判定部分805,经配置为将所述距离与设定的阈值进行比较,以及当所述距离大于设定的阈值时,确定所述原始遥测信号数据时间戳对应的原始遥测信号数据为野值,并触发所述去除部分806;The determination part 805 is configured to compare the distance with a set threshold, and when the distance is greater than the set threshold, determine that the original telemetry signal data corresponding to the time stamp of the original telemetry signal data is wild value, and trigger the removal part 806;
所述去除部分806,经配置为将所述野值进行去除。The removing part 806 is configured to remove the outliers.
在上述方案中,所述反卷积重建网络802包括:输入层、批标准化的全连接FC(BN)层、第一重建层、第一卷积层、基于批量标准化与修正的线型单元激活函数的第二卷积层、第一反卷积层、基于批量标准化与修正的线型单元激活函数的第二反卷积层、第三反卷积层、第二重建层以及全连接的输出层。In the above scheme, the deconvolution reconstruction network 802 includes: an input layer, a batch normalized fully connected FC (BN) layer, a first reconstruction layer, a first convolution layer, and a linear unit activation based on batch normalization and correction The second convolutional layer of the function, the first deconvolutional layer, the second deconvolutional layer based on batch normalization and modified linear unit activation function, the third deconvolutional layer, the second reconstruction layer and the output of the full connection layer.
在上述方案中,所述输入层的输出形状为1,参数个数为0;FC(BN)层的输出形状为16,参数个数为96;第一重建层的输出形状为(4,4,1),参数个数为0;第一卷积层的输出形状为(4,4,16),参数个数为32;基于批量标准化与修正的线型单元激活函数的第二卷积层的输出形状为(4,4,32),参数个数为672;第一反卷积层的输出形状为(4,4,32),参数个数为1056;基于批量标准化与修正的线型单元激活函数的第二反卷积层的输出形状为(4,4,16),参数个数为592;第三反卷积层的输出形状为(4,4,1),参数个数为17;第二重建层的输出形状为16,参数个数为0;全连接的输出层的输出形状为1,参数个数为17。In the above scheme, the output shape of the input layer is 1, and the number of parameters is 0; the output shape of the FC (BN) layer is 16, and the number of parameters is 96; the output shape of the first reconstruction layer is (4,4 ,1), the number of parameters is 0; the output shape of the first convolutional layer is (4,4,16), and the number of parameters is 32; the second convolutional layer based on batch normalization and modified linear unit activation function The output shape of the first deconvolution layer is (4,4,32), and the number of parameters is 672; the output shape of the first deconvolution layer is (4,4,32), and the number of parameters is 1056; the line type based on batch normalization and correction The output shape of the second deconvolution layer of the unit activation function is (4,4,16), and the number of parameters is 592; the output shape of the third deconvolution layer is (4,4,1), and the number of parameters is 17; the output shape of the second reconstruction layer is 16, and the number of parameters is 0; the output shape of the fully connected output layer is 1, and the number of parameters is 17.
在上述方案中,所述训练部分803,经配置为:In the above solution, the training part 803 is configured to:
针对初始化后的反卷积重建网络802,将所述实测遥测信号数据时间戳作为输入数据输入至所述反卷积重建网络802;For the initialized deconvolution reconstruction network 802, the time stamp of the measured telemetry signal data is input to the deconvolution reconstruction network 802 as input data;
根据所述反卷积重建网络802的输出以及所述实测遥测信号数据时间戳对应的实测遥测信号数据对所述反卷积重建网络802进行训练,确定所述反卷积重建网络802所包含的每个层对应的参数,以得到所述训练后的反卷积重建网络802。According to the output of the deconvolution reconstruction network 802 and the measured telemetry signal data corresponding to the time stamp of the measured telemetry signal data, the deconvolution reconstruction network 802 is trained, and the deconvolution reconstruction network 802 is determined to include parameters corresponding to each layer to obtain the trained deconvolution reconstruction network 802 .
在上述方案中,在对所述反卷积重建网络802进行训练过程中,网络训练参数被设置为:学习率=0.01、优化方法为Adam算法、学习率衰减规则为若5代不更新训练集则学习率就降低为原来的一半。In the above scheme, during the training process of the deconvolution reconstruction network 802, the network training parameters are set as: learning rate=0.01, the optimization method is the Adam algorithm, and the learning rate decay rule is that if the training set is not updated for 5 generations Then the learning rate is reduced to half of the original.
在上述方案中,参见图9,所述装置还包括:确定部分807,经配置为根据野值与正常遥测信号数据之间距离的分部直方图与核密度估计曲线,确定用于进行去除野值判定的所述阈值。In the above solution, referring to Fig. 9, the device further includes: a determining part 807 configured to determine the The threshold for value determination.
在上述方案中,所述计算部分804,经配置为计算所述原始遥测信号数据时间戳对应的原始遥测信号数据与所述预测的遥测信号数据之间的差值。In the above solution, the calculation part 804 is configured to calculate the difference between the original telemetry signal data corresponding to the time stamp of the original telemetry signal data and the predicted telemetry signal data.
可以理解地,在本实施例中,“部分”可以是部分电路、部分处理器、部分程序或软件等等,当然也可以是单元,还可以是模块也可以是非模块化的。Understandably, in this embodiment, a "part" may be a part of a circuit, a part of a processor, a part of a program or software, etc., and of course it may also be a unit, or a module or non-modular.
另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each component in this embodiment may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software function modules.
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of this embodiment is essentially or It is said that the part that contributes to the prior art or the whole or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, and includes several instructions to make a computer device (which can It is a personal computer, a server, or a network device, etc.) or a processor (processor) that executes all or part of the steps of the method described in this embodiment. The aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk.
因此,本实施例提供了一种计算机存储介质,所述计算机存储介质存储有基于反卷积重建网络的遥测信号野值去除程序,所述基于反卷积重建网络的遥测信号野值去除程序被至少一个处理器执行时实现上述技术方案中所述基于反卷积重建网络的遥测信号野值去除方法步骤。Therefore, this embodiment provides a computer storage medium, the computer storage medium is stored with a telemetry signal outlier removal program based on a deconvolution reconstruction network, and the telemetry signal outlier removal program based on a deconvolution reconstruction network is At least one processor implements the steps of the method for removing outliers of telemetry signals based on the deconvolution reconstruction network described in the above technical solution when executed.
根据上述基于反卷积重建网络的遥测信号野值去除装置80以及计算机存储介质,参见图10,其示出了本发明实施例提供的一种能够实施上述基于反卷积重建网络的遥测信号野值去除装置80的计算设备100的具体硬件结构,该计算设备100可以为无线装置、移动或蜂窝电话(包含所谓的智能电话)、个人数字助理(PDA)、视频游戏控制台(包含视频显示器、移动视频游戏装置、移动视频会议单元)、膝上型计算机、桌上型计算机、电视机顶盒、平板计算装置、电子书阅读器、固定或移动媒体播放器,等。计算设备100包括:通信接口1001,存储器1002和处理器1003;各个组件通过总线系统1004耦合在一起。可理解,总线系统1004用于实现这些组件之间的连接通信。总线系统1004除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统1004。其中,According to the above-mentioned telemetry signal wild
所述通信接口1001,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;The
所述存储器1002,用于存储能够在所述处理器1003上运行的计算机程序;The
所述处理器1003,用于在运行所述计算机程序时,执行上述技术方案中所述基于反卷积重建网络802的遥测信号野值去除方法的步骤。The
可以理解,本发明实施例中的存储器1002可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1002旨在包括但不限于这些和任意其它适合类型的存储器。It can be understood that the
而处理器1003可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1003中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1003可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1003读取存储器1002中的信息,结合其硬件完成上述方法的步骤。The
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable LogicDevice,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。It should be understood that the embodiments described herein may be implemented by hardware, software, firmware, middleware, microcode or a combination thereof. For hardware implementation, the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing device (DSP Device, DSPD), programmable logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, other electronic units for performing the functions described in this application or a combination thereof.
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。For a software implementation, the techniques described herein can be implemented through modules (eg, procedures, functions, and so on) that perform the functions described herein. Software codes can be stored in memory and executed by a processor. Memory can be implemented within the processor or external to the processor.
可以理解地,上述基于反卷积重建网络的遥测信号野值去除装置80以及计算设备100的示例性技术方案,与前述基于反卷积重建网络的遥测信号野值去除方法的技术方案属于同一构思,因此,上述对于基于反卷积重建网络的遥测信号野值去除装置80以及计算设备100的技术方案未详细描述的细节内容,均可以参见前述基于反卷积重建网络的遥测信号野值去除方法的技术方案的描述。本发明实施例对此不做赘述。It can be understood that the above-mentioned exemplary technical solutions of the deconvolution reconstruction network-based telemetry signal
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。It should be noted that: the technical solutions described in the embodiments of the present invention can be combined arbitrarily if there is no conflict.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210542432.XA CN114792115B (en) | 2022-05-17 | 2022-05-17 | Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210542432.XA CN114792115B (en) | 2022-05-17 | 2022-05-17 | Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114792115A CN114792115A (en) | 2022-07-26 |
CN114792115B true CN114792115B (en) | 2023-04-07 |
Family
ID=82463172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210542432.XA Active CN114792115B (en) | 2022-05-17 | 2022-05-17 | Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114792115B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119884832A (en) * | 2025-01-09 | 2025-04-25 | 中化地质矿山总局 | Autonomous learning-based data field-picking adaptive switching method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112132006A (en) * | 2020-09-21 | 2020-12-25 | 西南交通大学 | An intelligent extraction method of forest land and buildings for cultivated land protection |
CN114169232A (en) * | 2021-11-29 | 2022-03-11 | 中国科学技术大学 | Full-time-period three-dimensional atmospheric pollutant reconstruction method and device, computer equipment and storage medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106204449B (en) * | 2016-07-06 | 2019-09-10 | 安徽工业大学 | A kind of single image super resolution ratio reconstruction method based on symmetrical depth network |
US10962647B2 (en) * | 2016-11-30 | 2021-03-30 | Yujin Robot Co., Ltd. | Lidar apparatus based on time of flight and moving object |
US10586105B2 (en) * | 2016-12-30 | 2020-03-10 | International Business Machines Corporation | Method and system for crop type identification using satellite observation and weather data |
CN107123089B (en) * | 2017-04-24 | 2023-12-12 | 中国科学院遥感与数字地球研究所 | Remote sensing image super-resolution reconstruction method and system based on depth convolution network |
CN110427893A (en) * | 2019-08-06 | 2019-11-08 | 西安电子科技大学 | A kind of specific emitter identification method, apparatus and computer storage medium based on convolutional neural networks |
CN111258325B (en) * | 2020-01-08 | 2022-08-02 | 哈尔滨工业大学 | High-precision, high-performance attitude fault-tolerant control method, device and computer storage medium for earth remote sensing satellites |
CN113985408B (en) * | 2021-09-13 | 2024-04-05 | 南京航空航天大学 | An Inverse Synthetic Aperture Radar Imaging Method Combining Gate Units and Transfer Learning |
-
2022
- 2022-05-17 CN CN202210542432.XA patent/CN114792115B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112132006A (en) * | 2020-09-21 | 2020-12-25 | 西南交通大学 | An intelligent extraction method of forest land and buildings for cultivated land protection |
CN114169232A (en) * | 2021-11-29 | 2022-03-11 | 中国科学技术大学 | Full-time-period three-dimensional atmospheric pollutant reconstruction method and device, computer equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
基于外存和凸集投影法的遥感图像超分辨率方法;张砚等;《清华大学学报(自然科学版)》;20101015(第10期);133-136+146 * |
Also Published As
Publication number | Publication date |
---|---|
CN114792115A (en) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109359731A (en) | A kind of Processing with Neural Network method and device based on chip design defect | |
CN114244835B (en) | Block chain-based decentralization self-adaptive collaborative training method and device | |
US12367099B2 (en) | Error correction method and apparatus | |
CN114792115B (en) | Method, device and medium for outlier removal of telemetry signal based on deconvolution reconstruction network | |
CN112232495A (en) | Prediction model training method, device, medium and computing equipment | |
CN114881090B (en) | Satellite telemetry data feature selection method, device and medium based on improved particle swarm optimization | |
CN110399097A (en) | A method and device for checking data consistency of a distributed storage system | |
US20220222927A1 (en) | Apparatus, system, and method of generating a multi-model machine learning (ml) architecture | |
JP7320705B2 (en) | Learning data evaluation method, program, learning data generation method, trained model generation method, and learning data evaluation system | |
CN107798332A (en) | A kind of user's behavior prediction method and device | |
CN118033463A (en) | Lithium battery health state estimation method and device based on meta-learning | |
CN110535476B (en) | Method, device, computer equipment and storage medium for optimizing soft information storage of LDPC soft decoder | |
WO2021196800A1 (en) | Method and apparatus for obtaining artificial intelligence model, device, and storage medium | |
CN111723907B (en) | Model training device, method, system and computer readable storage medium | |
KR20250068764A (en) | A data storage device configured for use in a generative adversarial network (GAN). | |
CN116127785B (en) | Reliability evaluation method, device and equipment based on multivariate performance degradation | |
US11315036B2 (en) | Prediction for time series data using a space partitioning data structure | |
CN115034351B (en) | Data processing method, convolutional neural network training method and device and FPGA | |
WO2023279487A1 (en) | Method and device for adjusting metal wiring density | |
CN114356235A (en) | A data standardization processing method, device, electronic device and storage medium | |
CN117806855A (en) | Memory error processing method and device | |
EP4179473A1 (en) | Method and system for detection and mitigation of concept drift | |
CN115686901B (en) | Memory fault analysis method and computer equipment | |
KR102795643B1 (en) | Federated learning method and system using shared learning data | |
CN114047880B (en) | NAND write power consumption optimization method and device for multi-Pass programming and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240716 Address after: Room 1107, 11 / F, National University Science Park, Harbin Institute of technology, No. 434, youyou street, Nangang District, Harbin City, Heilongjiang Province Patentee after: Harbin Institute of Technology Asset Management Co.,Ltd. Country or region after: China Address before: 150006 No. 92 West straight street, Nangang District, Heilongjiang, Harbin Patentee before: HARBIN INSTITUTE OF TECHNOLOGY Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240816 Address after: 150000 floor 6, building 1, innovation and entrepreneurship Plaza, science and technology innovation city, high tech Industrial Development Zone, Harbin, Heilongjiang Province (No. 77, innovation road) Patentee after: Harbin University of Technology Satellite Technology Co.,Ltd. Country or region after: China Address before: Room 1107, 11 / F, National University Science Park, Harbin Institute of technology, No. 434, youyou street, Nangang District, Harbin City, Heilongjiang Province Patentee before: Harbin Institute of Technology Asset Management Co.,Ltd. Country or region before: China |