[go: up one dir, main page]

CN114779639B - 基于非线性耦合数学模型的滑模变结构航速控制系统 - Google Patents

基于非线性耦合数学模型的滑模变结构航速控制系统 Download PDF

Info

Publication number
CN114779639B
CN114779639B CN202210417754.1A CN202210417754A CN114779639B CN 114779639 B CN114779639 B CN 114779639B CN 202210417754 A CN202210417754 A CN 202210417754A CN 114779639 B CN114779639 B CN 114779639B
Authority
CN
China
Prior art keywords
propeller
speed
main engine
sliding mode
mathematical model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210417754.1A
Other languages
English (en)
Other versions
CN114779639A (zh
Inventor
李宇光
阮奕潇
虞梓牛
刘泓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210417754.1A priority Critical patent/CN114779639B/zh
Publication of CN114779639A publication Critical patent/CN114779639A/zh
Application granted granted Critical
Publication of CN114779639B publication Critical patent/CN114779639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本发明公开了一种基于非线性耦合数学模型的滑模变结构航速控制系统,在推进系统中,燃油输送泵向喷油模块输送燃油,喷油模块中高压油泵通过燃油电磁阀与喷油器连接,喷油器为主机提供燃油,主机通过减速齿轮箱驱动螺旋桨,螺旋桨推动船体航行,船体、主机和螺旋桨上分别设有检测航速、主机转速和螺旋桨转速的传感器;控制系统接收实时反馈的航速、主机转速和螺旋桨转速并通过控制燃油电磁阀的开度维持三者恒定,控制系统采用滑模变结构算法,将推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型当作一类多输入仿射非线性模型,求解得到滑模变结构控制器。本发明响应快、超调小、鲁棒性好、抗干扰能力强,具有较好的控制效果。

Description

基于非线性耦合数学模型的滑模变结构航速控制系统
技术领域
本发明属于船体自动控制领域,具体涉及一种基于非线性耦合数学模型的滑模变结构航速控制系统。
背景技术
目前,船体机舱冷却水温、水位,锅炉蒸汽压力,燃油粘度以及舵机舵角等系统大多采用传统的PID控制方法,也有部分数字式主机采用模糊–PID的方法控制其转速,对于整体船体的航速、航向的控制基本上是采用PID算法。PID是一种经典通用的控制方法,它针对偏差进行比例、积分和微分运算,但是其忽略了对象的本质特征,单一地调节比例带、积分时间和微分时间,对复杂对象难以起到好的控制效果。
发明内容
本发明的目的是提供一种基于非线性耦合数学模型的滑模变结构航速控制系统,响应快、超调小、鲁棒性好、抗干扰能力强,具有较好的控制效果。
本发明所采用的技术方案是:
一种基于非线性耦合数学模型的滑模变结构航速控制系统,包括推进系统和控制系统;在推进系统中,燃油输送泵向喷油模块输送燃油,喷油模块中高压油泵通过燃油电磁阀与喷油器连接,喷油器为主机提供燃油,主机通过减速齿轮箱驱动螺旋桨,螺旋桨推动船体航行,船体、主机和螺旋桨上分别设有检测航速、主机转速和螺旋桨转速的传感器;控制系统接收实时反馈的航速、主机转速和螺旋桨转速并通过控制燃油电磁阀的开度维持三者恒定,控制系统采用滑模变结构算法,将推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型当作一类多输入仿射非线性模型,求解得到滑模变结构控制器。
建立推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型的方法是:分别建立船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型;船体-螺旋桨子系统的数学模型根据螺旋桨推进船体的运动过程建立,使螺旋桨的有效推力与船体阻力以及不确定的环境干扰力相平衡来维持航速与设定值一致;螺旋桨-主机子系统的数学模型根据主机向螺旋桨传递扭矩的工作过程建立,使主机传递的力矩与螺旋桨转动时产生的转矩负荷相平衡来维持螺旋桨转速恒定;主机-喷油模块子系统的数学模型根据喷油量对主机转速的影响机制建立,主机转速的变化由主机输出扭矩与螺旋桨转矩负荷的差值决定,主机输出扭矩与平均有效压力近似成比例,平均有效压力为平均指示压力与平均机械损失压力的差值,通过控制喷油量改变引起平均指示压力改变,进而改变主机输出扭矩以维持主机转速稳定。
建立船体-螺旋桨子系统的数学模型时:
为使螺旋桨的有效推力与船体阻力以及不确定的环境干扰力相平衡,得到关系式
式中,nP为螺旋桨转速;VS为航速;w为伴流系数,由经验公式估算;λP为进速系数,是螺旋桨水动力特性参数;D为螺旋桨直径;
螺旋桨旋转运动与船体直线运动之间的力学关系符合牛顿第二定律,得到船体运动方程
式中
TP=FP(1-tp) (3)
式中,TP为螺旋桨的有效推力;R为船体阻力;γS为船体的附连水系数;M为船体质量;FP为螺旋桨产生的推力;tP为船体推力减额百分数,即螺旋桨与船体的运动导致船体阻力的增加或螺旋桨推力的减额,由经验公式估算;KF为螺旋桨的推力系数,与进速系数λP有关,由螺旋桨特性曲线图谱确定;ρ为海水密度;β为船体的阻力系数;m的数值根据航区确定;
式中,h(t)为不确定的环境干扰力,设定船体处在正常的通航环境,即风速小于3m/s、波浪高度小于0.3m、水流速度小于1m/s,根据船体在正常的通航环境航行过程中的测算,将不确定的环境干扰力等效为船体阻力的倍数,则有
h(t)=0.3RsinVS (6)。
建立螺旋桨-主机子系统的数学模型时:
为使主机传递的力矩与螺旋桨转动时产生的转矩负荷相平衡,得到关系式
式中,γP为螺旋桨的附加水系数;I为推进系统转动部分转动惯量;Ml为主机瞬时有效扭矩,与主机的螺旋桨特性有关,设定为主机转速n的函数;MP为螺旋桨的转矩负荷;KM为螺旋桨的转矩系数,与进速系数λP有关,由螺旋桨特性曲线图谱确定。
建立主机-喷油模块子系统的数学模型时:
根据达兰贝尔原理,主机的输出扭矩Md与负载扭矩,即螺旋桨的转矩负荷MP,的差值决定主机转速的变化,则有运动方程
式中,J为主机及其驱动机械部件的等效转动惯量;ω为主机的角速度;
主机的输出扭矩Md与平均有效压力Pe之间近似成比例,平均有效压力Pe为平均指示压力Pi与平均机械损失压力Pf的差值;测量不同主机转速n所对应的循环喷油量q的值,再根据主机实测的示功图计算出指示功,由指示功计算出平均指示压力Pi,转速一定时主机的平均指示压力Pi与循环喷油量q之间是线性关系;根据测量的主机转速n和输出扭矩Md计算有效功,再由有效功算出平均有效压力Pe;考虑到不同主机转速n下,主机的输出扭矩Md与循环喷油量q之间已不再是线性关系,运用二次多项式的拟合方法,得到主机转速n的非线性数学模型为
式中,n为主机转速;q为循环喷油量;a1、a2、a3、a4、a5、a6为与主机有关的参数。
求解得到滑模变结构控制器的方法是:1)综合船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型,得到以航速、主机转速和螺旋桨转速的为状态变量的非线性耦合数学模型,将非线性耦合数学模型转换成系统状态方程,以循环喷油量作为控制输入,在外部风和水流干扰较小的正常海况下,航速、螺旋桨转速和主机转速的波动较小,维持三个状态变量稳定,对于定距桨船体,螺旋桨转速小范围的波动适合于正常海况,对于调距桨船体,虽然靠改变可调桨的螺距即可改变螺旋桨的推力,从而保持螺旋桨转速的稳定,但是正常海况下螺旋桨进速系数维持稳定的取值;2)将系统状态方程写成一类仿射多输入非线性系统的标准形式,取滑模变结构控制的切换函数,求得滑模运动方程;3)取等速趋近率,求解滑模变结构控制,解出控制率,当进行大干扰状态下的航速控制分析时,在原有滑模变结构控制器的基础上,对于可调桨船体,选取螺旋桨的进速系数和喷油量两个控制输入,以维持航速、螺旋桨转速和主机转速三个状态变量的恒定,对于定距桨船体,选取控制螺旋桨转速的传动比和喷油量两个控制输入,以维持航速和主机转速两个状态变量的恒定;4)通过仿真分析计算验证滑模变结构控制器的可靠性。
检测航速、主机转速和螺旋桨转速的传感器分别连接有显示航速、主机转速和螺旋桨转速的显示屏,燃油输送泵与喷油模块之间设有流量计,主机输出端设有水力测功器。
本发明的有益效果是:
对航速、螺旋桨转速和主机转速进行定值控制的难点在于当对航速进行控制时,螺旋桨转速和主机转速发生变化,当控制螺旋桨转速和主机转速时,航速又偏离给定值,所以这是一种高度耦合的复杂非线性系统,本发明针对船-机-桨的非线性数学模型,运用滑模变结构的控制算法,进行航速、螺旋桨转速和主机转速的定值控制,响应快、超调小、鲁棒性好、抗干扰能力强,具有较好的控制效果;本发明仅仅是把推进系统当作一类仿射非线性系统来进行滑模控制的研究,后续也可以将螺旋桨转速也作为一个控制输入变量,将推进系统作为多输入-多输出非线性系统研究,为当今的无人机、水下机器人的研究提供参考。
附图说明
图1是本发明实施例中基于非线性耦合数学模型的滑模变结构航速控制系统的结构示意图。
图2是本发明实施例中航速的滑模控制仿真结果。
图3是本发明实施例中螺旋桨转速的滑模控制仿真结果。
图4是本发明实施例中主机转速的滑模控制仿真结果。
图5是本发明实施例中参数摄动下航速的滑模控制仿真结果。
图中:1-船体;2-航行速度传感器;3-航速显示屏;4-减速齿轮箱;5-螺旋桨;6-螺旋桨转速传感器;7-螺旋桨转速显示屏;8-燃油输送泵;9-流量计;10–主机;11–喷油模块;12-水力测功仪;13-主机转速传感器;14-主机转速显示屏;15-高压油泵;16-燃油电磁阀;17-喷油器;18-控制系统。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
如图1所示,一种基于非线性耦合数学模型的滑模变结构航速控制系统,包括推进系统和控制系统18;在推进系统中,燃油输送泵8向喷油模块11输送燃油,喷油模块11中高压油泵15通过燃油电磁阀16与喷油器17连接,喷油器17为主机10提供燃油,主机10通过减速齿轮箱4驱动螺旋桨5,螺旋桨5推动船体1航行,船体1、主机10和螺旋桨5上分别设有检测航速、主机转速和螺旋桨转速的传感器(2、13、6);控制系统接收实时反馈的航速、主机转速和螺旋桨转速并通过控制燃油电磁阀16的开度维持三者恒定,控制系统18采用滑模变结构算法,将推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型当作一类多输入仿射非线性模型,求解得到滑模变结构控制器。
如图1所示,在本实施例中,检测航速、主机转速和螺旋桨转速的传感器(2、13、6)分别连接有显示航速、主机转速和螺旋桨转速的显示屏(3、14、7),燃油输送泵8与喷油模块11之间设有流量计9,主机10输出端设有水力测功器12。
在本实施例中,针对航速、主机转速和螺旋桨转速的非线性耦合数学模型求解得到滑模变结构控制器时,包括如下步骤:
一、建立航速、主机转速和螺旋桨转速的非线性耦合数学模型
建立推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型的方法是分别建立船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型。
(1)建立船体-螺旋桨子系统的数学模型
根据船体的运动过程建立船体-螺旋桨子系统的数学模型,具体为,螺旋桨5旋转产生推力通过推力轴承的传递推动船体1前进,船体1前进产生的水流又会影响螺旋桨5的旋转;当控制系统18使螺旋桨5产生的有效推力与船体1阻力以及不确定的环境干扰力相平衡时,即可维持船体1的实际航行速度与设定值一致。由此可得下列关系式:
式中,nP为螺旋桨转速,r/min;VS为航速,kn;w为伴流系数,对于单螺旋桨船体,由泰勒公式估算取值0.3277;λP为进速系数,是螺旋桨水动力特性参数;D为螺旋桨直径,m。
螺旋桨5旋转运动与船体1直线运动之间的力学关系符合牛顿第二定律,可以确定如下的船体1运动方程:
式中:
TP=FP(1-tp) (3)
式中,TP为螺旋桨产生的有效推力,N;R为船体阻力,N;γS为船体的附连水系数,取值1.08;M为船体质量,本专利作为实例取值1.0×108kg;FP为螺旋桨产生的推力,N;tP为船体推力减额百分数,即螺旋桨与船体的运动导致船体阻力的增加或螺旋桨推力的减额,本专利涉及的单螺旋桨船体,由汉克歇尔或商赫经验公式估算为0.3441;KF为螺旋桨的推力系数,与进速系数λP有关,其值由螺旋桨特性曲线图谱确定;ρ为海水密度,通常取值1.025×103kg/m3;β为船体的阻力系数;m的数值与航区有关,本专利沿海航区取为2。
h(t)为不确定的环境干扰力,N。具体为:考虑风、浪和潮流等对航速的影响,若船体为正常的通航环境,取风速小于3m/s,波浪高度小于0.3m,水流速度小于1m/s,则可假定h(t)为已知上界值的不确定干扰量。根据船体正常工况下航行过程中的测算,可将不确定干扰力等效为船体阻力R的倍数,则有:
h(t)=0.3RsinVS (6)
(2)建立螺旋桨-主机子系统的数学模型
螺旋桨5是将主机10的动力传递给船体,即把主机10的旋转运动转化为船体1的直线运动,因此可依据该工作过程建立螺旋桨-主机子系统的数学模型。具体为:作为推进船体1的螺旋桨5,其转动的动能来源于主机10通过尾轴传递的有效力矩,当控制系统18使主机10传递的力矩与螺旋桨5转动时产生的转矩负荷相平衡时,螺旋桨5的转速可保持不变。由此可得下列关系式:
式中,γP为螺旋桨的附加水的系数;I为推进系统转动部分转动惯量kg·㎡;Ml为主机瞬时有效扭矩,与主机的螺旋桨特性有关,本专利可设定为主机转速n的函数,即αn3,N·m;MP为螺旋桨的转矩负荷,N·m;KM为螺旋桨的转矩系数,与进速系数λP有关,其值由螺旋桨特性曲线图谱确定。
(3)建立主机-喷油模块子系统的数学模型
控制系统18根据主机10实际转速和水力测功器12测出的输出扭矩等数据计算有效功,再由有效功算出平均有效压力,而主机输出扭矩与平均有效压力近似成比例。又因为输出扭矩与负载扭矩,即螺旋桨5的转矩负荷,的差值决定主机转速的变化,所以当控制系统18控制主机喷油量时,平均指示压力改变,平均有效压力(平均指示压力与平均机械损失压力的差值)变化,最终主机10的输出扭矩变化以维持主机转速的稳定。
具体为:根据达兰贝尔原理可知,输出扭矩Md与负载扭矩,即螺旋桨的转矩负荷MP,的差值决定主机转速的变化,则有如下运动方程为:
其中,J为主机及其驱动机械部件的等效转动惯量;ω为主机的角速度,rad/s。
输出扭矩Md与平均有效压力Pe(kPa)之间近似成比例,平均有效压力Pe可通过平均指示压力Pi(kPa)与平均机械损失压力Pf(kPa)的差值计算得到。测量具体类型主机不同转速n(rpm)所对应的循环喷油量q(g)的值,再根据主机实测的示功图计算出指示功,由指示功计算出平均指示压力Pi,可知转速一定时,主机的平均指示压力与喷油量之间是线性关系。根据实际转速和水力测功器测出的输出扭矩等数据计算有效功,再由有效功算出平均有效压力Pe的值。考虑到不同转速下,输出扭矩与循环喷油量之间已不再是线性关系,所以运用二次多项式的拟合方法,可得到主机转速的非线性数学模型:
其中:n为主机转速,r/min;q为循环喷油量,g;作为本专利的一个实例长航集运8303轮8190ZLC1型主机,有a1=-0.00153,a2=0.0000213,a3=4.39,a4=-0.0756,a5=3102.34,a6=-60.05。
二、求解得到滑模变结构控制器
滑模变结构控制是在变结构控制基础上发展起来的一种控制策略,其基本思想是系统的运动先达到某切换面,然后在这个子空间作滑动模态渐进地趋向原点。滑模控制对于线性系统有比较成熟的理论,但是非线性系统必须要结合数学模型的特点选择合适的求解方法。
(1)得到以航速、主机转速和螺旋桨转速的为状态变量的非线性耦合数学模型,将非线性耦合数学模型转换成系统状态方程
船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型可得一组以螺旋桨转速、航速和主机转速为状态变量的微分方程:
显然,公式(11)是一个高度耦合带有平方与三角函数项的复杂非线性系统,但考虑喷油量q作为控制输入,具有以下仿射非线性状态方程的特征:
式中,f(x)、g(x)均为函数矢量:
其中,fi(x)=fi(x1,…,xn),gi(x)=gi(x1,…,xn),且i=1,…,n,即对控制输入量u而言为线性。
在外部风和水流干扰较小的正常海况下,航速、螺旋桨转速和主机转速的波动较小,所以要维持公式(11)中的三个状态变量的稳定,且其中的控制输入选定为主机的喷油量。对于定距桨船体而言,螺旋桨转速小范围的波动适合于正常海况;对于调距桨船体,虽然靠改变可调桨的螺距即可改变螺旋桨的推力,从而保持螺旋桨转速的稳定,但是正常海况下螺旋桨进速系数维持稳定的取值。
(2)将系统状态方程写成一类仿射多输入非线性系统的标准形式,取滑模变结构控制的切换函数,求得滑模运动方程
取状态变量则航速控制模型可写为:
其中
u=q (17)
要求仿射非线性航速控制系统的等效控制及滑模运动,取如下切换函数:
则有:
令F(x,u)=0,只要时,等效控制必有解
(3)取等速趋近率,求解滑模变结构控制,解出控制率
取等速趋近率:
可解出控制输入u:
如果要进行大干扰状态下的航速控制分析,那么在以上建立的数学模型基础上,应该分可调桨和定距桨船体来选取状态变量与控制输入。对于可调桨船体,则可选取螺旋桨的进速系数和主机喷油量两个控制输入,以维持航速、螺旋桨和主机转速三个状态变量的恒定;对于定距桨船体,则宜选取控制螺旋桨转速的传动比和主机喷油量作为两个控制输入,以维持航速和主机转速两个个状态变量的恒定。
(4)通过仿真分析计算验证滑模变结构控制器的可靠性。
为了检验建立的非线性航速系统的数学模型是否正确,以及所设计的仿射非线性滑模变结构控制算法是否科学,开展仿真分析。MATLAB是一款强大的计算软件,尤其是对于矩阵、微分方程等有复杂求解过程系统的运算。船体设定航速为10kn,螺旋桨稳定转速为500r/min,四冲程主机稳定工况下的设定转速为1000r/min。将通航过程中正常海况的环境风速、周期性波浪高度和水流速度等效为公式(6)中已知上界值的不确定干扰量,根据滑模变结构控制的求解过程,在MATLAB软件平台计算的三个状态变量控制结果分别如图2-4所示:
由以上仿真计算结果可以看出,滑模变结构控制策略能够同时使航速、螺旋桨和主机转速稳定下来,且稳定时间约为650s。如果加大外界环境干扰,将通航环境风速考虑为5-9m/s,周期性波浪高度为0.3-0.6m,水流速为2m/s,可将公式(6)中不确定干扰量的上界值调整为0.9R,重新在MATLAB软件平台上计算,显示的结果与图2-4基本上没有变化。
如果将程序语言中的固定参数设定为区间摄动时,如矩伴流系数在[0.20,0.30]之间摄动,排水量在[5557.2,5559.2]之间摄动,推力额减系数在[0.18,0.25]之间摄动,螺旋桨直径在[4.103,4.303]之间摄动,此时各状态变量的输出响应会有明显的变化,但是,控制结果都能够稳定。以航速为例,其参数摄动的仿真计算结果如图5所示:
由此可见,本发明建立的航速非线性数学模型是正确的,选取的基于仿射非线性分析方法的滑模变结构控制策略是可行的,仿真计算的结果也验证了在扰动加大和参数摄动的情况下,滑模变结构控制仍然具有较好的鲁棒性。
对航速、螺旋桨转速和主机转速进行定值控制的难点在于当对航速进行控制时,螺旋桨转速和主机转速发生变化,当控制螺旋桨转速和主机转速时,航速又偏离给定值,所以这是一种高度耦合的复杂非线性系统,本发明针对船-机-桨的非线性数学模型,运用滑模变结构的控制算法,进行航速、螺旋桨转速和主机转速的定值控制,响应快、超调小、鲁棒性好、抗干扰能力强,具有较好的控制效果;本发明仅仅是把推进系统当作一类仿射非线性系统来进行滑模控制的研究,后续也可以将螺旋桨转速也作为一个控制输入变量,将推进系统作为多输入-多输出非线性系统研究,为当今的无人机、水下机器人的研究提供参考。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (6)

1.一种基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:包括推进系统和控制系统;在推进系统中,燃油输送泵向喷油模块输送燃油,喷油模块中高压油泵通过燃油电磁阀与喷油器连接,喷油器为主机提供燃油,主机通过减速齿轮箱驱动螺旋桨,螺旋桨推动船体航行,船体、主机和螺旋桨上分别设有检测航速、主机转速和螺旋桨转速的传感器;控制系统接收实时反馈的航速、主机转速和螺旋桨转速并通过控制燃油电磁阀的开度维持三者恒定,控制系统采用滑模变结构算法,将推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型当作一类多输入仿射非线性模型,求解得到滑模变结构控制器;
建立推进系统中航速、主机转速和螺旋桨转速的非线性耦合数学模型的方法是,分别建立船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型;船体-螺旋桨子系统的数学模型根据螺旋桨推进船体的运动过程建立,使螺旋桨的有效推力与船体阻力以及不确定的环境干扰力相平衡来维持航速与设定值一致;螺旋桨-主机子系统的数学模型根据主机向螺旋桨传递扭矩的工作过程建立,使主机传递的力矩与螺旋桨转动时产生的转矩负荷相平衡来维持螺旋桨转速恒定;主机-喷油模块子系统的数学模型根据喷油量对主机转速的影响机制建立,主机转速的变化由主机输出扭矩与螺旋桨转矩负荷的差值决定,主机输出扭矩与平均有效压力近似成比例,平均有效压力为平均指示压力与平均机械损失压力的差值,通过控制喷油量改变引起平均指示压力改变,进而改变主机输出扭矩以维持主机转速稳定。
2.如权利要求1所述的基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:建立船体-螺旋桨子系统的数学模型时,
为使螺旋桨的有效推力与船体阻力以及不确定的环境干扰力相平衡,得到关系式
(1)
式中,n P为螺旋桨转速;V S为航速;为伴流系数,由经验公式估算;为进速系数,是螺旋桨水动力特性参数;D为螺旋桨直径;
螺旋桨旋转运动与船体直线运动之间的力学关系符合牛顿第二定律,得到船体运动方程
(2)
式中
(3)
(4)
(5)
式中,T P为螺旋桨的有效推力;R为船体阻力;为船体的附连水系数;M为船体质量;F P为螺旋桨产生的推力;t P为船体推力减额百分数,即螺旋桨与船体的运动导致船体阻力的增加或螺旋桨推力的减额,由经验公式估算;K F为螺旋桨的推力系数,与进速系数有关,由螺旋桨特性曲线图谱确定;为海水密度;为船体的阻力系数;m的数值根据航区确定;
式中,h(t)为不确定的环境干扰力,设定船体处在正常的通航环境,即风速小于3m/s、波浪高度小于0.3 m、水流速度小于1 m/s,根据船体在正常的通航环境航行过程中的测算,将不确定的环境干扰力等效为船体阻力的倍数,则有
(6)。
3.如权利要求1所述的基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:建立螺旋桨-主机子系统的数学模型时,
为使主机传递的力矩与螺旋桨转动时产生的转矩负荷相平衡,得到关系式
(7)
(8)
式中,为螺旋桨的附加水系数;I为推进系统转动部分转动惯量;M l为主机瞬时有效扭矩,与主机的螺旋桨特性有关,设定为主机转速n的函数;M P为螺旋桨的转矩负荷;K M为螺旋桨的转矩系数,与进速系数有关,由螺旋桨特性曲线图谱确定。
4.如权利要求1所述的基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:建立主机-喷油模块子系统的数学模型时,
根据达兰贝尔原理,主机的输出扭矩M d与负载扭矩,即螺旋桨的转矩负荷M P,的差值决定主机转速的变化,则有运动方程
(9)
式中,J为主机及其驱动机械部件的等效转动惯量;为主机的角速度;
主机的输出扭矩M d与平均有效压力P e之间近似成比例,平均有效压力P e为平均指示压力P i与平均机械损失压力P f的差值;测量不同主机转速n所对应的循环喷油量q的值,再根据主机实测的示功图计算出指示功,由指示功计算出平均指示压力P i,转速一定时主机的平均指示压力P i与循环喷油量q之间是线性关系;根据测量的主机转速n和输出扭矩M d计算有效功,再由有效功算出平均有效压力P e;考虑到不同主机转速n下,主机的输出扭矩M d与循环喷油量q之间已不再是线性关系,运用二次多项式的拟合方法,得到主机转速n的非线性数学模型为
(10)
式中,n为主机转速;q为循环喷油量;a 1a 2a 3a 4a 5a 6为与主机有关的参数。
5.如权利要求1所述的基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:求解得到滑模变结构控制器的方法是,
1)综合船体-螺旋桨子系统、螺旋桨-主机子系统、主机-喷油模块子系统的数学模型,得到以航速、主机转速和螺旋桨转速的为状态变量的非线性耦合数学模型,将非线性耦合数学模型转换成系统状态方程,以循环喷油量作为控制输入,在外部风和水流干扰较小的正常海况下,航速、螺旋桨转速和主机转速的波动较小,维持三个状态变量稳定,对于定距桨船体,螺旋桨转速小范围的波动适合于正常海况,对于调距桨船体,虽然靠改变可调桨的螺距即可改变螺旋桨的推力,从而保持螺旋桨转速的稳定,但是正常海况下螺旋桨进速系数维持稳定的取值;2)将系统状态方程写成一类仿射多输入非线性系统的标准形式,取滑模变结构控制的切换函数,求得滑模运动方程;3)取等速趋近率,求解滑模变结构控制,解出控制率,当进行大干扰状态下的航速控制分析时,在原有滑模变结构控制器的基础上,对于可调桨船体,选取螺旋桨的进速系数和喷油量两个控制输入,以维持航速、螺旋桨转速和主机转速三个状态变量的恒定,对于定距桨船体,选取控制螺旋桨转速的传动比和喷油量两个控制输入,以维持航速和主机转速两个状态变量的恒定;4)通过仿真分析计算验证滑模变结构控制器的可靠性。
6.如权利要求1所述的基于非线性耦合数学模型的滑模变结构航速控制系统,其特征在于:检测航速、主机转速和螺旋桨转速的传感器分别连接有显示航速、主机转速和螺旋桨转速的显示屏,燃油输送泵与喷油模块之间设有流量计,主机输出端设有水力测功器。
CN202210417754.1A 2022-04-20 2022-04-20 基于非线性耦合数学模型的滑模变结构航速控制系统 Active CN114779639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210417754.1A CN114779639B (zh) 2022-04-20 2022-04-20 基于非线性耦合数学模型的滑模变结构航速控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210417754.1A CN114779639B (zh) 2022-04-20 2022-04-20 基于非线性耦合数学模型的滑模变结构航速控制系统

Publications (2)

Publication Number Publication Date
CN114779639A CN114779639A (zh) 2022-07-22
CN114779639B true CN114779639B (zh) 2025-03-25

Family

ID=82430581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210417754.1A Active CN114779639B (zh) 2022-04-20 2022-04-20 基于非线性耦合数学模型的滑模变结构航速控制系统

Country Status (1)

Country Link
CN (1) CN114779639B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118795795B (zh) * 2024-06-17 2025-01-24 西北工业大学太仓长三角研究院 一种基于滑模控制的水下机器人动力学仿真平台及方法
CN118655823B (zh) * 2024-08-20 2025-02-11 上海海事大学 一种船舶航速闭环自动控制系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359446A (zh) * 2021-06-02 2021-09-07 武汉理工大学 非线性船舶航向控制模型及控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436283B1 (en) * 2008-07-11 2013-05-07 Davidson Technologies Inc. System and method for guiding and controlling a missile using high order sliding mode control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359446A (zh) * 2021-06-02 2021-09-07 武汉理工大学 非线性船舶航向控制模型及控制系统

Also Published As

Publication number Publication date
CN114779639A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Fossen et al. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity
CN114779639B (zh) 基于非线性耦合数学模型的滑模变结构航速控制系统
US6941195B2 (en) Method and device for allocating thrust
US9195234B2 (en) Dynamic positioning systems and methods
US20110208377A1 (en) Efficiency optimizing propeller speed control for ships
CN111874182B (zh) 一种混合动力船舶的能效预测控制系统及方法
CN113359785A (zh) 一种微小型auv水下运动和悬停控制方法
Blanke et al. Dynamic properties of a container vessel with low metacentric height
CN109911110A (zh) 变稳船
Ueno et al. Estimation of full-scale propeller torque and thrust using free-running model ship in waves
CN110827616A (zh) 一种潜艇操舵和均衡控制仿真试验平台及方法
Suzuki et al. Estimation of full-scale ship manoeuvring motions from free-running model test with consideration of the operational limit of an engine
Huo et al. Free-running tests on a self-propelled submersible multi-state vehicle model
EP2093552A1 (en) Method of and device for determining propeller efficiency on board of a ship
Steenson et al. Maneuvering of an over-actuated autonomous underwater vehicle using both through-body tunnel thrusters and control surfaces
AU2020452061B2 (en) Method of controlling propulsion system of marine vehicle and propulsion system
CN114030579B (zh) 一种无人船稳定控制方法及推进装置
CN114036633B (zh) 一种计算鳍动态升力的融合方法
Dash et al. Uncertainty assessment for ship maneuvering mathematical model
CN113359446B (zh) 非线性船舶航向控制方法及控制系统
Pivano et al. A four-quadrant thrust controller for marine propellers with loss estimation and anti-spin: theory and experiments
Moe et al. Path following of underactuated marine underwater vehicles in the presence of unknown ocean currents
US20230391437A1 (en) Compensating for ambient torsional loads affecting marine vessel propulsion
Altosole et al. Simulation of a marine dynamic positioning system equipped with cycloidal propellers
Ueno et al. Model Ship Control and Estimation of Full-scale Propeller Torque in Wind and Waves

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant