CN114772814A - Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis - Google Patents
Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis Download PDFInfo
- Publication number
- CN114772814A CN114772814A CN202210489612.6A CN202210489612A CN114772814A CN 114772814 A CN114772814 A CN 114772814A CN 202210489612 A CN202210489612 A CN 202210489612A CN 114772814 A CN114772814 A CN 114772814A
- Authority
- CN
- China
- Prior art keywords
- ultrafiltration
- reverse osmosis
- pretreatment
- membrane
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 82
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000010865 sewage Substances 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 136
- 239000012528 membrane Substances 0.000 claims abstract description 118
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000005708 Sodium hypochlorite Substances 0.000 claims abstract description 62
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 238000001179 sorption measurement Methods 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 238000006552 photochemical reaction Methods 0.000 claims description 23
- 230000004907 flux Effects 0.000 claims description 15
- 238000005374 membrane filtration Methods 0.000 claims description 6
- 238000002203 pretreatment Methods 0.000 claims description 3
- 238000004065 wastewater treatment Methods 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 4
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 239000007800 oxidant agent Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 11
- 239000003344 environmental pollutant Substances 0.000 description 9
- 231100000719 pollutant Toxicity 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000009285 membrane fouling Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000011001 backwashing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physical Water Treatments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于对污水通过膜法进行处理的方法及装置,属于污水处理技术领域。The invention relates to a method and a device for treating sewage by a membrane method, and belongs to the technical field of sewage treatment.
背景技术Background technique
近年来,随着水资源短缺的日益严重以及人们对再生水需求的增加,以超滤/反渗透为核心的污水资源化利用技术成为再生水回用领域的热点之一。超滤/反渗透具有优良的脱盐率,出水水质高,占地面积小等优点。因此,开发新型的以超滤/反渗透为核心的新型污水资源化利用技术已成为趋势。In recent years, with the increasing shortage of water resources and the increasing demand for reclaimed water, the recycling technology of sewage with ultrafiltration/reverse osmosis as the core has become one of the hot spots in the field of reclaimed water reuse. Ultrafiltration/reverse osmosis has the advantages of excellent desalination rate, high effluent quality and small footprint. Therefore, it has become a trend to develop a new type of new wastewater resource utilization technology with ultrafiltration/reverse osmosis as the core.
污水资源化处理过程中膜前预处理技术的选择,直接关系着“如何在最大限度地提高膜单元去除污染物效能同时最有效地减轻膜污染”。众多膜前预处理措施中,氧化作为一种普遍而高效的水质预处理技术,可将水中污染物分解转化,改变进水中有机物的性质从而改变其在膜过滤过程中的作用机理。其中,以紫外为核心的氧化手段作为新兴的绿色安全的预氧化技术得到了广泛关注。大量的研究证明,紫外催化氧化能够有效去除进水中污染物能减缓膜污染。The choice of pre-membrane pretreatment technology in the process of wastewater recycling is directly related to "how to maximize the removal efficiency of membrane units and reduce membrane pollution most effectively". Among many pretreatment measures before membranes, oxidation, as a common and efficient water quality pretreatment technology, can decompose and transform pollutants in water, change the properties of organic matter in influent water, and thus change its mechanism of action in the membrane filtration process. Among them, the oxidation method with UV as the core has received extensive attention as an emerging green and safe pre-oxidation technology. A large number of studies have proved that UV catalytic oxidation can effectively remove pollutants from influent water and slow down membrane fouling.
现有污水资源化利用处理中超滤/反渗透的处理技术都存在膜污染的问题。The existing ultrafiltration/reverse osmosis treatment technologies in the recycling and treatment of wastewater all have the problem of membrane fouling.
CN1807268公开一种双膜法水处理系统及水处理方法,包括预处理单元和脱盐单元,在预处理单元后脱盐单元前,设有压力储液罐,预处理单元向压力储液罐提供进液,压力储液罐向脱盐单元提供料液,压力储液罐还向预处理单元提供反冲液。该方法利用压力贮液罐的储压和被关闭进液阀支路的预处理装置因排污阀打开造成的压降而产生的压力差来实施瞬时的脉动反洗。CN102942265A公开一种全膜法水处理一体化装置,通过管道依次连接生水泵、超滤保安过滤器、超滤膜组件构成的超滤装置、超滤水箱、一级反渗透高压泵、反渗透膜组件、二级反渗透高压泵、二级反渗透膜组件、淡水箱、EDI给水泵、EDI装置至除盐水出水;设有超滤反洗水泵连接超滤膜组件进行反洗,酸加药装置、碱加药装置和杀菌剂装置均连接至超滤装置。CN1807268 discloses a double-membrane water treatment system and water treatment method, comprising a pretreatment unit and a desalination unit, a pressure liquid storage tank is arranged after the pretreatment unit and before the desalination unit, and the pretreatment unit provides liquid feed to the pressure liquid storage tank , the pressure liquid storage tank provides feed liquid to the desalination unit, and the pressure liquid storage tank also provides backflush liquid to the pretreatment unit. The method utilizes the storage pressure of the pressure liquid storage tank and the pressure difference generated by the pressure drop caused by the opening of the blowdown valve in the pretreatment device of the closed liquid inlet valve branch to implement instantaneous pulsating backwashing. CN102942265A discloses an integrated device for all-membrane water treatment, wherein a raw water pump, an ultrafiltration security filter, an ultrafiltration membrane assembly composed of an ultrafiltration device, an ultrafiltration water tank, a primary reverse osmosis high-pressure pump, and a reverse osmosis membrane are sequentially connected through pipelines Module, secondary reverse osmosis high pressure pump, secondary reverse osmosis membrane module, fresh water tank, EDI feed pump, EDI device to demineralized water effluent; there is an ultrafiltration backwash pump connected to the ultrafiltration membrane module for backwashing, and an acid dosing device , the alkali dosing device and the bactericide device are all connected to the ultrafiltration device.
上述方法的重点是对超滤装置和反渗透膜组件的反洗方面,并不能有效地解决膜污染的问题。The above-mentioned method focuses on the backwashing of the ultrafiltration device and the reverse osmosis membrane module, and cannot effectively solve the problem of membrane fouling.
发明内容SUMMARY OF THE INVENTION
本发明针对现有污水资源化利用处理中超滤和反渗透处理技术存在的膜污染的问题,提供一种通过紫外、次氯酸钠、活性炭复合预处理并联合超滤和反渗透的污水处理方法,同时提供实现该方法的系统。Aiming at the problem of membrane pollution existing in the ultrafiltration and reverse osmosis treatment technologies in the existing sewage resource utilization and treatment, the invention provides a sewage treatment method through ultraviolet, sodium hypochlorite, activated carbon composite pretreatment combined with ultrafiltration and reverse osmosis, and simultaneously A system for implementing the method is provided.
本发明的复合预处理联合超滤反渗透的污水处理方法,包括以下步骤:The composite pretreatment combined ultrafiltration and reverse osmosis sewage treatment method of the present invention comprises the following steps:
(1)待处理的污水原水加入次氯酸钠混合,进行第一次预处理;(1) The raw water of sewage to be treated is mixed with sodium hypochlorite, and pretreatment is carried out for the first time;
次氯酸钠与原水均匀混合便于后续光化学反应池中紫外光催化次氯酸钠通过高级氧化作用去除原水中污染物。The uniform mixing of sodium hypochlorite and raw water facilitates the removal of pollutants in raw water through advanced oxidation by ultraviolet light catalyzed sodium hypochlorite in the subsequent photochemical reaction pool.
(2)对第一次预处理的原水紫外光照射,进行第二次预处理;(2) irradiating the raw water of the first pretreatment with ultraviolet light to carry out the second pretreatment;
紫外光对原水均匀照射,充分催化次氯酸钠产生氧化能力较高的活性物种,将原水中大分子污染物氧化分解为小分子。The ultraviolet light irradiates the raw water evenly, fully catalyzes the sodium hypochlorite to produce active species with high oxidative ability, and oxidizes and decomposes the macromolecular pollutants in the raw water into small molecules.
(3)第二次预处理的原水加入粉末活性炭混合液,混合搅拌,进行第三次预处理;(3) The raw water of the second pretreatment is added to the powdered activated carbon mixed solution, mixed and stirred, and the third pretreatment is carried out;
粉末炭通过吸附作用来充分去除原水中小分子污染物。Powdered carbon can fully remove small molecule pollutants in raw water by adsorption.
(4)三次预处理的原水加压进入超滤膜过滤;(4) The raw water of the three pretreatments is pressurized into the ultrafiltration membrane for filtration;
(5)超滤膜过滤后的原水进行反渗透过滤。(5) The raw water filtered by the ultrafiltration membrane is subjected to reverse osmosis filtration.
所述步骤(1)中次氯酸钠在原水中的投加量为20-70mg/L。In the step (1), the dosage of sodium hypochlorite in the raw water is 20-70 mg/L.
所述步骤(2)中紫外光辐照强度为4.21mW/cm2,紫外剂量为450mJ/cm2。In the step (2), the ultraviolet radiation intensity is 4.21 mW/cm 2 , and the ultraviolet dose is 450 mJ/cm 2 .
所述步骤(3)中粉末活性炭混合液中活性炭的浓度为0.5~2g/L。In the step (3), the concentration of activated carbon in the powdered activated carbon mixed solution is 0.5-2 g/L.
所述步骤(3)中搅拌的速度为40~80r/min。The stirring speed in the step (3) is 40-80 r/min.
所述步骤(4)中超滤膜组件的膜孔径为0.01~0.1μm,膜通量为40~80L/m2h。In the step (4), the membrane pore size of the ultrafiltration membrane module is 0.01-0.1 μm, and the membrane flux is 40-80 L/m 2 h.
所述步骤(4)中超滤膜过滤的进水压力为20~100KPa。In the step (4), the inlet pressure of the ultrafiltration membrane filtration is 20-100KPa.
所述步骤(4)中超滤膜的过滤运行0.5~1小时。The filtration of the ultrafiltration membrane in the step (4) runs for 0.5 to 1 hour.
所述步骤(5)中反渗透的膜通量为15~25L/m2h。The membrane flux of the reverse osmosis in the step (5) is 15-25 L/m 2 h.
实现上述复合预处理联合超滤反渗透的污水处理系统,采用以下技术方案:To realize the above-mentioned composite pretreatment combined ultrafiltration and reverse osmosis sewage treatment system, the following technical solutions are adopted:
该系统,包括进水泵、次氯酸钠投加池、次氯酸钠混凝器、光化学反应池、活性炭投加池、活性炭吸附反应池、超滤膜组件和反渗透膜组件;进水泵、次氯酸钠混凝器、光化学反应池、活性炭吸附反应池、超滤膜组件和反渗透膜组件依次通过管道连接;次氯酸钠投加池与进水泵和次氯酸钠混凝器之间的连接管道连接,活性炭投加池与光化学反应池和活性炭吸附反应池之间的连接管道连接;光化学反应池内设置有紫外灯;活性炭吸附反应池与超滤膜组件之间设置有加压泵,超滤膜组件与反渗透膜组件之间设置有高压泵。The system includes an inlet pump, a sodium hypochlorite dosing tank, a sodium hypochlorite coagulator, a photochemical reaction pool, an activated carbon dosing pool, an activated carbon adsorption reaction pool, an ultrafiltration membrane module and a reverse osmosis membrane module; an inlet pump, a sodium hypochlorite coagulator, a photochemical The reaction pool, the activated carbon adsorption reaction pool, the ultrafiltration membrane module and the reverse osmosis membrane module are connected by pipelines in turn; the sodium hypochlorite dosing pool is connected with the connecting pipeline between the inlet pump and the sodium hypochlorite coagulator, and the activated carbon dosing pool is connected with the photochemical reaction pool and The connecting pipes between the activated carbon adsorption reaction tanks are connected; the photochemical reaction tank is provided with an ultraviolet lamp; a pressurized pump is provided between the activated carbon adsorption reaction tank and the ultrafiltration membrane module, and a high pressure pump is arranged between the ultrafiltration membrane module and the reverse osmosis membrane module .
所述活性炭投加池和活性炭吸附反应池中均设有搅拌装置;活性炭吸附反应池的底部排泥口设有吸附池排泥阀。A stirring device is provided in the activated carbon dosing pool and the activated carbon adsorption reaction pool; the bottom mud discharge port of the activated carbon adsorption reaction pool is provided with an adsorption pool mud discharge valve.
所述紫外灯的辐照强度为4.21mW/cm2,以能够获得254nm的紫外光。The irradiation intensity of the ultraviolet lamp is 4.21 mW/cm 2 so as to be able to obtain ultraviolet light of 254 nm.
所述超滤膜组件为中空纤维膜组件。所述超滤膜组件由聚醚砜制成。所述超滤膜组件的膜孔径为0.01~0.1μm,膜通量为40~80L/m2h。The ultrafiltration membrane module is a hollow fiber membrane module. The ultrafiltration membrane assembly is made of polyethersulfone. The membrane pore size of the ultrafiltration membrane module is 0.01-0.1 μm, and the membrane flux is 40-80 L/m 2 h.
污水原水通过进水泵输送进次氯酸钠混凝器,同时将次氯酸钠投加池中的次氯酸钠投加进次氯酸钠混凝器,原水与次氯酸钠混合均匀进行第一次预处理;第一次预处理的原水进入光化学反应池由紫外灯的紫外光照射,进行第二次预处理;再进入活性炭吸附反应池,由活性炭投加池注入粉末活性炭混合液,进行第三次预处理;经三次预处理的原水通过加压泵进入超滤膜组件进行过滤,再进入反渗透膜组件进行过滤。The raw water of the sewage is transported into the sodium hypochlorite coagulator through the inlet pump, and at the same time, the sodium hypochlorite in the sodium hypochlorite dosing tank is added to the sodium hypochlorite coagulator, and the raw water and the sodium hypochlorite are evenly mixed for the first pretreatment; the first pretreated raw water enters the photochemical The reaction tank is irradiated by the ultraviolet light of the ultraviolet lamp for the second pretreatment; then it enters the activated carbon adsorption reaction tank, and the powdered activated carbon mixture is injected into the activated carbon dosing tank for the third pretreatment; the raw water after the third pretreatment is added The pressure pump enters the ultrafiltration membrane module for filtration, and then enters the reverse osmosis membrane module for filtration.
本发明的方法是氧化吸附预处理与超滤/反渗透工艺联合,形成一套短流程的污水资源化再生利用工艺。占地面积小,出水水质稳定,通过反渗透膜后的出水浊度、氯化物和硫酸盐等均能满足《城市污水再生应用城市杂用水水质GB/T 18920-2020》的要求。The method of the invention combines the oxidative adsorption pretreatment with the ultrafiltration/reverse osmosis process to form a set of short-flow sewage recycling and utilization process. It occupies a small area and the quality of the effluent is stable. The turbidity, chloride and sulfate of the effluent after passing through the reverse osmosis membrane can meet the requirements of "Urban Sewage Regeneration and Application of Urban Miscellaneous Water Quality GB/T 18920-2020".
本发明中紫外光和次氯酸钠起到高级氧化作用,再接着由吸附剂吸附,在紫外光的辐照条件下,可以更好地催化次氯酸钠产生具有更高氧化能力的活性物种,从而有效去除常规工艺处理效果不佳的难降解有机物。后接活性炭吸附反应池,缩短了水力停留时间,节约了活性炭吸附反应池的空间,从而降低了工程应用中的基建造价,并且强化了污染物的去除效果。对溶解性有机碳去除率可达40%,对大分子(>100kDa)和小分子(<1kDa)有机物去除率可分别达到90%和40%。In the present invention, ultraviolet light and sodium hypochlorite play an advanced oxidation role, which is then adsorbed by an adsorbent. Under the irradiation condition of ultraviolet light, sodium hypochlorite can be better catalyzed to generate active species with higher oxidizing ability, thereby effectively removing conventional processes. Refractory organics with poor treatment effect. The activated carbon adsorption reaction tank is then connected, which shortens the hydraulic retention time and saves the space of the activated carbon adsorption reaction tank, thereby reducing the capital construction cost in engineering applications and strengthening the removal effect of pollutants. The removal rate of dissolved organic carbon can reach 40%, and the removal rate of macromolecular (>100kDa) and small molecule (<1kDa) organic matter can reach 90% and 40%, respectively.
本发明中采用超滤和反渗透作为组合工艺的核心单元,能够进一步截留去除原水中的有机污染物以及细菌等微生物,从而更好地保障了再生水的生物安全性。同时光化学反应池中的紫外灯可以在协同次氯酸钠去除污染物的同时灭活部分微生物,提高了水质安全的保障能力。In the present invention, ultrafiltration and reverse osmosis are used as the core units of the combined process, which can further intercept and remove microorganisms such as organic pollutants and bacteria in the raw water, thereby better ensuring the biological safety of the regenerated water. At the same time, the ultraviolet lamp in the photochemical reaction tank can inactivate some microorganisms while cooperating with sodium hypochlorite to remove pollutants, which improves the guarantee ability of water quality safety.
本发明充分利用了次氯酸钠、紫外光、活性炭组合的方式作为超滤和反渗透膜的预处理,有效的缓解了有机污染物引起的膜污染,且紫外灯的辐照以及活性炭吸附能够减少氧化剂引入到超滤和反渗透膜组件中,这样便减少了对膜组件造成老化损伤的风险,节约了膜材料的成本,同时节约了药剂投加的成本。The invention makes full use of the combination of sodium hypochlorite, ultraviolet light and activated carbon as the pretreatment of ultrafiltration and reverse osmosis membranes, which effectively alleviates membrane pollution caused by organic pollutants, and the irradiation of ultraviolet lamps and activated carbon adsorption can reduce the introduction of oxidants In ultrafiltration and reverse osmosis membrane modules, this reduces the risk of aging damage to the membrane modules, saves the cost of membrane materials, and saves the cost of dosing chemicals.
本发明工艺操作简单,管理方便,自动化程度高,占地面积小,适合于工程化推广,可作为再生水厂或农村小型水厂的建设改造方案。The process of the invention is simple in operation, convenient in management, high in automation and small in floor space, suitable for engineering promotion, and can be used as a construction and renovation plan for a reclaimed water plant or a small rural water plant.
附图说明Description of drawings
图1是本发明复合预处理并联合超滤反渗透的污水处理系统的结构原理示意图。FIG. 1 is a schematic diagram of the structure and principle of the sewage treatment system of the present invention with composite pretreatment combined with ultrafiltration and reverse osmosis.
图中:1.进水泵,2.次氯酸钠投加池,3.次氯酸钠混凝器,4.光化学反应池,5.紫外灯,6.活性炭投加池,7.活性炭吸附反应池,8.加压泵,9.超滤膜组件,10.高压泵,11.反渗透膜组件,12.排污阀,13.排泥阀。In the picture: 1. Inlet water pump, 2. Sodium hypochlorite dosing pool, 3. Sodium hypochlorite coagulator, 4. Photochemical reaction pool, 5. Ultraviolet lamp, 6. Activated carbon dosing pool, 7. Activated carbon adsorption reaction pool, 8. Addition Pressure pump, 9. Ultrafiltration membrane module, 10. High pressure pump, 11. Reverse osmosis membrane module, 12. Sewage valve, 13. Sludge valve.
具体实施方式Detailed ways
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。以下结合附图和实施例对本发明详细说明。The technical solutions of the present invention are not limited to the specific embodiments listed below, but also include any combination of specific embodiments. The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
如图1所示,本实施例的污水处理系统包括进水泵1、次氯酸钠投加池2、次氯酸钠混凝器3、光化学反应池4、活性炭投加池6、活性炭吸附反应池7、加压泵8、超滤膜组件9、高压泵10和反渗透膜组件11。进水泵1、次氯酸钠混凝器3、光化学反应池4、活性炭吸附反应池7、加压泵8、超滤膜组件9、高压泵10和反渗透膜组件11依次通过管道连接。次氯酸钠投加池2设置于进水泵1与次氯酸钠混凝器3之间。活性炭投加池6设置于光化学反应池4与活性炭吸附反应池7之间。As shown in Figure 1, the sewage treatment system of this embodiment includes an
进水泵1与次氯酸钠混凝器3的进水口通过管道连通。次氯酸钠投加池2与进水泵1和次氯酸钠混凝器3之间的连接管道连通。次氯酸钠混凝器3的出水口与光化学反应池4的进水口通过管道连通,光化学反应池4的出水口与活性炭吸附反应池7的中部进水口通过管道连通。活性炭投加池6与光化学反应池4和活性炭吸附反应池7之间的管路连通。活性炭吸附反应池7的中部出水口通过加压泵8与超滤膜组件9的进水口连通。超滤膜组件9的出水口通过高压泵10与反渗透膜组件11的进水口连通。The
次氯酸钠投加池2中盛放次氯酸钠。The sodium
次氯酸钠混凝器3用于原水与次氯酸钠混合,进行预处理。The
光化学反应池4的内部设置有紫外灯5,光化学反应池4的底部排泥口设有排污阀12。紫外灯5竖直设置在光化学反应池4内部。紫外灯5为低压汞灯,强度为4.21mW/cm2。强度为4.21mW/cm2的低压汞灯能够获得254nm的紫外光。紫外灯5沉浸在液面以下。An
活性炭投加池6中设置有搅拌装置,活性炭投加池6中制备有粉末活性炭混合液,通过粉末活性炭与水搅拌而成,粉末活性炭混合液中活性炭的浓度为0.5~2g/L。粉末活性炭比颗粒活性炭等其他形式的活性炭具有更大的比表面积,对小分子污染物的吸附去除能力更强。A stirring device is arranged in the activated
活性炭吸附池7中设有搅拌装置,底部设置排泥口,排泥口处连接排泥阀13。The activated
超滤膜组件9为由聚醚砜制成的中空纤维式膜组件,膜孔径为0.01~0.1μm,膜通量为40~80L/m2h。合理地选择通量可以避免膜污染太过严重(太高)或者浪费膜组件(太低)。超滤膜组件9的进水压力为20~100KPa,这样的进水压力,能够保证膜组件的稳定出水,使得膜污染在可以控制的范围内。The
反渗透膜组件11为现有技术,采用卷式膜,膜材料为聚酰胺、聚砜或聚酯。The reverse
上述系统的运行过程,如下所述。The operation process of the above system is as follows.
1.第一次预处理1. The first preprocessing
待处理的污水原水通过进水泵1输送进次氯酸钠混凝器3,同时将次氯酸钠投加池2中的次氯酸钠投加进次氯酸钠混凝器3,次氯酸钠在原水中的投加量为20-70mg/L。原水与次氯酸钠混合,均匀混凝预处理。The raw water of the sewage to be treated is transported into the
2.第二次预处理2. Second preprocessing
经次氯酸钠第一次预处理的原水进入光化学反应池4。光化学反应池4中的紫外灯5开启,紫外灯5沉浸在液面以下,对光化学反应池4中经次氯酸钠预处理的原水进行紫外光照射,调节紫外灯5的档位,使紫外辐照强度为4.21mW/cm2,紫外剂量为450mJ/cm2。The raw water pretreated by sodium hypochlorite for the first time enters the
3.第三次预处理3. The third preprocessing
第二次预处理的原水进入活性炭吸附反应池7。将活性炭投加池6中的粉末活性炭混合液注入活性炭吸附反应池7。开启活性炭吸附反应池7中的搅拌装置,经次氯酸钠和紫外光预处理的原水与活性炭进行混合搅拌,搅拌速度为40~80r/min。The raw water pretreated for the second time enters the activated carbon
此时原水经过了次氯酸钠、紫外光和活性炭多重预处理。At this time, the raw water has undergone multiple pretreatments with sodium hypochlorite, ultraviolet light and activated carbon.
4.超滤膜过滤4. Ultrafiltration membrane filtration
经次氯酸钠、紫外光和活性炭多重预处理的原水通过加压泵8进入超滤膜组件9进行过滤,控制膜通量在40~80L/m2h,进水压力为20~100KPa。The raw water pretreated by sodium hypochlorite, ultraviolet light and activated carbon enters the
超滤膜组件9过滤运行0.5~1小时后,进行反冲洗,反冲洗废水通过超滤膜组件9底部排水口排出。After the
5.反渗透膜过滤5. Reverse osmosis membrane filtration
由超滤膜组件9过滤后的原水通过高压泵10进入反渗透膜组件11进行过滤,控制反渗透膜通量在15~25L/m2h。The raw water filtered by the
处理后的原水由反渗透膜组件11排出,完成一个运行周期。The treated raw water is discharged from the reverse
6.将步骤2形成的反应后原水重新灌满活性炭吸附反应池7,为下一个运行周期做准备。6. Refill the activated carbon
光化学反应池4中的底部污泥可由排污阀12排出。活性炭吸附反应池7中的底部污泥可由排泥阀13排出。The bottom sludge in the
以下给出具体实施例。Specific examples are given below.
以实际市政污水处理厂出水为目标水体,相关参数如下:Taking the actual municipal sewage treatment plant effluent as the target water body, the relevant parameters are as follows:
次氯酸钠在原水中的投加量为45mg/L。The dosage of sodium hypochlorite in raw water is 45mg/L.
紫外灯5的辐照强度为4.21mW/cm2;紫外剂量为450mJ/cm2。The irradiation intensity of the
粉末活性炭混合液中活性炭的浓度为1.2g/L。The concentration of activated carbon in the powdered activated carbon mixture was 1.2 g/L.
活性炭吸附反应池7中的搅拌速度为60r/min。The stirring speed in the activated carbon
超滤膜组件9的膜孔径为0.06μm,膜通量为60L/m2h;The membrane pore size of the
超滤膜组件9的进水压力为60KPa;超滤膜组件9过滤运行时间0.7小时;The water inlet pressure of the
反渗透膜组件11的控制反渗透膜通量为20L/m2h。The controlled reverse osmosis membrane flux of the reverse
处理结果:process result:
显著缓解了污水处理厂出水引起的膜污染,提高了膜稳定运行时间,延缓了膜通量的下降速率,对溶解性有机碳去除率达到了40%,对大分子(>100kDa)有机物去除率达到了90%,对小分子(<1kDa)有机物去除率达到了40%,对亲水性有机物去除率达到了40%。The membrane fouling caused by the effluent of the sewage treatment plant is significantly alleviated, the stable operation time of the membrane is increased, and the decline rate of the membrane flux is delayed. Reached 90%, the removal rate of small molecules (<1kDa) organics reached 40%, and the removal rate of hydrophilic organics reached 40%.
在本实例中,紫外/次氯酸钠/粉末炭预处理可通过氧化作用将大分子有机物分解为小分子有机物,通过吸附作用将小分子有机物去除,在>100kDa和<1kDa区间,DOC去除率为96.02%和45.14%;对亲水性组分的去除率为45.2%,优于紫外、次氯酸钠预处理和粉末炭预处理,有效降低了原水中的有机物对膜单元的污染负荷。In this example, UV/sodium hypochlorite/powder carbon pretreatment can decompose macromolecular organic matter into small molecular organic matter by oxidation, and remove small molecular organic matter by adsorption. In the range of >100kDa and <1kDa, the DOC removal rate is 96.02% And 45.14%; the removal rate of hydrophilic components is 45.2%, which is better than UV, sodium hypochlorite pretreatment and powder carbon pretreatment, effectively reducing the pollution load of organic matter in raw water to membrane units.
此外,次氯酸钠/紫外/粉末炭预处理对膜污染具有缓解效果。原水未经预处理直接进入膜单元时,超滤膜污染阻力快速上升,超滤膜污染以可逆污染为主,占总污染膜阻力的69.84%,超滤膜比通量快速下降。增加紫外/次氯酸钠预处理后,超滤膜过滤的比通量下降速率减缓,超滤膜比通量与原水直接过滤相比可提升10%;同时超滤膜面污染物积累减少,污染层变得疏松,可逆污染显著降低,总污染膜阻力、可逆污染膜阻力和不可逆污染膜阻力分别比原水未处理时降低了50.40%、69.31%和6.58%;但反渗透膜产水速率及膜面污染的累计无明显变化。In addition, sodium hypochlorite/UV/powder carbon pretreatment has a mitigating effect on membrane fouling. When the raw water directly enters the membrane unit without pretreatment, the fouling resistance of the ultrafiltration membrane rises rapidly. The fouling of the ultrafiltration membrane is mainly reversible fouling, accounting for 69.84% of the total fouling membrane resistance, and the specific flux of the ultrafiltration membrane decreases rapidly. After adding UV/sodium hypochlorite pretreatment, the specific flux of ultrafiltration membrane filtration slows down, and the specific flux of ultrafiltration membrane can be increased by 10% compared with the direct filtration of raw water; at the same time, the accumulation of pollutants on the ultrafiltration membrane surface is reduced, and the pollution layer changes. The total fouling membrane resistance, reversible fouling membrane resistance and irreversible fouling membrane resistance were reduced by 50.40%, 69.31% and 6.58% respectively compared with the untreated raw water; but the reverse osmosis membrane water production rate and membrane surface fouling The accumulation did not change significantly.
增加紫外/次氯酸钠/粉末炭预处理后,超滤膜污染阻力显著减小,超滤膜面污染层变得疏松,总污染膜阻力、可逆污染膜阻力和不可逆膜阻力分别比原水未处理时降低了65.48%、88.64%和18.20%;反渗透膜产水速率的下降速率得到有效减缓,效果优于紫外/次氯酸钠预处理或粉末炭预处理。After adding UV/sodium hypochlorite/powder carbon pretreatment, the fouling resistance of the ultrafiltration membrane was significantly reduced, the fouling layer on the ultrafiltration membrane surface became loose, and the total fouling membrane resistance, reversible fouling membrane resistance and irreversible membrane resistance were respectively lower than those of the untreated raw water. 65.48%, 88.64% and 18.20%; the decline rate of reverse osmosis membrane water production rate was effectively slowed down, and the effect was better than UV/sodium hypochlorite pretreatment or powder carbon pretreatment.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210489612.6A CN114772814A (en) | 2022-05-06 | 2022-05-06 | Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210489612.6A CN114772814A (en) | 2022-05-06 | 2022-05-06 | Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114772814A true CN114772814A (en) | 2022-07-22 |
Family
ID=82435344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210489612.6A Pending CN114772814A (en) | 2022-05-06 | 2022-05-06 | Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114772814A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115557650A (en) * | 2022-10-31 | 2023-01-03 | 上海电力大学 | Mobile device and method for treating soluble organic sewage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070119779A1 (en) * | 2004-01-22 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Method for treating raw water containing hardly decomposable substance |
CN103073133A (en) * | 2011-10-26 | 2013-05-01 | 中国石油化工股份有限公司 | Low-microbial-contamination wastewater deep recycling process |
CN104556437A (en) * | 2013-10-11 | 2015-04-29 | 中国石油化工股份有限公司 | Membrane technology-based municipal sewage deep treatment and recovery method |
CN110893321A (en) * | 2018-09-12 | 2020-03-20 | 无锡利信能源科技有限公司 | System and method for preventing reverse osmosis pollution blocking |
CN112830609A (en) * | 2019-11-25 | 2021-05-25 | 天津大学 | A drinking water purification system and method |
-
2022
- 2022-05-06 CN CN202210489612.6A patent/CN114772814A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070119779A1 (en) * | 2004-01-22 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Method for treating raw water containing hardly decomposable substance |
CN103073133A (en) * | 2011-10-26 | 2013-05-01 | 中国石油化工股份有限公司 | Low-microbial-contamination wastewater deep recycling process |
CN104556437A (en) * | 2013-10-11 | 2015-04-29 | 中国石油化工股份有限公司 | Membrane technology-based municipal sewage deep treatment and recovery method |
CN110893321A (en) * | 2018-09-12 | 2020-03-20 | 无锡利信能源科技有限公司 | System and method for preventing reverse osmosis pollution blocking |
CN112830609A (en) * | 2019-11-25 | 2021-05-25 | 天津大学 | A drinking water purification system and method |
Non-Patent Citations (2)
Title |
---|
孙本达等: "《火力发电厂水处理实用技术问答》", 中国电力出版社, pages: 48 - 49 * |
邢加建: "紫外/氯预处理控制超滤膜污染的效能与机制研究", 《中国博士学位论文全文数据库工程科技II辑》, pages 038 - 184 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115557650A (en) * | 2022-10-31 | 2023-01-03 | 上海电力大学 | Mobile device and method for treating soluble organic sewage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100465112C (en) | Technological process of treating papermaking effluent for reuse based on membrane integrating technique | |
CN106830536A (en) | A kind of advanced treatment process of ferment antibiotics waste water | |
CN107857438B (en) | Zero-emission process for wastewater treatment of chemical enterprises and parks | |
CN108218153A (en) | A kind of system and method for sewage plant Tailwater Depth processing | |
CN110204031B (en) | Optical Fenton-forward osmosis integrated device for combined treatment of biologically refractory organic wastewater and its use method | |
CN104671502A (en) | Online chemical oxidation dynamic membrane wastewater treatment system | |
CN101428941A (en) | Process and apparatus for treating wastewater from pulping papermaking | |
CN104108813B (en) | Refining sewage desalination integrated treatment process and device | |
CN105858950A (en) | Dyeing wastewater advanced treatment method and device by using ozone, oxydol and activated carbon | |
CN105776766A (en) | Advanced treatment system for biorefractory wastewater of industrial park | |
CN105753255A (en) | Advanced treatment recycling system for industrial park wastewater | |
CN106830471A (en) | A kind of method of organic micro-pollutantses in photocatalysis, ultrafiltration, nanofiltration group technology control drinking water | |
CN103145296A (en) | Method and device for treating reverse osmosis concentrated water | |
CN101624246A (en) | Technology for treating and reusing sewerages of industrial circulating water | |
CN105417898B (en) | A method of reverse osmosis concentrated water and hyperfiltration reverse-rinsing water in processing bi-membrane method system | |
CN105417851B (en) | Treatment method of printing and dying wastewater and its Compound biological flocculant preparation method | |
CN114772814A (en) | Sewage treatment method and system combining composite pretreatment and ultrafiltration reverse osmosis | |
CN214735164U (en) | Wastewater treatment system | |
CN200988816Y (en) | Garbage percolating liquid treating system based on film biological reactor-filter film technology | |
CN117756342B (en) | System and method for efficiently removing bisphenol A and fulvic acid from surface water sources | |
CN110563223A (en) | process method for treating difficultly degraded COD (chemical oxygen demand) in produced water of high-sulfur-content gas field | |
CN203200109U (en) | Processing system of reverse osmosis concentrated water | |
CN112591965A (en) | Device for coupling and ultrafiltering water purification by ferrous/ultraviolet synergistic activation of sodium hypochlorite and operation method thereof | |
CN222700145U (en) | Water treatment system for cooperatively removing total organic carbon from biochemical tail water of coal chemical industry | |
CN112919694B (en) | Integrated treatment method and system for leachate of garbage transfer station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220722 |