CN114773742A - Organic-inorganic composite thermal insulation material and preparation method thereof - Google Patents
Organic-inorganic composite thermal insulation material and preparation method thereof Download PDFInfo
- Publication number
- CN114773742A CN114773742A CN202210267618.9A CN202210267618A CN114773742A CN 114773742 A CN114773742 A CN 114773742A CN 202210267618 A CN202210267618 A CN 202210267618A CN 114773742 A CN114773742 A CN 114773742A
- Authority
- CN
- China
- Prior art keywords
- thermal insulation
- organic
- insulation material
- inorganic composite
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012774 insulation material Substances 0.000 title claims abstract description 141
- 239000002131 composite material Substances 0.000 title claims abstract description 88
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 60
- 239000000843 powder Substances 0.000 claims abstract description 51
- 239000003063 flame retardant Substances 0.000 claims abstract description 41
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000006260 foam Substances 0.000 claims abstract description 27
- 239000000853 adhesive Substances 0.000 claims abstract description 22
- 230000001070 adhesive effect Effects 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims abstract description 20
- 229920000620 organic polymer Polymers 0.000 claims abstract description 18
- 238000005187 foaming Methods 0.000 claims abstract description 8
- 238000007493 shaping process Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- 230000002209 hydrophobic effect Effects 0.000 claims description 28
- 229910021485 fumed silica Inorganic materials 0.000 claims description 27
- 229920006327 polystyrene foam Polymers 0.000 claims description 26
- 239000003822 epoxy resin Substances 0.000 claims description 21
- 229920000647 polyepoxide Polymers 0.000 claims description 21
- 239000004114 Ammonium polyphosphate Substances 0.000 claims description 18
- 235000019826 ammonium polyphosphate Nutrition 0.000 claims description 18
- 229920001276 ammonium polyphosphate Polymers 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 8
- 239000000347 magnesium hydroxide Substances 0.000 claims description 6
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000011325 microbead Substances 0.000 claims description 3
- 239000011490 mineral wool Substances 0.000 claims description 3
- 239000010451 perlite Substances 0.000 claims description 3
- 235000019362 perlite Nutrition 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 claims description 3
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- 239000010440 gypsum Substances 0.000 claims description 2
- 229910052602 gypsum Inorganic materials 0.000 claims description 2
- 239000011496 polyurethane foam Substances 0.000 claims description 2
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- 229920002223 polystyrene Polymers 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 239000011810 insulating material Substances 0.000 abstract description 10
- 238000001723 curing Methods 0.000 abstract description 6
- 238000009776 industrial production Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 30
- 239000008247 solid mixture Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000004033 plastic Substances 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 13
- 238000009413 insulation Methods 0.000 description 12
- 238000010907 mechanical stirring Methods 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 10
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical compound [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 8
- 230000032683 aging Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004801 Chlorinated PVC Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012796 inorganic flame retardant Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- -1 vinyl perchloride Chemical compound 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
- C08K2003/322—Ammonium phosphate
- C08K2003/323—Ammonium polyphosphate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
技术领域technical field
本发明涉及建筑保温材料技术领域,具体涉及一种有机-无机复合保温材料及其制备方法。The invention relates to the technical field of building thermal insulation materials, in particular to an organic-inorganic composite thermal insulation material and a preparation method thereof.
背景技术Background technique
保温材料一般指导热系数较小的功能材料,其可以广泛应用于工业和建筑保温围护中,起到防护、节能降耗等作用。建筑节能技术涉及的内容及产品较多,而外墙保温材料是实现建筑节能最重要的手段之一。目前,外墙保温材料主要包括有机类保温材料(例如:EPS、PU、PVC、PF等泡沫塑料)和无机类保温材料(例如:岩棉、泡沫玻璃/陶瓷、泡沫混凝土等多孔产品)。有机类保温材料的导热率低、密度小,但也存在易燃、易老化、性能易劣化等问题。无机类保温材料的强度高、阻燃性好、耐久性优异,但也存在吸湿性大、密度大、导热率较高、耗能大、易产生粉尘等问题。Thermal insulation materials generally guide functional materials with small thermal coefficients, which can be widely used in industrial and building thermal insulation enclosures to play the role of protection, energy saving and consumption reduction. Building energy-saving technology involves many contents and products, and external wall insulation material is one of the most important means to achieve building energy-saving. At present, external wall insulation materials mainly include organic insulation materials (such as EPS, PU, PVC, PF and other foamed plastics) and inorganic insulation materials (such as porous products such as rock wool, foamed glass/ceramic, and foamed concrete). Organic thermal insulation materials have low thermal conductivity and low density, but also have problems such as flammability, easy aging, and easy performance deterioration. Inorganic thermal insulation materials have high strength, good flame retardancy, and excellent durability, but they also have problems such as high hygroscopicity, high density, high thermal conductivity, high energy consumption, and easy generation of dust.
近些年来,为了克服有机类保温材料和无机类保温材料各自存在的缺点和不足,拓展建筑保温材料的应用范围和领域,研究人员开展了一系列的研究工作,主要包括以下两个方面:1)将无机保温材料(例如:水泥)通过真空渗透的方式包覆在有机保温颗粒表面形成无机包覆层,该方法可以在一定程度上提高材料的机械强度和阻燃性能,但无机保温材料本身的导热系数较大,会导致得到的有机-无机复合保温材料的导热率较高,保温性能较差,且无机包覆层与有机保温颗粒的相容性差,无机包覆层容易脱落,得到的有机-无机复合保温材料的结构强度较低;2)将导热系数较低的多孔无机保温材料(例如:膨胀珍珠岩、玻璃微珠等)加入有机保温材料中制成有机-无机复合保温材料,该方法可以在一定程度上提高材料的机械强度以及减轻有机类保温材料易老化和性能易劣化的问题,但多孔无机保温材料普遍具有泡孔大、孔径分布宽、吸湿性强、易形成粉尘等特性,且粒径粗、不均匀,会导致制成的有机-无机复合保温材料的综合性能较差,且存在环保问题(PM2.5)。综上可知,现有的有机-无机复合保温材料均存在明显的缺陷,尚难以满足实际应用需求。In recent years, in order to overcome the shortcomings and deficiencies of organic thermal insulation materials and inorganic thermal insulation materials, and expand the application scope and field of building thermal insulation materials, researchers have carried out a series of research work, mainly including the following two aspects: 1 ) The inorganic thermal insulation material (for example: cement) is coated on the surface of the organic thermal insulation particle by vacuum infiltration to form an inorganic coating layer. This method can improve the mechanical strength and flame retardant performance of the material to a certain extent, but the inorganic thermal insulation material itself. The thermal conductivity of the obtained organic-inorganic composite thermal insulation material is relatively large, which will lead to high thermal conductivity and poor thermal insulation performance of the obtained organic-inorganic composite thermal insulation material, and the compatibility between the inorganic coating layer and the organic thermal insulation particles is poor, and the inorganic coating layer is easy to fall off. The structural strength of the organic-inorganic composite thermal insulation material is low; 2) the porous inorganic thermal insulation material with low thermal conductivity (for example: expanded perlite, glass microbeads, etc.) is added to the organic thermal insulation material to make the organic-inorganic composite thermal insulation material, This method can improve the mechanical strength of the material to a certain extent and alleviate the problems of easy aging and performance degradation of organic thermal insulation materials. However, porous inorganic thermal insulation materials generally have large cells, wide pore size distribution, strong hygroscopicity, and easy formation of dust. characteristics, and the particle size is coarse and uneven, which will lead to poor overall performance of the organic-inorganic composite thermal insulation material, and there is an environmental problem (PM2.5). To sum up, the existing organic-inorganic composite thermal insulation materials all have obvious defects, and it is still difficult to meet the needs of practical applications.
因此,开发一种具有导热率低、密度小、结构强度高、阻燃性能优异等特性的有机-无机复合保温材料具有十分重要的意义。Therefore, it is of great significance to develop an organic-inorganic composite thermal insulation material with low thermal conductivity, low density, high structural strength, and excellent flame retardancy.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种有机-无机复合保温材料及其制备方法。The purpose of the present invention is to provide an organic-inorganic composite thermal insulation material and a preparation method thereof.
本发明所采取的技术方案是:The technical scheme adopted by the present invention is:
一种有机-无机复合保温材料,其包括以下质量百分比的组分:An organic-inorganic composite thermal insulation material, comprising the following components by mass percentage:
可膨胀有机聚合物泡沫颗粒:30%~50%;Expandable organic polymer foam particles: 30% to 50%;
无机保温材料粉末:10%~30%;Inorganic thermal insulation material powder: 10% to 30%;
粘合剂:5%~20%;Adhesive: 5%~20%;
阻燃剂:20%~50%。Flame retardant: 20% to 50%.
优选的,一种有机-无机复合保温材料,其包括以下质量百分比的组分:Preferably, an organic-inorganic composite thermal insulation material includes the following components by mass percentage:
可膨胀有机聚合物泡沫颗粒:35%~45%;Expandable organic polymer foam particles: 35% to 45%;
无机保温材料粉末:10%~20%;Inorganic thermal insulation material powder: 10% to 20%;
粘合剂:10%~15%;Adhesive: 10%~15%;
阻燃剂:35%~45%。Flame retardant: 35% to 45%.
若可膨胀有机聚合物泡沫颗粒的含量太低,有机-无机复合保温材料的密度较大、导热系数较大,若可膨胀有机聚合物泡沫颗粒的含量太高,复合材料的阻燃性差、耐老化性能差,所以可膨胀有机发泡珠粒的质量百分比为35%~45%最为合适。If the content of expandable organic polymer foam particles is too low, the organic-inorganic composite thermal insulation material will have a higher density and a higher thermal conductivity. If the content of expandable organic polymer foam particles is too high, the composite material will have poor flame retardancy, poor resistance The aging performance is poor, so the mass percentage of the expandable organic foamed beads is 35% to 45%.
若无机保温材料粉末的含量太低,有机-无机复合保温材料依旧具备明显的有机特性(阻燃性差),且机械强度偏低,若无机保温材料粉末的含量太高,有机-无机复合保温材料的导热系数较大,所以无机保温材料粉末的质量百分比为10%~20%最为合适。If the content of the inorganic thermal insulation material powder is too low, the organic-inorganic composite thermal insulation material still has obvious organic properties (poor flame retardancy), and the mechanical strength is low. If the content of the inorganic thermal insulation material powder is too high, the organic-inorganic composite thermal insulation material The thermal conductivity is relatively large, so the mass percentage of the inorganic thermal insulation material powder is 10% to 20%.
若粘合剂的含量太低,复合体系中无机物与有机物不能有效粘结,容易脱落,若粘合剂的含量太高,有机-无机复合保温材料的保温性能较差,所以粘合剂的质量百分比为10%~15%最为合适。If the content of the binder is too low, the inorganic and organic substances in the composite system cannot be effectively bonded, and it is easy to fall off. If the content of the binder is too high, the thermal insulation performance of the organic-inorganic composite insulation material is poor, so the The most suitable mass percentage is 10% to 15%.
若阻燃剂的含量太低,有机-无机复合保温材料的阻燃性能较差,不能达到安全性要求,若阻燃剂的含量太高,有机-无机复合保温材料的导热系数较大、机械强度较低,所以阻燃剂的质量百分比为35%~45%最为合适。If the content of flame retardant is too low, the flame retardant performance of the organic-inorganic composite thermal insulation material is poor and cannot meet the safety requirements. The strength is low, so the mass percentage of the flame retardant is 35% to 45%.
优选的,所述可膨胀有机聚合物泡沫颗粒选自聚苯乙烯泡沫(EPS)颗粒、聚氨酯泡沫颗粒、聚氯乙烯泡沫(EPE)颗粒、酚醛树脂(PF)泡沫颗粒中的至少一种。可膨胀有机聚合物泡沫颗粒内有较多的闭孔,该孔隙的存在限制了空气分子的运动扩散,降低了热对流的发生,同时也不利于热量的传导,使得可膨胀有机聚合物泡沫颗粒的导热系数小,保温性能好,此外可膨胀有机聚合物泡沫颗粒的孔隙率高、密度小、轻质。Preferably, the expandable organic polymer foam particles are selected from at least one of polystyrene foam (EPS) particles, polyurethane foam particles, polyvinyl chloride foam (EPE) particles, and phenolic resin (PF) foam particles. There are many closed cells in the expandable organic polymer foam particles. The existence of the pores restricts the movement and diffusion of air molecules, reduces the occurrence of thermal convection, and is also not conducive to heat conduction, making the expandable organic polymer foam particles. The thermal conductivity is small, and the thermal insulation performance is good. In addition, the expandable organic polymer foam particles have high porosity, low density and light weight.
进一步优选的,所述可膨胀有机聚合物泡沫颗粒为粒径0.3mm~0.5mm、发泡倍率50倍~90倍的聚苯乙烯泡沫颗粒。聚苯乙烯泡沫颗粒为硬质闭孔保温材料,具有价格低廉、导热率低、强度高、密度低等特征。Further preferably, the expandable organic polymer foam particles are polystyrene foam particles with a particle size of 0.3 mm to 0.5 mm and an expansion ratio of 50 to 90 times. Polystyrene foam particles are rigid closed-cell thermal insulation materials with the characteristics of low price, low thermal conductivity, high strength and low density.
优选的,所述无机保温材料粉末选自水泥、石膏粉末、膨胀珍珠岩微粉、膨化微珠、疏水性气相二氧化硅粉末、岩棉粉末中的至少一种。无机保温材料粉末的粒子间排列比较紧密,易堆积,因而密度大,有利于热传导,导热系数较高,且结构强度也较高。Preferably, the inorganic thermal insulation material powder is selected from at least one of cement, gypsum powder, expanded perlite micropowder, expanded microbeads, hydrophobic fumed silica powder, and rock wool powder. The particles of the inorganic thermal insulation material powder are relatively closely arranged and easy to accumulate, so the density is high, which is conducive to heat conduction, the thermal conductivity is high, and the structural strength is also high.
进一步优选的,所述无机保温材料粉末为粒径30nm~50nm、BET比表面积120m2/g~180m2/g的疏水性气相二氧化硅粉末。疏水性气相二氧化硅粉末的密度小、导热系数低,且不易燃烧,阻燃性能好。Further preferably, the inorganic heat insulating material powder is a hydrophobic fumed silica powder with a particle size of 30 nm to 50 nm and a BET specific surface area of 120 m 2 /g to 180 m 2 /g. The hydrophobic fumed silica powder has low density, low thermal conductivity, is not easy to burn, and has good flame retardancy.
优选的,所述粘合剂选自环氧树脂(EP)、三聚氰胺甲醛树脂(MF)、脲醛树脂(UF)、过氯乙烯树脂(CPVC)中的至少一种。Preferably, the adhesive is selected from at least one of epoxy resin (EP), melamine formaldehyde resin (MF), urea formaldehyde resin (UF), and vinyl perchloride resin (CPVC).
进一步优选的,所述粘合剂为环氧树脂。从固化时间、固化温度、粘结强度、耐热性能、耐老化性能和成本考虑,选择环氧树脂最为合适。Further preferably, the adhesive is epoxy resin. In consideration of curing time, curing temperature, bond strength, heat resistance, aging resistance and cost, epoxy resin is the most suitable choice.
优选的,所述阻燃剂选自聚磷酸铵(APP)、磷酸三丁酯(TBP)、可膨胀石墨、磷酸三苯酯(TPP)、氢氧化镁、氢氧化铝中的至少一种。Preferably, the flame retardant is selected from at least one of ammonium polyphosphate (APP), tributyl phosphate (TBP), expandable graphite, triphenyl phosphate (TPP), magnesium hydroxide, and aluminum hydroxide.
进一步优选的,所述阻燃剂选自聚磷酸铵、可膨胀石墨、氢氧化镁中的至少一种。Further preferably, the flame retardant is selected from at least one of ammonium polyphosphate, expandable graphite, and magnesium hydroxide.
上述有机-无机复合保温材料的制备方法包括以下步骤:将可膨胀有机聚合物泡沫颗粒、无机保温材料粉末和阻燃剂混合均匀,再加入粘合剂后混合均匀,再注入模具进行发泡和定型,再进行熟化,即得有机-无机复合保温材料。The preparation method of the above-mentioned organic-inorganic composite thermal insulation material includes the following steps: mixing the expandable organic polymer foam particles, the inorganic thermal insulation material powder and the flame retardant uniformly, adding a binder and mixing uniformly, and then injecting into a mold for foaming and heating. After shaping and then curing, the organic-inorganic composite thermal insulation material is obtained.
优选的,所述混合的方式为机械搅拌,搅拌机的转速为300r/min~800r/min。Preferably, the mixing method is mechanical stirring, and the rotating speed of the mixer is 300r/min~800r/min.
优选的,所述发泡在90~110℃下进行,发泡时间为3h~6h。Preferably, the foaming is carried out at 90-110°C, and the foaming time is 3h-6h.
优选的,所述熟化在常温下进行,熟化时间为20h~36h。Preferably, the curing is carried out at normal temperature, and the curing time is 20h-36h.
本发明的原理:Principle of the present invention:
1)可膨胀有机聚合物泡沫颗粒和无机保温材料粉末协同作用,取长补短,发挥其最大功效,可膨胀有机聚合物泡沫颗粒的导热系数低、密度小,具有优异的保温性能,但存在易老化、性能易劣化、易燃等问题,无机保温材料粉末(例如:疏水性气相二氧化硅粉末)的结构强度高、阻燃性好、导热系数低、密度较低,二者按一定比例混合可以实现优势互补;1) The expandable organic polymer foam particles and the inorganic thermal insulation material powder act synergistically to learn from each other's strengths and make up for their shortcomings to exert their maximum effect. The performance is easy to deteriorate, flammable and other problems. Inorganic thermal insulation material powder (for example: hydrophobic fumed silica powder) has high structural strength, good flame retardancy, low thermal conductivity and low density. Mixing the two in a certain proportion can be achieved. Complementary advantages;
2)阻燃剂通过吸热、表面形成覆盖层以及产生不燃气体的阻隔等作用,使有机-无机复合保温材料在具有优异保温性能的同时,还具备优异的阻燃功能;2) The flame retardant makes the organic-inorganic composite thermal insulation material not only have excellent thermal insulation performance, but also has excellent flame retardant function through the functions of heat absorption, forming a covering layer on the surface and producing non-combustible gas barrier;
3)粘合剂(例如:环氧树脂)通常分为A料和B料,当A料和B料混合后发生交联化学反应,由线性聚合物转变成网状立体聚合物,把复合泡体(无机保温材料包覆有机保温材料珠粒)骨材包络在网状体之中,从而固化成型可以得到结构强度较高的有机-无机复合保温材料。3) Adhesives (for example: epoxy resin) are usually divided into A material and B material. When A material and B material are mixed, a cross-linking chemical reaction occurs, and the linear polymer is converted into a network three-dimensional polymer. The aggregate (inorganic thermal insulation material coated with organic thermal insulation material beads) aggregate is enveloped in the mesh body, so that the solidified and formed organic-inorganic composite thermal insulation material with high structural strength can be obtained.
本发明的有益效果是:本发明的有机-无机复合保温材料的导热率低、密度小、结构强度高、阻燃性能优异、耐久性强,且其制备过程简单、生产成本低,适合进行大规模工业化生产应用。The beneficial effects of the present invention are: the organic-inorganic composite thermal insulation material of the present invention has low thermal conductivity, low density, high structural strength, excellent flame retardant performance, strong durability, simple preparation process, low production cost, and is suitable for large-scale production. Scale industrial production application.
具体来说:Specifically:
1)本发明的有机-无机复合保温材料兼具有机保温材料导热率低、密度小和无机保温材料结构强度高、耐久性好的优点(优势互补,劣势互消),具有轻质、保温性能好、结构强度高、阻燃性能优异、耐久性强的特点,适合用于建筑外墙保温;1) The organic-inorganic composite thermal insulation material of the present invention has the advantages of low thermal conductivity and low density of the organic thermal insulation material, high structural strength and good durability of the inorganic thermal insulation material (complementary advantages and mutual elimination of disadvantages), light weight, thermal insulation performance Good, high structural strength, excellent flame retardant performance, strong durability, suitable for building exterior wall insulation;
2)本发明通过粘合剂将有机保温材料和无机保温材料牢固结合在一起,解决了有机保温材料和无机保温材料相容性差的问题;2) The present invention firmly combines the organic thermal insulation material and the inorganic thermal insulation material with the adhesive, thereby solving the problem of poor compatibility between the organic thermal insulation material and the inorganic thermal insulation material;
3)本发明通过无机保温材料来包覆有机保温材料珠粒,有机-无机组分之间的作用力强,不易发生包覆层脱落的问题,材料的耐久性强。3) In the present invention, the beads of the organic heat insulating material are coated by the inorganic heat insulating material, and the force between the organic-inorganic components is strong, the problem of the coating layer falling off is not easy to occur, and the durability of the material is strong.
附图说明Description of drawings
图1为对比例1的有机保温材料的SEM图。FIG. 1 is a SEM image of the organic heat insulating material of Comparative Example 1. FIG.
图2为对比例2的有机-无机复合保温材料的SEM图。FIG. 2 is a SEM image of the organic-inorganic composite thermal insulation material of Comparative Example 2. FIG.
图3为实施例1的有机-无机复合保温材料的SEM图。FIG. 3 is a SEM image of the organic-inorganic composite thermal insulation material of Example 1. FIG.
图4为实施例1的有机-无机复合保温材料、对比例1的有机保温材料和对比例2的有机-无机复合保温材料的TG曲线。4 is the TG curve of the organic-inorganic composite thermal insulation material of Example 1, the organic thermal insulation material of Comparative Example 1, and the organic-inorganic composite thermal insulation material of Comparative Example 2.
图5为实施例1的有机-无机复合保温材料、对比例1的有机保温材料和对比例2的有机-无机复合保温材料的DTG曲线。5 is the DTG curves of the organic-inorganic composite thermal insulation material of Example 1, the organic thermal insulation material of Comparative Example 1, and the organic-inorganic composite thermal insulation material of Comparative Example 2.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步的解释和说明。The present invention will be further explained and illustrated below in conjunction with specific embodiments.
实施例1~8和对比例1~2中的聚苯乙烯泡沫颗粒和疏水性气相二氧化硅粉末在使用前均放置在鼓风干燥箱中60℃下干燥过12h。The polystyrene foam particles and hydrophobic fumed silica powder in Examples 1-8 and Comparative Examples 1-2 were placed in a blast drying oven at 60° C. for 12 hours before use.
实施例1:Example 1:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和40g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 40g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9), and then mechanically stirred at room temperature. The speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例2:Example 2:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)、30g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)和10g的氢氧化镁(生产厂商:合肥皖燃新材料科技有限公司;产品型号:1309-42-8)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150), 30g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9) and 10g of magnesium hydroxide (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 1309-42-8) After mixing, mechanically stir at room temperature, and the rotational speed of the mixer is 300 r/min to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例3:Example 3:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和30g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 30g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9) and then mechanically stirred at room temperature, the speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例4:Example 4:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)、20g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)和10g的氢氧化镁(生产厂商:合肥皖燃新材料科技有限公司;产品型号:1309-42-8)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150), 20g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9) and 10g of magnesium hydroxide (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 1309-42-8) After mixing, mechanically stir at room temperature, and the rotational speed of the mixer is 300 r/min to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例5:Example 5:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将42g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和50g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 42g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 50g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9) and mechanically stirred at room temperature after mixing, the speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例6:Example 6:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、12g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和40g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 12g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 40g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9), and then mechanically stirred at room temperature. The speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例7:Example 7:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、20g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和40g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 20g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 40g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9), and then mechanically stirred at room temperature. The speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
实施例8:Example 8:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将40g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)、15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)和40g的聚磷酸铵(生产厂商:合肥皖燃新材料科技有限公司;产品型号:68333-79-9)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 40g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) and 40g of ammonium polyphosphate (manufacturer: Hefei Wanran New Material Technology Co., Ltd.; product model: 68333-79-9), and then mechanically stirred at room temperature. The speed of the mixer is 300r/min , to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各7.5g混合均匀,得粘合剂混料液;2) Mix 7.5g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热5h,再室温熟化30h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 5 hours, and then aged at room temperature for 30 hours to obtain an organic-inorganic composite thermal insulation material.
对比例1:Comparative Example 1:
一种有机保温材料,其制备方法包括以下步骤:A kind of organic thermal insulation material, its preparation method comprises the following steps:
1)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;1) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
2)将粘合剂混料液缓慢加入50g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热4h,再室温熟化24h,即得有机保温材料。2) Slowly add the adhesive mixture into 50g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS), and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min, the materials are mixed evenly and then injected into a self-made square mold with a size of 160mm × 110mm × 40mm, and then placed in a blast drying oven, heated at 100 ° C for 4 hours, and then cured at room temperature for 24 hours to obtain organic thermal insulation materials.
对比例2:Comparative Example 2:
一种有机-无机复合保温材料,其制备方法包括以下步骤:An organic-inorganic composite thermal insulation material, the preparation method of which comprises the following steps:
1)将50g的聚苯乙烯泡沫颗粒(生产厂商:东莞胜塑浩塑胶原料有限公司;产品型号:台达EPS)和15g的疏水性气相二氧化硅粉末(生产厂商:宜昌汇富硅材料有限公司;产品型号:HL150)混合后室温下进行机械搅拌,搅拌机的转速为300r/min,得到固体混料;1) Combine 50g of polystyrene foam particles (manufacturer: Dongguan Shengsuhao Plastic Materials Co., Ltd.; product model: Delta EPS) and 15g of hydrophobic fumed silica powder (manufacturer: Yichang Huifu Silicon Material Co., Ltd. Company; product model: HL150) after mixing, perform mechanical stirring at room temperature, and the rotating speed of the mixer is 300r/min to obtain a solid mixture;
2)将环氧树脂(生产厂商:深圳市鑫力达工业胶料辅料行;产品型号:E07AB)的A料和B料各6g混合均匀,得粘合剂混料液;2) Mix 6g each of material A and material B of epoxy resin (manufacturer: Shenzhen Xinlida Industrial Rubber Materials Co., Ltd.; product model: E07AB) evenly to obtain an adhesive mixture;
3)将粘合剂混料液缓慢加入固体混料中,室温下进行机械搅拌,搅拌机的转速为800r/min,物料混合均匀后再注入大小规格为160mm×110mm×40mm的自制方形模具中,再置于鼓风干燥箱中,100℃加热4h,再室温熟化24h,即得有机-无机复合保温材料。3) Slowly add the binder mixture into the solid mixture, and perform mechanical stirring at room temperature. The rotating speed of the mixer is 800r/min. After mixing the materials evenly, inject them into a self-made square mold with a size of 160mm×110mm×40mm. It was then placed in a blast drying oven, heated at 100° C. for 4 hours, and then aged at room temperature for 24 hours to obtain an organic-inorganic composite thermal insulation material.
性能测试:Performance Testing:
1)采用日本日立(HITACHI)公司的S-3700N型扫描电子显微镜对对比例1的有机保温材料、对比例2的有机-无机复合保温材料和实施例1的有机-无机复合保温材料的微观形貌进行分析(测试条件:加速电压15kV,低真空范围6Pa~270Pa),得到的扫描电镜(SEM)图依次如图1~3所示。1) The organic thermal insulation material of Comparative Example 1, the organic-inorganic composite thermal insulation material of Comparative Example 2 and the organic-inorganic composite thermal insulation material of Example 1 were compared using the S-3700N scanning electron microscope of Hitachi, Japan. (test conditions: acceleration voltage 15kV, low vacuum range 6Pa-270Pa), and the obtained scanning electron microscope (SEM) images are shown in Figures 1-3 in turn.
由图1可知:聚苯乙烯泡沫颗粒微观形貌为密闭的泡孔结构,这使得其内部充满气体且彼此不连通,降低了材料内部的热对流,因而其导热系数较低。It can be seen from Figure 1 that the microscopic morphology of the polystyrene foam particles is a closed cell structure, which makes the interior of the foam filled with gas and not connected to each other, which reduces the thermal convection inside the material, so its thermal conductivity is low.
由图2可知:疏水性气相二氧化硅粉末均匀地附着在聚苯乙烯泡沫颗粒的泡孔结构上,这有利于提高有机-无机复合保温材料的阻燃性能,迟滞燃烧进程的进行。It can be seen from Figure 2 that the hydrophobic fumed silica powder is uniformly attached to the cell structure of the polystyrene foam particles, which is beneficial to improve the flame retardant performance of the organic-inorganic composite thermal insulation material and retard the progress of the combustion process.
由图3可知:疏水性气相二氧化硅粉末和聚磷酸铵粉末均匀地附着在聚苯乙烯泡沫颗粒的泡孔结构上,在燃烧过程中,聚磷酸铵热分解成碳及不燃气体,有效阻隔了燃烧过程的发生,极大地提高了有机-无机复合保温材料的阻燃性能。It can be seen from Figure 3 that the hydrophobic fumed silica powder and ammonium polyphosphate powder are uniformly attached to the cell structure of the polystyrene foam particles. During the combustion process, the ammonium polyphosphate is thermally decomposed into carbon and non-combustible gas, effectively blocking the The occurrence of the combustion process is greatly improved, and the flame retardant performance of the organic-inorganic composite thermal insulation material is greatly improved.
2)采用德国耐驰公司的TG209F1型热重分析仪对实施例1的有机-无机复合保温材料、对比例1的有机保温材料和对比例2的有机-无机复合保温材料的热稳定性进行分析(测试过程:称取不少于50mg的样品于坩埚中,氮气保护下,升温速率为10℃/min,测试温度范围为30℃~800℃),测试得到的热失重(TG)曲线如图4所示,微分热失重(DTG)曲线如图5所示。2) The thermal stability of the organic-inorganic composite thermal insulation material of Example 1, the organic thermal insulation material of Comparative Example 1 and the organic-inorganic composite thermal insulation material of Comparative Example 2 was analyzed by using a TG209F1 thermogravimetric analyzer from NETZSCH, Germany. (Test process: Weigh a sample of no less than 50mg in a crucible, under nitrogen protection, the heating rate is 10℃/min, and the test temperature range is 30℃~800℃), the thermogravimetric (TG) curve obtained from the test is shown in the figure 4, the differential thermogravimetric (DTG) curve is shown in Figure 5.
由图4和图5可知:It can be seen from Figure 4 and Figure 5 that:
a)对比例1的有机保温材料由聚苯乙烯泡沫颗粒和环氧树脂胶制成,其在364.0℃首次出现较快的质量损失,表明在该温度下聚苯乙烯泡沫颗粒和环氧树脂胶均大量分解,当分解温度在800℃时,聚苯乙烯泡沫颗粒和环氧树脂的分解基本完成,未分解的为碳,其残留质量为2.34%;a) The organic thermal insulation material of Comparative Example 1 is made of polystyrene foam particles and epoxy resin glue, which firstly shows a rapid mass loss at 364.0 °C, indicating that at this temperature, the polystyrene foam particles and epoxy resin glue When the decomposition temperature is 800 ℃, the decomposition of polystyrene foam particles and epoxy resin is basically completed, and the undecomposed carbon is 2.34%;
b)对比例2的有机-无机复合保温材料的组成除聚苯乙烯泡沫颗粒和环氧树脂胶外,还包括疏水性气相二氧化硅粉末,其在374.8℃首次出现较快的质量损失,而在800℃残留质量为57.25%,主要为未分解的疏水性气相二氧化硅粉末,表明疏水性气相二氧化硅粉末的添加提升了材料的热稳定性,其TG曲线向高温方向移动,这主要是由于疏水性气相二氧化硅粉末本身热稳定性较高,以及疏水性气相二氧化硅粉末附着在聚苯乙烯泡沫颗粒的泡孔结构上,彼此之间形成了有力的界面作用,抑制了保温材料的热振动所致;b) The composition of the organic-inorganic composite thermal insulation material of Comparative Example 2, in addition to polystyrene foam particles and epoxy resin glue, also includes hydrophobic fumed silica powder, which firstly showed rapid mass loss at 374.8°C, while The residual mass at 800°C is 57.25%, mainly undecomposed hydrophobic fumed silica powder, which indicates that the addition of hydrophobic fumed silica powder improves the thermal stability of the material, and its TG curve shifts to high temperature, which is mainly It is due to the high thermal stability of the hydrophobic fumed silica powder itself, and the fact that the hydrophobic fumed silica powder is attached to the cell structure of the polystyrene foam particles, forming a strong interface between each other and inhibiting the thermal insulation. caused by thermal vibration of the material;
c)实施例1的有机-无机复合保温材料在对比例2的有机-无机复合保温材料的基础上,添加了阻燃剂聚磷酸铵,其在305.6℃首次出现较快的质量损失,说明聚磷酸铵较聚苯乙烯泡沫颗粒和环氧树脂易分解,同时观察到多段质量损失过程,与对比例1的有机保温材料相比,其质量损失过程趋缓,热稳定性提升,其在800℃残留质量为39.05%,进一步表明聚磷酸铵的添加能够提升材料的热稳定性。c) The organic-inorganic composite thermal insulation material of Example 1 is based on the organic-inorganic composite thermal insulation material of Comparative Example 2, and the flame retardant ammonium polyphosphate is added, which shows a rapid mass loss at 305.6 ° C for the first time, indicating that the polymer Ammonium phosphate is easier to decompose than polystyrene foam particles and epoxy resin, and a multi-stage mass loss process is observed. Compared with the organic thermal insulation material of Comparative Example 1, its mass loss process is slowed down and its thermal stability is improved. The residual mass was 39.05%, which further indicated that the addition of ammonium polyphosphate could improve the thermal stability of the material.
3)实施例1~8的有机-无机复合保温材料、对比例1的有机保温材料和对比例2的有机-无机复合保温材料的密度、导热系数和氧指数测试结果如下表所示:3) The density, thermal conductivity and oxygen index test results of the organic-inorganic composite thermal insulation materials of Examples 1 to 8, the organic thermal insulation materials of Comparative Example 1 and the organic-inorganic composite thermal insulation materials of Comparative Example 2 are shown in the following table:
表1密度、导热系数和氧指数测试结果Table 1 Density, thermal conductivity and oxygen index test results
注:Note:
密度:用电子分析天平称量模压成型好的待测样品质量m,用直尺测量待测样品的长、宽、高,并以测量出的样品长、宽、高,计算出待测样品的体积V,最后采用公式ρ=m/V计算出待测样品的密度ρ,为测量准确,多次测量取平均值;Density: Weigh the mass m of the molded sample to be tested with an electronic analytical balance, measure the length, width, and height of the sample to be tested with a ruler, and use the measured length, width, and height of the sample to calculate the mass of the sample to be tested. Volume V, and finally use the formula ρ=m/V to calculate the density ρ of the sample to be tested, in order to measure accurately, take the average value of multiple measurements;
导热系数:采用瞬态平面热源法测试材料的导热系数,所用仪器为热常数分析仪(瑞典Hot Disk公司生产,型号:TPS2500S),选用5465型聚酰亚胺薄膜探头,探头半径:3.189mm,测试之前,将模压好的材料样品分割成两段,然后将5465型探头夹在两块样品中间,设置好测试参数后,进行测量,为得到较为准确的数据,在样品正反两面各取三个点,并且每个点各测量三次,测量结果取平均值,即得到样品的导热系数;Thermal conductivity: The thermal conductivity of the material is measured by the transient plane heat source method. The instrument used is a thermal constant analyzer (produced by Hot Disk, Sweden, model: TPS2500S), and a 5465 type polyimide film probe is selected. The probe radius: 3.189mm, Before the test, the molded material sample was divided into two sections, and then the 5465 probe was sandwiched between the two samples. After setting the test parameters, the measurement was carried out. In order to obtain more accurate data, three samples were taken on both sides of the sample. Each point is measured three times, and the measurement results are averaged to obtain the thermal conductivity of the sample;
氧指数:采用英国FTT公司的FTA-SC48型氧指数测定仪测试样品的极限氧指数,根据ASTM D2836-74标准进行测试,样品条尺寸为150mm×10mm×10mm,每个样品制备5个样品条,测试结果取平均值。Oxygen index: FTA-SC48 oxygen index tester of British FTT Company was used to test the limiting oxygen index of the sample, and the test was carried out according to the ASTM D2836-74 standard. The size of the sample strip was 150mm×10mm×10mm, and 5 sample strips were prepared for each sample. , the test results are averaged.
由表1可知:It can be seen from Table 1 that:
a)随着原料总质量的增大,制得的保温材料的密度逐渐增大,但实施例1~8的有机-无机复合保温材料的密度均在180kg/m3以下,均符合实际应用要求;a) With the increase of the total mass of raw materials, the density of the obtained thermal insulation material gradually increases, but the density of the organic-inorganic composite thermal insulation materials in Examples 1 to 8 is below 180kg/m 3 , all of which meet the requirements of practical applications ;
b)对比例1的有机保温材料和对比例2的有机-无机复合保温材料的密度较小(<100kg/m3)、导热系数低(<0.04W/(m·K)),表明无机、有机发泡体保温材料本身密度及导热系数均较小,具有优异的保温性能,但对比例1的有机保温材料和对比例2的有机-无机复合保温材料的氧指数均较低,属于易燃材料(氧指数<22%),即使添加了疏水性气相二氧化硅粉末,氧指数仅略有增加,表明疏水性气相二氧化硅粉末对聚苯乙烯泡沫颗粒的阻燃性能改善有限,需要外加阻燃剂;b) The organic thermal insulation material of Comparative Example 1 and the organic-inorganic composite thermal insulation material of Comparative Example 2 have low density (<100kg/m 3 ) and low thermal conductivity (<0.04W/(m·K)), indicating that inorganic, The organic foam insulation material itself has low density and thermal conductivity, and has excellent thermal insulation performance, but the oxygen index of the organic thermal insulation material of Comparative Example 1 and the organic-inorganic composite thermal insulation material of Comparative Example 2 are both low, which are flammable material (oxygen index < 22%), even with the addition of hydrophobic fumed silica powder, the oxygen index increased only slightly, indicating that hydrophobic fumed silica powder has limited improvement in the flame retardancy of polystyrene foam particles, requiring additional flame retardant;
c)实施例1~8的有机-无机复合保温材料的导热系数与其密度成正相关关系,这可能与其内部孔隙率有关,材料密度越大,其内部孔隙率越小,限制了材料内部的热对流作用,提高了材料的热传导作用,因而其导热系数升高,实施例1~8的有机-无机复合保温材料的导热系数均在0.049W/(m·K)以下,表现出优异的保温性能;c) The thermal conductivity of the organic-inorganic composite thermal insulation materials of Examples 1 to 8 has a positive correlation with its density, which may be related to its internal porosity. The higher the material density, the smaller its internal porosity, which limits the thermal convection inside the material Therefore, the thermal conductivity of the organic-inorganic composite thermal insulation materials of Examples 1 to 8 is all below 0.049W/(m·K), showing excellent thermal insulation performance;
d)实施例1~3和5~8的有机-无机复合保温材料(添加有阻燃剂)的氧指数均大于31%,要远高于对比例1的有机保温材料(未添加阻燃剂)和对比例2的有机-无机复合保温材料(未添加阻燃剂),阻燃性能显著增加,属于难燃材料(氧指数大于27%),且材料的氧指数与材料中阻燃剂所占质量百分比有关,聚磷酸铵(或混合阻燃剂)占原料的质量百分比越高,制得的保温材料的氧指数越大,阻燃性能越好,此外,有机阻燃剂聚磷酸铵的阻燃效果比无机阻燃剂氢氧化镁要好(例如:实施例1与实施例2进行比较、实施例3与实施例4进行比较,从表中数据可知,实施例1、5和6~8的氧指数均在40%以上,可达A级阻燃等级,使用安全性较好)。d) The oxygen index of the organic-inorganic composite thermal insulation materials (with flame retardants added) of Examples 1 to 3 and 5 to 8 are all greater than 31%, which is much higher than that of the organic thermal insulation materials of Comparative Example 1 (without flame retardants added). ) and the organic-inorganic composite thermal insulation material of Comparative Example 2 (without adding flame retardant), the flame retardant performance is significantly increased, and it is a flame retardant material (oxygen index is greater than 27%), and the oxygen index of the material is the same as that of the flame retardant in the material. It is related to the mass percentage. The higher the mass percentage of ammonium polyphosphate (or mixed flame retardant) in the raw material, the greater the oxygen index of the obtained thermal insulation material and the better the flame retardant performance. In addition, the organic flame retardant ammonium polyphosphate The flame retardant effect is better than that of the inorganic flame retardant magnesium hydroxide (for example: Example 1 is compared with Example 2, Example 3 is compared with Example 4, it can be seen from the data in the table, Examples 1, 5 and 6-8 The oxygen index is above 40%, which can reach A-level flame retardant grade, and the use safety is good).
4)实施例1~8的有机-无机复合保温材料、对比例1的有机保温材料和对比例2的有机-无机复合保温材料的力学性能测试结果如下表所示:4) The test results of the mechanical properties of the organic-inorganic composite thermal insulation materials of Examples 1 to 8, the organic thermal insulation materials of Comparative Example 1 and the organic-inorganic composite thermal insulation materials of Comparative Example 2 are shown in the following table:
表2力学性能测试结果Table 2 Mechanical properties test results
注:Note:
采用岛津电子的万能试验机(AG-IC 50kN型)对材料的力学性能进行测试,分别按照GB-T 8812.2-2007硬质泡沫塑料弯曲性能的测定,第2部分:弯曲强度和表面弯曲弹性模量的测定、GBT6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定、GBT8813-2008硬质泡沫塑料压缩性能的测定进行测试样品条的制备,并参照测试标准中的测试方法测试样品的力学性能。The mechanical properties of the material were tested using the universal testing machine (AG-IC 50kN) of Shimadzu Electronics, respectively, in accordance with GB-T 8812.2-2007 Determination of the bending properties of rigid foam plastics, Part 2: Bending strength and surface bending elasticity Determination of modulus, GBT6344-2008 Determination of tensile strength and elongation at break of flexible foamed polymeric materials, GBT8813-2008 Determination of compression properties of rigid foamed plastics Prepare test sample strips, and refer to the test methods in the test standard Test the mechanical properties of the samples.
由表2可知:It can be seen from Table 2 that:
a)对比例2的有机-无机复合保温材料(添加有疏水性气相二氧化硅粉末)与对比例1的有机保温材料相比,弯曲强度和拉伸强度提升,而断裂伸长率略有下降,表明疏水性气相二氧化硅粉末可以增强聚苯乙烯泡沫颗粒的力学性能;a) Compared with the organic-inorganic composite thermal insulation material of Comparative Example 2 (added with hydrophobic fumed silica powder), the flexural strength and tensile strength of the organic thermal insulation material of Comparative Example 1 increased, while the elongation at break decreased slightly , indicating that hydrophobic fumed silica powder can enhance the mechanical properties of polystyrene foam particles;
b)实施例1~8的有机-无机复合保温材料(添加有阻燃剂)与对比例2的有机-无机复合保温材料相比,压缩强度、弯曲强度和拉伸强度降低,表明阻燃剂的添加会在一定程度上影响材料的力学性能,但尽管如此,添加阻燃剂的保温材料的力学性能却仍然大于A级阻燃材料对力学性能的要求;b) Compared with the organic-inorganic composite thermal insulation material of Comparative Example 2, the compressive strength, flexural strength and tensile strength of the organic-inorganic composite thermal insulation materials (with flame retardants added) of Examples 1 to 8 are reduced, indicating that the flame retardant The addition of flame retardants will affect the mechanical properties of the material to a certain extent, but despite this, the mechanical properties of the thermal insulation materials with flame retardants are still greater than the requirements for the mechanical properties of Class A flame retardant materials;
综上可知,疏水性气相二氧化硅粉末的添加有助于提高材料的力学性能,而阻燃剂的添加可以显著提高材料的阻燃性能,但对材料的力学性能会造成一定的影响。In summary, the addition of hydrophobic fumed silica powder helps to improve the mechanical properties of the material, while the addition of flame retardants can significantly improve the flame retardant properties of the material, but it will have a certain impact on the mechanical properties of the material.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210267618.9A CN114773742A (en) | 2022-03-18 | 2022-03-18 | Organic-inorganic composite thermal insulation material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210267618.9A CN114773742A (en) | 2022-03-18 | 2022-03-18 | Organic-inorganic composite thermal insulation material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114773742A true CN114773742A (en) | 2022-07-22 |
Family
ID=82424324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210267618.9A Pending CN114773742A (en) | 2022-03-18 | 2022-03-18 | Organic-inorganic composite thermal insulation material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114773742A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204350A1 (en) * | 2007-05-30 | 2010-08-12 | Jae-Cheon Kim | Expandable polystyrene bead with superior adiabatic and flameproof effects and method of producing the same |
CN102757256A (en) * | 2012-07-18 | 2012-10-31 | 公安部四川消防研究所 | Incombustible organic/inorganic porous waterproof thermal-insulation composite material and preparation method thereof |
CN103059336A (en) * | 2012-12-31 | 2013-04-24 | 见龙(宁波)国际贸易有限公司 | High-flame-retardance composite heat-insulating foam material and preparation method thereof |
-
2022
- 2022-03-18 CN CN202210267618.9A patent/CN114773742A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204350A1 (en) * | 2007-05-30 | 2010-08-12 | Jae-Cheon Kim | Expandable polystyrene bead with superior adiabatic and flameproof effects and method of producing the same |
CN102757256A (en) * | 2012-07-18 | 2012-10-31 | 公安部四川消防研究所 | Incombustible organic/inorganic porous waterproof thermal-insulation composite material and preparation method thereof |
CN103059336A (en) * | 2012-12-31 | 2013-04-24 | 见龙(宁波)国际贸易有限公司 | High-flame-retardance composite heat-insulating foam material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9249272B2 (en) | High-performance thermal insulation materials | |
CN102936327B (en) | Preparation method of glass bead polyurethane foam composite material | |
CN110713391A (en) | Light cement insulation board for energy-saving building and preparation method | |
CN109232850A (en) | A kind of fire-retardant low thermal conductivity rigid polyurethane foam of aeroge modified heat resistant and preparation method thereof | |
CN112625288B (en) | Organic-inorganic hybrid heat insulation film based on MOF/aerogel composite modification and preparation method thereof | |
CN112062515B (en) | A kind of high-strength geopolymer closed-cell foam material prepared by using silicon carbide and preparation method thereof | |
CN114685906A (en) | Foaming bead-aerogel composite flame-retardant thermal-insulation material and preparation method and application thereof | |
CN111517708A (en) | Graphite modified polystyrene inorganic insulation board and preparation method thereof | |
CN103102641B (en) | Modified phenolic aldehyde insulation foamed material preparation method | |
CN112079585A (en) | A kind of superhydrophobic geopolymer prepared by microcellular foaming and preparation method thereof | |
CN113338458A (en) | Flame-retardant EPS insulation board and preparation method thereof | |
CN108948324A (en) | A kind of electrothemic floor insulation board and preparation method thereof | |
CN102807326B (en) | Polymer-modified low temperature foaming glass thermal insulation material and preparation method thereof | |
CN114773742A (en) | Organic-inorganic composite thermal insulation material and preparation method thereof | |
CN111995430A (en) | Graphene modified silicalite insulation board and manufacturing method thereof | |
Zhou et al. | Novel preparation method and fire performance study of EPS composites based on calcium sulphate hemihydrate | |
CN114436584B (en) | Inorganic modified graphite polystyrene non-combustible insulation board and preparation method thereof | |
CN113307525A (en) | Preparation method of polystyrene foam particle and cement composite heat-insulation non-combustible material | |
CN114890743A (en) | Green building material with good heat preservation performance and preparation method thereof | |
CN106928648A (en) | A kind of crystal whisker reinforced and toughened halogen-free flame-proof phenolic foamed plastics and preparation method thereof | |
CN115701415A (en) | Integrated plate polyphenyl granule layer mortar and preparation method thereof | |
CN112321213A (en) | Heat insulation concrete and preparation method thereof | |
CN110577409B (en) | Building indoor energy storage and heat insulation material and preparation method thereof | |
CN119263774B (en) | A method for preparing lightweight composite porcelain clay | |
Liu et al. | Thermal-Insulation Fillers' Influences on the Heating Resistance of PDMS-Based Aerogel Layer. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220722 |