CN114780911B - Ocean wide swath distance defuzzification method based on deep learning - Google Patents
Ocean wide swath distance defuzzification method based on deep learning Download PDFInfo
- Publication number
- CN114780911B CN114780911B CN202210269819.2A CN202210269819A CN114780911B CN 114780911 B CN114780911 B CN 114780911B CN 202210269819 A CN202210269819 A CN 202210269819A CN 114780911 B CN114780911 B CN 114780911B
- Authority
- CN
- China
- Prior art keywords
- matrix
- distance
- deep learning
- vector
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000013135 deep learning Methods 0.000 title claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 88
- 239000013598 vector Substances 0.000 claims abstract description 34
- 230000006870 function Effects 0.000 claims abstract description 8
- 230000035485 pulse pressure Effects 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims abstract description 7
- 238000013507 mapping Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 9
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000013508 migration Methods 0.000 claims description 3
- 230000005012 migration Effects 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 abstract description 11
- 238000013528 artificial neural network Methods 0.000 abstract description 2
- 230000021615 conjugation Effects 0.000 abstract 1
- 230000009466 transformation Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 4
- 238000002592 echocardiography Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Remote Sensing (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Discrete Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明属于雷达信号处理技术领域,具体涉及一种海洋宽测绘带距离解模糊方法。The invention belongs to the technical field of radar signal processing, and specifically relates to a method for distance defuzzification of wide ocean surveying and mapping swaths.
背景技术Background technique
对于星载SAR系统,当需要对某一场景进行高分辨率成像时,可以通过增加卫星的重访周期来实现。但是,卫星重访周期的增加会带来巨大的成本。为了减少卫星的重访周期,可以利用星载SAR系统发射高脉冲重复频率(PRF)的线性调频信号。由于系统发射高PRF的信号,可以得到场景目标的更多回波信息,从而实现星载SAR雷达的高分辨率成像。For spaceborne SAR systems, when high-resolution imaging of a certain scene is required, this can be achieved by increasing the revisit period of the satellite. However, the increase in satellite revisit cycles comes with significant costs. In order to reduce the revisit period of the satellite, the spaceborne SAR system can be used to transmit high pulse repetition frequency (PRF) chirp signals. Since the system emits high PRF signals, more echo information of scene targets can be obtained, thereby achieving high-resolution imaging of spaceborne SAR radar.
然而发射高PRF的信号也会带来距离模糊的问题,如图1,当测绘带内不同的成像场景的回波时延之差等于脉冲重复周期(PRT)的整数倍时,接收到的宽测绘带回波会产生距离模糊。However, transmitting high PRF signals will also bring about the problem of distance ambiguity. As shown in Figure 1, when the difference in echo delays of different imaging scenes in the surveying zone is equal to an integer multiple of the pulse repetition period (PRT), the received wide Echoes from surveying and mapping belts can produce distance blur.
对于宽测绘带解距离模糊问题,最常用的有查表法和发射正交编码信号方法。对于发射正交编码信号方法,常用的有正交相位编号信号和正交频率编码信号。利用正交相位编码信号进行解模糊的精度很难达到分辨率要求,而正交频率编码信号可以达到分辨率要求,但是正交编码信号对多普勒比较敏感。但是,这些方法都需要满足回波信噪比较高的条件。For solving range ambiguity problems in wide surveying swaths, the most commonly used methods are the look-up table method and the method of transmitting orthogonal coded signals. For the method of transmitting orthogonal encoded signals, commonly used quadrature phase number signals and orthogonal frequency encoded signals are used. The accuracy of defuzzification using quadrature phase encoding signals is difficult to meet the resolution requirements, while the quadrature frequency encoding signals can meet the resolution requirements, but the orthogonal encoding signals are more sensitive to Doppler. However, these methods all need to meet the condition of high echo signal-to-noise ratio.
在实际情况中,对于海洋目标的回波信噪比都比较低,一般为0dB。同时,大多数的星载SAR系统都是通过发射高PRF的信号来获取宽测绘带信息,因此要面临宽测绘带低信噪比回波的距离模糊问题。In actual situations, the echo signal-to-noise ratio of ocean targets is relatively low, generally 0dB. At the same time, most spaceborne SAR systems obtain wide mapping swath information by transmitting high PRF signals, so they face the problem of range ambiguity in low signal-to-noise ratio echoes in wide mapping swaths.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供了一种基于深度学习的海洋宽测绘带距离解模糊方法,首先获取星载SAR系统的回波信号,根据雷达参数构造参考信号向量,将回波信号点乘参考信号向量的共轭,得到距离脉压后的数据矩阵;再进行傅里叶逆变换和傅里叶变换;接下来构造多普勒补偿函数,与傅里叶变换后的矩阵进行点乘;最后再构造深度神经网络,将得到的向量作为输入和标签,进行训练后实现海洋宽测绘带距离解模糊。本发明可以有效解决星载SAR系统的款测绘带距离解模糊问题,得到无距离模糊的海洋宽测绘带信息,以达到对海面运动目标的无距离模糊SAR成像的目的。In order to overcome the shortcomings of the existing technology, the present invention provides a deep learning-based ocean wide mapping swath distance defuzzification method. First, the echo signal of the spaceborne SAR system is obtained, a reference signal vector is constructed according to the radar parameters, and the echo signal is Dot multiply the conjugate of the reference signal vector to obtain the data matrix after distance pulse pressure; then perform the inverse Fourier transform and Fourier transform; then construct the Doppler compensation function and dot it with the matrix after Fourier transform Multiply; finally, a deep neural network is constructed, and the obtained vector is used as input and label. After training, the distance defuzzification of the wide ocean surveying swath is achieved. The invention can effectively solve the problem of distance deambiguation of the surveying and mapping swath of the spaceborne SAR system, and obtain the ocean wide surveying and mapping swath information without range ambiguity, so as to achieve the purpose of SAR imaging of moving targets on the sea surface without range ambiguity.
本发明解决其技术问题所采用的技术方案包括如下步骤:The technical solution adopted by the present invention to solve the technical problems includes the following steps:
步骤1:获取星载SAR系统的回波信号,所述回波信号是nr×na维矩阵,对回波信号矩阵按列进行傅里叶变换处理,并将结果保存在矩阵s(n1,n2)中;nr表示距离向点数,na表示方位向点数;Step 1: Obtain the echo signal of the spaceborne SAR system. The echo signal is an n r , n2); n r represents the number of distance points, n a represents the number of azimuth points;
步骤2:根据雷达参数,构造参考信号向量s_r(n1)为nr×1向量;其中,kr表示调频率,kr=B/Tp,B表示发射信号带宽,Tp表示发射脉冲宽度,fr表示为距离向频域坐标,/>Δf为距离频域间隔,/>n1=0,1,...,nr-1;Step 2: Construct a reference signal vector based on radar parameters s_r( n1 ) is an n r /> Δf is the distance frequency domain interval,/> n1=0,1,...,n r -1;
步骤3:将s(n1,n2)的每一列,均点乘参考信号向量s_r(n1)的共轭,得到距离脉压后的数据矩阵s(fr,xn2);其中,xn2表示方位向时域坐标,L表示为合成孔径长度,n2=0,1,...,na-1;Step 3: Dot-multiply each column of s(n1,n2) by the conjugate of the reference signal vector s_r(n1) to obtain the data matrix s(f r ,x n2 ) after distance pulse pressure; where x n2 represents Azimuth time domain coordinates, L represents the synthetic aperture length, n2=0,1,...,n a -1;
步骤4:对矩阵s(fr,xn2)按列进行傅里叶逆变换处理,将结果保存在矩阵s(nr,na)中;Step 4: Perform inverse Fourier transform on the matrix s(f r ,x n2 ) by column, and save the result in the matrix s(n r , na );
步骤5:对矩阵s(nr,na)按行进行傅里叶变换,将结果存于s(nr,fa)矩阵中;其中,fa表示方位向频域坐标,PRF为方位采用频率,Δfa为方位频域间隔, Step 5: Perform Fourier transform on the matrix s(n r , na ) row by row, and store the result in the s(n r , fa ) matrix; where fa represents the azimuth frequency domain coordinate, PRF is the azimuth adopted frequency, Δf a is the azimuth frequency domain interval,
步骤6:根据雷达参数构造多普勒补偿函数 s_h(n1)为nr×1的向量;其中,nr表示距离向点数,v为动目标径向速度,V为雷达平台运动速度,θ为斜距平面雷达视线的方位角,λ为雷达的工作波长,g表示重力加速度;Step 6: Construct Doppler compensation function based on radar parameters s_h(n1) is a vector of n r The operating wavelength, g represents the acceleration of gravity;
步骤7:将s(nr,fa)与多普勒补偿函数s_h(n1)向量的共轭进行点乘,并对相乘结果按行进行逆FFT处理,得到脉内多普勒补偿后的数据矩阵ss(nr,na);Step 7: Perform dot multiplication of the conjugate of s(n r , f a ) and the Doppler compensation function s_h(n1) vector, and perform inverse FFT processing on the multiplication result row by row to obtain the intrapulse Doppler compensation The data matrix ss(n r ,n a );
步骤8:根据空域滤波理论,构造由目标散射系数组成的矩阵Ω,Ω为nr×na维的矩阵;Step 8: According to the spatial filtering theory, construct a matrix Ω composed of the target scattering coefficients, where Ω is an n r × n a- dimensional matrix;
步骤9:将矩阵ss(nr,na)按实部和虚部分为两个通道数据ss_r eal(nr,na)和ss_imag(nr,na);将矩阵Ω按实部和虚部分为两个通道数据Ω_r eal(nr,na)和Ω_i mag(nr,na);Step 9: Divide the matrix ss(n r , na ) into two channel data ss_real(n r , na ) and ss_imag(n r , na ) according to the real part and the imaginary part; divide the matrix Ω according to the real part and The imaginary part is divided into two channel data Ω_real(n r , na ) and Ω_i mag(n r , na );
步骤10:构建基于卷积神经网络两通道输入两通道输出的深度学习网络;将矩阵ss_r eal(nr,na)和矩阵ss_i mag(nr,na)作为深度学习网络输入数据,将矩阵Ω_r eal(nr,na)和矩阵Ω_i mag(nr,na)作为训练的标签数据,对深度学习网络进行训练;Step 10: Construct a deep learning network based on the two-channel input and two-channel output of the convolutional neural network; use the matrix ss_real(n r ,n a ) and the matrix ss_i mag(n r ,n a ) as the input data of the deep learning network, and The matrix Ω_real(n r , na ) and the matrix Ω_i mag(n r , na ) are used as training label data to train the deep learning network;
步骤11:将需要解模糊的数据输入步骤10训练完成的深度学习网络中,得到距离解模糊后的数据矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na);Step 11: Input the data that needs to be defuzzified into the deep learning network trained in step 10, and obtain the distance defuzzified data matrix y_real(n r , na ) and matrix y_i mag(n r , na );
步骤12:将矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na)按实部虚部关系合成矩阵y(nr,na);Step 12: Combine matrix y_real(n r , na ) and matrix y_i mag(n r , na ) according to the relationship between real and imaginary parts to synthesize matrix y(n r , na );
步骤13:对矩阵y(nr,na)进行多普勒参数估计,得到估计的多普勒参数 Step 13: Perform Doppler parameter estimation on the matrix y(n r , na ) to obtain the estimated Doppler parameters
步骤14:根据多普勒参数fdc对矩阵y(nr,na)进行距离徙动校正,将结果存于矩阵y′(nr,na)中。Step 14: Perform range migration correction on the matrix y(n r , na ) according to the Doppler parameter f dc , and store the result in the matrix y′(n r , na ).
步骤15:根据雷达参数,构造参考信号向量 s_a(n2)为1×na向量;其中,fc表示雷达发射信号的载频,c为电磁波的传播速度,V为卫星速度,θ为卫星的斜视角,tn2为方位慢时间;Step 15: Construct the reference signal vector according to the radar parameters s_a(n2) is a 1×n a vector; among them, f c represents the carrier frequency of the radar transmission signal, c is the propagation speed of electromagnetic waves, V is the satellite speed, θ is the oblique angle of the satellite, and t n2 is the azimuth slow time;
步骤16:将矩阵y′(nr,na)按行进行FFT处理得到y(nr,fa);取出y(nr,fa)的每一行,均点乘参考信号向量s_a(n2)的共轭,得到距离脉压后的数据矩阵y(nr,fa);Step 16: Perform FFT processing on the matrix y′(n r , na ) row by row to obtain y(n r , fa ); take out each row of y(n r , fa ) and dot-multiply the reference signal vector s_a( The conjugate of n2) is used to obtain the data matrix y(n r ,f a ) after distance pulse pressure;
步骤17:将矩阵y(nr,fa)按行进行逆FFT处理,得到SAR聚焦结果矩阵z(nr,na)。Step 17: Perform inverse FFT processing on the matrix y(n r , fa ) row by row to obtain the SAR focusing result matrix z(n r , na ).
进一步地,所述步骤8具体步骤如下:Further, the specific steps of step 8 are as follows:
星载SAR系统发射多组码型的编码信号,将采用多天线数字接收机接收的回波信号表示为A=[s(1),…,s(m),…,s(M)],m=1,2,…,M,M为测绘带个数,s(m)表示利用多天线数字接收机接收的第m测绘带的回波信号;利用空域滤波矢量对信号进行空域滤波,能从模糊的回波信号中恢复出目标的散射系数,即存在目标时所对应的散射系数为1,没有目标时对应的散射系数为0;权值矢量为Ω=[Ω1,…,Ωm,…,ΩM];对于第m个测绘带有ATΩM=Ym,其中,Ym=[0,…,1,…0];由目标散射系数组成的矩阵为Ωm=inv(A)Ym,解出Ω即完成整个解模糊过程。The spaceborne SAR system transmits multiple code patterns of coded signals, and the echo signal received by a multi-antenna digital receiver is expressed as A=[s(1),…,s(m),…,s(M)], m=1,2,…,M, M is the number of mapping zones, s(m) represents the echo signal of the mth mapping zone received by the multi-antenna digital receiver; the spatial filtering vector is used to perform spatial filtering on the signal, which can The scattering coefficient of the target is recovered from the blurred echo signal, that is, the corresponding scattering coefficient is 1 when there is a target, and the corresponding scattering coefficient is 0 when there is no target; the weight vector is Ω=[Ω 1 ,...,Ω m ,...,Ω M ]; for the m-th mapping zone A T Ω M =Y m , where, Y m =[0,...,1,...0]; the matrix composed of the target scattering coefficient is Ω m =inv (A) Y m , solving Ω completes the entire defuzzification process.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明可以有效解决星载SAR系统的款测绘带距离解模糊问题,得到无距离模糊的海洋宽测绘带信息,以达到对海面运动目标的无距离模糊SAR成像的目的。The invention can effectively solve the problem of distance deambiguation of the surveying and mapping swath of the spaceborne SAR system, and obtain the ocean wide surveying and mapping swath information without range ambiguity, so as to achieve the purpose of SAR imaging of moving targets on the sea surface without range ambiguity.
附图说明Description of drawings
图1为本发明宽测绘带距离模糊示意图。Figure 1 is a schematic diagram of distance blurring in a wide surveying swath according to the present invention.
图2本发明实施例星载SAR系统宽测绘带距离解模糊结果,其中,(a)迭代100次解模糊结果;(b)迭代200次解模糊结果;(c)迭代300次解模糊结果;(d)迭代500次解模糊结果;(e)迭代900次解模糊结果;(f)迭代1500次解模糊结果。Figure 2 is the wide mapping swath distance deblurring result of the spaceborne SAR system according to the embodiment of the present invention, wherein (a) the deblurring result of 100 iterations; (b) the deblurring result of 200 iterations; (c) the deblurring result of 300 iterations; (d) The defuzzification result after 500 iterations; (e) The defuzzification result after 900 iterations; (f) The defuzzification result after 1500 iterations.
图3本发明实施例解距离模糊后成像结果,其中,(a)三个运动目标的成像结果;(b)第一点的距离剖面图;(c)第一点的方位剖面图;(d)第二点的距离剖面图;(e)第二点的方位剖面图;(f)第三点的距离剖面图;(g)第三点的方位剖面图。Figure 3 is the imaging result after solving the distance blur according to the embodiment of the present invention, wherein: (a) the imaging result of three moving targets; (b) the distance profile of the first point; (c) the azimuth profile of the first point; (d) ) The distance profile of the second point; (e) The azimuth profile of the second point; (f) The distance profile of the third point; (g) The azimuth profile of the third point.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and examples.
针对星载SAR系统的海洋宽测绘带距离模糊问题,在现有的距离解模糊算法的基础上,本发明的目的在于结合离散频率编码信号和深度学习技术,提出一种基于深度学习的海洋宽测绘带距离解模糊方法,该方法可以实现对低信噪比回波的距离解模糊。In view of the distance ambiguity problem of the ocean wide surveying swath of the spaceborne SAR system, based on the existing distance defuzzification algorithm, the purpose of this invention is to combine the discrete frequency coding signal and deep learning technology to propose a deep learning-based ocean wide mapping swath. Distance defuzzification method for surveying and mapping swaths, which can achieve range defuzzification for low signal-to-noise ratio echoes.
一种基于深度学习的海洋宽测绘带距离解模糊方法,包括如下步骤:A deep learning-based distance defuzzification method for wide ocean mapping swaths, including the following steps:
步骤1:获取星载SAR系统的回波信号,所述回波信号是nr×na维矩阵,对回波信号矩阵按列进行傅里叶变换处理,并将结果保存在矩阵s(n1,n2)中;nr表示距离向点数,na表示方位向点数;Step 1: Obtain the echo signal of the spaceborne SAR system. The echo signal is an n r , n2); n r represents the number of distance points, n a represents the number of azimuth points;
步骤2:根据雷达参数,构造参考信号向量s_r(n1)为nr×1向量;其中,kr表示调频率,kr=B/Tp,B表示发射信号带宽,Tp表示发射脉冲宽度,fr表示为距离向频域坐标,/>Δf为距离频域间隔,/>n1=0,1,...,nr-1;Step 2: Construct a reference signal vector based on radar parameters s_r( n1 ) is an n r /> Δf is the distance frequency domain interval,/> n1=0,1,...,n r -1;
步骤3:将s(n1,n2)的每一列,均点乘参考信号向量s_r(n1)的共轭,得到距离脉压后的数据矩阵s(fr,xn2);其中,xn2表示方位向时域坐标,L表示为合成孔径长度,n2=0,1,...,na-1;Step 3: Dot-multiply each column of s(n1,n2) by the conjugate of the reference signal vector s_r(n1) to obtain the data matrix s(f r ,x n2 ) after distance pulse pressure; where x n2 represents Azimuth time domain coordinates, L represents the synthetic aperture length, n2=0,1,...,n a -1;
步骤4:对矩阵s(fr,xn2)按列进行傅里叶逆变换处理,将结果保存在矩阵s(nr,na)中;Step 4: Perform inverse Fourier transform on the matrix s(f r ,x n2 ) by column, and save the result in the matrix s(n r , na );
步骤5:对矩阵s(nr,na)按行进行傅里叶变换,将结果存于s(nr,fa)矩阵中;其中,fa表示方位向频域坐标,PRF为方位采用频率,Δfa为方位频域间隔, Step 5: Perform Fourier transform on the matrix s(n r , na ) row by row, and store the result in the s(n r , fa ) matrix; where fa represents the azimuth frequency domain coordinate, PRF is the azimuth adopted frequency, Δf a is the azimuth frequency domain interval,
步骤6:根据雷达参数构造多普勒补偿函数s_h(n1),s_h(n1)为nr×1的向量;Step 6: Construct the Doppler compensation function s_h(n1) according to the radar parameters, s_h(n1) is a vector of n r ×1;
步骤7:将s(nr,fa)与多普勒补偿函数s_h(n1)向量的共轭进行点乘,并对相乘结果按行进行逆FFT处理,得到脉内多普勒补偿后的数据矩阵ss(nr,na);Step 7: Perform dot multiplication of the conjugate of s(n r , f a ) and the Doppler compensation function s_h(n1) vector, and perform inverse FFT processing on the multiplication result row by row to obtain the intrapulse Doppler compensation The data matrix ss(n r ,n a );
步骤8:根据空域滤波理论,构造由目标散射系数组成的矩阵Ω,Ω为nr×na维的矩阵;Step 8: According to the spatial filtering theory, construct a matrix Ω composed of the target scattering coefficients, where Ω is an n r × n a- dimensional matrix;
步骤9:将矩阵ss(nr,na)按实部和虚部分为两个通道数据ss_r eal(nr,na)和ss_imag(nr,na);将矩阵Ω按实部和虚部分为两个通道数据Ω_r eal(nr,na)和Ω_i mag(nr,na);Step 9: Divide the matrix ss(n r , na ) into two channel data ss_real(n r , na ) and ss_imag(n r , na ) according to the real part and the imaginary part; divide the matrix Ω according to the real part and The imaginary part is divided into two channel data Ω_real(n r , na ) and Ω_i mag(n r , na );
步骤10:构建基于卷积神经网络两通道输入两通道输出的深度学习网络;将矩阵ss_r eal(nr,na)和矩阵ss_i mag(nr,na)作为深度学习网络输入数据,将矩阵Ω_r eal(nr,na)和矩阵Ω_i mag(nr,na)作为训练的标签数据,对深度学习网络进行训练;Step 10: Construct a deep learning network based on the two-channel input and two-channel output of the convolutional neural network; use the matrix ss_real(n r ,n a ) and the matrix ss_i mag(n r ,n a ) as the input data of the deep learning network, and The matrix Ω_real(n r , na ) and the matrix Ω_i mag(n r , na ) are used as training label data to train the deep learning network;
步骤11:将需要解模糊的数据输入步骤10训练完成的深度学习网络中,得到距离解模糊后的数据矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na);Step 11: Input the data that needs to be defuzzified into the deep learning network trained in step 10, and obtain the distance defuzzified data matrix y_real(n r , na ) and matrix y_i mag(n r , na );
步骤12:将矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na)按实部虚部关系合成矩阵y(nr,na);Step 12: Combine matrix y_real(n r , na ) and matrix y_i mag(n r , na ) according to the relationship between real and imaginary parts to synthesize matrix y(n r , na );
步骤13:对矩阵y(nr,na)进行多普勒参数估计,得到估计的多普勒参数 Step 13: Perform Doppler parameter estimation on the matrix y(n r , na ) to obtain the estimated Doppler parameters
步骤14:根据多普勒参数fdc对矩阵y(nr,na)进行距离徙动校正,将结果存于矩阵y′(nr,na)中。Step 14: Perform range migration correction on the matrix y(n r , na ) according to the Doppler parameter f dc , and store the result in the matrix y′(n r , na ).
步骤15:根据雷达参数,构造参考信号向量 s_a(n2)为1×na向量;其中,fc表示雷达发射信号的载频,c为电磁波的传播速度,V为卫星速度,θ为卫星的斜视角,tn2为方位慢时间;Step 15: Construct the reference signal vector according to the radar parameters s_a(n2) is a 1×n a vector; among them, f c represents the carrier frequency of the radar transmission signal, c is the propagation speed of electromagnetic waves, V is the satellite speed, θ is the oblique angle of the satellite, and t n2 is the azimuth slow time;
步骤16:将矩阵y′(nr,na)按行进行FFT处理得到y(nr,fa);取出y(nr,fa)的每一行,均点乘参考信号向量s_a(n2)的共轭,得到距离脉压后的数据矩阵y(nr,fa);Step 16: Perform FFT processing on the matrix y′(n r , na ) row by row to obtain y(n r , fa ); take out each row of y(n r , fa ) and dot-multiply the reference signal vector s_a( The conjugate of n2) is used to obtain the data matrix y(n r ,f a ) after distance pulse pressure;
步骤17:将矩阵y(nr,fa)按行进行逆FFT处理,得到SAR聚焦结果矩阵z(nr,na)。Step 17: Perform inverse FFT processing on the matrix y(n r , fa ) row by row to obtain the SAR focusing result matrix z(n r , na ).
进一步地,所述步骤8具体步骤如下:Further, the specific steps of step 8 are as follows:
星载SAR系统发射多组码型的编码信号,将采用多天线数字接收机接收的回波信号表示为A=[s(1),…,s(m),…,s(M)],m=1,2,…,M,M为测绘带个数;利用空域滤波矢量对信号进行空域滤波,能从模糊的回波信号中恢复出目标的散射系数,即存在目标时所对应的散射系数为1,没有目标时对应的散射系数为0;权值矢量为Ω=[Ω1,…,Ωm,…,ΩM];对于第m个测绘带有ATΩm=Ym,其中,Ym=[0,…,1,…0];由目标散射系数组成的矩阵为Ωm=inv(A)Ym,解出Ω即完成整个解模糊过程。The spaceborne SAR system transmits multiple code patterns of coded signals, and the echo signal received by a multi-antenna digital receiver is expressed as A=[s(1),…,s(m),…,s(M)], m=1,2,…,M, M is the number of mapping zones; using the spatial filtering vector to perform spatial filtering on the signal, the scattering coefficient of the target can be recovered from the blurred echo signal, that is, the scattering corresponding to the presence of the target The coefficient is 1, and the corresponding scattering coefficient when there is no target is 0; the weight vector is Ω=[Ω 1 ,…,Ω m ,…,Ω M ]; for the mth mapping zone A T Ω m =Y m , Among them, Y m =[0,...,1,...0]; the matrix composed of the target scattering coefficient is Ω m =inv(A)Y m . Solving Ω completes the entire defuzzification process.
具体实施例:Specific examples:
以下通过仿真实验数据来进一步验证本发明的有效性。The effectiveness of the present invention is further verified through simulation experimental data below.
(一)仿真实验(1) Simulation experiment
1.实测参数1. Measured parameters
为了验证本发明方法的有效性,此处给出了表1中的实测数据参数。In order to verify the effectiveness of the method of the present invention, the measured data parameters in Table 1 are given here.
表1仿真数据参数Table 1 Simulation data parameters
2.实验内容2.Experimental content
图2示意了利用本发明提出的一种基于深度学习的海洋宽测绘带距离解模糊算法获得的仿真数据处理结果。其中,(a)迭代100次解模糊结果;(b)迭代200次解模糊结果;(c)迭代300次解模糊结果;(d)迭代500次解模糊结果;(e)迭代900次解模糊结果;(f)迭代1500次解模糊结果。从图中可以看出本发明方法的距离解模糊效果,利用深度学习网络进行训练,当迭代次数达到300次时,可以得到较好的距离解模糊结果。Figure 2 illustrates the simulation data processing results obtained by using a deep learning-based ocean wide mapping swath distance defuzzification algorithm proposed by the present invention. Among them, (a) the defuzzification result of 100 iterations; (b) the defuzzification result of 200 iterations; (c) the defuzzification result of 300 iterations; (d) the defuzzification result of 500 iterations; (e) the defuzzification result of 900 iterations Results; (f) Deblurring results after 1500 iterations. It can be seen from the figure that the distance defuzzification effect of the method of the present invention is used for training using a deep learning network. When the number of iterations reaches 300, better distance defuzzification results can be obtained.
图3示意了利用本发明进行距离解模糊后的数据进行SAR成像的结果,其中,(a)三个运动目标的成像结果;(b)第一点的距离剖面图;(c)第一点的方位剖面图;(d)第二点的距离剖面图;(e)第二点的方位剖面图;(f)第三点的距离剖面图;(g)第三点的方位剖面图。从图中可以看出本发明方法解距离模糊后的数据可以实现对不同速度的海洋运动目标进行二维高分辨率的SAR成像。Figure 3 illustrates the results of SAR imaging using the range deblurred data of the present invention, in which (a) the imaging results of three moving targets; (b) the range profile of the first point; (c) the first point The azimuth profile of the second point; (d) the distance profile of the second point; (e) the azimuth profile of the second point; (f) the distance profile of the third point; (g) the azimuth profile of the third point. It can be seen from the figure that the data after the range blur is solved by the method of the present invention can realize two-dimensional and high-resolution SAR imaging of ocean moving targets at different speeds.
因此采用本发明方法的可以有效解决星载SAR系统宽测绘带距离解模糊问题。Therefore, the method of the present invention can effectively solve the wide mapping swath distance deambiguation problem of the spaceborne SAR system.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210269819.2A CN114780911B (en) | 2022-03-18 | 2022-03-18 | Ocean wide swath distance defuzzification method based on deep learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210269819.2A CN114780911B (en) | 2022-03-18 | 2022-03-18 | Ocean wide swath distance defuzzification method based on deep learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114780911A CN114780911A (en) | 2022-07-22 |
CN114780911B true CN114780911B (en) | 2024-03-01 |
Family
ID=82424280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210269819.2A Active CN114780911B (en) | 2022-03-18 | 2022-03-18 | Ocean wide swath distance defuzzification method based on deep learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114780911B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116027317B (en) * | 2023-01-06 | 2024-01-26 | 中国人民解放军空军预警学院 | Sea surface ship target two-dimensional speed estimation method based on spaceborne broadband radar |
CN119004042B (en) * | 2024-10-21 | 2024-12-31 | 中国人民解放军国防科技大学 | Depth learning-based radar measurement distance fitting method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669183A (en) * | 2017-12-27 | 2019-04-23 | 北京航空航天大学 | A kind of geostationary orbit SAR motive target imaging processing unit based on Keystone and time-frequency conversion |
CN110824473A (en) * | 2019-10-21 | 2020-02-21 | 西北工业大学 | A subspace-based high-resolution wide swath SAR-GMTI clutter suppression method |
CN113189547A (en) * | 2021-04-20 | 2021-07-30 | 成都汇蓉国科微系统技术有限公司 | Synthetic bandwidth frequency scaling-based SAR imaging method and system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111443339B (en) * | 2020-05-11 | 2022-04-01 | 中国科学院电子学研究所 | Bistatic SAR space-variant correction imaging method, device, equipment and storage medium |
-
2022
- 2022-03-18 CN CN202210269819.2A patent/CN114780911B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669183A (en) * | 2017-12-27 | 2019-04-23 | 北京航空航天大学 | A kind of geostationary orbit SAR motive target imaging processing unit based on Keystone and time-frequency conversion |
CN110824473A (en) * | 2019-10-21 | 2020-02-21 | 西北工业大学 | A subspace-based high-resolution wide swath SAR-GMTI clutter suppression method |
CN113189547A (en) * | 2021-04-20 | 2021-07-30 | 成都汇蓉国科微系统技术有限公司 | Synthetic bandwidth frequency scaling-based SAR imaging method and system |
Non-Patent Citations (2)
Title |
---|
基于压缩感知的宽测绘带海面运动目标多普勒补偿成像算法;张双喜;李少杰;吴亿锋;熊文俊;吴玉峰;;航空科学技术;20200625(第06期);全文 * |
相位编码信号的多普勒补偿;胡英辉;郑远;耿旭朴;邓云凯;;电子与信息学报;20091115(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114780911A (en) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106970371B (en) | A kind of object detection method based on Keystone and matched filtering | |
CN109507666B (en) | ISAR sparse band imaging method based on off-network variational Bayesian algorithm | |
CN108008385B (en) | Interference environment ISAR high-resolution imaging method based on management loading | |
CN114780911B (en) | Ocean wide swath distance defuzzification method based on deep learning | |
CN103698763B (en) | Sparse Imaging Method for Linear SAR Based on Hard Threshold Orthogonal Matching Pursuit | |
CN105699969B (en) | MAP estimation angle super-resolution imaging method based on Generalized Gaussian constraint | |
CN107621635B (en) | A forward-looking sea surface target angle super-resolution method | |
CN110865344B (en) | A Fast Sidelobe Suppression Method in Pulse Doppler Radar System | |
CN107229048A (en) | A kind of high score wide cut SAR moving-targets velocity estimation and imaging method | |
CN109407070B (en) | A method for detecting ground moving objects on high-orbit platforms | |
CN103308913A (en) | Foresight SAR ambiguity resolving algorithm of double antennas carried by high-speed aircraft | |
CN106199602A (en) | A kind of Staggered SAR echo signal method for reconstructing | |
CN106950565A (en) | Space-borne SAR Imaging jitter compensation method, imaging method | |
CN113093136B (en) | A Frequency Diversity Array Radar De-ambiguity Imaging Method for Target Position | |
CN110907938B (en) | Near-field rapid downward-looking synthetic aperture three-dimensional imaging method | |
CN112946644B (en) | Sparse Aperture ISAR Imaging Method Based on Minimizing Convolution Weighted l1 Norm | |
CN113484862A (en) | Self-adaptive high-resolution wide-range SAR clear reconstruction imaging method | |
CN113466864B (en) | Rapid combined inverse-free sparse Bayes learning super-resolution ISAR imaging algorithm | |
CN103245949A (en) | SAR azimuth ambiguity suppression method based on improved ideal filter | |
CN108931770B (en) | ISAR imaging method based on multi-dimensional beta process linear regression | |
CN113640793A (en) | Super-resolution imaging method of real aperture scanning radar based on MRF | |
CN116136595A (en) | Cooperative detection bistatic forward-looking SAR imaging processing method based on two-level scale fine-tuning | |
CN113466866B (en) | Moving target high-resolution synthetic aperture radar imaging algorithm based on tracking | |
CN114675266B (en) | Low-complexity InISAR three-dimensional imaging method based on joint sparse recovery | |
CN112180338B (en) | Holographic digital array radar target quantity estimation method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |