CN114779871A - Maximum power point tracking method, photovoltaic controller and photovoltaic system - Google Patents
Maximum power point tracking method, photovoltaic controller and photovoltaic system Download PDFInfo
- Publication number
- CN114779871A CN114779871A CN202210222321.0A CN202210222321A CN114779871A CN 114779871 A CN114779871 A CN 114779871A CN 202210222321 A CN202210222321 A CN 202210222321A CN 114779871 A CN114779871 A CN 114779871A
- Authority
- CN
- China
- Prior art keywords
- output
- hysteresis interval
- voltage
- power
- absolute value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000005070 sampling Methods 0.000 claims abstract description 73
- 230000008569 process Effects 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 6
- 238000010248 power generation Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- 230000000875 corresponding effect Effects 0.000 description 31
- 238000010586 diagram Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- 101000802640 Homo sapiens Lactosylceramide 4-alpha-galactosyltransferase Proteins 0.000 description 3
- 102100035838 Lactosylceramide 4-alpha-galactosyltransferase Human genes 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 102100027123 55 kDa erythrocyte membrane protein Human genes 0.000 description 2
- 101000907578 Homo sapiens Forkhead box protein M1 Proteins 0.000 description 2
- 101000590691 Homo sapiens MAGUK p55 subfamily member 2 Proteins 0.000 description 2
- 101001115426 Homo sapiens MAGUK p55 subfamily member 3 Proteins 0.000 description 2
- 108050007394 Kinesin-like protein KIF20B Proteins 0.000 description 2
- 102100032498 MAGUK p55 subfamily member 2 Human genes 0.000 description 2
- 102100023260 MAGUK p55 subfamily member 3 Human genes 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域technical field
本申请属于光伏发电技术领域,尤其涉及一种最大功率点跟踪方法、光伏控制器及光伏系统。The application belongs to the technical field of photovoltaic power generation, and in particular relates to a maximum power point tracking method, a photovoltaic controller and a photovoltaic system.
背景技术Background technique
在光伏发电技术领域中,为了提高光伏组件的光伏发电利用率,需要使其输出功率最大。然而,光伏组件的P-U特性具有非线性,并且随着外界环境的变化而变化,所以不好控制。但是,在某一特定的温度或日照强度总存在着一个最大功率点。因此,需要采用MPPT(Maximum Power Point Tracking,最大功率点跟踪)算法跟踪光伏组件的MPP(MaximumPower Point,最大功率点),并使光伏组件始终工作在最大功率点上,以实现最大功率输出,提高光伏发电利用率。In the field of photovoltaic power generation technology, in order to improve the photovoltaic power generation utilization rate of photovoltaic modules, it is necessary to maximize the output power. However, the P-U characteristics of photovoltaic modules are nonlinear and change with the change of the external environment, so it is difficult to control. However, there is always a point of maximum power at a particular temperature or insolation intensity. Therefore, it is necessary to use the MPPT (Maximum Power Point Tracking, maximum power point tracking) algorithm to track the MPP (Maximum Power Point, maximum power point) of the photovoltaic module, and make the photovoltaic module always work at the maximum power point to achieve the maximum power output, improve Photovoltaic power generation utilization.
目前,常用的MPPT算法是电导增量法,常规的电导增量法通常是定步长的电导增量法,即预先设置了固定的扰动步长step,在进行最大功率点跟踪时需要按照固定的扰动步长step对光伏组件的最大功率点的参考电压Uref进行更新,以使光伏组件工作在最大功率点。At present, the commonly used MPPT algorithm is the conductance increment method. The conventional conductance increment method is usually the conductance increment method with a fixed step size, that is, a fixed disturbance step size step is preset, and the maximum power point tracking needs to be performed according to the fixed step size. The disturbance step size step updates the reference voltage Uref of the maximum power point of the photovoltaic module, so that the photovoltaic module works at the maximum power point.
但是定步长的电导增量法中存在扰动步长的选择问题,影响最大功率点的追踪效果。比如,若选择的扰动步长过小,可能导致最大功率点的跟踪时间过长,影响光伏系统的稳定性。若选择的扰动步长过大,虽然会缩短最大功率点的跟踪时间,但可能导致光伏系统稳定情况下的偏差过大,即追踪到的最大功率点与实际最大功率点之间的偏差较大,影响光伏发电利用率。However, there is a problem in the choice of the perturbation step size in the conductance increment method with a fixed step size, which affects the tracking effect of the maximum power point. For example, if the selected disturbance step size is too small, the tracking time of the maximum power point may be too long, which affects the stability of the photovoltaic system. If the selected disturbance step size is too large, although the tracking time of the maximum power point will be shortened, it may cause the deviation of the photovoltaic system to be too large when the PV system is stable, that is, the deviation between the tracked maximum power point and the actual maximum power point is large. , affecting the utilization rate of photovoltaic power generation.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种最大功率点跟踪方法、光伏控制器及光伏系统,可以解决常规的定步长的电导增量法中存在扰动步长的选择问题,影响最大功率点的追踪效果的问题。The embodiments of the present application provide a maximum power point tracking method, a photovoltaic controller, and a photovoltaic system, which can solve the problem of selecting a disturbance step size in the conventional constant-step conductance increment method, which affects the tracking effect of the maximum power point. question.
第一方面,本申请实施例提供了一种最大功率点跟踪方法,包括:In a first aspect, an embodiment of the present application provides a maximum power point tracking method, including:
对光伏组件的输出电压和输出电流进行采样,得到当前采样时刻的第一输出电压和第一输出电流;sampling the output voltage and output current of the photovoltaic module to obtain the first output voltage and the first output current at the current sampling time;
根据所述第一输出电压和所述第一输出电流,计算当前采样时刻的第一输出功率;Calculate the first output power at the current sampling moment according to the first output voltage and the first output current;
获取上一采样时刻的第二输出电压和第二输出功率,计算所述第一输出电压与所述第二输出电压的电压差,及所述第一输出功率与所述第二输出功率的功率差;Obtain the second output voltage and the second output power at the last sampling time, calculate the voltage difference between the first output voltage and the second output voltage, and the power of the first output power and the second output power Difference;
根据所述功率差与所述电压差的比值,确定所述光伏组件的最大功率点的参考电压的扰动方向;determining the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module according to the ratio of the power difference to the voltage difference;
根据所述功率差的绝对值确定目标扰动步长;Determine the target disturbance step size according to the absolute value of the power difference;
根据所述扰动方向和所述目标扰动步长,更新所述光伏组件的最大功率点的参考电压,以使所述光伏组件按照更新后的参考电压运行。According to the disturbance direction and the target disturbance step size, the reference voltage of the maximum power point of the photovoltaic module is updated, so that the photovoltaic module operates according to the updated reference voltage.
第二方面,提供了一种最大功率点跟踪装置,包括:In a second aspect, a maximum power point tracking device is provided, including:
采样模块,用于对光伏组件的输出电压和输出电流进行采样,得到当前采样时刻的第一输出电压和第一输出电流;The sampling module is used for sampling the output voltage and output current of the photovoltaic module to obtain the first output voltage and the first output current at the current sampling time;
第一处理模块,用于根据所述第一输出电压和所述第一输出电流,计算当前采样时刻的第一输出功率;a first processing module, configured to calculate the first output power at the current sampling moment according to the first output voltage and the first output current;
第二处理模块,用于获取上一采样时刻的第二输出电压和第二输出功率,计算所述第一输出电压与所述第二输出电压的电压差,及所述第一输出功率与所述第二输出功率的功率差;The second processing module is configured to acquire the second output voltage and the second output power at the last sampling time, calculate the voltage difference between the first output voltage and the second output voltage, and calculate the difference between the first output voltage and the second output voltage. the power difference of the second output power;
第一确定模块,用于根据所述功率差与所述电压差的比值,确定所述光伏组件的最大功率点的参考电压的扰动方向;a first determination module, configured to determine the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module according to the ratio of the power difference to the voltage difference;
第二确定模块,用于根据所述功率差的绝对值确定目标扰动步长;a second determining module, configured to determine a target disturbance step size according to the absolute value of the power difference;
更新模块,用于根据所述扰动方向和所述目标扰动步长,更新所述光伏组件的最大功率点的参考电压,以使所述光伏组件按照更新后的参考电压运行。An update module, configured to update the reference voltage of the maximum power point of the photovoltaic assembly according to the disturbance direction and the target disturbance step size, so that the photovoltaic assembly operates according to the updated reference voltage.
第三方面,提供了一种光伏控制器,所述光伏控制器包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述第一方面所述的方法。In a third aspect, a photovoltaic controller is provided, the photovoltaic controller includes a memory, a processor, and a computer program stored in the memory and executable on the processor, characterized in that the processor The method of the first aspect above is implemented when the computer program is executed.
第四方面,提供了一种光伏系统,所述光伏系统包括光伏组件、跟踪装置、直流母线和负载,所述光伏组件与所述跟踪装置的一端连接,所述跟踪装置的另一端与所述直流母线的一端连接,所述直流母线的另一端与所述负载连接,所述跟踪装置包括光伏控制器,所述光伏控制器用于实现上述第一方面所述的方法。In a fourth aspect, a photovoltaic system is provided, the photovoltaic system includes a photovoltaic component, a tracking device, a DC bus, and a load, the photovoltaic component is connected to one end of the tracking device, and the other end of the tracking device is connected to the One end of the DC bus is connected to the load, and the other end of the DC bus is connected to the load. The tracking device includes a photovoltaic controller, and the photovoltaic controller is used to implement the method described in the first aspect.
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的方法。In a fifth aspect, a computer-readable storage medium is provided, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method described in the first aspect is implemented.
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的方法。In a sixth aspect, an embodiment of the present application provides a computer program product, which, when the computer program product runs on a terminal device, enables the terminal device to execute the method described in any one of the above-mentioned first aspects.
本申请实施例与现有技术相比存在的有益效果是:The beneficial effects that the embodiments of the present application have compared with the prior art are:
本申请实施例中,可以对光伏组件的输出电压和输出电流进行采样得到第一输出电压和第一输出电流,根据第一输出电压和第一输出电流计算当前采样时刻的第一输出功率,以及获取上一采样时刻的第二输出电压和第二输出功率,计算第一输出电压与第二输出电压之间的电压差,以及第一输出功率与第二输出功率的功率差。然后,根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向,以及根据功率差的绝对值确定目标扰动步长。根据扰动方向和目标扰动步长,更新光伏组件的最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。本申请实施例,通过根据功率差的绝对值确定目标扰动步长,提供了一种变步长的电导增量法来追踪光伏组件的最大功率点,可以提高最大功率点的追踪效果。In this embodiment of the present application, the output voltage and output current of the photovoltaic module can be sampled to obtain the first output voltage and the first output current, and the first output power at the current sampling time can be calculated according to the first output voltage and the first output current, and Obtain the second output voltage and the second output power at the last sampling time, and calculate the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power. Then, according to the ratio of the power difference to the voltage difference, the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module is determined, and the target disturbance step size is determined according to the absolute value of the power difference. According to the disturbance direction and the target disturbance step size, the reference voltage of the maximum power point of the photovoltaic module is updated, so that the photovoltaic module operates according to the updated reference voltage. In the embodiment of the present application, by determining the target disturbance step size according to the absolute value of the power difference, a conductance increment method with variable step size is provided to track the maximum power point of the photovoltaic module, which can improve the tracking effect of the maximum power point.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请实施例提供的一种光伏系统的示意图;FIG. 1 is a schematic diagram of a photovoltaic system provided by an embodiment of the present application;
图2是本申请实施例提供的一种光伏控制器的示意图;2 is a schematic diagram of a photovoltaic controller provided by an embodiment of the present application;
图3是本申请实施例提供的一种光伏组件的P-U特性曲线的示意图;3 is a schematic diagram of a P-U characteristic curve of a photovoltaic module provided by an embodiment of the present application;
图4是相关技术提供的一种常规的电导增量法的最大功率点跟踪流程图;Fig. 4 is the maximum power point tracking flow chart of a conventional conductance increment method provided by the related art;
图5是本申请实施例提供的一种最大功率点追踪方法的流程图;5 is a flowchart of a maximum power point tracking method provided by an embodiment of the present application;
图6是本申请实施例提供的一种最大功率点追踪方法的逻辑示意图;6 is a logical schematic diagram of a maximum power point tracking method provided by an embodiment of the present application;
图7是本申请实施例提供的另一种光伏组件的P-U特性曲线的示意图;FIG. 7 is a schematic diagram of a P-U characteristic curve of another photovoltaic module provided in an embodiment of the present application;
图8是本申请实施例提供的另一种最大功率点追踪方法的流程图;8 is a flowchart of another maximum power point tracking method provided by an embodiment of the present application;
图9是本申请实施例提供的一种最大功率点追踪方法的逻辑示意图;9 is a logical schematic diagram of a maximum power point tracking method provided by an embodiment of the present application;
图10是本申请实施例提供的充电控制方法的流程图;10 is a flowchart of a charging control method provided by an embodiment of the present application;
图11是本申请实施例提供的一种最大功率点追踪装置的框图;11 is a block diagram of a maximum power point tracking device provided by an embodiment of the present application;
图12是本申请实施例提供的一种计算机设备的结构示意图。FIG. 12 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as a specific system structure and technology are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It is to be understood that, when used in this specification and the appended claims, the term "comprising" indicates the presence of the described feature, integer, step, operation, element and/or component, but does not exclude one or more other The presence or addition of features, integers, steps, operations, elements, components and/or sets thereof.
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It will also be understood that, as used in this specification and the appended claims, the term "and/or" refers to and including any and all possible combinations of one or more of the associated listed items.
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。As used in the specification of this application and the appended claims, the term "if" may be contextually interpreted as "when" or "once" or "in response to determining" or "in response to detecting ". Similarly, the phrases "if it is determined" or "if the [described condition or event] is detected" may be interpreted, depending on the context, to mean "once it is determined" or "in response to the determination" or "once the [described condition or event] is detected. ]" or "in response to detection of the [described condition or event]".
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the specification of the present application and the appended claims, the terms "first", "second", "third", etc. are only used to distinguish the description, and should not be construed as indicating or implying relative importance.
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。References in this specification to "one embodiment" or "some embodiments" and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application. Thus, appearances of the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically emphasized otherwise. The terms "including", "including", "having" and their variants mean "including but not limited to" unless specifically emphasized otherwise.
为了便于理解,首先对本申请实施例涉及的实施环境进行介绍。For ease of understanding, the implementation environment involved in the embodiments of the present application is first introduced.
图1是本申请实施例提供的一种光伏系统的示意图,如图1所示,该系统包括光伏组件10、跟踪装置20、直流母线30和负载40。FIG. 1 is a schematic diagram of a photovoltaic system provided by an embodiment of the present application. As shown in FIG. 1 , the system includes a
其中,光伏组件10与跟踪装置20的一端连接,跟踪装置20的另一端与直流母线30的一端连接,直流母线30的另一端与负载40连接。The
其中,光伏组件10用于将太阳能转化为电能,光伏组件10可以为光伏阵列等。跟踪装置20用于对光伏组件10的输出功率进行最大功率点跟踪,以使光伏组件10通过跟踪装置20最大限度的向直流母线30输送能量。负载40与直流母线30相连接,以获取光伏组件10通过跟踪装置20输出的能量。The
跟踪装置20可以包括光伏控制器,光伏控制器用于对光伏组件10的输出功率进行最大功率点跟踪。光伏控制器可以包括定时器、A/D(Analog/Digital,模拟/数字)转换器和PWM(Pulse width modulation,脉冲脉宽调制)调整器,PWM调整器的PWM输出可以经MOS(MOSFET,金氧半场效晶体管)驱动电流控制BOOST单元电路(一种升压电路),BOOST单元电路的输出接负载40。The
另外,跟踪装置20还可以包括光伏组件10的输出电压和输出电流的检测电路,以对光伏组件10的输出电压和输出电流进行采样。In addition, the
作为一个示例,如图2所示,跟踪装置20可以包括电压检测电路1、电流检测电路2、光伏控制器3、PWM驱动电路4和BOOST电路5。光伏组件10的输出端分别与电压检测电路1的输入端和电流检测电路2的输入端连接。电压检测电路1的输出端和电流检测电路2的输出端分别与光伏控制器3的输入端连接。光伏控制器3带有A/D转换和PWM输出,且光伏控制器3内置有最大功率点跟踪控制算法程序。光伏控制器3的PWM输出经PWM驱动电路4控制BOOST电路5,以完成在复杂条件下的最大功率点跟踪算法程序。As an example, as shown in FIG. 2 , the
作为一个示例,跟踪装置20可以为DC/DC(Direct current/Direct current,直流电/直流电)转换器,DC/DC转换器还用于将光伏组件10输出的电能转化为负载40所需的能量。As an example, the
其中,负载40可以为充电电池,也可以为其他负载,本申请实施例对此不做限定。充电电池可以为锂电池等。The
另外,请参考图1,直流母线30还可以与充电电池50连接,以对充电电池50进行充电。如图1所述,充电电池50可以为锂电池,当然也可以为其他可充电电池,本申请实施例对此不做限定。In addition, please refer to FIG. 1 , the
接下来,对本申请实施例的应用场景进行介绍。Next, the application scenarios of the embodiments of the present application are introduced.
目前,常用的最大功率点跟踪算法主要是扰动观察法和电导增量法。扰动观察法是通过比较光伏组件的瞬时电导的变化量来实现MPPT的。图3是本申请实施例提供的一种光伏组件的P-U特性曲线的示意图,由图3可知,当P-U特性曲线时单峰值的情况下,最大功率点处于顶点,因此对于P-U特性曲线上的任意点满足以下公式(1):At present, the commonly used maximum power point tracking algorithms are mainly disturbance observation method and conductance increment method. The perturbation observation method realizes MPPT by comparing the variation of instantaneous conductance of photovoltaic modules. Fig. 3 is a schematic diagram of the P-U characteristic curve of a photovoltaic module provided by the embodiment of the present application. It can be seen from Fig. 3 that when the P-U characteristic curve is a single peak, the maximum power point is at the apex, so for any arbitrary value on the P-U characteristic curve The point satisfies the following formula (1):
由于实际系统中需要进行积分运算,对处理器的运算能力要求较高,因此在实际系统中常用ΔP、ΔU代替对应的dP、dU,并且用ΔP/ΔU代替dP/dU来判断干扰的方向以减小计算量,常规的电导增量法控制流程图4所示。Due to the need for integral operation in the actual system, the computing power of the processor is relatively high. Therefore, in the actual system, ΔP and ΔU are often used to replace the corresponding dP and dU, and ΔP/ΔU is used instead of dP/dU to judge the direction of the interference. To reduce the amount of calculation, the control flow chart 4 of the conventional conductance incremental method is shown.
如图4所示,常规的电导增量法的最大功率点跟踪流程主要包括:对光伏组件的输出电压和输出电流进行实时采样,得到U(k)和I(k),并计算光伏组件的实时输出功率P(k)=U(k)×I(k)。获取上一采样时刻对光伏组件的输出电压和输出电流进行采样得到的U(k-1)和I(k-1),以及光伏组件的输出功率P(k-1)=U(k-1)×I(k-1)。然后,计算当前时刻相对于上一时刻的电压变化量△U=U(k)-U(k-1),以及功率变化量△P=P(k)-P(k-1)。之后,判断△P/△U是否大于0。若△P/△U大于0,则令Uref=Uref+step;若△P/△U等于0,则令Uref=Uref;若△P/△U小于0,则令Uref=Uref-step,其中step表示扰动步长。As shown in Figure 4, the conventional maximum power point tracking process of the conductance incremental method mainly includes: sampling the output voltage and output current of photovoltaic modules in real time, obtaining U(k) and I(k), and calculating the Real-time output power P(k)=U(k)×I(k). Obtain U(k-1) and I(k-1) obtained by sampling the output voltage and output current of the photovoltaic module at the last sampling time, and the output power of the photovoltaic module P(k-1)=U(k-1 )×I(k-1). Then, calculate the voltage variation ΔU=U(k)-U(k-1) at the current moment relative to the previous moment, and the power variation ΔP=P(k)-P(k-1). After that, it is judged whether ΔP/ΔU is greater than 0. If △P/△U is greater than 0, let Uref=Uref+step; if △P/△U is equal to 0, let Uref=Uref; if △P/△U is less than 0, let Uref=Uref-step, where step represents the perturbation step size.
常规的电导增量法为定步长的电导增量法,其存在扰动步长的选择问题,影响最大功率点的追踪效果。若选择的扰动步长过小,可能导致最大功率点的跟踪时间过长,影响光伏系统的稳定性。若选择的扰动步长过大,虽然会缩短最大功率点的跟踪时间,但可能导致光伏系统稳态情况下的偏差过大,即追踪到的最大功率点与实际最大功率点之间的偏差较大,影响光伏发电利用率。本申请实施例为了提高最大功率点的追踪效果,提出了一种变步长的最大功率点追踪方法,具体实现过程将在下述图5实施例中进行详细说明。The conventional conductance incremental method is a fixed-step conductance incremental method, which has the problem of selecting the perturbation step, which affects the tracking effect of the maximum power point. If the selected disturbance step size is too small, the tracking time of the maximum power point may be too long, which affects the stability of the photovoltaic system. If the selected disturbance step size is too large, although the tracking time of the maximum power point will be shortened, it may cause the deviation of the photovoltaic system in the steady state to be too large, that is, the deviation between the tracked maximum power point and the actual maximum power point is relatively large. large, affecting the utilization rate of photovoltaic power generation. In order to improve the tracking effect of the maximum power point, the embodiment of the present application proposes a maximum power point tracking method with variable step size. The specific implementation process will be described in detail in the following embodiment of FIG. 5 .
图5是本申请实施例提供的一种最大功率点追踪方法的流程图,该方法可以应用于上述图1中的跟踪装置20,比如应用于跟踪装置20中的光伏控制器21,如图5所示,该方法可以包括如下步骤:FIG. 5 is a flowchart of a maximum power point tracking method provided by an embodiment of the present application. The method can be applied to the
步骤501:对光伏组件的输出电压和输出电流进行采样,得到当前采样时刻的第一输出电压和第一输出电流。Step 501: Sampling the output voltage and output current of the photovoltaic module to obtain the first output voltage and the first output current at the current sampling time.
本申请实施例中,可以在光伏组件工作的过程中,对光伏组件的实时输出电压和实时输出电流进行采样。第一输出电压和第一输出电流分别为当前采样时刻的输出电压和输出电流。In the embodiment of the present application, the real-time output voltage and real-time output current of the photovoltaic module may be sampled during the working process of the photovoltaic module. The first output voltage and the first output current are the output voltage and the output current at the current sampling time, respectively.
作为一个示例,可以每隔预设时长对光伏组件的输出电压和输出电流进行采样,将当前时刻采样的输出电压和输出电流作为第一输出电压和第一输出电流。其中,预设时长可以预先设置,比如预设时长可以为1秒或2秒等。As an example, the output voltage and output current of the photovoltaic module may be sampled every preset time period, and the output voltage and output current sampled at the current moment are used as the first output voltage and the first output current. The preset duration may be preset, for example, the preset duration may be 1 second or 2 seconds.
作为一个示例,如图2所示,可以通过电压检测电路1和电流检测电路2分别对光伏组件的输出电压和输出电流进行采样。As an example, as shown in FIG. 2 , the output voltage and output current of the photovoltaic module can be sampled by the
作为一个示例,在对光伏组件的输出电压和输出电流进行采样的过程中,可以对每一次采样得到的输出电压、输出电流以及根据输出电压和输出电流计算得到的输出功率进行存储,比如存储在数据库中。As an example, in the process of sampling the output voltage and output current of the photovoltaic module, the output voltage and output current obtained by each sampling and the output power calculated according to the output voltage and output current may be stored, for example, stored in in the database.
步骤502:根据第一输出电压和第一输出电流,计算当前采样时刻的第一输出功率。Step 502: Calculate the first output power at the current sampling time according to the first output voltage and the first output current.
其中,可以将第一输出电压进行第一输出电流相乘,得到第一输出功率。比如,第一输出电压用U(k)表示,第一输出电流用I(k)表示,第一输出功率用P(k)表示,P(k)=U(k)×I(k)。Wherein, the first output voltage may be multiplied by the first output current to obtain the first output power. For example, the first output voltage is represented by U(k), the first output current is represented by I(k), and the first output power is represented by P(k), where P(k)=U(k)×I(k).
步骤503:获取上一采样时刻的第二输出电压和第二输出功率,计算第一输出电压与第二输出电压的电压差,及第一输出功率与第二输出功率的功率差。Step 503: Obtain the second output voltage and the second output power at the last sampling time, and calculate the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power.
其中,第二输出电压和第二输出功率分别为上一时刻采样的输出电压和输出电流。比如,可以每隔预设时长对光伏组件的输出电压和输出电流进行采样,上一采样时刻为当前采样时刻之前相距预设时长的时刻。Wherein, the second output voltage and the second output power are the output voltage and output current sampled at the last moment, respectively. For example, the output voltage and output current of the photovoltaic module may be sampled every preset time period, and the last sampling time is the time before the current sampling time that is separated by the preset time period.
其中,第二输出功率是由第二输出电压与上一采样时刻的第二输出电流相乘得到。比如,可以获取上一采样时刻的第二输出电压和第二输出电流,然后对第二输出电压和第二输出电流进行相乘,得到第二输出功率。比如,第二输出电压用U(k-1)表示,第二输出电流用I(k-1)表示,第二输出功率用P(k-1)表示,P(k-1)=U(k-1)×I(k-1)。The second output power is obtained by multiplying the second output voltage by the second output current at the last sampling time. For example, the second output voltage and the second output current at the last sampling time may be acquired, and then the second output voltage and the second output current are multiplied to obtain the second output power. For example, the second output voltage is represented by U(k-1), the second output current is represented by I(k-1), the second output power is represented by P(k-1), and P(k-1)=U( k-1)×I(k-1).
其中,可以从已存储的采样数据中获取上一采样时刻的第二输出电压和第二输出功率。比如,从数据库中获取上一采样时刻的第二输出电压和第二输出功率。Wherein, the second output voltage and the second output power at the last sampling time can be obtained from the stored sampling data. For example, the second output voltage and the second output power at the last sampling time are obtained from the database.
在获取到第二输出电压和第二输出功率之后,可以计算第一输出电压与第二输出电压之间的电压差,以及第一输出功率与第二输出功率之间的功率差。After acquiring the second output voltage and the second output power, the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power may be calculated.
比如,电压差用△U表示,△U=U(k)-U(k-1)。功率差用△P表示,△P=P(k)-P(k-1)。For example, the voltage difference is represented by ΔU, ΔU=U(k)-U(k-1). The power difference is represented by ΔP, ΔP=P(k)-P(k-1).
步骤504:根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向。Step 504: Determine the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module according to the ratio of the power difference to the voltage difference.
其中,最大功率点的参考电压用于指示最大功率点,光伏组件按照最大功率点的参考电压运行,可以使得光伏组件的输出功率工作在最大功率点。The reference voltage of the maximum power point is used to indicate the maximum power point, and the photovoltaic module operates according to the reference voltage of the maximum power point, so that the output power of the photovoltaic module can work at the maximum power point.
作为一个示例,根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向的操作包括:判断功率差与电压差的比值是否大于预设比值。若功率差与电压差的比值大于预设比值,则将光伏组件的最大功率点的参考电压的扰动方向确定为第一扰动方向。若功率差与电压差的比值小于预设比值,则将光伏组件的最大功率点的参考电压的扰动方向确定为第二扰动方向。若功率差与电压差的比值等于预设比值,则将光伏组件的最大功率点的参考电压的扰动方向确定为第一扰动方向,或者确定不需要对光伏组件的最大功率点的参考电压进行扰动。As an example, the operation of determining the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module according to the ratio of the power difference to the voltage difference includes: judging whether the ratio of the power difference to the voltage difference is greater than a preset ratio. If the ratio of the power difference to the voltage difference is greater than the preset ratio, the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module is determined as the first disturbance direction. If the ratio of the power difference to the voltage difference is smaller than the preset ratio, the disturbance direction of the reference voltage at the maximum power point of the photovoltaic module is determined as the second disturbance direction. If the ratio of the power difference to the voltage difference is equal to the preset ratio, the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module is determined as the first disturbance direction, or it is determined that the reference voltage of the maximum power point of the photovoltaic module does not need to be disturbed. .
其中,预设比值可以预先设置,通常设置为一个较小的值。比如预设比值为0或0.1等。第一扰动方向是指需要对最大功率点的参考电压进行增大的方向,第二扰动方向是指需要对最大功率点的参考电压进行减小的方向。The preset ratio can be preset, and is usually set to a smaller value. For example, the preset ratio is 0 or 0.1, etc. The first disturbance direction refers to the direction in which the reference voltage of the maximum power point needs to be increased, and the second disturbance direction refers to the direction in which the reference voltage of the maximum power point needs to be decreased.
请参考图6,图6是本申请实施例提供的一种最大功率点追踪方法的逻辑示意图。如图6所示,在计算△U=U(k)-U(k-1),△P=P(k)-P(k-1)之后,判断功率差与电压差的比值△P/△U是否大于0。若判断结果为是,则确定扰动方向为第一扰动方向,即需要增大最大功率点的参考电压。若判断结果为否,则继续判断△P/△U是否等于0。若判断结果为是,则确定扰动方向为第一扰动方向,即需要增大最大功率点的参考电压。若判断结果为否,则确定扰动方向为第二扰动方向,即需要减小最大功率点的参考电压。Please refer to FIG. 6 . FIG. 6 is a schematic logical diagram of a maximum power point tracking method provided by an embodiment of the present application. As shown in Figure 6, after calculating ΔU=U(k)-U(k-1), ΔP=P(k)-P(k-1), determine the ratio of power difference to voltage difference ΔP/ Whether △U is greater than 0. If the judgment result is yes, the disturbance direction is determined as the first disturbance direction, that is, the reference voltage of the maximum power point needs to be increased. If the judgment result is no, continue to judge whether ΔP/ΔU is equal to 0. If the judgment result is yes, the disturbance direction is determined as the first disturbance direction, that is, the reference voltage of the maximum power point needs to be increased. If the judgment result is no, it is determined that the disturbance direction is the second disturbance direction, that is, the reference voltage of the maximum power point needs to be reduced.
步骤505:根据功率差的绝对值确定目标扰动步长。Step 505: Determine the target disturbance step size according to the absolute value of the power difference.
本申请实施例中,可以根据功率差的绝对值来确定目标扰动步长。若不同采样时刻相对于上一采样时刻的功率差的绝对值不同,则对应的目标扰动步长也不同,从而提供了一种变步长的电导增量法来追踪光伏组件的最大功率点。In this embodiment of the present application, the target disturbance step size may be determined according to the absolute value of the power difference. If the absolute value of the power difference at different sampling times relative to the previous sampling time is different, the corresponding target disturbance step size is also different, thus providing a variable-step conductance increment method to track the maximum power point of the photovoltaic module.
其中,目标扰动步长与当前采样时刻相对于上一采样时刻的功率差的绝对值相关。比如,目标扰动步长可以与功率差的绝对值呈正相关关系。这样,若功率差的绝对值较小,则其对应的目标扰动步长设置也较小,如此在功率变化较小时准确地追踪到最大功率点,减小光伏系统稳定情况下的最大功率点偏差。若功率差的绝对值较大,则其对应的目标扰动步长设置也较大,如此在功率变化较大时即环境出现距离波动时能够快速追踪最大功率点,节省最大功率点的跟踪时间。Among them, the target disturbance step size is related to the absolute value of the power difference between the current sampling time and the previous sampling time. For example, the target perturbation step size can be positively correlated with the absolute value of the power difference. In this way, if the absolute value of the power difference is small, the corresponding target disturbance step size setting is also small, so that the maximum power point can be accurately tracked when the power change is small, and the maximum power point deviation when the photovoltaic system is stable is reduced. . If the absolute value of the power difference is large, the corresponding target disturbance step size setting is also large, so that when the power changes greatly, that is, when the environment fluctuates in distance, the maximum power point can be quickly tracked and the tracking time of the maximum power point can be saved.
作为一个示例,可以预先为功率差的绝对值设置多个回滞区间,不同的回滞区间对应不同的扰动步长,本申请中设置多个回滞区间的作用是为了防止阈值设置过于临近,导致光伏控制器在相邻工作区间内反复切换。更具体地,该回滞区间表示该光伏控制器的工作区间,在不同的工作区间执行相应的操作。在最大功率点跟踪的过程中,根据当前采样时刻相对于上一采样时刻的功率差的绝对值所属的回滞区间对应的扰动步长,确定目标扰动步长。As an example, multiple hysteresis intervals can be set in advance for the absolute value of the power difference, and different hysteresis intervals correspond to different disturbance step sizes. The function of setting multiple hysteresis intervals in this application is to prevent the threshold from being set too close. This causes the photovoltaic controller to switch repeatedly in adjacent working areas. More specifically, the hysteresis interval represents a working interval of the photovoltaic controller, and corresponding operations are performed in different working intervals. During the maximum power point tracking process, the target disturbance step length is determined according to the disturbance step length corresponding to the hysteresis interval to which the absolute value of the power difference between the current sampling time and the previous sampling time belongs.
比如,回滞区间可以包括第一回滞区间、第二回滞区间和第三回滞区间中的至少两个。第一回滞区间为[0,a],第二回滞区间为[a1,b],第三回滞区间为[b1,∞]。其中,0<a1<a<b1<b。For example, the hysteresis interval may include at least two of the first hysteresis interval, the second hysteresis interval and the third hysteresis interval. The first hysteresis interval is [0, a], the second hysteresis interval is [a1, b], and the third hysteresis interval is [b1, ∞]. where 0<a1<a<b1<b.
其中,第一回滞区间对应第一扰动步长,第二回滞区间对应第二扰动步长,第三回滞区间对应第三扰动步长。第一扰动步长、第二扰动步长和第三扰动步长的大小可以根据需要进行设置,比如,第一扰动步长<第二扰动步长<第三扰动步长。示例地,第一扰动步长、第二扰动步长和第三扰动步长可以分别用step1、step2和step3来表示。The first hysteresis interval corresponds to the first disturbance step size, the second hysteresis interval corresponds to the second disturbance step size, and the third hysteresis interval corresponds to the third disturbance step size. The sizes of the first disturbance step size, the second disturbance step size and the third disturbance step size can be set as required, for example, the first disturbance step size < the second disturbance step size < the third disturbance step size. For example, the first perturbation step, the second perturbation step and the third perturbation step can be represented by step1, step2 and step3, respectively.
其中,回滞区间可以用回滞区间标识来指示,回滞区间标识的值不同,则其指示的回滞区间不同。比如,第一回滞区间的回滞区间标识的值为X,第二回滞区间的回滞区间标识的值为Y,第三回滞区间的回滞区间标识的值为Z,X<Y<Z。另外,回滞区间标识的初始值可以为X。The hysteresis interval can be indicated by the hysteresis interval identifier, and the hysteresis interval indicated by the hysteresis interval is different if the values of the hysteresis interval identifier are different. For example, the value of the hysteresis interval identifier of the first hysteresis interval is X, the value of the hysteresis interval identifier of the second hysteresis interval is Y, the value of the hysteresis interval identifier of the third hysteresis interval is Z, and X<Y <Z. In addition, the initial value of the hysteresis interval identifier may be X.
示例地,回滞区间标识可以为step_flag,X为0、Y为1、Z为2。若step_flag=0,则step_flag用于指示第一回滞区间。若step_flag=1,则step_flag用于指示第二回滞区间。若step_flag=2,则step_flag用于指示第三回滞区间。For example, the hysteresis interval identifier may be step_flag, where X is 0, Y is 1, and Z is 2. If step_flag=0, step_flag is used to indicate the first hysteresis interval. If step_flag=1, step_flag is used to indicate the second hysteresis interval. If step_flag=2, step_flag is used to indicate the third hysteresis interval.
作为一个示例,根据功率差的绝对值确定目标扰动步长的操作可以包括:获取回滞区间标识;判断功率差的绝对值是否落入回滞区间标识对应的回滞区间,若是,则不更新回滞区间标识,若否,则根据功率差的绝对值对应的回滞区间更新回滞区间标识;获取回滞区间标识对应的扰动步长,以回滞区间标识对应的扰动步长所述目标扰动步长。As an example, the operation of determining the target disturbance step size according to the absolute value of the power difference may include: acquiring a backlash interval identifier; judging whether the absolute value of the power difference falls within the backlash interval corresponding to the backlash interval identifier, and if so, not updating The hysteresis interval identifier, if not, update the hysteresis interval identifier according to the hysteresis interval corresponding to the absolute value of the power difference; obtain the disturbance step size corresponding to the hysteresis interval identifier, and use the hysteresis interval identifier corresponding to the disturbance step size for the target perturbation step size.
其中,回滞区间标识对应的扰动步长是指回滞区间标识指示的回滞区间对应的扰动步长。获取的回滞区间标识用于指示上一采样时刻的功率差的绝对值所属的回滞区间。如此,可以根据当前采样时刻的功率差的绝对值,以及上一采样时刻的功率差的绝对值所属的回滞区间,来确定当前采样时刻的功率差的绝对值的目标回滞区间。The disturbance step size corresponding to the hysteresis interval identifier refers to the disturbance step size corresponding to the hysteresis interval indicated by the hysteresis interval identifier. The acquired hysteresis interval identifier is used to indicate the hysteresis interval to which the absolute value of the power difference at the last sampling time belongs. In this way, the target hysteresis interval of the absolute value of the power difference at the current sampling moment can be determined according to the absolute value of the power difference at the current sampling moment and the hysteresis interval to which the absolute value of the power difference at the previous sampling moment belongs.
比如,获取回滞区间标识之后,可以根据该功率差的绝对值和回滞区间标识,确定该功率差的绝对值的目标回滞区间,并根据目标回滞区间更新回滞区间标识。之后,获取目标回滞区间对应的扰动步长,以目标回滞区间对应的扰动步长作为目标扰动步长。For example, after obtaining the hysteresis interval identifier, the target hysteresis interval of the absolute value of the power difference can be determined according to the absolute value of the power difference and the hysteresis interval identifier, and the hysteresis interval identifier can be updated according to the target hysteresis interval. After that, the disturbance step size corresponding to the target hysteresis interval is obtained, and the disturbance step size corresponding to the target hysteresis interval is used as the target disturbance step size.
也即是,在确定当前采样时刻的功率差的绝对值的目标回滞区间之后,还可以根据当前采样时刻的功率差的绝对值的目标回滞区间,对回滞区间标识进行更新,以使更新后的回滞区间标识用于指示当前采样时刻的功率差的绝对值的目标回滞区间,以便下一采样时刻获取回滞区间标识后,可以根据下一采样时刻的功率差的绝对值以及当前采样时刻的功率差的绝对值的目标回滞区间,来确定下一采样时刻的功率差的绝对值的目标回滞区间。That is, after determining the target hysteresis interval of the absolute value of the power difference at the current sampling moment, the hysteresis interval identifier can also be updated according to the target hysteresis interval of the absolute value of the power difference at the current sampling moment, so that The updated hysteresis interval identifier is used to indicate the target hysteresis interval of the absolute value of the power difference at the current sampling moment, so that after obtaining the hysteresis interval identifier at the next sampling moment, the absolute value of the power difference at the next sampling moment and The target hysteresis interval of the absolute value of the power difference at the current sampling moment is used to determine the target hysteresis interval of the absolute value of the power difference at the next sampling moment.
在一种可能的实现方式中,可以将回滞区间标识存储在指定存储空间中,在需要获取回滞区间标识时,可以从指定存储空间中读取回滞区间标识。其中,回滞区间标识可以预先设置为初始值。之后,在最大功率点跟踪的过程中,可以根据每个采样时刻对应的功率差的绝对值所属的回滞区间对该回滞区间标识进行更新。In a possible implementation manner, the hysteresis interval identifier may be stored in a specified storage space, and when the hysteresis interval identifier needs to be acquired, the hysteresis interval identifier may be read from the specified storage space. The hysteresis interval identifier may be preset as an initial value. Afterwards, in the process of maximum power point tracking, the hysteresis interval identifier may be updated according to the hysteresis interval to which the absolute value of the power difference corresponding to each sampling moment belongs.
作为一个示例,该回滞区间包括第一回滞区间、第二回滞区间和第二回滞区间,第一回滞区间为[0,a],第二回滞区间为[a1,b],第三回滞区间为[b1,∞];第一回滞区间对应第一扰动步长,第二回滞区间对应第二扰动步长,第三回滞区间对应第三扰动步长,所述第一回滞区间的回滞区间标识的值为X,第二回滞区间的回滞区间标识的值为Y,第三回滞区间的回滞区间标识的值为Z的情况下,判断功率差的绝对值是否落入回滞区间标识对应的回滞区间,若是,则不更新回滞区间标识,若否,则根据功率差的绝对值对应的回滞区间更新回滞区间标识的操作可以包括如下步骤:As an example, the hysteresis interval includes a first hysteresis interval, a second hysteresis interval, and a second hysteresis interval, the first hysteresis interval is [0, a], and the second hysteresis interval is [a1, b] , the third hysteresis interval is [b1, ∞]; the first hysteresis interval corresponds to the first disturbance step, the second hysteresis interval corresponds to the second disturbance step, and the third hysteresis interval corresponds to the third disturbance step, so When the value of the hysteresis interval identifier of the first hysteresis interval is X, the value of the hysteresis interval identifier of the second hysteresis interval is Y, and the value of the hysteresis interval identifier of the third hysteresis interval is Z, it is judged that Whether the absolute value of the power difference falls within the hysteresis interval corresponding to the hysteresis interval identifier, if so, the hysteresis interval identifier is not updated; if not, the operation of updating the hysteresis interval identifier according to the hysteresis interval corresponding to the absolute value of the power difference Can include the following steps:
1)判断功率差的绝对值是否小于或等于a。1) Determine whether the absolute value of the power difference is less than or equal to a.
请参考图6,在确定ΔP/ΔU>0之后,或者确定ΔP/ΔU不等于0之后,可以先判断|ΔP|是否小于等于a。Please refer to FIG. 6 , after it is determined that ΔP/ΔU>0, or after it is determined that ΔP/ΔU is not equal to 0, it can be first determined whether |ΔP| is less than or equal to a.
2)若功率差的绝对值小于或等于a,则判断回滞区间标识的值是否大于或等于Y。2) If the absolute value of the power difference is less than or equal to a, then judge whether the value of the hysteresis interval is greater than or equal to Y.
其中,回滞区间标识的值用于指示第一采样时刻的功率差的绝对值的回滞区间。若回滞区间标识的值为X,则回滞区间标识用于指示第一回滞区间;若回滞区间标识为Y,则回滞区间标识用于指示第二回滞区间;若回滞区间标识为Z;则回滞区间标识用于指示第三回滞区间。The value of the hysteresis interval identifier is used to indicate the hysteresis interval of the absolute value of the power difference at the first sampling time. If the value of the hysteresis interval identifier is X, the hysteresis interval identifier is used to indicate the first hysteresis interval; if the hysteresis interval identifier is Y, the hysteresis interval identifier is used to indicate the second hysteresis interval; The identifier is Z; then the hysteresis interval identifier is used to indicate the third hysteresis interval.
请参考图6,以回滞区间标识用step_flag表示,X=0、Y=1、Z=2为例,若step_flag=0,则step_flag用于指示第一回滞区间[0,a]。若step_flag=1,则step_flag用于指示第二回滞区间[a1,b]。若step_flag=2,则step_flag用于指示第三回滞区间[b1,∞]。若|ΔP|≤a,则判断step_flag的值是否≥1。Please refer to FIG. 6 , take step_flag as the hysteresis interval identifier, X=0, Y=1, Z=2 as an example, if step_flag=0, step_flag is used to indicate the first hysteresis interval [0, a]. If step_flag=1, step_flag is used to indicate the second hysteresis interval [a1, b]. If step_flag=2, step_flag is used to indicate the third hysteresis interval [b1, ∞]. If |ΔP|≤a, judge whether the value of step_flag is ≥1.
3)若回滞区间标识小于Y,则确定功率差的绝对值属于第一回滞区间,并将回滞区间标识的值更新为X。3) If the hysteresis interval identifier is less than Y, determine that the absolute value of the power difference belongs to the first hysteresis interval, and update the value of the hysteresis interval identifier to X.
请参考图6,若step_flag不大于或等于1,则确定|ΔP|属于第一回滞区间[0,a],并将step_flag的值更新为0,即令step_flag=0。Referring to FIG. 6 , if step_flag is not greater than or equal to 1, it is determined that |ΔP| belongs to the first hysteresis interval [0, a], and the value of step_flag is updated to 0, that is, step_flag=0.
4)若回滞区间标识大于或等于Y,则判断功率差的绝对值是否小于a1。4) If the hysteresis interval identifier is greater than or equal to Y, determine whether the absolute value of the power difference is less than a1.
请参考图6,若step_flag≥1,则继续判断|ΔP|是否小于a1。Please refer to FIG. 6 , if step_flag≥1, continue to judge whether |ΔP| is less than a1.
5)若功率差的绝对值小于a1,则确定功率差的绝对值属于第一回滞区间,并将回滞区间标识的值更新为X,在本申请中,功率差的绝对值属于某一回滞区间,表示该功率差的绝对值落入某一回滞区间的范围内。5) If the absolute value of the power difference is less than a1, it is determined that the absolute value of the power difference belongs to the first hysteresis interval, and the value of the hysteresis interval is updated to X. In this application, the absolute value of the power difference belongs to a certain hysteresis interval. Hysteresis interval, indicating that the absolute value of the power difference falls within the range of a certain hysteresis interval.
请参考图6,若|ΔP|<a1,则确定|ΔP|属于第一回滞区间[0,a],并将step_flag的值更新为0,即令step_flag=0。Referring to FIG. 6 , if |ΔP|<a1, it is determined that |ΔP| belongs to the first hysteresis interval [0, a], and the value of step_flag is updated to 0, that is, step_flag=0.
6)若功率差的绝对值不小于a1,则确定功率差的绝对值属于第二回滞区间,并将回滞区间标识的值更新为Y。6) If the absolute value of the power difference is not less than a1, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value identified by the hysteresis interval is updated to Y.
请参考图6,若|ΔP|不小于a1,即|ΔP|≥a1,则确定|ΔP|属于第二回滞区间[a1,b],并将step_flag的值更新为Y,即令step_flag=0。Please refer to FIG. 6 , if |ΔP| is not less than a1, that is, |ΔP|≥a1, then it is determined that |ΔP| belongs to the second hysteresis interval [a1, b], and the value of step_flag is updated to Y, that is, step_flag=0 .
7)在步骤1)之后,若判断结果为功率差的绝对值大于a,则判断回滞区间标识是否等于X。7) After step 1), if the determination result is that the absolute value of the power difference is greater than a, then determine whether the hysteresis interval identifier is equal to X.
请参考图6,若|ΔP|不小于或等于a,即|ΔP|>a,则判断step_flag是否等于0。Please refer to FIG. 6 , if |ΔP| is not less than or equal to a, that is, |ΔP|>a, it is determined whether step_flag is equal to 0.
8)若回滞区间标识等于X,则确定功率差的绝对值属于第二回滞区间,并将回滞区间标识的值更新为Y。8) If the hysteresis interval identifier is equal to X, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value of the hysteresis interval identifier is updated to Y.
请参考图6,若step_flag=0,则确定|ΔP|属于第二回滞区间[a1,b],并将step_flag的值更新为1,即令step_flag=1。Referring to FIG. 6 , if step_flag=0, it is determined that |ΔP| belongs to the second hysteresis interval [a1, b], and the value of step_flag is updated to 1, that is, step_flag=1.
9)若回滞区间标识不等于X,则判断回滞区间标识是否等于Y。9) If the hysteresis interval identifier is not equal to X, determine whether the hysteresis interval identifier is equal to Y.
请参考图6,若step_flag不=0,即step_flag=1或2,则继续判断step_flag是否=1。Please refer to FIG. 6 , if step_flag is not=0, that is, step_flag=1 or 2, continue to judge whether step_flag=1.
10)若回滞区间标识等于Y,则判断功率差的绝对值是否大于b;若功率差的绝对值大于b,则确定功率差的绝对值属于第三回滞区间,并将回滞区间标识的值更新为Z;若功率差的绝对值小于或等于b,则确定功率差的绝对值属于第二回滞区间,并将回滞区间标识的值更新为Y。10) If the hysteresis interval identifier is equal to Y, then judge whether the absolute value of the power difference is greater than b; if the absolute value of the power difference is greater than b, then determine that the absolute value of the power difference belongs to the third hysteresis interval, and identify the hysteresis interval. The value of is updated to Z; if the absolute value of the power difference is less than or equal to b, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value identified by the hysteresis interval is updated to Y.
请参考图6,若step_flag=1,则判断|ΔP|是否大于b。若|ΔP|>b,则确定|ΔP|属于第三回滞区间[b1,∞],并将step_flag的值更新为2,即令step_flag=2。若|ΔP|不大于b,即|ΔP|≤b,则确定|ΔP|属于第二回滞区间[a1,b],并将step_flag的值更新为1,即令step_flag=1。Please refer to FIG. 6 , if step_flag=1, it is determined whether |ΔP| is greater than b. If |ΔP|>b, it is determined that |ΔP| belongs to the third hysteresis interval [b1, ∞], and the value of step_flag is updated to 2, that is, step_flag=2. If |ΔP| is not greater than b, that is, |ΔP|≤b, it is determined that |ΔP| belongs to the second hysteresis interval [a1, b], and the value of step_flag is updated to 1, that is, step_flag=1.
11)若回滞区间标识不等于Y,则判断功率差的绝对值是否大于b1;若功率差的绝对值不大于b1,则确定功率差的绝对值属于第二回滞区间,并将第二时刻的回滞区间标识的值更新为Y;若功率差的绝对值大于b1,则确定功率差的绝对值属于第三回滞区间,并将回滞区间标识的值更新为Z。11) If the hysteresis interval identifier is not equal to Y, then judge whether the absolute value of the power difference is greater than b1; if the absolute value of the power difference is not greater than b1, then determine that the absolute value of the power difference belongs to the second hysteresis interval, and the second The value of the hysteresis interval identifier at time is updated to Y; if the absolute value of the power difference is greater than b1, it is determined that the absolute value of the power difference belongs to the third hysteresis interval, and the value of the hysteresis interval identifier is updated to Z.
请参考图6,若step_flag不等于1,即step_flag=2,则判断|ΔP|是否大于b1。若|ΔP|>b1,则确定|ΔP|属于第三回滞区间[b1,∞],并将step_flag的值更新为2,即令step_flag=2。若|ΔP|不大于b1,即|ΔP|≤b1,则确定|ΔP|属于第二回滞区间[a1,b],并将step_flag的值更新为1,即令step_flag=1。Referring to FIG. 6 , if step_flag is not equal to 1, that is, step_flag=2, it is determined whether |ΔP| is greater than b1. If |ΔP|>b1, it is determined that |ΔP| belongs to the third hysteresis interval [b1, ∞], and the value of step_flag is updated to 2, that is, step_flag=2. If |ΔP| is not greater than b1, that is, |ΔP|≤b1, it is determined that |ΔP| belongs to the second hysteresis interval [a1, b], and the value of step_flag is updated to 1, that is, step_flag=1.
在确定该功率差的绝对值的目标回滞区间,并根据目标回滞区间更新回滞区间标识之后,即可获取目标回滞区间对应的扰动步长,以目标回滞区间对应的扰动步长作为目标扰动步长。After the target hysteresis interval of the absolute value of the power difference is determined, and the hysteresis interval identifier is updated according to the target hysteresis interval, the disturbance step size corresponding to the target hysteresis interval can be obtained. as the target perturbation step size.
比如,若目标回滞区间为第一回滞区间,则以第一回滞区间对应的第一扰动步长作为目标扰动步长。若目标回滞区间为第二回滞区间,则以第二回滞区间对应的第二扰动步长作为目标扰动步长。若目标回滞区间为第三回滞区间,则以第三回滞区间对应的第三扰动步长作为目标扰动步长。For example, if the target hysteresis interval is the first hysteresis interval, the first disturbance step size corresponding to the first hysteresis interval is used as the target disturbance step size. If the target hysteresis interval is the second hysteresis interval, the second disturbance step size corresponding to the second hysteresis interval is used as the target disturbance step size. If the target hysteresis interval is the third hysteresis interval, the third disturbance step size corresponding to the third hysteresis interval is used as the target disturbance step size.
比如,请参考图6,step_flag=0对应于step1,step_flag=1对应于step2,step_flag=2对应于step3。For example, please refer to FIG. 6 , step_flag=0 corresponds to step1, step_flag=1 corresponds to step2, and step_flag=2 corresponds to step3.
步骤506:根据该扰动方向和目标扰动步长,更新光伏组件的最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。Step 506: According to the disturbance direction and the target disturbance step size, update the reference voltage of the maximum power point of the photovoltaic module, so that the photovoltaic module operates according to the updated reference voltage.
比如,若扰动方向为第一扰动方向,则将最大功率点的参考电压增大目标扰动步长。若扰动方向为第二扰动方向,则将最大功率点的参考电压减小目标扰动步长。另外,若功率差与电压差的比值等于预设比值,则不更新最大功率点的参考电压,或者将最大功率点的参考电压增大第一扰动步长。For example, if the disturbance direction is the first disturbance direction, the reference voltage of the maximum power point is increased by the target disturbance step size. If the disturbance direction is the second disturbance direction, the reference voltage of the maximum power point is reduced by the target disturbance step size. In addition, if the ratio of the power difference to the voltage difference is equal to the preset ratio, the reference voltage of the maximum power point is not updated, or the reference voltage of the maximum power point is increased by the first disturbance step size.
其中,最大功率点的参考电压可以用Uref表示。请参考图6,在△P/△U>0的情况下,若step_flag=0,则令Uref=Uref+step1;若step_flag=1,则令Uref=Uref+step2;若step_flag=2,则令Uref=Uref+step3。Among them, the reference voltage of the maximum power point can be represented by Uref. Please refer to FIG. 6 , in the case of ΔP/ΔU>0, if step_flag=0, let Uref=Uref+step1; if step_flag=1, let Uref=Uref+step2; if step_flag=2, let Uref=Uref+step3.
作为一个示例,可以根据扰动方向和目标扰动步长,通过调节PWM的占空比来更新最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。As an example, the reference voltage of the maximum power point can be updated by adjusting the duty cycle of the PWM according to the disturbance direction and the target disturbance step size, so that the photovoltaic module operates according to the updated reference voltage.
本申请实施例中,可以对光伏组件的输出电压和输出电流进行采样得到第一输出电压和第一输出电流,根据第一输出电压和第一输出电流计算当前采样时刻的第一输出功率,以及获取上一采样时刻的第二输出电压和第二输出功率,计算第一输出电压与第二输出电压之间的电压差,以及第一输出功率与第二输出功率的功率差。然后,根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向,以及根据功率差的绝对值确定目标扰动步长。之后,根据扰动方向和目标扰动步长,更新光伏组件的最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。如此,通过根据功率差的绝对值确定目标扰动步长,提供了一种变步长的电导增量法来追踪光伏组件的最大功率点,可以提高最大功率点的追踪效果。In this embodiment of the present application, the output voltage and output current of the photovoltaic module can be sampled to obtain the first output voltage and the first output current, and the first output power at the current sampling time can be calculated according to the first output voltage and the first output current, and Obtain the second output voltage and the second output power at the last sampling time, and calculate the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power. Then, according to the ratio of the power difference to the voltage difference, the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module is determined, and the target disturbance step size is determined according to the absolute value of the power difference. After that, according to the disturbance direction and the target disturbance step size, the reference voltage of the maximum power point of the photovoltaic module is updated, so that the photovoltaic module operates according to the updated reference voltage. In this way, by determining the target disturbance step size according to the absolute value of the power difference, a conductance increment method with variable step size is provided to track the maximum power point of the photovoltaic module, which can improve the tracking effect of the maximum power point.
另外,由于光伏系统可能会存在局部的光伏组件发生遮罩现象,从而导致光伏组件的P-U特性曲线出现如图7所示的多峰值现象,图7所示的P-U特性曲线存在多个峰值点,分别为MPP1、MPP2和MPP3。当P-U特性曲线出现多峰值现象时,P-U特性曲线存在多个峰值点,这种情况下,常规的电导增量法只能追踪到峰值最小的峰值点,而不能追踪到峰值最大的峰值点,即不能追踪到全局最大功率点。如图7所示,常规的电导增量法只能追踪到MPP1,不能追踪到MPP2和MPP3。In addition, since the photovoltaic system may have partial shading of photovoltaic modules, the P-U characteristic curve of the photovoltaic module may appear multi-peak phenomenon as shown in Figure 7. The P-U characteristic curve shown in Figure 7 has multiple peak points. They are MPP1, MPP2, and MPP3, respectively. When the P-U characteristic curve has multiple peaks, there are multiple peak points in the P-U characteristic curve. In this case, the conventional conductance incremental method can only track the peak point with the smallest peak value, but cannot track the peak point with the largest peak value. That is, the global maximum power point cannot be tracked. As shown in Figure 7, the conventional conductance increment method can only track MPP1, but not MPP2 and MPP3.
本申请实施例中,为了保证能够追踪到全局最大功率点,提供了一种先搜索全局最大功率点,再按照上述图5实施例所示的方式进行最大功率点追踪的方法,具体实现过程将在下述图8实施例中进行详细说明。In this embodiment of the present application, in order to ensure that the global maximum power point can be tracked, a method is provided for first searching for the global maximum power point, and then tracking the maximum power point according to the method shown in the above-mentioned embodiment of FIG. 5 . The specific implementation process is as follows: This is explained in detail in the embodiment of FIG. 8 below.
图8是本申请实施例提供的另一种最大功率点追踪方法的流程图,方法可以应用于上述图1中的跟踪装置20,比如应用于跟踪装置20中的光伏控制器21,如图8所示,方法可以包括如下步骤:FIG. 8 is a flowchart of another maximum power point tracking method provided by an embodiment of the present application. The method can be applied to the
步骤801:将待确定参考电压设置为光伏组件的开路电压。Step 801: Set the reference voltage to be determined as the open circuit voltage of the photovoltaic module.
其中,待确定的光伏组件的最大功率点的参考电压。光伏组件的开路电压是指光伏组件在开路状态下的端电压。Wherein, the reference voltage of the maximum power point of the photovoltaic module to be determined. The open-circuit voltage of the photovoltaic module refers to the terminal voltage of the photovoltaic module in the open-circuit state.
本申请实施例中,可以先确定光伏组件的开路电压,并将光伏组件的开路电压作为待确定参考电压。In the embodiment of the present application, the open-circuit voltage of the photovoltaic assembly may be determined first, and the open-circuit voltage of the photovoltaic assembly may be used as the reference voltage to be determined.
比如,待确定参考电压可以用Uref_search,光伏组件的开路电压可以用Uoc表示。请参考图9,先设定Uref_search=Uoc。For example, the reference voltage to be determined can be represented by Uref_search, and the open circuit voltage of the photovoltaic module can be represented by Uoc. Please refer to FIG. 9 , first set Uref_search=Uoc.
步骤802:按照预设扰动步长逐步减小待确定参考电压,并记录光伏组件的输出电压、输出电流和输出功率,获取记录的所有输出功率中的最大输出功率,以最大输出功率对应的输出电压作为光伏组件的最大功率点的参考电压。Step 802: Gradually reduce the reference voltage to be determined according to the preset disturbance step size, and record the output voltage, output current and output power of the photovoltaic module, obtain the maximum output power among all the recorded output powers, and use the output corresponding to the maximum output power. The voltage is used as the reference voltage of the maximum power point of the photovoltaic module.
其中,预设步长可以预先设置,比如可以设置为开路电压的百分之一。The preset step size may be preset, for example, may be set to 1% of the open circuit voltage.
本申请实施例中,可以扰动的参考电压依次减小预设步长,并在依次减小扰动的参考电压的过程中,搜索光伏组件的最大输出功率即全局最大功率,之后,即可将最大输出功率处的输出电压设置为最大功率点的参考电压。In the embodiment of the present application, the reference voltage that can be disturbed is sequentially reduced by the preset step size, and in the process of decreasing the disturbed reference voltage in turn, the maximum output power of the photovoltaic module, that is, the global maximum power, is searched, and then the maximum output power of the photovoltaic module can be searched. The output voltage at the output power is set as the reference voltage at the maximum power point.
作为一个示例,步骤802可以通过以下步骤1)-步骤6)实现:As an example, step 802 can be implemented through the following steps 1)-6):
1)将待确定参考电压减小预设扰动步长。1) Decrease the reference voltage to be determined by the preset disturbance step size.
其中,预设扰动步长可以预先设置。预设扰动步长可以用△step表示。The preset disturbance step size may be preset. The preset disturbance step size can be represented by Δstep.
请参考图9,可以令Uref_search=Uref_search-△step。Referring to FIG. 9, Uref_search=Uref_search-Δstep can be set.
2)判断减小后的待确定参考电压是否小于开路电压的预设比例,预设比例小于1。2) Determine whether the reduced reference voltage to be determined is less than a preset ratio of the open circuit voltage, and the preset ratio is less than 1.
其中,预设比例可以预先设置,比如预设比例可以为0.2或0.3等。The preset ratio may be preset, for example, the preset ratio may be 0.2 or 0.3.
请参考图9,可以判断Uref_search是否小于0.2×Uoc。Referring to FIG. 9 , it can be determined whether Uref_search is less than 0.2×Uoc.
3)若减小后的待确定参考电压不小于开路电压的预设比例,则对光伏组件的输出电压和输出电流进行采样,并计算输出功率。3) If the reduced reference voltage to be determined is not less than the preset ratio of the open circuit voltage, sample the output voltage and output current of the photovoltaic module, and calculate the output power.
请参考图9,若判断结果为否,即Uref_search不小于0.2×Uoc,则采样光伏组件的实时输出电压U(m)和实时输出电流I(m),并计算输出功率P(m)=U(m)×I(m)。Please refer to Figure 9, if the judgment result is no, that is, Uref_search is not less than 0.2×Uoc, sample the real-time output voltage U(m) and real-time output current I(m) of the photovoltaic module, and calculate the output power P(m)=U (m)×I(m).
4)判断该输出功率是否大于历史最大输出功率,历史最大输出功率是在逐步减小待确定参考电压的过程中根据采样的输出电压和输出电流确定的最大输出功率。4) Determine whether the output power is greater than the historical maximum output power, which is the maximum output power determined according to the sampled output voltage and output current in the process of gradually reducing the reference voltage to be determined.
其中,历史最大输出功率的初始值可以设置为0。历史最大输出功率可以用P_max表示。The initial value of the historical maximum output power can be set to 0. The historical maximum output power can be represented by P_max.
请参考图9,在采样得到U(m)和I(m)之后,可以计算光伏组件的输出功率P(m)=U(m)×I(m)。然后,判断P(m)是否大于P_max。Please refer to FIG. 9 , after sampling U(m) and I(m), the output power of the photovoltaic module P(m)=U(m)×I(m) can be calculated. Then, it is judged whether or not P(m) is greater than P_max.
5)若该输出功率大于历史最大输出功率,则将历史最大输出功率更新为该输出功率,并将减小后的待确定参考电压作为待确定参考电压,返回至步骤1),继续减小待确定参考电压。5) If the output power is greater than the historical maximum output power, update the historical maximum output power to the output power, and use the reduced reference voltage to be determined as the reference voltage to be determined, return to step 1), and continue to reduce the to-be-determined reference voltage. Determine the reference voltage.
请参考图9,若判断结果为是,即P(m)>P_max,则令P_max=P(m),并令最大功率点的参考电压Uref=U(m),然后返回至步骤1),继续执行令Uref_search=Uref_search-△step的步骤及后续步骤。Please refer to FIG. 9, if the judgment result is yes, that is, P(m)>P_max, then let P_max=P(m), and let the reference voltage Uref=U(m) of the maximum power point, and then return to step 1), Continue to execute the steps and subsequent steps that make Uref_search=Uref_search-Δstep.
6)若该输出功率不大于历史输出功率,则返回至步骤1),继续减小待确定参考电压。6) If the output power is not greater than the historical output power, return to step 1) and continue to reduce the reference voltage to be determined.
请参考图9,若判断结果为否,即P(m)不大于P_max,则返回至步骤1),继续执行令Uref_search=Uref_search-△step的步骤及后续步骤。Referring to FIG. 9 , if the judgment result is no, that is, P(m) is not greater than P_max, then return to step 1), and continue to execute the steps of Uref_search=Uref_search-Δstep and subsequent steps.
7)若减小后的待确定参考电压小于开路电压的预设比例,则将历史最大输出功率对应的输出电压作为最大功率点的参考电压。7) If the reduced reference voltage to be determined is smaller than the preset ratio of the open circuit voltage, the output voltage corresponding to the historical maximum output power is used as the reference voltage of the maximum power point.
请参考图9,若Uref_search<0.2×Uoc,则可以停止搜索,直接令Uref=P_max对应的U(m),然后根据此时的Uref进行最大功率点跟踪,即根据此时的Uref执行上述图6所示的最大功率点追踪流程。Please refer to Figure 9, if Uref_search<0.2×Uoc, you can stop the search, directly set Uref=U(m) corresponding to P_max, and then perform the maximum power point tracking according to the Uref at this time, that is, execute the above diagram according to the Uref at this time. 6 shows the maximum power point tracking process.
步骤803:对光伏组件的输出电压和输出电流进行采样,当前采样时刻的第一输出电压和第一输出电流。Step 803: Sampling the output voltage and output current of the photovoltaic module, the first output voltage and the first output current at the current sampling time.
步骤804:根据第一输出电压和第一输出电流,计算当前采样时刻的第一输出功率。Step 804: Calculate the first output power at the current sampling time according to the first output voltage and the first output current.
步骤805:获取上一采样时刻的第二输出电压和第二输出功率,计算第一输出电压与第二输出电压的电压差,及第一输出功率与第二输出功率的功率差。Step 805: Obtain the second output voltage and the second output power at the last sampling time, and calculate the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power.
步骤806:根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向。Step 806: Determine the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module according to the ratio of the power difference to the voltage difference.
步骤807:根据功率差的绝对值确定目标扰动步长。Step 807: Determine the target disturbance step size according to the absolute value of the power difference.
步骤808:根据该扰动方向和目标扰动步长,更新光伏组件的最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。Step 808: According to the disturbance direction and the target disturbance step size, update the reference voltage of the maximum power point of the photovoltaic module, so that the photovoltaic module operates according to the updated reference voltage.
需要说明的是,步骤803-步骤808的实现过程与上述步骤501-步骤506同理,具体实现过程可以参考上述步骤501-步骤506的相关描述,本申请实施例对此不做限定。It should be noted that the implementation process of step 803-
本申请实施例中,通过将待确定参考电压设置为光伏组件的开路电压,然后按照预设扰动步长逐步减小待确定参考电压,并记录光伏组件的输出电压、输出电流和输出功率,获取记录的所有输出功率中的最大输出功率,以最大输出功率对应的输出电压作为光伏组件的最大功率点的参考电压,可以搜索到全局最大功率点,便于后续快速追踪到最大功率点,提高了追踪最大功率点的效率,节省了追踪时间。In the embodiment of the present application, by setting the reference voltage to be determined as the open-circuit voltage of the photovoltaic module, then gradually reducing the reference voltage to be determined according to the preset disturbance step size, and recording the output voltage, output current and output power of the photovoltaic module to obtain The maximum output power among all the recorded output powers, and the output voltage corresponding to the maximum output power is used as the reference voltage of the maximum power point of the photovoltaic module. The global maximum power point can be searched, which is convenient for subsequent fast tracking to the maximum power point, which improves the tracking Maximum power point efficiency, saving tracking time.
另外,在光伏系统中,由于光伏系统的随机性、有限性和间歇性,光伏电能难以按照特定的充电规律进行充电,目前常用的蓄电池充放电控制策略中,一类不考虑直流母线的稳定,这类方法不利于独立运行的锂电池系统的稳定性和安全。另一类考虑到了直流母线的稳定,但对于光伏系统而言,该类策略反而不能实现最大功率跟踪;或者由锂电池的控制电路实现,能够实现最大功率的跟踪,但不能对充电电压、电流进行控制,缩短了锂电池的使用寿命。In addition, in the photovoltaic system, due to the randomness, finiteness and intermittency of the photovoltaic system, it is difficult to charge photovoltaic energy according to a specific charging law. Among the commonly used battery charge and discharge control strategies, one type does not consider the stability of the DC bus, and the Such methods are detrimental to the stability and safety of independently operating lithium battery systems. The other type considers the stability of the DC bus, but for photovoltaic systems, this type of strategy cannot achieve maximum power tracking; or it is implemented by the control circuit of lithium batteries, which can achieve maximum power tracking, but cannot be used for charging voltage and current. Control, shorten the service life of the lithium battery.
本申请实施例在结合锂电池的阶段充电策略基础上,结合了光伏组件发电的特点,配合光伏组件的最大功率跟踪控制,提出了一种将最大功率充电和阶段充电相结合的充电方式,可以实现上述目的的同时保证直流母线电压的稳定,使锂电池的充放电过程适用于独立光伏系统中,具体实现过程将在下述图10实施例中进行详细说明。Based on the staged charging strategy of lithium batteries, combined with the characteristics of photovoltaic modules for power generation, and with the maximum power tracking control of photovoltaic modules, the embodiment of the present application proposes a charging method that combines maximum power charging and staged charging, which can The above purpose is achieved while ensuring the stability of the DC bus voltage, so that the charging and discharging process of the lithium battery is suitable for an independent photovoltaic system. The specific implementation process will be described in detail in the embodiment of FIG. 10 below.
图10是本申请实施例提供的充电控制方法的流程图,该方法可以应用于上述图1中的跟踪装置20,比如应用于跟踪装置20中的光伏控制器21,如图10所示,该方法可以包括如下步骤:FIG. 10 is a flowchart of a charging control method provided by an embodiment of the present application. The method can be applied to the
步骤1001:响应于充电请求操作,获取充电请求操作的请求参数,该请求参数包括请求电压和请求电流。Step 1001 : in response to the charging request operation, obtain request parameters of the charging request operation, where the request parameters include a request voltage and a request current.
作为一个示例,在充电电池需要进行充电时,可以通过BMS电路或相关软件向光伏控制器发送该请求参数。其中,该充电电池可以为锂电池等。As an example, when the rechargeable battery needs to be charged, the request parameter can be sent to the photovoltaic controller through the BMS circuit or related software. Wherein, the rechargeable battery may be a lithium battery or the like.
步骤1002:获取光伏组件的输出参数,并比较请求参数和输出参数,该输出参数包括输出电压和输出电流。Step 1002: Obtain output parameters of the photovoltaic module, and compare the request parameters with the output parameters, where the output parameters include output voltage and output current.
作为一个示例,直流母线的两端分别与光伏组件和充电电池连接,光伏组件的输出电压可以为直流母线的母线电压,光伏组件的输出电流可以为直流母线的母线电流。As an example, both ends of the DC bus are connected to the photovoltaic module and the rechargeable battery, respectively, the output voltage of the photovoltaic module may be the bus voltage of the DC bus, and the output current of the photovoltaic module may be the bus current of the DC bus.
步骤1003:判断请求电压是否小于输出电压。Step 1003: Determine whether the requested voltage is less than the output voltage.
步骤1004:若请求电压小于输出电压,则控制光伏组件运行在恒压输出模式。Step 1004: If the requested voltage is less than the output voltage, control the photovoltaic module to operate in a constant voltage output mode.
若请求电压小于输出电压,说明充电电池即将充满达到过充电压,这种情况下,可以控制光伏组件运行在恒压输出模式,在该恒压输出模式下,该充电电池能够接受该光伏组件输出的恒压进行限压充电。If the requested voltage is less than the output voltage, it means that the rechargeable battery is about to be fully charged to reach the overcharge voltage. In this case, the photovoltaic module can be controlled to operate in constant voltage output mode. In this constant voltage output mode, the rechargeable battery can accept the output of the photovoltaic module. constant voltage for voltage-limited charging.
步骤1005:若请求电压大于或等于输出电压,则判断请求电流是否小于输出电流。Step 1005: If the requested voltage is greater than or equal to the output voltage, determine whether the requested current is less than the output current.
步骤1006:若请求电流大于或等于输出电流,则控制光伏组件运行在最大功率点跟踪模式。Step 1006: If the requested current is greater than or equal to the output current, control the photovoltaic module to operate in the maximum power point tracking mode.
若请求电压大于或等于输出电压,且请求电流大于或等于输出电流,说明充电电池可以控制光伏组件运行在最大功率点跟踪模式以最大限度地利用太阳能,这种情况下,即可控制光伏组件运行在最大功率点跟踪模式,并根据该最大功率点跟踪模式下输出电压和电流,该充电电池根据该光伏组件在最大功率点跟踪模式下的输出电压和输出电流进行充电。If the requested voltage is greater than or equal to the output voltage, and the requested current is greater than or equal to the output current, it means that the rechargeable battery can control the photovoltaic modules to run in the maximum power point tracking mode to maximize the use of solar energy. In this case, the photovoltaic modules can be controlled to operate In the maximum power point tracking mode, and according to the output voltage and current in the maximum power point tracking mode, the rechargeable battery is charged according to the output voltage and output current of the photovoltaic module in the maximum power point tracking mode.
步骤1007:若请求电压小于输出电压,则控制光伏组件运行在恒流输出模式。Step 1007 : if the requested voltage is less than the output voltage, control the photovoltaic module to operate in a constant current output mode.
若请求电压大于或等于输出电压,且请求电流小于输出电流,说明充电电池已达到了过充电流,这种情况下,可以控制光伏组件运行在恒流输出模式,以该恒流输出模式的输出电流进行限流充电。If the requested voltage is greater than or equal to the output voltage, and the requested current is less than the output current, it means that the rechargeable battery has reached the overcharge current. current for current-limited charging.
本申请实施例中,在结合锂电池的阶段充电策略基础上,结合了光伏组件发电的特点,配合光伏组件的最大功率点跟踪控制,提出了一种将最大功率充电和阶段充电相结合的充电方式,保证了直流母线电压的稳定,使充电电池的充放电过程适用于独立光伏系统中。在本申请实施例中,光伏组件无论工作在恒压输出模式、最大功率点输出模式还是恒流输出模式,其输出的电压和电流均不能超过充电电池的最大充电电压和/或最大充电电流,而且需要说明的是,该光伏组件运行在恒压输出模式或恒流输出模式,其依然可以根据参考电压运行在最大功率点,因为功率计算公式P=U*I,当输出电压U或者输出电流I恒定时,输出功率P依旧可以通过调节输出电流I或者输出电压U工作在最大输出点。In the embodiment of the present application, on the basis of the staged charging strategy of lithium batteries, combined with the characteristics of photovoltaic module power generation, and with the maximum power point tracking control of photovoltaic modules, a charging method that combines maximum power charging and staged charging is proposed. The method ensures the stability of the DC bus voltage, so that the charging and discharging process of the rechargeable battery is suitable for the independent photovoltaic system. In the embodiment of the present application, no matter whether the photovoltaic module works in the constant voltage output mode, the maximum power point output mode or the constant current output mode, the output voltage and current cannot exceed the maximum charging voltage and/or the maximum charging current of the rechargeable battery, Moreover, it should be noted that the photovoltaic module operates in constant voltage output mode or constant current output mode, and it can still operate at the maximum power point according to the reference voltage, because the power calculation formula P=U*I, when the output voltage U or output current When I is constant, the output power P can still work at the maximum output point by adjusting the output current I or the output voltage U.
图11是本申请实施例提供的一种最大功率点追踪装置的框图,该装置可以以由软件、硬件或者两者的结合实现成为计算机设备的部分或者全部,该计算机设备可以为跟踪装置或者跟踪装置中的光伏控制器。参见图11,该装置包括:采样模块1101、第一处理模块1102、第二处理模块1103、第一确定模块1104、第二确定模块1105和更新模块1106。FIG. 11 is a block diagram of a maximum power point tracking device provided by an embodiment of the present application. The device may be implemented by software, hardware, or a combination of the two as part or all of a computer device, and the computer device may be a tracking device or a tracking device. PV controller in the installation. Referring to FIG. 11 , the apparatus includes: a
采样模块1101,用于对光伏组件的输出电压和输出电流进行采样,得到当前采样时刻的第一输出电压和第一输出电流;The
第一处理模块1102,用于根据该第一输出电压和该第一输出电流,计算当前采样时刻的第一输出功率;a
第二处理模块1103,用于获取上一采样时刻的第二输出电压和第二输出功率,计算该第一输出电压与该第二输出电压的电压差,及该第一输出功率与该第二输出功率的功率差;The
第一确定模块1104,用于根据该功率差与该电压差的比值,确定该光伏组件的最大功率点的参考电压的扰动方向;a
第二确定模块1105,用于根据该功率差的绝对值确定目标扰动步长;The
更新模块1106,用于根据该扰动方向和该目标扰动步长,更新该光伏组件的最大功率点的参考电压,以使该光伏组件按照更新后的参考电压运行。The
可选地,第二确定模块1105包括:Optionally, the second determining
第一获取单元,用于获取回滞区间标识;a first obtaining unit, configured to obtain the hysteresis interval identifier;
更新单元,用于判断该功率差的绝对值是否落入该回滞区间标识对应的回滞区间,若是,则不更新该回滞区间标识,若否,则根据该功率差的绝对值对应的回滞区间更新该回滞区间标识;The updating unit is used for judging whether the absolute value of the power difference falls into the hysteresis interval corresponding to the hysteresis interval identifier, if so, the hysteresis interval identifier is not updated; The hysteresis interval is updated with the hysteresis interval identifier;
第二获取单元,用于获取该回滞区间标识对应的扰动步长,以该回滞区间标识对应的扰动步长作为该目标扰动步长。The second acquiring unit is configured to acquire the disturbance step size corresponding to the hysteresis interval identifier, and use the disturbance step size corresponding to the hysteresis interval identifier as the target disturbance step size.
可选地,该回滞区间包括第一回滞区间和第二回滞区间,该第一回滞区间为[0,a],该第二回滞区间为[a1,b],a1<a<b;该第一回滞区间对应第一扰动步长,该第二回滞区间对应第二扰动步长;该第一回滞区间的回滞区间标识的值为X,该第二回滞区间的回滞区间标识的值为Y,X<Y;Optionally, the hysteresis interval includes a first hysteresis interval and a second hysteresis interval, the first hysteresis interval is [0, a], the second hysteresis interval is [a1, b], and a1<a <b; the first hysteresis interval corresponds to the first disturbance step size, and the second hysteresis interval corresponds to the second disturbance step size; the value of the hysteresis interval identifier of the first hysteresis interval is X, the second hysteresis interval The value of the hysteresis interval identifier of the interval is Y, X<Y;
该更新单元用于:This update unit is used to:
判断该功率差的绝对值是否小于或等于a;Determine whether the absolute value of the power difference is less than or equal to a;
若该功率差的绝对值小于或等于a,则判断该回滞区间标识的值是否大于或等于Y;If the absolute value of the power difference is less than or equal to a, then determine whether the value of the hysteresis interval is greater than or equal to Y;
若该回滞区间标识的值小于Y,则确定该功率差的绝对值属于该第一回滞区间,并将该回滞区间标识的值更新为X;If the value of the hysteresis interval identifier is less than Y, then determine that the absolute value of the power difference belongs to the first hysteresis interval, and update the value of the hysteresis interval identifier to X;
若该回滞区间标识的值大于或等于Y,则判断该功率差的绝对值是否小于a1;If the value of the hysteresis interval is greater than or equal to Y, then judge whether the absolute value of the power difference is less than a1;
若该功率差的绝对值小于a1,则确定该功率差的绝对值属于该第一回滞区间,并将该回滞区间标识的值更新为X;If the absolute value of the power difference is less than a1, it is determined that the absolute value of the power difference belongs to the first hysteresis interval, and the value of the hysteresis interval is updated to X;
若该功率差的绝对值不小于a1,则确定该功率差的绝对值属于该第二回滞区间,并将该回滞区间标识的值更新为Y。If the absolute value of the power difference is not less than a1, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value identified by the hysteresis interval is updated to Y.
可选地,该回滞区间还包括第三回滞区间,该第三回滞区间为[b1,∞],a<b1<b,该第三回滞区间对应第三扰动步长,该第三回滞区间的回滞区间标识的值为Z,Y<Z,该更新单元还用于:Optionally, the hysteresis interval further includes a third hysteresis interval, the third hysteresis interval is [b1, ∞], a<b1<b, the third hysteresis interval corresponds to the third disturbance step size, and the third hysteresis interval corresponds to the third disturbance step size. The value of the hysteresis interval identifier of the three hysteresis intervals is Z, Y<Z, and the update unit is also used for:
若该功率差的绝对值大于a,则判断该回滞区间标识的值是否等于X;If the absolute value of the power difference is greater than a, then determine whether the value of the hysteresis interval identifier is equal to X;
若该回滞区间标识的值等于X,则确定该功率差的绝对值属于该第二回滞区间,将该回滞区间标识的值更新为Y;If the value of the hysteresis interval identifier is equal to X, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value of the hysteresis interval identifier is updated to Y;
若该回滞区间标识的值不等于X,则判断该回滞区间标识的值是否等于Y;If the value of the hysteresis interval identifier is not equal to X, determine whether the value of the hysteresis interval identifier is equal to Y;
若该回滞区间标识的值等于Y,则判断该功率差的绝对值是否大于b;若该功率差的绝对值大于b,则确定该功率差的绝对值属于该第三回滞区间,将该回滞区间标识的值更新为Z;若该功率差的绝对值不大于b,则确定该功率差的绝对值属于该第二回滞区间,将该回滞区间标识的值更新为Y;If the value of the hysteresis interval is equal to Y, then judge whether the absolute value of the power difference is greater than b; if the absolute value of the power difference is greater than b, then determine that the absolute value of the power difference belongs to the third hysteresis interval, and set the The value of the hysteresis interval identifier is updated to Z; if the absolute value of the power difference is not greater than b, it is determined that the absolute value of the power difference belongs to the second hysteresis interval, and the value of the hysteresis interval identifier is updated to Y;
若该回滞区间标识的值不等于Y,则判断该功率差的绝对值是否大于b1;若该功率差的绝对值不大于b1,则确定该功率差的绝对值属于该第二回滞区间,将该回滞区间标识的值更新为Y;若该功率差的绝对值大于b1,则确定该功率差的绝对值属于该第三回滞区间,将该回滞区间标识的值更新为Z。If the value of the hysteresis interval identifier is not equal to Y, judge whether the absolute value of the power difference is greater than b1; if the absolute value of the power difference is not greater than b1, then determine that the absolute value of the power difference belongs to the second hysteresis interval , the value of the hysteresis interval is updated to Y; if the absolute value of the power difference is greater than b1, it is determined that the absolute value of the power difference belongs to the third hysteresis interval, and the value of the hysteresis interval is updated to Z .
可选地,该第一确定模块1104用于:Optionally, the first determining
若该功率差与该电压差的比值大于预设比值,则将该光伏组件的最大功率点的参考电压的扰动方向确定为第一扰动方向;If the ratio of the power difference to the voltage difference is greater than the preset ratio, determining the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module as the first disturbance direction;
若该功率差与该电压差的比值小于该预设比值,则将该光伏组件的最大功率点的参考电压的扰动方向确定为第二扰动方向;If the ratio of the power difference to the voltage difference is smaller than the preset ratio, determining the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module as the second disturbance direction;
该根据该扰动方向和该目标扰动步长,更新该光伏组件的最大功率点的参考电压,包括:The updating the reference voltage of the maximum power point of the photovoltaic module according to the disturbance direction and the target disturbance step, including:
若该扰动方向为第一扰动方向,则将该最大功率点的参考电压增大该目标扰动步长;If the disturbance direction is the first disturbance direction, increasing the reference voltage of the maximum power point by the target disturbance step;
若该扰动方向为第二扰动方向,则将该最大功率点的参考电压减小该目标扰动步长。If the disturbance direction is the second disturbance direction, the reference voltage of the maximum power point is reduced by the target disturbance step size.
可选地,该装置还包括:Optionally, the device also includes:
设置模块,用于将待确定参考电压设置为该光伏组件的开路电压;a setting module for setting the reference voltage to be determined as the open-circuit voltage of the photovoltaic module;
第三获取模块,用于按照预设扰动步长逐步减小该待确定参考电压,并记录该光伏组件的输出电压、输出电流和输出功率,获取记录的所有输出功率中的最大输出功率,以该最大输出功率对应的输出电压作为该光伏组件的最大功率点的参考电压。The third obtaining module is configured to gradually reduce the reference voltage to be determined according to the preset disturbance step size, and record the output voltage, output current and output power of the photovoltaic module, and obtain the maximum output power among all the recorded output powers, so as to obtain the maximum output power. The output voltage corresponding to the maximum output power is used as the reference voltage of the maximum power point of the photovoltaic module.
可选地,第三获取模块用于:Optionally, the third acquisition module is used to:
将该待确定参考电压减小预设扰动步长;Decrease the to-be-determined reference voltage by a preset disturbance step size;
判断减小后的待确定参考电压是否小于该开路电压的预设比例,该预设比例小于1;judging whether the reduced reference voltage to be determined is less than a preset ratio of the open-circuit voltage, where the preset ratio is less than 1;
若该减小后的待确定参考电压不小于该开路电压的预设比例,则对该光伏组件的输出电压和输出电流进行采样,并计算输出功率;If the reduced reference voltage to be determined is not less than the preset ratio of the open-circuit voltage, sampling the output voltage and output current of the photovoltaic module, and calculating the output power;
判断该输出功率是否大于历史最大输出功率,该历史最大输出功率是在逐步减小该待确定参考电压的过程中根据采样的输出电压和输出电流确定的最大输出功率;Judging whether the output power is greater than the historical maximum output power, the historical maximum output power is the maximum output power determined according to the sampled output voltage and output current in the process of gradually reducing the reference voltage to be determined;
若该输出功率大于该历史最大输出功率,则将该历史最大输出功率更新为该输出功率,并将减小后的待确定参考电压作为该待确定参考电压,返回执行将该待确定参考电压减小预设扰动步长的步骤;若该输出功率不大于该历史输出功率,则返回执行将该待确定参考电压减小预设扰动步长的步骤;If the output power is greater than the historical maximum output power, update the historical maximum output power to the output power, use the reduced reference voltage to be determined as the reference voltage to be determined, and return to execute the reduction of the reference voltage to be determined. The step of reducing the preset disturbance step size; if the output power is not greater than the historical output power, return to the step of reducing the to-be-determined reference voltage by the preset disturbance step size;
若该减小后的待确定参考电压小于该开路电压的预设比例,则将该历史最大输出功率对应的输出电压作为该光伏组件的最大功率点的参考电压。If the reduced reference voltage to be determined is smaller than the preset ratio of the open circuit voltage, the output voltage corresponding to the historical maximum output power is used as the reference voltage of the maximum power point of the photovoltaic module.
本申请实施例中,可以对光伏组件的输出电压和输出电流进行采样得到第一输出电压和第一输出电流,根据第一输出电压和第一输出电流计算当前采样时刻的第一输出功率,以及获取上一采样时刻的第二输出电压和第二输出功率,计算第一输出电压与第二输出电压之间的电压差,以及第一输出功率与第二输出功率的功率差。然后,根据功率差与电压差的比值,确定光伏组件的最大功率点的参考电压的扰动方向,以及根据功率差的绝对值确定目标扰动步长。之后,根据扰动方向和目标扰动步长,更新光伏组件的最大功率点的参考电压,以使光伏组件按照更新后的参考电压运行。如此,通过根据功率差的绝对值确定目标扰动步长,提供了一种变步长的电导增量法来追踪光伏组件的最大功率点,可以提高最大功率点的追踪效果。In this embodiment of the present application, the output voltage and output current of the photovoltaic module can be sampled to obtain the first output voltage and the first output current, and the first output power at the current sampling time can be calculated according to the first output voltage and the first output current, and Obtain the second output voltage and the second output power at the last sampling time, and calculate the voltage difference between the first output voltage and the second output voltage, and the power difference between the first output power and the second output power. Then, according to the ratio of the power difference to the voltage difference, the disturbance direction of the reference voltage of the maximum power point of the photovoltaic module is determined, and the target disturbance step size is determined according to the absolute value of the power difference. After that, according to the disturbance direction and the target disturbance step size, the reference voltage of the maximum power point of the photovoltaic module is updated, so that the photovoltaic module operates according to the updated reference voltage. In this way, by determining the target disturbance step size according to the absolute value of the power difference, a conductance increment method with variable step size is provided to track the maximum power point of the photovoltaic module, which can improve the tracking effect of the maximum power point.
需要说明的是:上述实施例提供的最大功率点跟踪装置在进行最大功率点跟踪时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。It should be noted that: when the MPPT device provided in the above embodiment performs MPPT, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions may be allocated by different The function module is completed, that is, the internal structure of the device is divided into different function modules, so as to complete all or part of the functions described above.
上述实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请实施例的保护范围。The functional units and modules in the above embodiments may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit, and the above-mentioned integrated units may adopt hardware. It can also be implemented in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the embodiments of the present application.
上述实施例提供的最大功率点跟踪装置与最大功率点跟踪方法实施例属于同一构思,上述实施例中单元、模块的具体工作过程及带来的技术效果,可参见方法实施例部分,此处不再赘述。The maximum power point tracking device and the maximum power point tracking method embodiments provided by the above embodiments belong to the same concept. Repeat.
图12是本申请实施例提供的一种计算机设备的结构示意图。如图12所示,计算机设备12包括:处理器120、存储器121以及存储在存储器121中并可在处理器120上运行的计算机程序122,处理器120执行计算机程序122时实现上述实施例中的最大功率点跟踪方法中的步骤。FIG. 12 is a schematic structural diagram of a computer device provided by an embodiment of the present application. As shown in FIG. 12, the
计算机设备12可以是一个通用计算机设备或一个专用计算机设备。在具体实现中,计算机设备12可以是台式机、便携式电脑、网络服务器、掌上电脑、移动手机、平板电脑、无线终端设备、通信设备或嵌入式设备,本申请实施例不限定计算机设备12的类型。本领域技术人员可以理解,图12仅仅是计算机设备12的举例,并不构成对计算机设备12的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,比如还可以包括输入输出设备、网络接入设备等。
处理器120可以是中央处理单元(Central Processing Unit,CPU),处理器120还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者也可以是任何常规的处理器。The
存储器121在一些实施例中可以是计算机设备12的内部存储单元,比如计算机设备12的硬盘或内存。存储器121在另一些实施例中也可以是计算机设备12的外部存储设备,比如计算机设备12上配备的插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)等。进一步地,存储器121还可以既包括计算机设备12的内部存储单元也包括外部存储设备。存储器121用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等。存储器121还可以用于暂时地存储已经输出或者将要输出的数据。The
本申请实施例还提供了一种计算机设备,该计算机设备包括:至少一个处理器、存储器以及存储在该存储器中并可在该至少一个处理器上运行的计算机程序,该处理器执行该计算机程序时实现上述任意各个方法实施例中的步骤。Embodiments of the present application further provide a computer device, the computer device comprising: at least one processor, a memory, and a computer program stored in the memory and executable on the at least one processor, the processor executing the computer program The steps in any of the foregoing method embodiments are implemented at the same time.
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时可实现上述各个方法实施例中的步骤。Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述各个方法实施例中的步骤。The embodiments of the present application provide a computer program product, which, when running on a computer, enables the computer to execute the steps in the foregoing method embodiments.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the above-mentioned embodiments, those of ordinary skill in the art should understand that: it can still be used for the above-mentioned implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be included in the within the scope of protection of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210222321.0A CN114779871A (en) | 2022-03-07 | 2022-03-07 | Maximum power point tracking method, photovoltaic controller and photovoltaic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210222321.0A CN114779871A (en) | 2022-03-07 | 2022-03-07 | Maximum power point tracking method, photovoltaic controller and photovoltaic system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114779871A true CN114779871A (en) | 2022-07-22 |
Family
ID=82423816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210222321.0A Pending CN114779871A (en) | 2022-03-07 | 2022-03-07 | Maximum power point tracking method, photovoltaic controller and photovoltaic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114779871A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118074209A (en) * | 2024-01-17 | 2024-05-24 | 湖南大学 | MPPT control method and device based on BOOST circuit |
CN118605613A (en) * | 2024-05-22 | 2024-09-06 | 广州三晶电气股份有限公司 | PV energy tracking method and device for photovoltaic system |
CN118920871A (en) * | 2024-10-10 | 2024-11-08 | 深圳平创半导体有限公司 | MPPT control method based on Buck/Boost circuit duty cycle control |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719737A (en) * | 2009-10-27 | 2010-06-02 | 艾默生网络能源有限公司 | Scanning method for tracing maximal power point of solar energy photovoltaic panel |
CN102929325A (en) * | 2012-11-28 | 2013-02-13 | 河海大学 | Method for tracking maximum power of high-accuracy single-stage photovoltaic power generation system |
CN103019294A (en) * | 2011-09-28 | 2013-04-03 | 上海康威特吉能源技术有限公司 | Maximum power point tracking (MPPT) method of self-adaption disturbance frequency and step |
CN103455080A (en) * | 2012-12-27 | 2013-12-18 | 深圳信息职业技术学院 | Method and device for photovoltaic cell power tracking |
CN104578237A (en) * | 2013-10-22 | 2015-04-29 | 三星Sdi株式会社 | Battery pack, energy storage system, and method of charging battery pack |
US20150370278A1 (en) * | 2014-06-20 | 2015-12-24 | Boe Technology Group Co., Ltd. | Maximum Power Point Tracking Method and Device, and Photovoltaic Power Generation System |
JP2017085762A (en) * | 2015-10-28 | 2017-05-18 | 株式会社明電舎 | Solar power generation control device and control method therefor |
CN107992153A (en) * | 2017-12-07 | 2018-05-04 | 陕西科技大学 | A kind of photovoltaic maximum power point-tracing control method |
CN108693914A (en) * | 2017-04-07 | 2018-10-23 | 华北电力大学(保定) | NEW ADAPTIVE maximum power tracking and controlling method under a kind of local shades |
CN108897368A (en) * | 2018-01-04 | 2018-11-27 | 太原理工大学 | A kind of multimodal MPPT method suitable under the conditions of partial occlusion |
-
2022
- 2022-03-07 CN CN202210222321.0A patent/CN114779871A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719737A (en) * | 2009-10-27 | 2010-06-02 | 艾默生网络能源有限公司 | Scanning method for tracing maximal power point of solar energy photovoltaic panel |
CN103019294A (en) * | 2011-09-28 | 2013-04-03 | 上海康威特吉能源技术有限公司 | Maximum power point tracking (MPPT) method of self-adaption disturbance frequency and step |
CN102929325A (en) * | 2012-11-28 | 2013-02-13 | 河海大学 | Method for tracking maximum power of high-accuracy single-stage photovoltaic power generation system |
CN103455080A (en) * | 2012-12-27 | 2013-12-18 | 深圳信息职业技术学院 | Method and device for photovoltaic cell power tracking |
CN104578237A (en) * | 2013-10-22 | 2015-04-29 | 三星Sdi株式会社 | Battery pack, energy storage system, and method of charging battery pack |
US20150370278A1 (en) * | 2014-06-20 | 2015-12-24 | Boe Technology Group Co., Ltd. | Maximum Power Point Tracking Method and Device, and Photovoltaic Power Generation System |
JP2017085762A (en) * | 2015-10-28 | 2017-05-18 | 株式会社明電舎 | Solar power generation control device and control method therefor |
CN108693914A (en) * | 2017-04-07 | 2018-10-23 | 华北电力大学(保定) | NEW ADAPTIVE maximum power tracking and controlling method under a kind of local shades |
CN107992153A (en) * | 2017-12-07 | 2018-05-04 | 陕西科技大学 | A kind of photovoltaic maximum power point-tracing control method |
CN108897368A (en) * | 2018-01-04 | 2018-11-27 | 太原理工大学 | A kind of multimodal MPPT method suitable under the conditions of partial occlusion |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118074209A (en) * | 2024-01-17 | 2024-05-24 | 湖南大学 | MPPT control method and device based on BOOST circuit |
CN118074209B (en) * | 2024-01-17 | 2025-03-28 | 湖南大学 | A MPPT control method and device based on BOOST circuit |
CN118605613A (en) * | 2024-05-22 | 2024-09-06 | 广州三晶电气股份有限公司 | PV energy tracking method and device for photovoltaic system |
CN118920871A (en) * | 2024-10-10 | 2024-11-08 | 深圳平创半导体有限公司 | MPPT control method based on Buck/Boost circuit duty cycle control |
CN118920871B (en) * | 2024-10-10 | 2025-02-28 | 深圳平创半导体有限公司 | A MPPT control method based on Buck/Boost circuit duty cycle control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114779871A (en) | Maximum power point tracking method, photovoltaic controller and photovoltaic system | |
US8461820B2 (en) | Perturb voltage as a decreasing non-linear function of converter power | |
US12107541B2 (en) | Optimizer, photovoltaic power generation system, and IV curve scanning method for photovoltaic module | |
CN101630171B (en) | Segmented Adaptive Hill Climbing Method and System Applied to Maximum Power Tracking of Photovoltaic Cells | |
CN102163067B (en) | Solar maximum power tracking method and solar charging device | |
US20140184137A1 (en) | Charging system for electronic device | |
CN106200752A (en) | A kind of photovoltaic array under local shadow maximal power tracing System with Sliding Mode Controller | |
CN114189013B (en) | Charging device, charging method and computer readable storage medium | |
US20150263524A1 (en) | Multiple input single output hybrid power system | |
CN114884122A (en) | Charging control method, device and equipment | |
CN109885124A (en) | Maximum power point determines method, equipment and computer readable storage medium | |
CN116860066B (en) | Maximum power point voltage judging method, electronic equipment and storage medium | |
CN113690962B (en) | MPPT control method, device, equipment and storage medium for different input sources | |
CN113703515A (en) | Variable-step MPPT photovoltaic power generation stability control method for rapid state tracking | |
CN118074209B (en) | A MPPT control method and device based on BOOST circuit | |
CN117032385B (en) | High-efficiency MPPT control method applied to BUCK topology | |
CN118300219A (en) | Charging control method, system, equipment and storage medium for charger | |
CN115036989A (en) | Control method, control terminal and storage medium of optical storage integrated system | |
CN104701907A (en) | Method for controlling lead storage batteries of wind-solar hybrid power systems | |
US20240231408A1 (en) | Digital maximum power point tracking | |
JP7292179B2 (en) | power converter, power system | |
CN118306336B (en) | Van storage battery power supply system and method | |
CN112803524B (en) | Battery charging control method, device and terminal | |
CN115296531B (en) | Three-level DC/DC circuit control system | |
CN118944434A (en) | DC conversion control device and control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |