CN114778866A - Automatic change detection device - Google Patents
Automatic change detection device Download PDFInfo
- Publication number
- CN114778866A CN114778866A CN202210452121.4A CN202210452121A CN114778866A CN 114778866 A CN114778866 A CN 114778866A CN 202210452121 A CN202210452121 A CN 202210452121A CN 114778866 A CN114778866 A CN 114778866A
- Authority
- CN
- China
- Prior art keywords
- channel
- ultrasonic
- droplets
- detection
- reagent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本申请适用于传感检测领域,提供了一种自动化检测装置,包括壳体和超声波悬浮机构,壳体包括第一通道、第二通道、第三通道和密封腔,密封腔包括检测区;第一通道用于供待测样品液滴移动至检测区,第二通道用于供检测试剂液滴移动至检测区,第三通道用于供检测完成的液滴排出密封腔;超声波悬浮机构位于密封腔,超声波悬浮机构用于发出超声波,以在检测区内产生声压力场,声压力场用于使待测样品液滴和检测试剂液滴悬浮及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场还用于使得检测完成的混合液滴移动至第三通道并排出密封腔。整个检测过程无需人工操作,降低了检测员被有毒物质感染的风险,检测过程简单,检测效率更高。
The application is applicable to the field of sensing and detection, and provides an automatic detection device, comprising a casing and an ultrasonic suspension mechanism, the casing includes a first channel, a second channel, a third channel and a sealing cavity, and the sealing cavity includes a detection area; One channel is used for the sample droplets to be tested to move to the detection area, the second channel is used for the detection reagent droplets to move to the detection area, and the third channel is used for the detected droplets to be discharged from the sealed cavity; the ultrasonic suspension mechanism is located in the sealing chamber. The cavity, the ultrasonic suspension mechanism is used to emit ultrasonic waves to generate an acoustic pressure field in the detection area, and the acoustic pressure field is used to suspend and move the sample droplets to be tested and the detection reagent droplets, so that the sample droplets to be tested and the detection reagent liquid droplets are suspended and moved. The droplets are mixed to form mixed droplets and suspended, and the acoustic pressure field is also used to move the detected mixed droplets to the third channel and out of the sealed cavity. The whole detection process does not require manual operation, which reduces the risk of the inspector being infected by toxic substances, the detection process is simple, and the detection efficiency is higher.
Description
技术领域technical field
本申请涉及传感检测领域,更具体地说,是涉及一种自动化检测装置。The present application relates to the field of sensing detection, and more particularly, to an automatic detection device.
背景技术Background technique
生物标志物的传感检测是临床医学诊断、生物医疗等领域的基础,因此研究者致力于各种新型检测方法的研究,开发出了各种类型的具有高灵敏度、高检测效率的疾病标志物检测方法。但是,在对未知的、有传染可能性的有毒害标志物检测时,传统的检测装置通常需要人工进行取样以及将待测样品与检测试剂混合,检测过程检测员需要执行严格的隔离措施,检测过程复杂,检测效率低,且如若隔离措施没有做好,容易使得检测员被有毒物质感染。The sensing detection of biomarkers is the basis of clinical medical diagnosis, biomedicine and other fields. Therefore, researchers are committed to the research of various new detection methods, and have developed various types of disease markers with high sensitivity and high detection efficiency. Detection method. However, when detecting unknown and potentially infectious toxic markers, traditional detection devices usually require manual sampling and mixing of samples to be tested with detection reagents. During the detection process, the inspectors need to implement strict isolation measures. The process is complicated, the detection efficiency is low, and if the isolation measures are not done well, it is easy for the inspectors to be infected with toxic substances.
发明内容SUMMARY OF THE INVENTION
本申请实施例的目的在于提供一种自动化检测装置,旨在解决现有技术中检测过程复杂、检测效率较低、容易使得检测员被有毒物质感染的技术问题。The purpose of the embodiments of the present application is to provide an automatic detection device, which aims to solve the technical problems in the prior art that the detection process is complicated, the detection efficiency is low, and the inspectors are easily infected by toxic substances.
为实现上述目的,本申请采用的技术方案是:提供一种自动化检测装置,包括:In order to achieve the above-mentioned purpose, the technical scheme adopted in this application is: a kind of automatic detection device is provided, including:
壳体,包括第一通道、第二通道、第三通道和密封腔,密封腔包括检测区,第一通道用于供待测样品液滴进入检测区,第二通道用于供检测试剂液滴进入检测区,第三通道用于供检测完成的液滴排出密封腔;The housing includes a first channel, a second channel, a third channel and a sealing cavity, the sealing cavity includes a detection area, the first channel is used for the droplets of the sample to be tested to enter the detection area, and the second channel is used for the detection of reagent droplets Enter the detection area, and the third channel is used for the detected droplets to be discharged from the sealed cavity;
超声波悬浮机构,位于密封腔,超声波悬浮机构与壳体连接,超声波悬浮机构用于发出超声波,以在检测区内产生声压力场,声压力场用于使位于声压力场中的待测样品液滴和检测试剂液滴悬浮及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场还用于使得检测完成的混合液滴移动至第三通道并排出密封腔。The ultrasonic suspension mechanism is located in the sealed cavity. The ultrasonic suspension mechanism is connected to the shell. The ultrasonic suspension mechanism is used to emit ultrasonic waves to generate an acoustic pressure field in the detection area. The acoustic pressure field is used to make the sample liquid to be tested located in the acoustic pressure field. The droplets and the detection reagent droplets are suspended and moved, so that the sample droplets to be tested and the detection reagent droplets are mixed to form mixed droplets and suspended, and the acoustic pressure field is also used to move the detected mixed droplets to the third channel and discharge the seal cavity.
在一种可能的设计中,超声波悬浮机构包括超声组件,超声组件包括安装座和多个超声波换能器,多个超声波换能器呈阵列状安装在安装座上,安装座与壳体连接。In a possible design, the ultrasonic suspension mechanism includes an ultrasonic assembly, the ultrasonic assembly includes a mounting seat and a plurality of ultrasonic transducers, the plurality of ultrasonic transducers are installed on the mounting seat in an array, and the mounting seat is connected to the housing.
在一种可能的设计中,多个超声波换能器的超声波发射方向不同,且各超声波换能器的超声波发射方向均指向检测区。In a possible design, the ultrasonic emission directions of the multiple ultrasonic transducers are different, and the ultrasonic emission directions of the ultrasonic transducers all point to the detection area.
在一种可能的设计中,安装座具有球冠状的安装面,多个超声波换能器在安装面间隔分布。In one possible design, the mounting base has a spherical crown mounting surface, and a plurality of ultrasonic transducers are spaced apart on the mounting surface.
在一种可能的设计中,超声组件的数量为两个,两个超声组件分别安装于壳体中沿第一方向的相对两侧,且两个超声组件分别位于检测区的两侧。In a possible design, the number of ultrasonic assemblies is two, the two ultrasonic assemblies are respectively installed on opposite sides of the housing along the first direction, and the two ultrasonic assemblies are respectively located on two sides of the detection area.
在一种可能的设计中,安装座设置有通孔,两个安装座中,其中一者的通孔与第一通道连通,另一者的通孔与第三通道连通。In a possible design, the mounting seat is provided with a through hole, and among the two mounting seats, the through hole of one of the mounting seats communicates with the first channel, and the through hole of the other is communicated with the third channel.
在一种可能的设计中,第二通道的数量为两个,分别为第一试剂通道和第二试剂通道,第一试剂通道与第二试剂通道分别位于壳体沿第二方向的相对两侧,第一方向与第二方向呈角度设置。In a possible design, the number of the second channels is two, which are the first reagent channel and the second reagent channel respectively, and the first reagent channel and the second reagent channel are located on opposite sides of the housing along the second direction, respectively. , the first direction and the second direction are arranged at an angle.
在一种可能的设计中,还包括换能器控制系统,换能器控制系统与各超声波换能器分别信号连接,换能器控制系统用于控制各超声波换能器的相位。In a possible design, a transducer control system is also included, the transducer control system is signal-connected to each ultrasonic transducer, and the transducer control system is used to control the phase of each ultrasonic transducer.
在一种可能的设计中,第一通道与第三通道分别连接有控制开关,控制开关用于分别控制对应的第一通道与第三通道的开闭;第二通道的输入端设置有注射泵,第二通道的输出端设置有注射针。In a possible design, the first channel and the third channel are respectively connected with a control switch, and the control switch is used to control the opening and closing of the corresponding first channel and the third channel respectively; the input end of the second channel is provided with a syringe pump , the output end of the second channel is provided with an injection needle.
在一种可能的设计中,还包括调节控制系统和调节装置,调节装置与调节控制系统信号连接,调节装置用于检测密封腔中的温度和湿度并将密封腔中的温度值和湿度值反馈给调节控制系统,调节控制系统控制调节装置将密封腔中的温度和湿度分别调节至设定温度范围内和设定湿度范围内。In a possible design, it also includes an adjustment control system and an adjustment device, the adjustment device is signally connected to the adjustment control system, and the adjustment device is used to detect the temperature and humidity in the sealed cavity and feed back the temperature and humidity values in the sealed cavity To the adjustment control system, the adjustment control system controls the adjustment device to adjust the temperature and humidity in the sealed cavity to the set temperature range and the set humidity range respectively.
本申请提供的自动化检测装置的有益效果在于:与现有技术相比,本申请的自动化检测装置,包括壳体和超声波悬浮机构。壳体包括第一通道、第二通道、第三通道和密封腔,密封腔包括检测区,第一通道用于供待测样品液滴进入检测区,第二通道用于供检测试剂液滴进入检测区,第三通道用于供检测完成的液滴排出密封腔;超声波悬浮机构位于密封腔,超声波悬浮机构与壳体连接,超声波悬浮机构用于发出超声波,以在检测区内产生声压力场,声压力场用于使位于声压力场中的待测样品液滴和检测试剂液滴悬浮及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场还用于使得检测完成的混合液滴移动至第三通道并排出密封腔。The beneficial effect of the automatic detection device provided by the present application is that compared with the prior art, the automatic detection device of the present application includes a casing and an ultrasonic suspension mechanism. The housing includes a first channel, a second channel, a third channel and a sealed cavity, the sealed cavity includes a detection area, the first channel is used for the droplets of the sample to be tested to enter the detection area, and the second channel is used for the droplets of detection reagents to enter In the detection area, the third channel is used to discharge the detected droplets out of the sealed cavity; the ultrasonic suspension mechanism is located in the sealed cavity, the ultrasonic suspension mechanism is connected to the shell, and the ultrasonic suspension mechanism is used to emit ultrasonic waves to generate an acoustic pressure field in the detection area The acoustic pressure field is used to suspend and move the sample droplets to be tested and the detection reagent droplets located in the acoustic pressure field, so that the sample droplets to be tested and the detection reagent droplets are mixed to form mixed droplets and suspend. It is used to move the mixed droplets that have completed the detection to the third channel and discharge the sealed cavity.
本申请的自动化检测装置通过设置超声波悬浮机构,超声波悬浮机构可以产生声压力场,声压力场用于使位于声压力场中的待测样品液滴和检测试剂液滴悬浮以及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场能够促进混合液滴内部搅拌使得检测试剂与待测样品混合,声压力场还用于使得检测完成的混合液滴移动至第三通道并排出密封腔。整个检测过程无需人工操作,将大大降低检测员被有毒物质感染的风险,检测过程简单,检测效率更高。The automatic detection device of the present application is provided with an ultrasonic suspension mechanism, and the ultrasonic suspension mechanism can generate an acoustic pressure field, and the acoustic pressure field is used to suspend and move the sample droplets to be tested and the detection reagent droplets located in the acoustic pressure field, so as to make The sample droplet is mixed with the detection reagent droplet to form a mixed droplet and suspended. The acoustic pressure field can promote the internal stirring of the mixed droplet to mix the detection reagent with the sample to be tested. The acoustic pressure field is also used to move the detected mixed droplet to The third passage and exit the sealed cavity. The whole detection process does not require manual operation, which will greatly reduce the risk of the inspector being infected by toxic substances, the detection process is simple, and the detection efficiency is higher.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请的一个实施例提供的自动化检测装置的部分结构示意图;Fig. 1 is a partial structural schematic diagram of an automated detection device provided by an embodiment of the present application;
图2是本申请的一个实施例提供的自动化检测装置的混合液滴形成微涡旋的内部示意图;2 is an internal schematic diagram of a micro-vortex formed by a mixed droplet of an automated detection device provided by an embodiment of the present application;
图3是本申请的一个实施例提供的自动化检测装置的混合液滴在声压力场中不同时间点的内部与外部示意图;3 is an internal and external schematic diagram of a mixed droplet of an automated detection device provided by an embodiment of the present application at different time points in an acoustic pressure field;
图4是本申请的一个实施例提供的自动化检测装置的安装座的结构示意图;4 is a schematic structural diagram of a mounting seat of an automated detection device provided by an embodiment of the present application;
图5是本申请的一个实施例提供的自动化检测装置的多个超声波换能器与驱动电路接线示意图;5 is a schematic diagram of the wiring between multiple ultrasonic transducers and a drive circuit of an automated detection device provided by an embodiment of the present application;
图6是本申请的一个实施例提供的自动化检测装置的各控制系统之间的控制关系示意图;6 is a schematic diagram of a control relationship between various control systems of an automated detection device provided by an embodiment of the present application;
图7是本申请的一个实施例提供的自动化检测装置的换能器控制系统的控制模块的接线示意图;7 is a schematic diagram of wiring of a control module of a transducer control system of an automated detection device provided by an embodiment of the present application;
图8是本申请的一个实施例提供的自动化检测装置的换能器控制系统的稳压模块的接线示意图;8 is a schematic wiring diagram of a voltage regulator module of a transducer control system of an automated detection device provided by an embodiment of the present application;
图9是本申请的一个实施例提供的自动化检测装置的换能器控制系统的驱动电路的接线示意图;9 is a schematic wiring diagram of a drive circuit of a transducer control system of an automated detection device provided by an embodiment of the present application;
图10是本申请的一个实施例提供的自动化检测装置的换能器控制系统的无线信号传输模块的接线示意图;10 is a schematic diagram of wiring of a wireless signal transmission module of a transducer control system of an automated detection device provided by an embodiment of the present application;
图11是本申请的一个实施例提供的自动化检测装置的换能器控制系统的工作信号指示模块的接线示意图;11 is a schematic diagram of wiring of a working signal indicating module of a transducer control system of an automated detection device provided by an embodiment of the present application;
图12是本申请的一个实施例提供的自动化检测装置的换能器控制系统的串口转换模块的接线示意图。FIG. 12 is a schematic wiring diagram of a serial port conversion module of a transducer control system of an automated detection device provided by an embodiment of the present application.
上述附图所涉及的标号明细如下:The details of the symbols involved in the above drawings are as follows:
100、壳体;110、密封腔;210、第一通道;221、第一试剂通道;222、第二试剂通道;230、第三通道;310、超声波换能器;320、安装座;321、固定支撑件;322、通孔;323、安装面。100, housing; 110, sealed cavity; 210, first channel; 221, first reagent channel; 222, second reagent channel; 230, third channel; 310, ultrasonic transducer; 320, mounting seat; 321, Fixed support; 322, through hole; 323, mounting surface.
具体实施方式Detailed ways
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application clearer, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的结构或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It is to be understood that the terms "length", "width", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inside", "outside", etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the accompanying drawings, only for the convenience of describing the application and simplifying the description, rather than indicating or implying the indicated A structure or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present application, "plurality" means two or more, unless otherwise expressly and specifically defined.
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。In order to illustrate the technical solutions described in the present application, a detailed description is given below with reference to the specific drawings and embodiments.
如图1所示,本申请的一个实施例提供了自动化检测装置,包括壳体100和超声波悬浮机构。壳体100包括第一通道210、第二通道、第三通道230和密封腔110,密封腔110包括检测区,第一通道210用于供待测样品液滴进入检测区,第二通道用于供检测试剂液滴进入检测区,第三通道230用于供检测完成的液滴排出密封腔110;超声波悬浮机构位于密封腔110,超声波悬浮机构与壳体100连接,超声波悬浮机构用于发出超声波,以在密封腔110内产生声压力场,声压力场用于使位于声压力场中的待测样品液滴和检测试剂液滴悬浮及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场还用于使得检测完成的混合液滴移动至第三通道230然后排出密封腔110。As shown in FIG. 1 , an embodiment of the present application provides an automatic detection device, including a
超声波悬浮机构可以产生声压力场,声压力场用于使位于声压力场中的待测样品液滴和检测试剂液滴悬浮及移动,使待测样品液滴与检测试剂液滴混合形成混合液滴并悬浮,声压力场能够促进混合液滴内部搅拌使得检测试剂与待测样品混合,混合液滴中的检测试剂对待测样品进行检测,检测完成之后,超声波悬浮机构改变声压力场从而控制检测完成的混合液滴移动至第三通道230,检测完成的混合液滴通过第三通道230排出密封腔110。整个检测过程无需人工操作,将大大降低检测员被有毒物质感染的风险,检测过程简单,检测效率更高。The ultrasonic suspension mechanism can generate an acoustic pressure field, which is used to suspend and move the sample droplets to be tested and the detection reagent droplets in the acoustic pressure field, so that the sample droplets to be tested and the detection reagent droplets are mixed to form a mixed liquid Drops and suspends, the acoustic pressure field can promote the internal stirring of the mixed droplets to mix the detection reagent with the sample to be tested, and the detection reagent in the mixed droplet detects the sample to be tested. After the detection is completed, the ultrasonic suspension mechanism changes the acoustic pressure field to control the detection. The completed mixed droplets move to the
在一种可能的设计中,壳体100的形状可以是立方体形、圆柱形或者其他形状,壳体100的制作材料可以选用聚甲基丙烯酸甲酯、聚碳酸脂、聚苯乙烯、光敏树脂、烯丙基二甘醇碳酸脂等塑胶材料,还可以选用其他材料(例如金属材料)。在一种具体实施例中,壳体100的材料为聚甲基丙烯酸甲酯。如图1所示,壳体100为立方体形状,壳体100具体可为一个长宽高为10cm×10cm×17cm的封闭长方体。在一种可选实施方式中,壳体100采用透明材料制作,使得壳体100整体均呈透明状;在另一种具体实施例中,壳体100的主体部分采用金属材料制成,壳体100的侧面设置有观察口,观察口设置有透明的观察窗,观察窗嵌入观察口中,观察窗将观察口密封,观察窗可以采用塑胶材料、玻璃材料或者其他材料制成。上述采用透明材质制成壳体100或在壳体100上设置观察窗均有利于检测员从壳体100外侧观察壳体100内的检测情况。或者,在另一种可选实施方式中,在密封腔110内设置摄像头,在壳体100外侧设置显示器,通过显示器显示摄像头摄录的图像,以通过显示器观测密封腔110内的检测情况。In a possible design, the shape of the
在一种可能的设计中,第一通道210、第二通道与第三通道230可以分别为独立于壳体100的管道,第一通道210、第二通道与第三通道230的管道材料可采用聚醚醚酮材料等塑胶材料,也可采用金属材料或者其他材料。壳体100的侧壁设置有连接孔,连接孔的数量与第一通道210、第二通道、第三通道230的总和相等,在一种具体实施例中,第一通道210、第二通道与第三通道230的数量分别为一个,则连接孔的数量为三个,第一通道210、第二通道与第三通道230分别与不同的连接孔连接,第一通道210、第二通道与第三通道230分别通过连接孔与壳体100内部的密封腔110连通。以第一通道210为例,第一通道210的一端设置有外螺纹,与第一通道210对应连接的连接孔的内部设置有与第一通道210的外螺纹配合的内螺纹,第一通道210与连接孔通过内外螺纹配合紧密连接,为了进一步提高密封腔110的密封性,第一通道210与连接孔的连接处还可使用密封胶水、密封圈等进行密封。第二通道、第三通道230与连接孔的连接方式和第一通道210与连接孔的连接方式相同,第一通道210、第二通道、第三通道230与对应的连接孔的连接方式还可以是焊接、胶合粘接等其他连接方式。In a possible design, the
在另一种可能的设计中,第一通道210、第二通道与第三通道230可以直接与壳体100做成一体成型的结构,以第一通道210为例,在壳体100上开设贯穿壳体100厚度的孔,该孔即为第一通道210,第一通道210的长度可与壳体100的厚度相等,或者,第一通道210的至少一端可以凸出于壳体100的侧壁,例如,第一通道210的一端凸出于壳体100的外表面,第一通道210的内腔贯穿壳体100,以使得外界通过第一通道210的内腔连通密封腔110。第一通道210的伸出壳体100的外壁的部分可用于与容置待测样品的储液容器连通,例如,第一通道210可直接伸入储液容器中,或者,第一通道210的端部连接延长软管,延长软管的另一端伸入储液容器中。在第一通道210或者储液容器中可设置有泵送机构,通过泵送机构将储液容器中的待测样品输送至第一通道210。In another possible design, the
第一通道210的形状可以是圆柱形、棱柱形或者其他任意一种形状。第二通道与第三通道230均采用与第一通道210相同的结构。The shape of the
在一种可能的设计中,超声波悬浮机构包括超声组件,超声组件包括安装座320和多个超声波换能器310,多个超声波换能器310呈阵列状安装在安装座320上,安装座320与壳体100连接。多个超声波换能器310的阵列形式可以是圆形阵列、方形阵列或者其他形状的阵列。超声波换能器310的参数可为:直径10mm,高度7mm,谐振频率40kHz,输入电压20Vpp。安装座320可通过3D打印或者其他方式制作而成,安装座320的材料可采用光敏树脂等塑胶材料或者其他材料。In a possible design, the ultrasonic suspension mechanism includes an ultrasonic assembly, and the ultrasonic assembly includes a mounting
在一种具体实施例中,安装座320位于壳体100的一侧,壳体100内相对于安装座320的对侧设置有反射板,安装座320与反射板分别位于检测区的两侧,多个超声波换能器310固定于安装座320上,且各超声波换能器310的超声波发射方向均朝向反射板。超声波换能器310用于发射超声波,超声波传播至反射板并经过反射板的反射面反射回超声波换能器310,以使在各超声波换能器310与反射板之间形成声压力场,且检测区位于声压力场中,声压力场中具有向上的声压力,即为声悬浮力。In a specific embodiment, the mounting
在一种具体实施方式中,待测样品液滴通过第一通道210进入检测区,检测区位于声压力场中,检测区的待测样品液滴同时受到声悬浮力与重力的作用,待测样品液滴受到的声悬浮力与重力抵消,使得待测样品液滴位于一个微重力环境,因此待测样品液滴得以悬浮于检测区。检测试剂液滴通过第二通道进入检测区并与检测区中的待测样品液滴混合形成混合液滴,混合液滴中的检测试剂对混合液滴中的待测样品进行检测,混合液滴检测完成之后,通过改变超声波换能器310的相位,使得各超声波换能器310与反射板之间的声压力场发生改变,从而控制混合液滴移动至第三通道230,混合液滴通过第三通道230排出密封腔110。In a specific embodiment, the sample droplets to be tested enter the detection area through the
在声压力场中,不同区域的声压力的大小与方向均不同,因此位于声压力场的混合液滴中的不同部分所受到的声压力大小与方向也不同,混合液滴中的不同部分在声压力场的不同大小、不同方向的声压力作用下形成微涡旋搅拌,以促进待检测样品液滴与检测试剂液滴混合,使得检测效率更高。如图2和图3所示。图2为混合液滴在声压力场中形成微涡旋搅拌的示意图,图2中的实线圆表示混合液滴的边界,图2中的多个箭头分别表示混合液滴内的液体流动方向。图3中的ⅰ、ⅱ、ⅲ、ⅳ分别表示同一混合液滴位于声压力场中的同一视角下不同时间点的不同状态,混合液滴上有深灰色的标记。ⅰ表示初始位置时混合液滴的灰色标记在右侧;ⅱ表示混合液滴受到声压力场作用一段时间后,混合液滴的深灰色标记由右侧移动至前面,也即混合液滴在声压力场中旋转了一定角度;ⅲ表示混合液滴受到声压力场作用又一段时间后,混合液滴的深灰色标记由前面移动至左侧,也即表示混合液滴在声压力场中又旋转了一定角度;ⅳ表示混合液滴受到声压力场作用又一段时间后混合液滴的深灰色标记由左侧移动至后面,也即表示混合液滴在声压力场中又旋转了一定角度。图3中的ⅴ、ⅵ、ⅶ、ⅷ分别表示同一混合液滴位于声压力场中不同时间点的内部形态,图3中的ⅴ、ⅵ、ⅶ、ⅷ中的圆形区域均表示同一混合液滴,圆形区域内部的黑点均表示混合液滴内的检测试剂物质和待测物质,ⅴ、ⅵ、ⅶ、ⅷ中的圆形区域内的黑点位置均不相同,也即混合液滴的内部物质受到声压力场作用在混合液滴内部不断流动。In the acoustic pressure field, the magnitude and direction of the acoustic pressure in different regions are different, so the magnitude and direction of the acoustic pressure are also different for different parts in the mixed droplet located in the acoustic pressure field. Micro-vortex stirring is formed under the action of different sizes and different directions of the acoustic pressure field, so as to promote the mixing of the sample droplets to be detected and the detection reagent droplets, so that the detection efficiency is higher. As shown in Figure 2 and Figure 3. Fig. 2 is a schematic diagram of the micro-vortex stirring formed by the mixed droplets in the acoustic pressure field. The solid line circle in Fig. 2 represents the boundary of the mixed droplet, and the arrows in Fig. 2 represent the liquid flow direction in the mixed droplet. . ⅰ, ii, iii, and iv in Fig. 3 represent different states of the same mixed droplet at different time points at the same viewing angle in the acoustic pressure field, respectively, and the mixed droplet is marked with dark gray. ⅰ means that the grey mark of the mixed droplet is on the right side at the initial position; ⅱ means that after the mixed droplet is subjected to the acoustic pressure field for a period of time, the dark grey mark of the mixed droplet moves from the right to the front, that is, the mixed droplet is on the acoustic pressure field. The pressure field rotates by a certain angle; iii means that after the mixed droplet is subjected to the acoustic pressure field for a period of time, the dark gray mark of the mixed droplet moves from the front to the left, which means that the mixed droplet rotates again in the acoustic pressure field ⅳ means that the dark gray mark of the mixed droplet moves from the left to the back after being acted on by the acoustic pressure field for a period of time, which means that the mixed droplet rotates by a certain angle in the acoustic pressure field. ⅴ, ⅵ, ⅶ, and ⅷ in Fig. 3 represent the internal morphology of the same mixed droplet at different time points in the acoustic pressure field, respectively, and the circular areas in ⅴ, ⅵ, ⅶ, and ⅷ in Fig. 3 all represent the same mixed liquid The black dots in the circular area all represent the detection reagent substance and the substance to be tested in the mixed droplet. The internal material is continuously flowing inside the mixed droplet under the action of the acoustic pressure field.
在一种可能的设计中,安装座320用于安装超声波换能器310的表面称为安装面323,安装座320的安装面323可以为平面,且为圆形、方形或者其他任一形状。在一种具体实施例中,安装面323为圆形平面,多个超声波换能器310在安装面323上呈圆形阵列状分布,例如,多个超声波换能器310分为多组,每组的超声波换能器310的数量不等,以超声波换能器310的数量为36个为例,将36个超声波换能器310分为三组,第一组的超声波换能器310的数量为6个,第二组的超声波换能器310的数量为12个,第三组的超声波换能器310的数量为18个,每组的超声波换能器310分别沿不同大小的圆形路径均匀间隔分布,且三组的圆形路径的圆心均与安装面323的圆心重合。反射板的反射面可以是平面状、球冠状或者其他任意形状。In a possible design, the surface of the mounting
在一种可能的设计中,多个超声波换能器310的超声波发射方向不同,且各超声波换能器310的超声波发射方向均指向检测区。以使得声压力场在检测区的强度较声压力场中的其他区域的强度更强,从而使得位于检测区的待测样品液滴、检测试剂液滴或者混合液滴悬浮更加稳定,混合液滴的不同部分所受到的不同大小、不同方向的声辐射压力更多,使得混合液滴所形成的微涡旋搅拌更为明显,也即使得促进待测样品液滴与检测试剂液滴的混合的速度更快。In a possible design, the ultrasonic emission directions of the plurality of
在一种可选实施方式中,安装座320为平板状,安装座320上设置有多个安装支架,安装支架的数量与安装座320上的超声波换能器310的数量相等,安装支架具有斜面,各安装支架的斜面均朝向检测区。各超声波换能器310对应放置于一个安装支架的斜面上,使得各超声波换能器310的超声波发射方向均均指向检测区。In an optional embodiment, the mounting
在另一种可选实施方式中,如图1所示,安装座320具有球冠状的安装面323,多个超声波换能器310在安装面323间隔分布。In another optional embodiment, as shown in FIG. 1 , the mounting
在一种具体实施例中,安装座320的球冠状安装面323上设置有多个固定支撑件321,固定支撑件321的数量与超声波换能器310的数量相等,每个超声波换能器310分别对应安装于一个固定支撑件321上。如图4所示,安装面323的参数为:曲率半径6cm,最大直径8cm。多个固定支撑件321在安装面323上呈阵列状分布,多个固定支撑件321分为多组,每组的固定支撑件321的数量不等,以固定支撑件321的数量为36个为例,将36个固定支撑件321分为三组,第一组的固定支撑件321的数量为6个,第二组的固定支撑件321的数量为12个,第三组的固定支撑件321的数量为18个,每组的固定支撑件321分别沿不同大小的圆形路径均匀间隔分布。第一组的固定支撑件321位于安装面323的内圈,第二组的固定支撑件321沿第二圆形路径均匀间隔分布于安装面323,第一组的固定支撑件321沿第一圆形路径均匀间隔分布于第二组的固定支撑件321的内侧安装面,第三组的固定支撑件321沿第三圆形路径均匀间隔分布于第二组的固定支撑件321的外侧安装面,安装面323的球心位于安装座320靠近检测区的一侧,安装面323的球心与安装面323的中心所连成的直线为安装面323的中心线,三组圆形轨道的圆心均位于中心线上,且第一组固定支撑件321、第二组固定支撑件321以及第三组固定支撑件321沿中心线依次均匀间隔设置。In a specific embodiment, a plurality of fixed
在一种可能的设计中,各超声波换能器310可以与安装座320固定连接,例如超声波换能器310与安装座320之间通过焊接、胶合粘接等形式连接。或者,各超声波换能器310还可以与安装座320可拆卸连接,例如,安装座320上设有多个安装槽,各超声波换能器310通过卡扣的形式分别与安装槽卡接;或者,安装座320上设有带螺纹孔的安装槽,各超声波换能器310通过螺纹配合的方式分别与安装槽连接。各超声波换能器310与安装座320之间采用可拆卸连接结构连接,当任一超声波换能器310出现故障时,只需将故障的超声波换能器310拆下来进行维修或更换,不会对其他超声波换能器310造成干扰。又或者,各超声波换能器310还可以与安装座320铰接,使得超声波换能器310可以相对于安装座320摆动。安装座320上安装有多个驱动器,各超声波换能器310分别连接有一个驱动器,驱动器的一端固定于安装座320上,驱动器的输出端与超声波换能器310连接,驱动器用于驱动超声波换能器310相对于安装座320摆动,从而产生不同的声压力场,以使得位于声压力场中的待测样品液滴、检测试剂液滴或者混合液滴的悬浮位置以及移动轨迹更加多样化。驱动器可为气缸、电机或者其他驱动机构。In a possible design, each
在一种可能的设计中,如图1所示,超声组件的数量为两个,两个超声组件分别安装于壳体100中沿第一方向(图中A-B箭头所示方向)的相对两侧,且两个超声组件分别位于检测区的两侧,例如,在图1所示方向中,其中一个超声组件安装在检测区的上方,另一个超声组件安装在检测区的下方。两组超声波组件中的多个超声波换能器310的排布方式相同。例如,超声波换能器310的数量为72个,则两组超声波组件的超声波换能器310的数量均为36个,各超声波组件中的36个超声波换能器310均呈阵列状分别安装于对应的安装座320上,两个安装座320的最远距离为14cm。两组超声组件中的超声波换能器310均朝向检测区,并向检测区发射超声波,在两组超声波换能器310之间形成声压力场,检测区位于声压力场中,超声波在声压力场中形成驻波,使得位于检测区中的待测样品液滴、检测试剂液滴或者混合液滴悬浮于检测区,通过改变超声波换能器310的相位,从而改变驻波在声压力场中的位置,使得位于检测区中的待测样品液滴、检测试剂液滴或者混合液滴随着驻波的位置的变化而移动。采用两组超声组件在检测区的两侧且均相对检测区的方向发射超声波,降低了超声波在传播和反射的过程中的能量损耗。In a possible design, as shown in FIG. 1 , the number of ultrasonic components is two, and the two ultrasonic components are respectively installed on opposite sides of the
在一种可能的设计中,自动化检测装置还包括换能器控制系统,换能器控制系统与各超声波换能器310分别信号连接,换能器控制系统用于控制各超声波换能器310的相位。如图5所示,超声波换能器310的数量为72个,72个超声波换能器310被平均分为两组,每组的超声波换能器310的数量为36个,将72超声波换能器310依次进行编号。图5中的72个圆圈分别表示72超声波换能器310,圆圈中的数字即为每个超声波换能器310的编号,1号至36号所指的超声波换能器310为一组且分别与换能器控制系统连接,37号至72号为一组且分别与换能器控制系统连接。在一种具体实施方式中,换能器控制系统包括控制器和驱动电路,控制器与驱动电路信号连接,驱动电路与各超声波换能器310信号连接,图5中的各超声波换能器与驱动电路连接的线条代表72个超声波换能器310分别与驱动电路信号连接。信号连接可以为无线连接(例如蓝牙连接)或者电连接(例如通过线缆连接)等,换能器控制系统的控制器通过控制驱动电路,从而控制各超声波换能器310的相位,以改变超声波换能器310发射出不同频率和相位的超声波。In a possible design, the automatic detection device further includes a transducer control system, the transducer control system is signal-connected to each
在一种可能的设计中,各安装座320均设置有通孔322,两个安装座320中,其中一者的通孔322与第一通道210连通,另一者的通孔322与第三通道230连通。如图4所示,安装座320的通孔322设置于多个固定支撑件321阵列的中心,待测样品液滴从第一通道210通过安装座320的通孔322直接进入两组超声波换能器310之间的声压力场中。换能器控制系统通过改变各超声波换能器310的相位,来驱动待测样品液滴移动至位于声压力场中的检测区并悬浮,检测试剂液滴通过第二通道直接进入检测区并与位于检测区中的待测样品液滴混合形成混合液滴,混合液滴中的检测试剂对混合液滴中的待测样品进行检测,检测完成之后,换能器控制系统改变各超声波换能器310的相位,驱动混合液滴移动至第三通道230并排出密封腔110。In a possible design, each mounting
在一种可能的设计中,第一通道210与第三通道230分别连接有控制开关,控制开关用于分别控制对应的第一通道210与第三通道230的开闭;所述第二通道输入端连接有注射泵,输出端连接有注射针。注射针的针头位于检测区,注射泵连接有注射泵控制系统,注射泵控制系统用于控制注射泵向第二通道内注入测试剂液滴,检测试剂液滴通过第二通道后进入注射针,检测试剂液滴通过注射针进入检测区。In a possible design, the
在一种具体实施方式中,待测样品液滴通过第一通道210进入检测区后,待测样品液滴通过声压力场悬浮于检测区,且待测样品液滴靠近注射针的针头,注射针直接将检测试剂液滴注入待测样品液滴中形成混合液滴。In a specific embodiment, after the droplet of the sample to be tested enters the detection area through the
在另一种具体实施方式中,注射针仅将检测试剂液滴注入检测区,换能器控制系统控制超声波换能器310改变相位,以改变超声波换能器310产生的声压力场,从而控制检测试剂液滴移动至待测样品液滴并与待测样品液滴混合形成混合液滴。In another specific embodiment, the injection needle only injects the detection reagent droplets into the detection area, and the transducer control system controls the
在一种可能的设计中,检测员可以通过手动操作控制开关分别控制对应的第一通道210与第三通道230的开闭。或者,各控制开关分别连接有开关控制系统,通过开关控制系统操控控制开关的开闭,以控制第一通道210与第三通道230的开闭。控制开关可以包括电磁阀、电机驱动开关等电控开关。In a possible design, the inspector can respectively control the opening and closing of the corresponding
在一种具体实施方式中,第一通道210连接有自动进样装置,自动进样装置与开关控制系统信号连接,自动进样装置内储存有待测样品,开关控制系统控制自动进样装置自动进样。自动进样装置可以是注射泵或者其他可以实现自动进样的结构。In a specific embodiment, the
在一种可能的设计中,第二通道的数量为两个,分别称为第一试剂通道221和第二试剂通道222,第一试剂通道221与第二试剂通道222分别位于壳体100沿第二方向的相对两侧,第一方向与第二方向呈角度设置。在一种具体实施例中,如图1所示,第一方向与第二方向(图中C-D箭头所示方向)垂直,第一方向为竖直方向,第二方向为水平方向。第一试剂通道221与第二试剂通道222分别用于供第一检测试剂液滴和第二检测试剂液滴进入检测区。In a possible design, the number of the second channels is two, which are called the
在一种具体实施方式中,第一试剂通道221与第二试剂通道222均对应设置有注射泵和注射针。第一试剂通道221的输入端连接有注射泵,第一试剂通道221的输出端连接有注射针,第一试剂通道221对应的注射针的针头位于检测区,第一试剂通道221对应的注射泵用于将第一检测试剂液滴注入第一试剂通道221内,第一检测试剂液滴由第一试剂通道221的注射针注入位于检测区的待测样品液滴中。第二试剂通道222与注射泵、注射针的连接结构与第一试剂通道221的相同,第二试剂通道222的注射泵用于使得第二检测试剂液滴注入第二试剂通道222内,第二试剂通道222由第二试剂通道222的注射针注入位于检测区的待测样品液滴中。In a specific embodiment, the
在一种具体实施方式中,第一检测试剂液滴含有荧光探针,第二检测试剂液滴含有淬灭探针,在第一检测试剂液滴与第二检测试剂液滴进入检测区并与待测样品液滴混合形成混合液滴后,混合液滴中的不同部分在声压力场的不同大小、不同方向的声辐射压力作用下形成微涡旋搅拌,促进了目标探针的形成,从而促进荧光探针、淬灭探针与目标探针的结合,淬灭探针掩盖了荧光探针发出的荧光,通过测量悬浮液滴内含荧光强度的变化值,实现对待测样品的检测。In a specific embodiment, the first detection reagent droplet contains a fluorescent probe, the second detection reagent droplet contains a quenching probe, and the first detection reagent droplet and the second detection reagent droplet enter the detection area and interact with each other. After the sample droplets to be tested are mixed to form mixed droplets, different parts of the mixed droplets form micro-vortex stirring under the action of acoustic radiation pressure of different sizes and directions of the acoustic pressure field, which promotes the formation of the target probe, thereby The combination of the fluorescent probe, the quenching probe and the target probe is promoted, the quenching probe conceals the fluorescence emitted by the fluorescent probe, and the detection of the sample to be tested is realized by measuring the change value of the fluorescence intensity contained in the suspension droplet.
在一种可能的设计中,为满足测试需求,当需要多种检测试剂时,第二通道的数量还可以为更多个,例如还可以设置第三试剂通道、第四试剂通道等。在一种具体实施方式中,第三试剂通道与第四试剂通道分别位于壳体100沿第三方向的相对两侧,第一方向、第二方向与第三方向分别呈角度设置。In a possible design, in order to meet the testing requirements, when multiple detection reagents are required, the number of the second channel may be more, for example, a third reagent channel, a fourth reagent channel, etc. may also be provided. In a specific embodiment, the third reagent channel and the fourth reagent channel are respectively located on opposite sides of the
在一种可能的设计中,自动化检测装置还包括调节控制系统和调节装置,调节装置与调节控制系统信号连接,调节装置用于检测密封腔110中的温度和湿度并将密封腔110中的温度值和湿度值反馈给调节控制系统,调节控制系统控制调节装置将密封腔110中的温度和湿度分别调节至设定温度范围内和设定湿度范围内。In a possible design, the automatic detection device further includes an adjustment control system and an adjustment device, the adjustment device is signally connected to the adjustment control system, and the adjustment device is used to detect the temperature and humidity in the sealed
在一种具体实施例中,调节装置包括温度调节器和湿度调节器,温度调节器包括温度传感器和温度调节结构,温度传感器与温度调节结构分别与调节控制系统信号连接,温度传感器用于检测密封腔110内的温度,并将密封腔110内的温度值反馈给调节控制系统,调节控制系统将温度传感器反馈的数据分别与设定温度范围的上限值和下限值进行比较,若温度传感器反馈的数据超出设定温度范围(也即在上限值之上或者下限值之下),则调节控制系统控制温度调节结构将密封腔110内的温度调节至设定温度范围内。温度调节结构可以包括加热丝、冷凝器等任意一种或多种可以调节温度的结构。湿度调节器包括湿度传感器和湿度调节结构,湿度传感器与湿度调节结构分别与调节控制系统信号连接,湿度传感器用于检测密封腔110内的湿度,并将密封腔110内的湿度值反馈给调节控制系统,调节控制系统将湿度传感器反馈的数据分别与设定湿度范围上限值和下限值进行比较,若湿度传感器反馈的数据超出设定湿度范围,则调节控制系统控制湿度调节结构将密封腔110内的湿度调节至设定湿度范围内。湿度调节结构可以包括加热丝、加湿器等任意一种或多种可以调节湿度的结构。In a specific embodiment, the adjustment device includes a temperature adjuster and a humidity adjuster, the temperature adjuster includes a temperature sensor and a temperature adjustment structure, the temperature sensor and the temperature adjustment structure are respectively connected with the adjustment control system signal, and the temperature sensor is used to detect the sealing The temperature in the
在一种可能的设计中,如图6所示,动化检测装置还包括主控制系统,换能器控制系统、注射泵控制系统、开关控制系统以及调节控制系统均与主控制系统信号连接,主控制系统受用户调节平台控制,用户调节平台与主控制系统可以通过无线连接也可以通过电连接,用户调节平台向主控制系统发送控制指令,主控制系统分别控制换能器控制系统、注射泵控制系统、开关控制系统以及调节控制系统运行。In a possible design, as shown in Figure 6, the motorized detection device further includes a main control system, the transducer control system, the syringe pump control system, the switch control system and the adjustment control system are all signal-connected to the main control system, The main control system is controlled by the user adjustment platform. The user adjustment platform and the main control system can be connected wirelessly or electrically. The user adjustment platform sends control instructions to the main control system, and the main control system respectively controls the transducer control system and the syringe pump. The control system, the switch control system, and the regulation control system operate.
如图7至图12所示,换能器控制系统还包括控制模块、稳压模块、无线信号传输模工作信号指示模块以及串口转换模块。As shown in FIG. 7 to FIG. 12 , the transducer control system further includes a control module, a voltage regulator module, a wireless signal transmission mode working signal indicating module, and a serial port conversion module.
如图7所示,图7为换能器控制系统的控制模块的接线示意图,控制模块采用MEGA328P单片机作为控制器,且为整个换能器控制系统的核心,MEGA328P单片机所需电压为5V。As shown in Figure 7, Figure 7 is a schematic diagram of the wiring of the control module of the transducer control system. The control module uses the MEGA328P microcontroller as the controller and is the core of the entire transducer control system. The voltage required by the MEGA328P microcontroller is 5V.
如图8所示,图8为换能器控制系统的稳压模块的接线示意图,稳压模块中的LM7805为三端稳压集成电路,LM7805将外部输入电压转换成稳定的5V直流电压,以供MEGA328P单片机使用。As shown in Figure 8, Figure 8 is a schematic diagram of the wiring of the voltage regulator module of the transducer control system. The LM7805 in the voltage regulator module is a three-terminal voltage regulator integrated circuit. The LM7805 converts the external input voltage into a stable 5V DC voltage to For MEGA328P microcontroller use.
如图9所示,图9为换能器控制系统的驱动电路接线示意图,L298N为电机驱动芯片,驱动电路包括两个信号调节器X1、X2,MEGA328P单片机通过PC0接口、PC3接口向L289N电机驱动芯片发送控制信号,L289N电机驱动芯片接收到MEGA328P单片机发送的控制信号后,分别驱动X1和X2运行,X1和X2分别驱动两组超声组件中的多个超声波换能器310运行以及分别改变两组超声组件中的多个超声波换能器310的相位,例如,X1控制其中一组超声组件中的多个超声波换能器310,X2控制另外一组超声组件中的多个超声波换能器310。多个超声波换能器310发射出超声波,使得在两组超声波组件之间产生声压力场,两组超声波组件分别位于检测区的两侧,检测区位于声压力场中,位于检测区的待测样品液滴、检测试剂液滴或者混合液滴在声压力场中的悬浮力的作用下悬浮,MEGA328P单片机通过控制驱动电路来分别控制多个超声波换能器310改变相位,从而控制检测区中的待测样品液滴、检测试剂液滴或者混合液滴移动。As shown in Figure 9, Figure 9 is a schematic diagram of the wiring of the drive circuit of the transducer control system. L298N is the motor drive chip. The drive circuit includes two signal conditioners X1 and X2. The MEGA328P single-chip microcomputer drives the L289N motor through the PC0 interface and the PC3 interface. The chip sends a control signal. After the L289N motor driver chip receives the control signal sent by the MEGA328P single-chip microcomputer, it drives X1 and X2 to run respectively. X1 and X2 respectively drive multiple
如图10所示,图10为换能器控制系统的无线信号传输模块的接线示意图,无线信号传输模块用于无线控制(例如蓝牙控制),无线通讯模块用于接收主控制系统发射的控制信号并将主控制系统发射的控制信号转送至MEGA328P单片机中进行处理。无线通讯模块还用于接收MEGA328P单片机发送的控制信号并将MEGA328P单片机发送的控制信号发射至主控制系统,无线通讯模块与MEGA328P单片机分别通过RXD接口、TXD接口进行信号传输。As shown in FIG. 10, FIG. 10 is a schematic diagram of the wiring of the wireless signal transmission module of the transducer control system. The wireless signal transmission module is used for wireless control (such as Bluetooth control), and the wireless communication module is used to receive the control signal transmitted by the main control system. And the control signal emitted by the main control system is transferred to MEGA328P single-chip microcomputer for processing. The wireless communication module is also used to receive the control signal sent by the MEGA328P single-chip microcomputer and transmit the control signal sent by the MEGA328P single-chip microcomputer to the main control system.
如图11所示,图11为换能器控制系统的工作信号指示模块的接线示意图,当换能器控制系统开始运行时,MEGA328P单片机向工作信号指示模块发送信号以控制工作信号指示模块中的LED灯亮指示自动化检测装置开始运行。As shown in Figure 11, Figure 11 is a schematic diagram of the wiring of the working signal indicating module of the transducer control system. When the transducer control system starts to run, the MEGA328P single-chip microcomputer sends a signal to the working signal indicating module to control the working signal indicating module. The LED light is on to indicate that the automatic detection device is running.
如图12所示,图12为换能器控制系统的串口转换模块的接线示意图,串口转换模块用于连接电脑修改换能器控制系统的指令程序。As shown in Figure 12, Figure 12 is a schematic diagram of the wiring of the serial port conversion module of the transducer control system. The serial port conversion module is used to connect to a computer to modify the instruction program of the transducer control system.
在一种具体实施方式中,检测过程如下:In a specific embodiment, the detection process is as follows:
①.开启自动化检测装置,密封腔110内的温度和湿度受调节控制系统分别调控至设定温度范围内和设定湿度范围内;①. Turn on the automatic detection device, and the temperature and humidity in the sealed
②.待测样品液滴通过第一通道210自动进样,开启超声波换能器310,在密封腔110内超声换能器发射出超声波形成声压力场,从而在密封腔110内使待测样品液滴悬浮(0.1~5μL);②. The liquid droplets of the sample to be tested are automatically injected through the
③.待测样品液滴对应的检测试剂液滴分别通过第一试剂通道221、第二试剂通道222依次加入到待测样品液滴中形成混合液滴,此时超声波换能器310的相位保持不变,混合液滴的不同部分受不同的声压力作用内部形成微涡旋搅拌,混合液滴内含的待测标志物与对应的检测试剂(荧光探针和淬灭探针)加速搅拌混合,进一步加快了探针的结合效率;在混合液滴含有目标探针时,荧光探针和淬灭探针均与目标探针结合,淬灭探针的淬灭基团掩盖了荧光探针的荧光基团发出的荧光,通过测量悬浮液滴内含荧光强度的变化值,实现对待测样品的检测;③. The detection reagent droplets corresponding to the sample droplets to be tested are respectively added to the sample droplets to be tested through the
④.自动化检测装置内产生的声压力与待测样品液滴、检测试剂液滴或者混合液滴的重力形成的合力作用形成的微重力环境,使得待测样品液滴、检测试剂液滴或者混合液滴在声压力场内悬浮,同时由于待测样品液滴、检测试剂液滴或者混合液滴的不同部分在声压力场中受到的声辐射压力有所差异,以混合液滴为例,不同的声辐射压力与混合液滴各个部分所受到的重力作用产生合力,从而导致混合液滴内部产生微涡旋搅拌,从而为待测物与检测试剂的进一步结合提供了微搅拌环境,提高了检测效率;④. The microgravity environment formed by the resultant force of the acoustic pressure generated in the automatic detection device and the gravity of the sample droplets to be tested, the droplets of detection reagents or the mixed droplets makes the droplets of the samples to be tested, the droplets of detection reagents or mixed The droplets are suspended in the acoustic pressure field, and at the same time, due to the differences in the acoustic radiation pressure received by different parts of the sample droplets, detection reagent droplets or mixed droplets in the acoustic pressure field, taking the mixed droplets as an example, different The resultant force of the acoustic radiation pressure and the gravitational action of each part of the mixed droplet, resulting in micro-vortex stirring inside the mixed droplet, thus providing a micro-stirring environment for the further combination of the analyte and the detection reagent, improving the detection performance. efficiency;
⑤.混合液滴完成检测后,超声波换能器310的相位发生改变,使得声压力场也随之改变,混合液滴在声压力场的连续变化下,受到声压力和重力的合力控制向壳体100的底部迁移,并通过第三通道230排出密封腔。⑤. After the mixed droplet is detected, the phase of the
以上仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。The above are only optional embodiments of the present application, and are not intended to limit the present application. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present application shall be included in the protection scope of the present application. Inside.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210452121.4A CN114778866A (en) | 2022-04-27 | 2022-04-27 | Automatic change detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210452121.4A CN114778866A (en) | 2022-04-27 | 2022-04-27 | Automatic change detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114778866A true CN114778866A (en) | 2022-07-22 |
Family
ID=82433965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210452121.4A Pending CN114778866A (en) | 2022-04-27 | 2022-04-27 | Automatic change detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114778866A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201189465Y (en) * | 2008-05-12 | 2009-02-04 | 西安帕沃辐电气工程有限公司 | Ultrasonic suspension device |
US20090053688A1 (en) * | 2007-08-20 | 2009-02-26 | Allied Innovative Systems, Llc | method and device for ultrasound assisted particle agglutination assay |
JP2010223756A (en) * | 2009-03-24 | 2010-10-07 | Fujifilm Corp | Measuring device and measuring method using agglutination reaction |
CN105229465A (en) * | 2013-03-15 | 2016-01-06 | 赛拉诺斯股份有限公司 | For device, the system and method for sample preparation |
CN110031501A (en) * | 2019-03-19 | 2019-07-19 | 东南大学 | Liquid metal solidification home position observation device and observation method under microgravity state |
CN110411997A (en) * | 2019-07-30 | 2019-11-05 | 西安电子科技大学 | A real-time ultrasonic micro-reaction fluorescence detection device and fluorescence detection method |
CN110823769A (en) * | 2019-12-06 | 2020-02-21 | 中国科学院声学研究所 | Ultrasonic suspension type liquid surface tension coefficient measuring method and device |
CN111811707A (en) * | 2020-07-23 | 2020-10-23 | 北京理工大学 | An ultrasonic testing device and testing method for rotating components based on magnetic fluid coupling |
CN113063858A (en) * | 2021-03-08 | 2021-07-02 | 广东石油化工学院 | An ultrasonic suspension test box |
US20210371902A1 (en) * | 2020-06-01 | 2021-12-02 | Shaheen Innovations Holding Limited | Systems and devices for infectious disease screening |
-
2022
- 2022-04-27 CN CN202210452121.4A patent/CN114778866A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090053688A1 (en) * | 2007-08-20 | 2009-02-26 | Allied Innovative Systems, Llc | method and device for ultrasound assisted particle agglutination assay |
CN201189465Y (en) * | 2008-05-12 | 2009-02-04 | 西安帕沃辐电气工程有限公司 | Ultrasonic suspension device |
JP2010223756A (en) * | 2009-03-24 | 2010-10-07 | Fujifilm Corp | Measuring device and measuring method using agglutination reaction |
CN105229465A (en) * | 2013-03-15 | 2016-01-06 | 赛拉诺斯股份有限公司 | For device, the system and method for sample preparation |
CN110031501A (en) * | 2019-03-19 | 2019-07-19 | 东南大学 | Liquid metal solidification home position observation device and observation method under microgravity state |
CN110411997A (en) * | 2019-07-30 | 2019-11-05 | 西安电子科技大学 | A real-time ultrasonic micro-reaction fluorescence detection device and fluorescence detection method |
CN110823769A (en) * | 2019-12-06 | 2020-02-21 | 中国科学院声学研究所 | Ultrasonic suspension type liquid surface tension coefficient measuring method and device |
US20210371902A1 (en) * | 2020-06-01 | 2021-12-02 | Shaheen Innovations Holding Limited | Systems and devices for infectious disease screening |
CN111811707A (en) * | 2020-07-23 | 2020-10-23 | 北京理工大学 | An ultrasonic testing device and testing method for rotating components based on magnetic fluid coupling |
CN113063858A (en) * | 2021-03-08 | 2021-07-02 | 广东石油化工学院 | An ultrasonic suspension test box |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3779439B1 (en) | Micro-fluidic chip and analysis instrument having same | |
JP6190822B2 (en) | Microfluidic reactor system | |
CN104483499B (en) | Full-automatic specific protein analyser | |
CN108519373B (en) | Chemiluminescence micro-fluidic chip and analysis instrument comprising same | |
CN103604935B (en) | Automatic continuous loads the device of reaction cup | |
CN214039111U (en) | refrigerator | |
JP2015510111A5 (en) | ||
CN108761055B (en) | Microfluidic chip and analytical instrument with same | |
CN208526655U (en) | A kind of chemiluminescence micro-fluidic chip and the analysis instrument with it | |
CN101004423A (en) | Card, kit system in use for analyzing sample of liquid | |
CN102939159A (en) | Biologic fluid analysis system with sample motion | |
JP3582316B2 (en) | Chemical analyzer | |
CN104614521A (en) | Immune agglomeration detection method, chip and system based on micro-fluidic chip | |
CN108716938B (en) | Liquid quantifying device and application thereof | |
US20210123903A1 (en) | Micro-fluidic Chip and Analytical Instrument Provided with the Micro-fluidic Chip | |
CN113324985A (en) | Centrifugal micro-fluidic detection device and centrifugal micro-fluidic detection system | |
JP2009115752A (en) | Separation device | |
CN107044950A (en) | CD4+T lymphocyte counts detect micro fluidic device | |
CN114778866A (en) | Automatic change detection device | |
CN113125693B (en) | Small-sized portable full-automatic enzyme-linked immunoassay analyzer and application thereof | |
CN103675307A (en) | Non-contact reaction cup flushing device and flushing method thereof | |
CN110841727B (en) | Microfluidic chip, microfluidic system and operation method | |
WO2021249544A1 (en) | Ultrasonic vibration device and liquid mixing system | |
CN210303710U (en) | Centrifugal micro-fluidic chip for chemiluminescence detection | |
CN210279118U (en) | Liquid detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220722 |