CN114773690B - Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method - Google Patents
Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method Download PDFInfo
- Publication number
- CN114773690B CN114773690B CN202210288439.3A CN202210288439A CN114773690B CN 114773690 B CN114773690 B CN 114773690B CN 202210288439 A CN202210288439 A CN 202210288439A CN 114773690 B CN114773690 B CN 114773690B
- Authority
- CN
- China
- Prior art keywords
- dimensional
- dimensional nanosheet
- organic macromolecule
- composite material
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 102
- 229920002521 macromolecule Polymers 0.000 title claims abstract description 53
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims abstract description 23
- 239000002244 precipitate Substances 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000007791 liquid phase Substances 0.000 claims abstract description 9
- 238000005406 washing Methods 0.000 claims abstract description 6
- 238000001291 vacuum drying Methods 0.000 claims abstract 3
- 238000013329 compounding Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 12
- 229920001661 Chitosan Polymers 0.000 claims description 10
- 238000005119 centrifugation Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000007853 buffer solution Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- -1 transition metal chalcogenide Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 description 17
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 11
- 239000000945 filler Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000012621 metal-organic framework Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 229910016001 MoSe Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- NEAPKZHDYMQZCB-UHFFFAOYSA-N N-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]ethyl]-2-oxo-3H-1,3-benzoxazole-6-carboxamide Chemical compound C1CN(CCN1CCNC(=O)C2=CC3=C(C=C2)NC(=O)O3)C4=CN=C(N=C4)NC5CC6=CC=CC=C6C5 NEAPKZHDYMQZCB-UHFFFAOYSA-N 0.000 description 2
- 238000005576 amination reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000018729 macromolecule modification Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- BUCIWTBCUUHRHZ-UHFFFAOYSA-K potassium;disodium;dihydrogen phosphate;hydrogen phosphate Chemical compound [Na+].[Na+].[K+].OP(O)([O-])=O.OP([O-])([O-])=O BUCIWTBCUUHRHZ-UHFFFAOYSA-K 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/28—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/14—Carbides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L87/00—Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2387/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2389/00—Characterised by the use of proteins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2399/00—Characterised by the use of natural macromolecular compounds or of derivatives thereof not provided for in groups C08J2301/00 - C08J2307/00 or C08J2389/00 - C08J2397/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于纳米材料技术领域,具体涉及有机大分子修饰的二维纳米片复合材料及其制备方法。The invention belongs to the technical field of nanometer materials, and in particular relates to a two-dimensional nanosheet composite material modified by organic macromolecules and a preparation method thereof.
背景技术Background technique
随着热辐射调控相关领域的发展,低红外发射率材料越来越多地引起研究者们的关注。现有技术中,低红外发射率材料主要包括人工光子结构和低红外发射率填料两大类。With the development of thermal radiation control related fields, low infrared emissivity materials have attracted more and more attention of researchers. In the prior art, low-infrared-emissivity materials mainly include artificial photon structures and low-infrared-emissivity fillers.
人工光子结构主要有金属-介电质-金属超结构、一维光子晶体、分级超结构等,往往可以实现光谱选择性发射率。近年来,虽然人工光子结构获得了一定发展,但其面临的技术瓶颈也还非常显著,比如以光刻为基础的微纳加工工艺精度可控性差、复杂且昂贵,产品的红外发射率存在极化或者入射角度的敏感性和柔性差等(Mater.Today 2021,45,120)。Artificial photonic structures mainly include metal-dielectric-metal superstructures, one-dimensional photonic crystals, hierarchical superstructures, etc., which can often achieve spectrally selective emissivity. In recent years, although the artificial photonic structure has achieved certain development, the technical bottlenecks it faces are still very significant. For example, the micro-nano processing technology based on lithography is poorly controllable, complex and expensive, and the infrared emissivity of the product is extremely high. Or the sensitivity and flexibility of incident angle are poor (Mater. Today 2021, 45, 120).
低红外发射率填料的制备通常只涉及化学合成和改性过程,且可通过涂覆、抽滤、冷冻干燥或静电纺丝等途径便捷且便宜地制备成涂层、薄膜、泡沫、纤维等柔性形态。传统的低红外发射率填料包括金属、聚合物和半导体三大类。金属填料,比如铝片、铜片具有0.1~0.3的红外发射率,但是它们在全波段都有着极高的反射率,除此之外,这类金属填料化学稳定性较差,长时间暴露在空气环境中难免发生氧化变性,从而会使得其红外发射率大幅度增加。聚合物低红外发射率填料主要是共轭导电高聚物,这类材料在不同电压下表现出可变的红外发射率,通常作为电致变红外发射率器件的柔性基底,这类材料的热稳定性通常较差,且本征的红外发射率较高。传统的半导体低红外发射率填料,例如金属氧化物,通常辅以掺杂、异质结构等方式调控其电子和声子结构(NPG Asia Mater.2020,12,32),这类填料在热辐射和电磁调控领域具备很大潜力,且化学、热稳定性良好。然而,传统半导体填料的红外发射率通常为0.5~0.85,红外发射率偏高。The preparation of low-infrared emissivity fillers usually only involves chemical synthesis and modification processes, and can be easily and cheaply prepared into coatings, films, foams, fibers, etc. form. Traditional low infrared emissivity fillers include metals, polymers and semiconductors. Metal fillers, such as aluminum flakes and copper flakes, have an infrared emissivity of 0.1 to 0.3, but they have extremely high reflectivity in the entire band. In addition, such metal fillers have poor chemical stability and are exposed to Oxidative denaturation will inevitably occur in the air environment, which will greatly increase its infrared emissivity. Polymer low-infrared emissivity fillers are mainly conjugated conductive polymers, which exhibit variable infrared emissivity at different voltages, and are usually used as flexible substrates for electrovariable infrared emissivity devices. The thermal properties of such materials Stability is generally poor and intrinsic infrared emissivity is high. Traditional semiconductor low-infrared emissivity fillers, such as metal oxides, are usually supplemented with doping, heterostructures, etc. to adjust their electronic and phonon structures (NPG Asia Mater.2020,12,32). It has great potential in the field of electromagnetic regulation and control, and has good chemical and thermal stability. However, the infrared emissivity of traditional semiconductor fillers is usually 0.5-0.85, which is relatively high.
发明内容Contents of the invention
本发明提供了一种有机大分子修饰的二维纳米片复合材料及其制备方法,可以解决现有技术中的上述缺陷。The invention provides a two-dimensional nanosheet composite material modified by organic macromolecules and a preparation method thereof, which can solve the above-mentioned defects in the prior art.
本发明第一方面提供了一种有机大分子修饰的二维纳米片复合材料,所述复合材料由二维纳米片与有机大分子复合而成。The first aspect of the present invention provides a two-dimensional nanosheet composite material modified by organic macromolecules. The composite material is composed of two-dimensional nanosheets and organic macromolecules.
在本发明的一实施方式中,所述有机大分子为壳聚糖、DNA、胶原、蛋白质中的至少一种。In one embodiment of the present invention, the organic macromolecule is at least one of chitosan, DNA, collagen and protein.
在本发明的一实施方式中,所述二维纳米片为过渡金属硫属化合物、层状双金属氢氧化物、金属有机骨架、过渡金属碳氮化物中的至少一种。In one embodiment of the present invention, the two-dimensional nanosheets are at least one of transition metal chalcogenides, layered double metal hydroxides, metal organic frameworks, and transition metal carbonitrides.
本发明第二方面提供了上述有机大分子修饰的二维纳米片复合材料的制备方法,包括以下步骤:The second aspect of the present invention provides a method for preparing the above-mentioned two-dimensional nanosheet composite material modified by organic macromolecules, comprising the following steps:
S1、将二维纳米片与有机大分子共混于水性液相介质获得混合分散液;S1. Blending two-dimensional nanosheets and organic macromolecules in an aqueous liquid medium to obtain a mixed dispersion;
S2、对步骤S1中所得混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion obtained in step S1 to obtain flocculent precipitates;
S3、对步骤S2中所得絮状沉淀进行离心、洗涤、真空干燥,即得有机大分子修饰的二维纳米片。S3. Centrifuge, wash and vacuum-dry the flocculent precipitate obtained in step S2 to obtain two-dimensional nanosheets modified by organic macromolecules.
在本发明的一实施方式中,所述步骤S1中二维纳米片在液相介质中的分散浓度为0.05~3mg/mL。In one embodiment of the present invention, the dispersion concentration of the two-dimensional nanosheets in the liquid medium in the step S1 is 0.05-3 mg/mL.
在本发明的一实施方式中,所述步骤S1中二维纳米片与有机大分子的质量浓度比为10:1~1:2。In one embodiment of the present invention, the mass concentration ratio of the two-dimensional nanosheets to the organic macromolecules in the step S1 is 10:1˜1:2.
在本发明的一实施方式中,所述步骤S1中的水性液相介质为缓冲溶液,pH为5~9。In one embodiment of the present invention, the aqueous liquid phase medium in the step S1 is a buffer solution with a pH of 5-9.
在本发明的一实施方式中,所述步骤S2中的微波辐照过程是在单模微波反应器中完成,辐照时间为0.5h~3h,微波功率为30~150W。In one embodiment of the present invention, the microwave irradiation process in step S2 is completed in a single-mode microwave reactor, the irradiation time is 0.5h-3h, and the microwave power is 30-150W.
在本发明的一实施方式中,所述步骤S3中的离心、洗涤次数为2~6次,离心转速为500rpm~3000rpm,单次离心时间为5~30min。In one embodiment of the present invention, the number of centrifugation and washing in the step S3 is 2-6 times, the rotational speed of the centrifugation is 500 rpm-3000 rpm, and the time of a single centrifugation is 5-30 min.
在本发明的一实施方式中,所述步骤S3中的干燥温度为50~80℃,时间为3~24h。In one embodiment of the present invention, the drying temperature in step S3 is 50-80° C., and the drying time is 3-24 hours.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1、本发明实施例提供的有机大分子修饰的二维纳米片复合材料,该复合材料有机大分子和二维纳米片复合而成,在8-14μm波段内均具备较低的(<0.4)平均红外发射率值;具体地说,本发明中有机大分子修饰二维纳米片的有机修饰程度高、且均匀,如此可以在二维纳米片的胺化界面充分地发挥有机-无机界面协同效应,从而使得二维纳米片的红外发射率有效地降低;具体地说,这主要得益于二维纳米片的高比表面积、高浓度的表面原子浓度,经过富含氨基的有机大分子充分修饰后的二维纳米片,其电子结构得到修饰,声子结构也得到优化,从而有效降低红外光子-声子的吸收作用,并且增强红外光子-电子的反射作用,这两者都有益于半导体材料红外发射率的降低。1. The organic macromolecule-modified two-dimensional nanosheet composite material provided by the embodiment of the present invention is composed of an organic macromolecule and a two-dimensional nanosheet, and has a low (<0.4) Average infrared emissivity value; Specifically, the degree of organic modification of organic macromolecule-modified two-dimensional nanosheets in the present invention is high and uniform, so that the organic-inorganic interface synergistic effect can be fully brought into play at the amination interface of two-dimensional nanosheets , so that the infrared emission rate of two-dimensional nanosheets is effectively reduced; specifically, this is mainly due to the high specific surface area and high concentration of surface atoms of two-dimensional nanosheets, which are fully modified by organic macromolecules rich in amino groups The final two-dimensional nanosheets have modified electronic structures and optimized phonon structures, thereby effectively reducing the absorption of infrared photons-phonons and enhancing the reflection of infrared photons-electrons, both of which are beneficial to semiconductor materials. Reduction of infrared emissivity.
2、本发明实施例提供的有机大分子修饰的二维纳米片复合材料的制备方法,可以在低至30min的短时间内、有效地实现传统水热法通常须数十小时才能完成的有机改性过程,这是因为相较于较多模微波合成系统,基于单模微波反应系统提供的电磁场空间分布均匀,使得本发明制备有机大分子修饰二维纳米片能耗低、重复性高。2. The preparation method of the two-dimensional nanosheet composite material modified by organic macromolecules provided by the embodiment of the present invention can effectively realize the organic modification that usually takes dozens of hours to complete in the traditional hydrothermal method in a short period of time as low as 30 minutes. This is because compared with the multi-mode microwave synthesis system, the electromagnetic field provided by the single-mode microwave reaction system is evenly distributed in space, so that the preparation of organic macromolecule-modified two-dimensional nanosheets in the present invention has low energy consumption and high repeatability.
附图说明Description of drawings
图1为本发明中的一种有机大分子修饰的二维纳米片复合材料的制备方法流程图;Fig. 1 is the preparation method flowchart of the two-dimensional nano sheet composite material of a kind of organic macromolecule modification in the present invention;
图2为本发明实施例1中壳聚糖修饰的MoSe2纳米片复合材料的XRD谱图;Fig. 2 is the XRD spectrogram of the MoSe of chitosan modification in the embodiment of the present invention 1 nano-sheet composite material;
图3为本发明实施例1中壳聚糖修饰的MoSe2纳米片复合材料的SEM图片;Fig. 3 is the SEM picture of the MoSe of chitosan modification in the embodiment of the present invention 1 nanosheet composite material;
图4为本发明实施例1中壳聚糖修饰的MoSe2纳米片复合材料的TEM图片;Fig. 4 is the TEM picture of the MoSe of the chitosan modification in the embodiment of the present invention 2 nanosheet composite material;
图5为本发明实施例1中壳聚糖修饰的MoSe2纳米片复合材料的AFM图片;Fig. 5 is the AFM picture of the MoSe of chitosan modification in the embodiment of the present invention 1 nanosheet composite material;
图6为本发明实施例1中壳聚糖修饰的MoSe2纳米片复合材料的FTIR红外反射光谱。Fig. 6 is the FTIR infrared reflection spectrum of the MoSe2 nanosheet composite material modified by chitosan in Example 1 of the present invention.
图7为本发明实施例1、2、5、6、8、9、10、11中的有机大分子修饰的二维纳米片复合材料的平均红外发射率值图。Fig. 7 is a graph showing the average infrared emissivity values of the two-dimensional nanosheet composite materials modified by organic macromolecules in Examples 1, 2, 5, 6, 8, 9, 10, and 11 of the present invention.
具体实施方式Detailed ways
在本文中,由「一数值至另一数值」表示的范围,是一种避免在说明书中一一列举该范围中的所有数值的概要性表示方式。因此,某一特定数值范围的记载,涵盖该数值范围内的任意数值以及由该数值范围内的任意数值界定出的较小数值范围,如同在说明书中明文写出该任意数值和该较小数值范围一样。Herein, a range indicated by "one value to another value" is a general representation which avoids enumerating all values in the range in the specification. Therefore, the description of a specific numerical range covers any numerical value in the numerical range and the smaller numerical range bounded by any numerical value in the numerical range, as if the arbitrary numerical value and the smaller numerical value are expressly written in the specification. same range.
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention, not to limit the protection scope of the present invention. Improvements and adjustments made by those skilled in the art according to the present invention in practical applications still belong to the protection scope of the present invention.
二维纳米片是一类具备数十、数百纳米乃至微米级别横向尺寸,却有着原子级别厚度的薄片状纳米材料。自2004年Geim及其团队从石墨中以胶带粘得石墨烯以来(Science2004,306,666),越来越多的二维纳米片材料被成功剥离和制备,并广泛应用于催化、电子、能量存储和转换、生物医药、传感等领域(Chem.Rev.2017,117,6225)。本发明研究发现,二维纳米片能够作为低红外辐射率材料,二维纳米片作为低红外辐射率材料时,在结构、电子、声子和表面性能等方面具备潜在的优势。首先,片状二维纳米片更利于形成致密的反射面,这有利于电磁波的反射;其次,二维材料的带隙分布广泛,处于0~6eV这一范围内,涵盖介电质、半导体、半金属和金属多类材料;然后,二维材料因其丰富的化学组成从而晶格类型或者声子结构各异;此外,杂、修饰操作以进一步修饰其电子或声子特性,从而调控其红外辐射特性。因此,开发基于二维纳米片的新型低红外发射率填料具有重要的现实意义。Two-dimensional nanosheets are a type of thin sheet-like nanomaterials with lateral dimensions of tens, hundreds of nanometers or even microns, but atomic-level thickness. Since Geim and his team bonded graphene from graphite in 2004 (Science2004, 306, 666), more and more two-dimensional nanosheet materials have been successfully exfoliated and prepared, and are widely used in catalysis, electronics, energy storage and Conversion, biomedicine, sensing and other fields (Chem. Rev. 2017, 117, 6225). The present invention finds that two-dimensional nanosheets can be used as low infrared radiation rate materials, and when two-dimensional nanosheets are used as low infrared radiation rate materials, they have potential advantages in terms of structure, electronics, phonons, and surface properties. First of all, sheet-like two-dimensional nanosheets are more conducive to the formation of dense reflective surfaces, which is conducive to the reflection of electromagnetic waves; second, the band gap of two-dimensional materials is widely distributed, in the range of 0-6eV, covering dielectrics, semiconductors, Semi-metals and metals are multi-class materials; then, two-dimensional materials have different lattice types or phonon structures due to their rich chemical composition; in addition, heterogeneous and modification operations can further modify their electronic or phonon properties, thereby tuning their infrared radiation properties. Therefore, it is of great practical significance to develop novel low-infrared emissivity fillers based on 2D nanosheets.
本发明提供了一种有机大分子修饰的二维纳米片复合材料及其制备方法,下面先对本发明的有机大分子修饰的二维纳米片复合材料进行分析说明。The present invention provides a two-dimensional nanosheet composite material modified by organic macromolecules and a preparation method thereof. The following is an analysis and description of the two-dimensional nanosheet composite material modified by organic macromolecules of the present invention.
本发明中的复合材料由有机大分子和二维纳米片复合而成;本发明中,有机大分子修饰二维纳米片的有机修饰程度高、且均匀,如此可以在二维纳米片的胺化界面充分地发挥有机-无机界面协同效应,从而使得二维纳米片的红外发射率有效地降低;具体地说,这主要得益于二维纳米片的高比表面积、高浓度的表面原子浓度,经过富含氨基的有机大分子充分修饰后的二维纳米片,其电子结构得到修饰,声子结构也得到优化,从而有效降低红外光子-声子的吸收作用,并且增强红外光子-电子的反射作用,这两者都有益于半导体材料红外发射率的降低。The composite material in the present invention is composed of organic macromolecules and two-dimensional nanosheets; in the present invention, the degree of organic modification of organic macromolecules to modify two-dimensional nanosheets is high and uniform, so that it can be used in the amination of two-dimensional nanosheets The interface fully exerts the synergistic effect of the organic-inorganic interface, so that the infrared emission rate of the two-dimensional nanosheets is effectively reduced; specifically, this is mainly due to the high specific surface area and high concentration of surface atoms of the two-dimensional nanosheets, The two-dimensional nanosheets fully modified with amino-rich organic macromolecules have modified electronic structures and optimized phonon structures, thereby effectively reducing the absorption of infrared photons-phonons and enhancing the reflection of infrared photons-electrons Both are beneficial to the reduction of infrared emissivity of semiconductor materials.
具体地说,本发明中的有机大分子的分子链富含氨基;在一种可能的实施例中,有机大分子选自壳聚糖、DNA、胶原、蛋白质中的至少一种。有机大分子可以为两种以上的混合物。Specifically, the molecular chain of the organic macromolecule in the present invention is rich in amino groups; in a possible embodiment, the organic macromolecule is selected from at least one of chitosan, DNA, collagen, and protein. Organic macromolecules can be a mixture of two or more.
具体地说,本发明中的二维纳米片具备低本征红外发射率,即<0.8;在一种可能的实施例中,二维纳米片选自过渡金属硫属化合物(TMDs,例如MoSe2,MoTe2,WSe2,WTe2)、层状双金属氢氧化物(LDHs,例如MgFeCO3 2-,NiInAcO,CoFeLc)、金属有机骨架(MOFs,例如Zn2(bin)4、Zn2(PdTCPP))、过渡金属碳氮化物(MXenes,例如Ti3C2,Nb2C,Ti4N3,V2C,Ta4C3)中的至少一种。二维纳米片可以为两种以上的混合物。Specifically, the two-dimensional nanosheets in the present invention have low intrinsic infrared emissivity, ie <0.8; in a possible embodiment, the two-dimensional nanosheets are selected from transition metal chalcogenides (TMDs, such as MoSe 2 , MoTe 2 , WSe 2 , WTe 2 ), layered double hydroxides (LDHs, such as MgFeCO 3 2- , NiInAcO, CoFeLc), metal organic frameworks (MOFs, such as Zn 2 (bin) 4 , Zn 2 (PdTCPP )), at least one of transition metal carbonitrides (MXenes, such as Ti 3 C 2 , Nb 2 C, Ti 4 N 3 , V 2 C, Ta 4 C 3 ). The two-dimensional nanosheets may be a mixture of two or more kinds.
下面对本发明的有机大分子修饰的二维纳米片复合材料的制备方法进行分析说明。The preparation method of the organic macromolecule-modified two-dimensional nanosheet composite material of the present invention is analyzed and described below.
本发明提供的上述有机大分子修饰的二维纳米片复合材料的制备方法,包括以下步骤:The preparation method of the two-dimensional nanosheet composite material modified by the above-mentioned organic macromolecules provided by the present invention comprises the following steps:
S1、将二维纳米片与有机大分子共混于水性液相介质获得混合分散液;S1. Blending two-dimensional nanosheets and organic macromolecules in an aqueous liquid medium to obtain a mixed dispersion;
S2、对步骤S1中所得混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion obtained in step S1 to obtain flocculent precipitates;
S3、对步骤S2中所得絮状沉淀进行离心、洗涤、真空干燥,即得有机大分子修饰的二维纳米片。S3. Centrifuge, wash and vacuum-dry the flocculent precipitate obtained in step S2 to obtain two-dimensional nanosheets modified by organic macromolecules.
本发明提供的复合材料制备方法中,采用微波辅助液相修饰法,可以在低至30min的短时间内、有效地实现传统水热法通常须数十小时才能完成的有机改性过程,这是因为相较于较多模微波合成系统,基于单模微波反应系统提供的电磁场空间分布均匀,使得本发明制备有机大分子修饰二维纳米片能耗低、重复性高。In the composite material preparation method provided by the present invention, the microwave-assisted liquid phase modification method can effectively realize the organic modification process that usually takes tens of hours to complete in the traditional hydrothermal method in a short period of time as low as 30 minutes. Because compared with the multi-mode microwave synthesis system, the electromagnetic field provided by the single-mode microwave reaction system is evenly distributed in space, so that the preparation of organic macromolecule-modified two-dimensional nanosheets in the present invention has low energy consumption and high repeatability.
在一种可能的实施例中,步骤S1中二维纳米片在液相介质中的分散浓度为0.05~3mg/mL,使二维纳米片稳定分散于液相介质中而不团聚沉降。In a possible embodiment, the dispersion concentration of the two-dimensional nanosheets in the liquid medium in step S1 is 0.05-3 mg/mL, so that the two-dimensional nanosheets are stably dispersed in the liquid medium without agglomeration and sedimentation.
在一种可能的实施例中,步骤S1中二维纳米片与有机大分子的质量浓度比为10:1~1:2。In a possible embodiment, the mass concentration ratio of the two-dimensional nanosheets to the organic macromolecules in step S1 is 10:1˜1:2.
在一种可能的实施例中,步骤S1中的二维纳米片与有机大分子的共混操作通常辅之以5~10min的超声预分散。In a possible embodiment, the blending operation of the two-dimensional nanosheets and organic macromolecules in step S1 is usually supplemented with ultrasonic pre-dispersion for 5-10 min.
在一种可能的实施例中,步骤S1中的水性液相介质为缓冲溶液,pH为5~9。其中,本实施例中的缓冲溶液可以为tris-HCl,磷酸氢二钠-磷酸二氢钾,硼砂-盐酸缓冲液中的一种。In a possible embodiment, the aqueous liquid phase medium in step S1 is a buffer solution with a pH of 5-9. Wherein, the buffer solution in this embodiment may be one of tris-HCl, disodium hydrogen phosphate-potassium dihydrogen phosphate, and borax-hydrochloric acid buffer.
在一种可能的实施例中,步骤S2中的微波辐照过程在单模微波反应器中完成;相较于较多模微波合成系统,单模微波合成系统电磁场空间分布均匀、能耗低、合成重复性高;本发明中可以采用美国CEM公司生产的Discover SP环形聚焦单模微波合成系统。In a possible embodiment, the microwave irradiation process in step S2 is completed in a single-mode microwave reactor; compared with a multi-mode microwave synthesis system, the electromagnetic field of the single-mode microwave synthesis system has uniform spatial distribution, low energy consumption, and The synthesis repeatability is high; the Discover SP annular focusing single-mode microwave synthesis system produced by the American CEM company can be used in the present invention.
在一种可能的实施例中,步骤S2中的微波辐照过程是在单模微波反应器中完成,辐照时间为0.5h~3h,微波功率为30~150W。其中,辐照过程中打开POWER MAX功能以获得持续、稳定的、高微波能量。In a possible embodiment, the microwave irradiation process in step S2 is completed in a single-mode microwave reactor, the irradiation time is 0.5h-3h, and the microwave power is 30-150W. Among them, the POWER MAX function is turned on during the irradiation process to obtain continuous, stable, and high microwave energy.
在一种可能的实施例中,步骤S2中微波辐照过程通常设置高速搅拌以使反应均匀化。In a possible embodiment, the microwave irradiation process in step S2 is usually set with high-speed stirring to homogenize the reaction.
在一种可能的实施例中,步骤S3中的离心、洗涤次数为2~6次,离心转速为500rpm~3000rpm,单次离心时间为5~30min。In a possible embodiment, the number of centrifugation and washing in step S3 is 2-6 times, the centrifugation speed is 500rpm-3000rpm, and the time for a single centrifugation is 5-30min.
在一种可能的实施例中,步骤S3中的干燥温度为50~80℃,时间为3~24h。In a possible embodiment, the drying temperature in step S3 is 50-80° C., and the drying time is 3-24 hours.
下面结合具体实施例及附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with specific embodiments and accompanying drawings.
实施例1-4Example 1-4
以下实施例1-4中提供了壳聚糖修饰TMDs纳米片复合材料。The following examples 1-4 provide chitosan-modified TMDs nanosheet composite materials.
其中,实施例1-4中壳聚糖修饰四种TMDs(MoSe2,MoTe2,WSe2,WTe2)纳米片的制备方法,具体包括以下步骤:Wherein, the preparation method of chitosan modified four kinds of TMDs (MoSe 2 , MoTe 2 , WSe 2 , WTe 2 ) nanosheets in embodiment 1-4 specifically comprises the following steps:
S1、将二维TMDs纳米片与壳聚糖粉末共混于Tris-HCl缓冲液获得混合分散液;S1. Blending two-dimensional TMDs nanosheets and chitosan powder in Tris-HCl buffer to obtain a mixed dispersion;
S2、对步骤S1中的混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion in step S1 to obtain flocculent precipitates;
S3、对步骤S2中絮状沉淀进行离心、洗涤、真空干燥,获得壳聚糖修饰的TMDs纳米片复合材料。S3. Centrifuge, wash and vacuum-dry the flocculent precipitate in step S2 to obtain a chitosan-modified TMDs nanosheet composite material.
实施例1-4中的制备方法的具体参数如表1所示。The specific parameters of the preparation methods in Examples 1-4 are shown in Table 1.
表1Table 1
实施例5-7Example 5-7
以下实施例5-7中提供了DNA修饰LDHs纳米片的复合材料。Composite materials of DNA-modified LDHs nanosheets are provided in Examples 5-7 below.
其中,实施例5-7中DNA修饰三种LDHs(MgFeCO3 2-,NiInAcO,CoFeLc)纳米片的制备方法,具体包括以下步骤:Wherein, the preparation method of DNA-modified three kinds of LDHs (MgFeCO 3 2- , NiInAcO, CoFeLc) nanosheets in Example 5-7 specifically includes the following steps:
S1、将二维LDHs纳米片与DNA粉末共混于硼砂-盐酸缓冲液获得混合分散液;S1. Blending two-dimensional LDHs nanosheets and DNA powder in borax-hydrochloric acid buffer to obtain a mixed dispersion;
S2、对步骤S1中的混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion in step S1 to obtain flocculent precipitates;
S3、对步骤S2中絮状沉淀进行离心、洗涤、真空干燥,获得DNA修饰LDHs纳米片红外低发射率材料。S3. Centrifuge, wash, and vacuum-dry the flocculent precipitate in step S2 to obtain a DNA-modified LDHs nanosheet material with low infrared emissivity.
实施例5-7中的制备方法的具体参数如表2所示。The specific parameters of the preparation methods in Examples 5-7 are shown in Table 2.
表2Table 2
实施例8-9Example 8-9
以下实施例8-9中提供了蛋白质修饰MOFs纳米片的复合材料。Composite materials of protein-modified MOFs nanosheets are provided in Examples 8-9 below.
其中,实施例8-9中蛋白质修饰两种MOFs((Zn2(bin)4、Zn2(PdTCPP))纳米片的制备方法,具体包括以下步骤:Among them, the preparation method of protein-modified two kinds of MOFs ((Zn 2 (bin) 4 , Zn 2 (PdTCPP)) nanosheets in Example 8-9 specifically includes the following steps:
S1、将二维MOFs纳米片与蛋白质粉末共混于磷酸氢二钠-磷酸二氢钾缓冲液获得混合分散液;S1. Blending two-dimensional MOFs nanosheets and protein powder in disodium hydrogen phosphate-potassium dihydrogen phosphate buffer solution to obtain a mixed dispersion;
S2、对步骤S1的混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion in step S1 to obtain flocculent precipitates;
S3、对步骤S2中絮状沉淀进行离心、洗涤、真空干燥,获得蛋白质修饰MOFs纳米片红外低发射率材料。S3. Centrifuge, wash, and vacuum-dry the flocculent precipitate in step S2 to obtain a protein-modified MOFs nanosheet material with low infrared emissivity.
实施例8-9中的制备方法的具体参数如表3所示。The specific parameters of the preparation method in Examples 8-9 are shown in Table 3.
表3table 3
实施例10-14Examples 10-14
以下实施例10-14中提供了胶原修饰MXenes纳米片的复合材料。Composite materials of collagen-modified MXenes nanosheets are provided in Examples 10-14 below.
其中,实施例10-14中胶原修饰五种MXenes(Ti3C2,Nb2C,Ti4N3,V2C,Ta4C3)纳米片的制备方法,具体包括以下步骤:Wherein, the preparation method of collagen-modified five kinds of MXenes (Ti 3 C 2 , Nb 2 C, Ti 4 N 3 , V 2 C, Ta 4 C 3 ) nanosheets in Examples 10-14 specifically includes the following steps:
S1、将二维MXenes纳米片与胶原粉末共混于Tris-HCl缓冲液获得混合分散液;S1. Blending two-dimensional MXenes nanosheets and collagen powder in Tris-HCl buffer to obtain a mixed dispersion;
S2、对步骤S1的混合分散液进行微波辐照,获得絮状沉淀;S2. Microwave irradiation is performed on the mixed dispersion in step S1 to obtain flocculent precipitates;
S3、对步骤S2中絮状沉淀进行离心、洗涤、真空干燥,获得胶原修饰MXenes纳米片红外低发射率材料。S3. Centrifuge, wash and vacuum-dry the flocculent precipitate in step S2 to obtain a collagen-modified MXenes nanosheet material with low infrared emissivity.
实施例10-14中的制备方法的具体参数如表4所示。The specific parameters of the preparation methods in Examples 10-14 are shown in Table 4.
表4Table 4
试验例Test case
1、通过X射线衍射(XRD,图2)扫描电镜(SEM,图3)、透射电镜(TEM,图4)和原子力显微镜(AFM,图5)对实施例1中所得有机大分子修饰的二维纳米片复合材料形貌表征,可知,本发明制备的有机大分子修饰二维纳米片的有机修饰程度高、且均匀,如此可以在二维纳米片的胺化界面充分地发挥有机-无机界面协同效应,从而使得二维纳米片的红外发射率有效地降低;其中,这主要得益于二维纳米片的高比表面积、高浓度的表面原子浓度,经过富含氨基的有机大分子充分修饰后的二维纳米片,其电子结构得到修饰,声子结构也得到优化,从而有效降低红外光子-声子的吸收作用,并且增强红外光子-电子的反射作用,这两者都有益于半导体材料红外发射率的降低。1, by X-ray diffraction (XRD, Fig. 2) scanning electron microscope (SEM, Fig. 3), transmission electron microscope (TEM, Fig. 4) and atomic force microscope (AFM, Fig. 5) to the obtained organic macromolecule modification two in
2、通过傅里叶红外光谱仪的反射测量模式,测量实施例1中所得有机大分子修饰的二维纳米片复合材料,结果如图6所示;其中,由图6可知,实施例1中的有机大分子修饰的二维纳米片复合材料红外光谱反射率高,依据基尔霍夫定律,对于不透明的材料,也即红外发射率低。2. Through the reflection measurement mode of the Fourier transform infrared spectrometer, measure the two-dimensional nanosheet composite material modified by the organic macromolecules obtained in Example 1, and the result is as shown in Figure 6; wherein, as can be seen from Figure 6, the The two-dimensional nanosheet composite material modified by organic macromolecules has high infrared spectral reflectance. According to Kirchhoff's law, for opaque materials, that is, the infrared emission rate is low.
3、通过IR-2双波段红外发射率测量仪,对实施例1、2、5、6、8、9、10、11中的有机大分子修饰的二维纳米片复合材料进行测试,结果如图7所示;根据图7可知,本发明中中的有机大分子修饰的二维纳米片复合材料在8-14μm波段内均具备较低的(<0.4)平均红外发射率值。3. By IR-2 dual-band infrared emissivity measuring instrument, the two-dimensional nanosheet composite material modified by organic macromolecules in Examples 1, 2, 5, 6, 8, 9, 10, and 11 is tested, and the results are as follows As shown in FIG. 7; according to FIG. 7, it can be known that the organic macromolecule-modified two-dimensional nanosheet composite material in the present invention has a lower (<0.4) average infrared emissivity value in the 8-14 μm wave band.
以上公开的仅为本发明优选实施例。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属领域技术人员能很好地利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。The above disclosures are only preferred embodiments of the present invention. The preferred embodiments do not exhaust all details nor limit the invention to only specific embodiments. Obviously, many modifications and variations can be made based on the contents of this specification. This description selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present invention, so that those skilled in the art can make good use of the present invention. The invention is to be limited only by the claims, along with their full scope and equivalents.
在本发明及上述实施例的教导下,本领域技术人员很容易预见到,本发明所列举或例举的各原料或其等同替换物、各加工方法或其等同替换物都能实现本发明,以及各原料和加工方法的参数上下限取值、区间值都能实现本发明,在此不一一列举实施例。Under the teaching of the present invention and the above-mentioned embodiments, those skilled in the art can easily foresee that each raw material or its equivalent replacements, each processing method or its equivalent replacements listed or exemplified in the present invention can realize the present invention, And the upper and lower limit values and interval values of the parameters of each raw material and processing method can realize the present invention, and the embodiments are not enumerated here one by one.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210288439.3A CN114773690B (en) | 2022-03-23 | 2022-03-23 | Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210288439.3A CN114773690B (en) | 2022-03-23 | 2022-03-23 | Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114773690A CN114773690A (en) | 2022-07-22 |
CN114773690B true CN114773690B (en) | 2023-02-07 |
Family
ID=82426098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210288439.3A Active CN114773690B (en) | 2022-03-23 | 2022-03-23 | Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114773690B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103525363A (en) * | 2013-09-30 | 2014-01-22 | 东南大学 | Core-shell type infrared composite material and preparation method thereof |
CN103920158A (en) * | 2014-04-24 | 2014-07-16 | 青岛大学 | Chitosan-functionalized metal organic framework materials as well as preparation method and application thereof |
CN107513370A (en) * | 2017-08-22 | 2017-12-26 | 江苏大学 | A kind of preparation method of semiconductor quantum piece hybridization film material |
WO2019001103A1 (en) * | 2017-06-27 | 2019-01-03 | 洛阳尖端技术研究院 | Temperature-resistant, infrared, low emissivity coating, and method for preparing same |
CN110118759A (en) * | 2019-05-06 | 2019-08-13 | 大连理工大学 | A kind of terramycin fluorescence detection method based on surface passivation and DNA covalent coupling modified metal organic backbone nanometer sheet |
CN111420619A (en) * | 2020-03-19 | 2020-07-17 | 南京航空航天大学 | Preparation method of cellulose-chitosan/PANI composite aerogel |
GB202103036D0 (en) * | 2021-03-04 | 2021-04-21 | Advanced Mat Development Limited | Devices with Low Thermal Emissivity |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020136905A1 (en) * | 1999-11-24 | 2002-09-26 | Medwick Paul A. | Low shading coefficient and low emissivity coatings and coated articles |
US11435114B2 (en) * | 2016-02-05 | 2022-09-06 | Uchicago Argonne, Llc | Refractory solar selective coatings |
-
2022
- 2022-03-23 CN CN202210288439.3A patent/CN114773690B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103525363A (en) * | 2013-09-30 | 2014-01-22 | 东南大学 | Core-shell type infrared composite material and preparation method thereof |
CN103920158A (en) * | 2014-04-24 | 2014-07-16 | 青岛大学 | Chitosan-functionalized metal organic framework materials as well as preparation method and application thereof |
WO2019001103A1 (en) * | 2017-06-27 | 2019-01-03 | 洛阳尖端技术研究院 | Temperature-resistant, infrared, low emissivity coating, and method for preparing same |
CN107513370A (en) * | 2017-08-22 | 2017-12-26 | 江苏大学 | A kind of preparation method of semiconductor quantum piece hybridization film material |
CN110118759A (en) * | 2019-05-06 | 2019-08-13 | 大连理工大学 | A kind of terramycin fluorescence detection method based on surface passivation and DNA covalent coupling modified metal organic backbone nanometer sheet |
CN111420619A (en) * | 2020-03-19 | 2020-07-17 | 南京航空航天大学 | Preparation method of cellulose-chitosan/PANI composite aerogel |
GB202103036D0 (en) * | 2021-03-04 | 2021-04-21 | Advanced Mat Development Limited | Devices with Low Thermal Emissivity |
Non-Patent Citations (5)
Title |
---|
Fabrication and infrared emissivity study of hybrid materials based on immobilization of collagen onto exfoliated LDH;Yanqing Sun et al.;《Materials Letters》;20080630;第62卷(第17-18期);第2943-2946页 * |
Preparation and characterization of Chitosan/Konjac glucomannan/CdS nanocomposite film with low infrared emissivity;Feng-YingZhang et al.;《Materials Research Bulletin》;20100226;第45卷(第7期);第859-862页 * |
Two-Dimensional Nanosheets by Rapid and Efficient Microwave Exfoliation of Layered Materials;Wu wei et al.;《Chemistry of Materials》;20180810;第30卷(第17期);第5932–5940页 * |
基于Ni-In LDHs的生物大分子有序组装及红外辐射性能研究;王泳娟;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20160815(第8期);全文 * |
壳聚糖基CdS纳米粒子复合膜的制备及其性能研究;张凤英等;《化工时刊》;20091225(第12期);第5-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114773690A (en) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soussi et al. | Electronic and optical properties of TiO2 thin films: combined experimental and theoretical study | |
Stehlik et al. | Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds | |
Kozlova et al. | Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4) | |
Ma et al. | Synthesis of nanocrystalline strontium titanate by a sol–gel assisted solid phase method and its formation mechanism and photocatalytic activity | |
Butt et al. | An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: a revisited insight into a potential electrode material for supercapacitors | |
Lukong et al. | Annealing temperature variation and its influence on the self-cleaning properties of TiO2 thin films | |
Tang et al. | Preparation of zinc oxide nanoparticle via uniform precipitation method and its surface modification by methacryloxypropyltrimethoxysilane | |
CN109433232A (en) | The nonmetallic cocatalyst materials of ultra-thin black phosphorus alkene and preparation method and its composite material | |
Yu et al. | Synthesis and characterization of CuFeS2 and Se doped CuFeS2− xSex nanoparticles | |
CN113753866A (en) | A kind of hexagonal boron nitride nanocrystal and its solid state preparation method | |
Saleem et al. | Investigations on electronic and optical properties of Ag: MoS2 co-sputtered thin films | |
CN114773690B (en) | Two-dimensional nanosheet composite material modified by organic macromolecules and its preparation method | |
Sharma et al. | Elucidation of modification in structural and thermal properties of polystyrene nanocomposite films | |
Qi et al. | The mechanical properties of polyethylene/graphene nanocomposites by in-situ synthesis | |
Barkhordari et al. | Performance of machine learning algorithms in spectroscopic ellipsometry data analysis of ZnTiO3 nanocomposite | |
CN110697790A (en) | Chapped sheet iron oxide nano material and preparation method thereof | |
Izu et al. | Controlled synthesis of monodispersed cerium oxide nanoparticle sols applicable to preparing ordered self-assemblies | |
Nakade et al. | Synthesis and properties of titanium dioxide/polydimethylsiloxane hybrid particles | |
Moghaddas et al. | Preparation, characterization, and photocatalytic degradation of methylene blue of SnO2/RGO nanocomposite produced by facile hydrothermal process | |
KR101894543B1 (en) | Method for fabricating reduced graphene oxide and its suspension | |
Klich et al. | Microwave synthesis of ZnO microcrystals with novel asymmetric morphology | |
CN101804976B (en) | Method for preparing graphene sheets with narrowed lateral dimension | |
Hou et al. | A facile and green strategy for large-scale synthesis of silica nanotubes using ZnO nanorods as templates | |
Frizzo et al. | Highly enhanced adsorption and photocatalytic performance of TiO2 quantum dots synthesized by microwaves for degradation of reactive red azo dye | |
Peng et al. | Effect of polyethylene glycol on BaTiO3 nanoparticles prepared by hydrothermal preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |