CN114771877B - Optimal interception guidance method considering navigation error - Google Patents
Optimal interception guidance method considering navigation error Download PDFInfo
- Publication number
- CN114771877B CN114771877B CN202210582482.0A CN202210582482A CN114771877B CN 114771877 B CN114771877 B CN 114771877B CN 202210582482 A CN202210582482 A CN 202210582482A CN 114771877 B CN114771877 B CN 114771877B
- Authority
- CN
- China
- Prior art keywords
- interception
- time
- error
- moment
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000008569 process Effects 0.000 claims abstract description 23
- 238000010845 search algorithm Methods 0.000 claims abstract description 12
- 238000012937 correction Methods 0.000 claims description 91
- 239000011159 matrix material Substances 0.000 claims description 82
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 8
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/242—Orbits and trajectories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
- F41H11/02—Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Navigation (AREA)
Abstract
一种考虑导航误差的最优拦截制导方法,本发明涉及最优拦截制导方法。本发明的目的是为了解决现有实际任务中导航误差的存在,若按照标称设计轨道进行拦截,则终端拦截精度很有可能无法满足末制导的初始条件要求,从而导致拦截任务以失败告终的问题。过程为:一、在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻,并计算得到初始时刻施加的脉冲;二、在初始时刻导航误差存在的情况下,求解最优拦截时刻和初始时刻施加脉冲的误差,同时给出相应的终端拦截误差;三、确定修正脉冲幅值以及修正后的终端拦截误差与修正时刻的解析关系;四、确定修正脉冲施加时刻或对应的时间范围。本发明用于飞行器制导控制技术领域。
An optimal intercept guidance method considering navigation error, the invention relates to an optimal intercept guidance method. The purpose of the present invention is to solve the existence of navigation errors in existing actual missions. If the interception is carried out according to the nominal design orbit, the terminal interception accuracy may not meet the initial condition requirements of the terminal guidance, resulting in the interception mission ending in failure. question. The process is as follows: 1. Use a one-dimensional search algorithm to find the energy-optimized terminal interception time within the interception time range given by the task, and calculate the pulse applied at the initial time; 2. When the navigation error exists at the initial time, solve The optimal interception moment and the error of the applied pulse at the initial moment, and the corresponding terminal interception error is given at the same time; 3. Determine the corrected pulse amplitude and the analytical relationship between the corrected terminal interception error and the corrected time; 4. Determine the corrected pulse application time or corresponding time frame. The invention is used in the technical field of aircraft guidance and control.
Description
技术领域technical field
本发明属于飞行器制导控制技术领域,具体涉及考虑导航误差的最优拦截制导方法。The invention belongs to the technical field of aircraft guidance and control, and in particular relates to an optimal interception and guidance method considering navigation errors.
背景技术Background technique
自1957年世界上第一颗人造卫星发射成功后,人类便真正地进入了太空时代。而后的几十年间,随着航天技术不断发展,越来越多的卫星被送入太空,并且在通信、导航、气象观测以及科学研究等领域发挥了重要的作用,给人类的生活带来了极大的便利。与此同时,各类卫星在军事领域的应用也在快速发展。在现代战争中,由于卫星的轨道高度较高,不受国界和地理条件限制,且不易受到攻击,因此其成为获取战场信息的主要来源。为了在对抗中建立优势,有必要研究如何对这些卫星进行有效拦截。Since the world's first artificial satellite was successfully launched in 1957, mankind has truly entered the space age. In the following decades, with the continuous development of aerospace technology, more and more satellites were sent into space, and played an important role in the fields of communication, navigation, meteorological observation and scientific research, bringing great benefits to human life. Great convenience. At the same time, the application of various satellites in the military field is also developing rapidly. In modern warfare, satellites have become the main source of information on the battlefield because of their high orbital altitude, which are not restricted by national borders and geographical conditions, and are not vulnerable to attacks. In order to establish an advantage in the confrontation, it is necessary to study how to effectively intercept these satellites.
针对拦截起点固定而拦截终点不固定的单脉冲能量最优拦截问题,传统的方法往往是针对目标器和拦截器的标称轨道进行设计,进而在任务约束时间范围内采用一维搜索方法获得能量最优的拦截时刻。但由于实际任务中导航误差的存在,若按照标称设计轨道进行拦截,则终端拦截精度很有可能无法满足末制导的初始条件要求,从而导致拦截任务以失败告终。因此,在拦截过程中,必须通过施加相应的修正脉冲去减小导航误差带来的影响。For the optimal interception problem of monopulse energy with a fixed interception starting point and an unfixed interception end point, the traditional method is often to design the nominal orbits of the target and interceptor, and then use a one-dimensional search method to obtain the energy within the mission-constrained time range optimal interception time. However, due to the existence of navigation errors in actual missions, if the interception is carried out according to the nominal design orbit, the terminal interception accuracy may not meet the initial condition requirements of the terminal guidance, resulting in the interception mission ending in failure. Therefore, in the process of interception, it is necessary to reduce the influence of navigation errors by applying corresponding correction pulses.
发明内容Contents of the invention
本发明的目的是为了解决现有实际任务中导航误差的存在,若按照标称设计轨道进行拦截,则终端拦截精度很有可能无法满足末制导的初始条件要求,从而导致拦截任务以失败告终的问题,而提出一种考虑导航误差的最优拦截制导方法。The purpose of the present invention is to solve the existence of navigation errors in existing actual missions. If the interception is carried out according to the nominal design orbit, the terminal interception accuracy may not meet the initial condition requirements of the terminal guidance, resulting in the interception mission ending in failure. problem, and an optimal intercept guidance method considering navigation error is proposed.
一种考虑导航误差的最优拦截制导方法具体过程为:The specific process of an optimal intercept guidance method considering navigation error is as follows:
步骤一、给定初始时刻t0以及初始时刻拦截器和目标器的标称轨道参数后,设定t0为拦截任务的起始时刻,在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻并计算得到初始时刻施加的脉冲
步骤二、以步骤一中得到的能量最优解作为参考,在初始时刻导航误差存在的情况下,基于最优拦截条件求解最优拦截时刻和初始时刻施加脉冲的误差,同时给出相应的终端拦截误差;
步骤三、在给定修正脉冲的施加时刻t1后,采用解析方法估计施加修正脉冲的幅值以及修正后的终端拦截误差,从而确定修正脉冲幅值以及修正后的终端拦截误差与修正时刻t1的解析关系;
步骤四、确定修正脉冲施加时刻或对应的时间范围。Step 4: Determine the moment when the correction pulse is applied or the corresponding time range.
本发明的有益效果:Beneficial effects of the present invention:
本发明设计了一种考虑导航误差的最优拦截制导方法,以弥补以往只针对标称轨道参数设计工作的不足。该方法考虑了目标器和拦截器的导航误差对能量最优拦截过程的影响,并解析给出了修正脉冲的估计方法,进而设计了一种脉冲修正策略,该策略有利于拦截任务的顺利实现。The present invention designs an optimal interception and guidance method considering navigation error, so as to make up for the deficiency in previous design work only for nominal orbit parameters. This method considers the influence of the navigation error of the target and the interceptor on the energy optimal interception process, and analyzes the estimation method of the correction pulse, and then designs a pulse correction strategy, which is conducive to the smooth realization of the interception task .
本发明提出了一种考虑导航误差的最优拦截制导方法。在本发明中,基于最优拦截条件和相关的偏导数矩阵,解析地给出了最优拦截时刻和初始时刻施加脉冲的误差与初始导航误差的关系。进一步地,对于给定的修正脉冲施加时刻,给出了修正脉冲幅值和终端拦截误差的解析估计方法。采用本发明方法求解导航误差下的能量最优拦截问题,只需要选择合适的修正脉冲时刻,便可以满足任务要求的终端拦截精度。此外,本发明也适用于需要多次施加修正脉冲的情况,只需要在执行完成当前的修正脉冲后再采用本发明中的方法计算下一次满足任务要求的修正脉冲即可。The invention proposes an optimal intercept guidance method considering navigation error. In the present invention, based on the optimal interception condition and the relevant partial derivative matrix, the relationship between the optimal interception moment and the error of the pulse applied at the initial moment and the initial navigation error is analytically given. Furthermore, for a given correction pulse application time, an analytical estimation method for correction pulse amplitude and terminal interception error is given. By adopting the method of the invention to solve the energy optimal interception problem under the navigation error, the terminal interception accuracy required by the task can be satisfied only by selecting a suitable correction pulse time. In addition, the present invention is also applicable to the situation where correction pulses need to be applied multiple times, and it is only necessary to use the method of the present invention to calculate the next correction pulse that meets the task requirements after the current correction pulse is executed.
附图说明Description of drawings
图1为考虑导航误差的Lambert最优制导算法流程图;Figure 1 is a flowchart of the Lambert optimal guidance algorithm considering the navigation error;
图2为单脉冲能量最优拦截问题的几何示意图;Fig. 2 is a schematic diagram of the geometry of the single pulse energy optimal interception problem;
图3为修正脉冲幅值和终端拦截误差标准差随修正时刻的变化关系图;Fig. 3 is a graph showing the relationship between the correction pulse amplitude and the standard deviation of the terminal interception error along with the correction time;
图4为加权指标随修正时刻的变化关系图。Figure 4 is a diagram of the relationship between the weighted index and the modification time.
具体实施方式Detailed ways
具体实施方式一:本实施方式一种考虑导航误差的最优拦截制导方法具体过程为:Specific implementation mode one: the specific process of an optimal interception guidance method considering navigation error in this implementation mode is as follows:
在本方法中所采用的动力学模型均为二体模型,表示为:The kinetic models used in this method are all two-body models, expressed as:
其中,μ表示地球的引力常数,r和v分别表示J2000惯性系航天器的位置矢量和速度矢量,|r|则表示相应位置矢量的大小;表示r的一阶导数,表示v的一阶导数;Among them, μ represents the gravitational constant of the earth, r and v represent the position vector and velocity vector of the J2000 inertial system spacecraft respectively, and |r| represents the size of the corresponding position vector; Indicates the first derivative of r, Indicates the first derivative of v;
步骤一、给定初始时刻t0以及初始时刻拦截器和目标器的标称轨道参数后,设定t0为拦截任务的起始时刻,在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻并计算得到初始时刻施加的脉冲
步骤二、以步骤一中得到的能量最优解作为参考(拦截时刻以及相应的脉冲这两者是对应的,已知已知便可通过Lambert算法求得),考虑在初始时刻导航误差存在的情况下,基于最优拦截条件求解最优拦截时刻和初始时刻施加脉冲的误差(公式13和15),同时给出相应的终端拦截误差(公式16);
步骤三、在给定修正脉冲的施加时刻t1后,采用解析方法估计施加修正脉冲的幅值(以脉冲的幅值标准差评价)以及修正后的终端拦截误差(用终端拦截误差标准差衡量),从而确定修正脉冲幅值以及修正后的终端拦截误差与修正时刻t1的解析关系(公式24和25即为相应的关系);Step 3: After the given correction pulse application time t 1 , the analytical method is used to estimate the amplitude of the applied correction pulse (evaluated by the standard deviation of the pulse amplitude) and the corrected terminal interception error (measured by the standard deviation of the terminal interception error ), so as to determine the analytical relationship between the corrected pulse amplitude and the corrected terminal interception error and the corrected time t1 (equations 24 and 25 are the corresponding relationships);
步骤四、按照设定的某种指标最优或者根据任务给定的相关精度要求确定合适的修正脉冲施加时刻或对应的时间范围。Step 4: Determine the appropriate correction pulse application time or corresponding time range according to the optimal set index or according to the relevant accuracy requirements given by the task.
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中给定初始时刻t0以及初始时刻拦截器和目标器的标称轨道参数后,设定t0为拦截任务的起始时刻,在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻并计算得到初始时刻施加的脉冲 Specific embodiment 2: The difference between this embodiment and
具体过程为:The specific process is:
所述拦截器可以是在轨运行的己方拦截卫星,也可以是己方发射入轨后的拦截导弹;The interceptor can be an intercepting satellite of one's own side running in orbit, or an intercepting missile launched by one's own side into orbit;
所述目标器是敌方在轨运行的卫星或其他航天器;The target device is an enemy orbiting satellite or other spacecraft;
给定初始时刻t0和拦截时间范围[tfmin,tfmax],初始时刻拦截器和目标器的标称轨道参数在J2000地心惯性坐标系下给出,初始时刻拦截器和目标器的标称轨道参数包括拦截器初始时刻的位置矢量和速度矢量以及目标器初始时刻的位置矢量和速度矢量;Given the initial time t 0 and the interception time range [t fmin ,t fmax ], the nominal orbit parameters of the interceptor and the target at the initial time are given in the J2000 geocentric inertial coordinate system, and the nominal orbit parameters of the interceptor and the target at the initial time Said orbit parameters include the position vector and velocity vector of the interceptor at the initial moment and the position vector and velocity vector of the target at the initial moment;
其中拦截器初始时刻的位置矢量和速度矢量分别记为r10和v10,目标器初始时刻的位置矢量和速度矢量分别记为r20和v20;Among them, the position vector and velocity vector at the initial moment of the interceptor are recorded as r 10 and v 10 respectively, and the position vector and velocity vector at the initial moment of the target are respectively recorded as r 20 and v 20 ;
当给定拦截时间范围内的任意一个拦截时刻tf后,则目标器终端位置矢量r2可通过求解Kepler方程得到。记初始位置矢量r1=r10,则转移轨道所需的初始速度矢量vt1便可通过求解Lambert问题得到,即vt1=f(r1,r2,Δt),其中Δt=tf-t0。也就是说,初始时刻所施加的脉冲幅值大小是拦截时间的一元函数,即Δv1=g(tf)。因此,初始时刻施加的最小的脉冲便可通过一维搜索拦截时间tf得到。需要说明的是,由于初始时刻是预先给定的,可假设t0=0,则得Δt=tf,因此在本发明中认为二者含义一致,不进行区分。When any interception moment t f within the interception time range is given, the target terminal position vector r2 can be obtained by solving the Kepler equation. Note the initial position vector r 1 =r 10 , then the initial velocity vector v t1 required for the transfer orbit can be obtained by solving the Lambert problem, that is, v t1 =f(r 1 ,r 2 ,Δt), where Δt=t f - t 0 . That is to say, the amplitude of the pulse applied at the initial moment is a one-variable function of the interception time, that is, Δv 1 =g(t f ). Therefore, the minimum pulse applied at the initial moment can be obtained by one-dimensional search interception time t f . It should be noted that since the initial time is predetermined, it can be assumed that t 0 =0, then Δt=t f , so in the present invention, the meanings of the two are considered to be the same, and no distinction is made.
在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻并计算得到初始时刻施加的脉冲 Use a one-dimensional search algorithm to find the optimal energy-optimized terminal interception time within the interception time range given by the task And calculate the pulse applied at the initial moment
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述在任务给定的拦截时间范围内采用一维搜索算法寻找能量最优的终端拦截时刻并计算得到初始时刻施加的脉冲具体过程为:Specific embodiment 3: The difference between this embodiment and
在步骤一中,采用的一维搜索方法是分段黄金分割法,具体求解过程描述如下:In
首先将拦截时间范围[tfmin,tfmax]等分为N个子区间,在每个子区间内采用黄金分割法求解对应的能量最优解 First, divide the interception time range [t fmin ,t fmax ] into N subintervals, and use the golden section method to solve the corresponding energy optimal solution in each subinterval
最后,通过寻找所得的N个能量最优解中的最小值即可获得整个拦截时间范围内的能量最优解(这两者是对应的,求出便可通过Lambert算法求得);Finally, the energy optimal solution in the entire interception time range can be obtained by finding the minimum value among the obtained N energy optimal solutions (These two are corresponding, find can be obtained by Lambert algorithm );
式中,为第k个子区间内的最优拦截时刻,为第k个子区间内对应的初始时刻施加的脉冲,为拦截时间范围[tfmin,tfmax]内能量最优的终端拦截时刻,为拦截时间范围[tfmin,tfmax]内能量最优的初始时刻施加的脉冲。In the formula, is the optimal interception time in the kth subinterval, is the pulse applied at the corresponding initial moment in the kth subinterval, is the terminal interception time with optimal energy within the interception time range [t fmin ,t fmax ], is the pulse applied at the initial moment with optimal energy within the interception time range [t fmin ,t fmax ].
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as those in
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤二中以步骤一中得到的能量最优解作为参考,考虑在初始时刻导航误差存在的情况下,基于最优拦截条件求解最优拦截时刻和初始时刻施加脉冲的误差(公式13和15),同时给出相应的终端拦截误差;Embodiment 4: The difference between this embodiment and one of
具体过程为:The specific process is:
在步骤二中,最优拦截条件可表示为In
其中in
式中,Δv1为初始时刻所需要施加的速度脉冲,Δt为最优拦截时间,vt1为转移轨道所需的初始速度矢量,T为求转置;In the formula, Δv 1 is the velocity pulse that needs to be applied at the initial moment, Δt is the optimal interception time, v t1 is the initial velocity vector required for the transfer orbit, and T is the transposition;
同时,目标器终端位置矢量(拦截位置)r2可表示为At the same time, the target terminal position vector (interception position) r 2 can be expressed as
r2=Ftr20+Gtv20 (3)r 2 =F t r 20 +G t v 20 (3)
其中in
式中,p2表示目标器轨道的半通径,和分别表示目标器初始时刻和拦截时刻的真近点角,μ表示地球的引力常数;Ft和Gt为拉格朗日系数;|r2|表示目标器终端位置矢量的大小;In the formula, p 2 represents the semi-radius of the target orbit, and respectively represent the true anomaly angle of the target at the initial moment and the interception moment, μ represents the gravitational constant of the earth; F t and G t are the Lagrangian coefficients; |r 2 | represents the size of the target terminal position vector;
对式(3)关于拦截时间Δt求偏导,则可得Taking the partial derivative of equation (3) with respect to the interception time Δt, we can get
最终可得到目标器终端位置矢量(拦截位置)r2关于拦截时间Δt的偏导数为Finally, the partial derivative of the target terminal position vector (interception position) r 2 with respect to the interception time Δt can be obtained as
其中in
式中,I3表示3阶单位矩阵;In the formula, I 3 represents the third-order identity matrix;
目标器拦截时刻真近点角关于拦截时间Δt的偏导数为True anomaly angle at the time of target interception The partial derivative with respect to the interception time Δt is
式中,a2和e2分别为目标轨道的半长轴和偏心率,E2为目标器在拦截时刻的偏近点角;In the formula, a 2 and e 2 are the semi-major axis and eccentricity of the target orbit, respectively, and E 2 is the approach angle of the target at the moment of interception;
假设拦截器在初始时刻的位置和速度导航误差为[δr10,δv10],目标器在初始时刻的位置和速度导航误差为[δr20,δv20];Suppose the position and velocity navigation error of the interceptor at the initial moment is [δr 10 , δv 10 ], and the position and velocity navigation error of the target at the initial moment is [δr 20 , δv 20 ];
则在导航误差存在的情况下,初始时刻所需要施加的速度脉冲为Then in the presence of navigation error, the speed pulse that needs to be applied at the initial moment is
式中,r1表示拦截器初始位置矢量,δ(Δt)表示最优拦截时间的误差,δr2表示目标器终端位置矢量误差;In the formula, r 1 represents the initial position vector of the interceptor, δ(Δt) represents the error of the optimal interception time, δr 2 represents the error of the target terminal position vector;
是通过求解Lambert问题的偏导数矩阵得到的(参见Zhang G,Zhou D,Mortari D,et al.Covariance analysis of Lambert's problem viaLagrange's transfer-time formulation[J].Aerospace science and technology,2018,77:765-773.)(已知r1、r2、Δt,将r1、r2、Δt作为Lambert问题的输入,得到vt1;进而在已知r1、r2、Δt、vt1的情况下,采用上述论文中的方法可输出); It is obtained by solving the partial derivative matrix of the Lambert problem (see Zhang G, Zhou D, Mortari D, et al. Covariance analysis of Lambert's problem via Lagrange's transfer-time formulation [J]. Aerospace science and technology, 2018, 77: 765- 773.) (R 1 , r 2 , Δt are known, and r 1 , r 2 , Δt are used as the input of the Lambert problem, and v t1 is obtained; furthermore, given r 1 , r 2 , Δt, v t1 , Using the method in the above paper, the output );
δr2则可表示为δr 2 can be expressed as
式中,Φ(t)表示目标器从初始时刻到拦截时刻的二体状态转移矩阵,其求解方法已比较成熟(一种简单的方法可参见Reynolds R G.Direct solution of the Keplerianstate transition matrix[J].Journal of Guidance Control and Dynamics,2022.Doi:10.2514/1.G006373.);In the formula, Φ (t) represents the two-body state transition matrix of the target from the initial moment to the interception moment, and its solution method is relatively mature (a simple method can be found in Reynolds R G. Direct solution of the Keplerian state transition matrix[J ].Journal of Guidance Control and Dynamics,2022.Doi:10.2514/1.G006373.);
同时,该二体状态转移矩阵还可表示为分块矩阵的形式At the same time, the two-body state transition matrix can also be expressed in the form of a block matrix
式中,表示目标器拦截时刻位置矢量对初始时刻位置矢量的偏导数,表示目标器拦截时刻的位置矢量对初始时刻速度矢量的偏导数,表示目标器拦截时刻的速度矢量对初始时刻位置矢量的偏导数,表示目标器拦截时刻的速度矢量对初始时刻速度矢量的偏导数;Φ(t)为6×6的矩阵,均表示3×3的矩阵;In the formula, Indicates the partial derivative of the position vector of the target interception moment to the initial moment position vector, Represents the partial derivative of the position vector at the interception moment of the target to the velocity vector at the initial moment, Represents the partial derivative of the velocity vector at the interception moment of the target to the position vector at the initial moment, Represents the partial derivative of the velocity vector at the interception moment of the target to the velocity vector at the initial moment; Φ (t) is a 6×6 matrix, Both represent a 3×3 matrix;
根据最优拦截条件,可得According to the optimal interception condition, we can get
于是,可求得最优拦截时间的误差为Therefore, the error of the optimal interception time can be obtained as
其中in
式中,K表示转移轨道所需的初始速度矢量vt1对最优拦截时间Δt的全导数;In the formula, K represents the total derivative of the initial velocity vector v t1 required for the transfer orbit to the optimal interception time Δt;
为了方便描述,记For convenience of description, remember
式中,A1表示δ(Δt)受δr10影响的系数矩阵,A2表示δ(Δt)受δv10影响的系数矩阵,A3表示δ(Δt)受δr20影响的系数矩阵,A4表示δ(Δt)受δv20影响的系数矩阵;In the formula, A 1 represents the coefficient matrix of δ(Δt) affected by δr 10 , A 2 represents the coefficient matrix of δ(Δt) affected by δv 10 , A 3 represents the coefficient matrix of δ(Δt) affected by δr 20 , A 4 Represents the coefficient matrix of δ(Δt) affected by δv 20 ;
则最优拦截时间的误差可重新写为Then the error of the optimal interception time can be rewritten as
δ(Δt)=A1δr10+A2δv10+A3δr20+A4δv20 (13)δ(Δt)=A 1 δr 10 +A 2 δv 10 +A 3 δr 20 +A 4 δv 20 (13)
初始时刻施加脉冲(速度增量)的误差为The error of applying the pulse (speed increment) at the initial moment is
同样,可简记为Similarly, it can be abbreviated as
δ(Δv1)=B1δr10+B2δv10+B3δr20+B4δv20 (15)δ(Δv 1 )=B 1 δr 10 +B 2 δv 10 +B 3 δr 20 +B 4 δv 20 (15)
其中in
式中,B1表示δ(Δv1)受δr10影响的系数矩阵,B2表示δ(Δv1)受δv10影响的系数矩阵,B3表示δ(Δv1)受δr20影响的系数矩阵,B4表示δ(Δv1)受δv20影响的系数矩阵;In the formula, B 1 represents the coefficient matrix of δ(Δv 1 ) affected by δr 10 , B 2 represents the coefficient matrix of δ(Δv 1 ) affected by δv 10 , B 3 represents the coefficient matrix of δ(Δv 1 ) affected by δr 20 , B 4 represents the coefficient matrix of δ(Δv 1 ) affected by δv 20 ;
最终可得到在导航误差存在的情况下,拦截时刻拦截器和目标器的相对位置误差为In the end, in the presence of navigation errors, the relative position error between the interceptor and the target at the time of interception is
其中in
式中表示拦截器在拦截时刻的位置矢量,表示拦截器在拦截时刻的位置误差矢量,C1表示δ(Δrf)受δr10影响的系数矩阵,C2表示δ(Δrf)受δv10影响的系数矩阵,C3表示δ(Δrf)受δr20影响的系数矩阵,C4表示δ(Δrf)受δv20影响的系数矩阵;In the formula Indicates the position vector of the interceptor at the moment of interception, Represents the position error vector of the interceptor at the moment of interception, C 1 represents the coefficient matrix of δ(Δr f ) affected by δr 10 , C 2 represents the coefficient matrix of δ(Δr f ) affected by δv 10 , C 3 represents the coefficient matrix of δ(Δr f ) is the coefficient matrix affected by δr 20 , C 4 represents the coefficient matrix of δ(Δr f ) affected by δv 20 ;
需要说明的是的求解过程与的求解过程基本一致,只需要将相应的参数更换为转移轨道的参数即可(公式3-8是基于目标器的参数,即r20,v20和Δt进行推导的,其他参数都可在已知这三个量之后计算得到,而转移轨道对应的这三个参数为r10(或r1,前面定义了二者是等价的),vt1和Δt,将r20,v20和Δt相应替换为r10,vt1和Δt,再进行公式3-8的推导便可求解得到);It should be noted The solution process and The solution process is basically the same, you only need to replace the corresponding parameters with the parameters of the transfer orbit (Equation 3-8 is derived based on the parameters of the target, namely r 20 , v 20 and Δt, other parameters can be found in the After knowing these three quantities, the three parameters corresponding to the transfer orbit are r 10 (or r 1 , the two are equivalent as defined above), v t1 and Δt, and r 20 , v 20 and Δt Correspondingly replaced by r 10 , v t1 and Δt, and then the derivation of formula 3-8 can be solved to get );
由此,若给定初始时刻拦截器的导航误差协方差矩阵为[Pr10,Pv10],目标器的导航误差协方差矩阵为[Pr20,Pv20],则最优拦截时刻的误差方差为:Therefore, if the navigation error covariance matrix of the interceptor at the given initial moment is [P r10 , P v10 ], and the navigation error covariance matrix of the target is [P r20 , P v20 ], then the error variance at the optimal interception time for:
最优拦截时刻的误差标准差为:The error standard deviation at the optimal interception moment is:
初始时刻施加脉冲的误差协方差矩阵为The error covariance matrix of the pulse applied at the initial moment is
初始时刻施加脉冲幅值的标准差为The standard deviation of the applied pulse amplitude at the initial moment is
式中,trace()表示求解矩阵的迹;In the formula, trace() represents the trace of the solution matrix;
终端相对位置的误差协方差矩阵为The error covariance matrix of the relative position of the terminal is
终端相对距离的标准差为The standard deviation of the terminal relative distance is
式中,E[·]表示数学期望;In the formula, E[ ] represents mathematical expectation;
在步骤二和步骤三中,终端拦截误差具体为拦截器和目标器在最优拦截时刻的相对距离误差。In
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤三中在给定修正脉冲的施加时刻t1后,采用解析方法估计施加修正脉冲的幅值(以脉冲的幅值标准差评价)以及修正后的终端拦截误差(用终端拦截误差标准差衡量),从而确定修正脉冲幅值以及修正后的终端拦截误差与修正时刻t1的解析关系(公式24和25即为相应的关系);具体过程为:Specific embodiment five: the difference between this embodiment and one of specific embodiments one to four is that in the step three, after the application time t1 of the given correction pulse, the analytical method is used to estimate the amplitude of the applied correction pulse (in the form of pulse Amplitude standard deviation evaluation) and the corrected terminal interception error (measured by the terminal interception error standard deviation), so as to determine the analytical relationship between the corrected pulse amplitude and the corrected terminal interception error and the correction time t1 (Formulas 24 and 25 is the corresponding relationship); the specific process is:
假设修正时刻得到的拦截器和目标器的位置速度导航误差分别为[δr11,δv11]和[δr21,δv21];Assume that the position and velocity navigation errors of the interceptor and the target at the time of correction are [δr 11 , δv 11 ] and [δr 21 , δv 21 ], respectively;
此时,按照修正时刻得到的拦截器和目标器的位置速度导航误差分别为[δr11,δv11]和[δr21,δv21]可预测得到目标器在终端拦截时刻的位置误差为At this time, according to the position and velocity navigation errors of the interceptor and the target obtained at the correction time are [δr 11 , δv 11 ] and [δr 21 , δv 21 ] respectively, it can be predicted that the position error of the target at the terminal interception time is
式中,为目标器从修正时刻t1到拦截时刻tf的状态转移矩阵;为目标器拦截时刻位置矢量对修正时刻位置矢量的偏导数矩阵,为目标器拦截时刻位置矢量对修正时刻速度矢量的偏导数矩阵;In the formula, is the state transition matrix of the target from the correction time t 1 to the interception time t f ; is the partial derivative matrix of the position vector at the interception time of the target to the position vector at the correction time, is the partial derivative matrix of the position vector at the interception moment of the target to the velocity vector at the correction moment;
假设t1时刻施加的修正脉冲矢量为q,则按照修正时刻得到的拦截器和目标器的位置速度导航误差分别为[δr11,δv11]和[δr21,δv21]计算得到拦截器在终端拦截时刻的位置误差为Assuming that the corrected pulse vector applied at time t 1 is q, the position and velocity navigation errors of the interceptor and the target obtained at the corrected time are [δr 11 , δv 11 ] and [δr 21 , δv 21 ] to calculate the interceptor at The position error at the moment of terminal interception is
式中,为拦截器从修正时刻t1到拦截时刻tf的状态转移矩阵;为拦截器拦截时刻位置矢量对修正时刻位置矢量的偏导数矩阵,为拦截器拦截时刻位置矢量对修正时刻速度矢量的偏导数矩阵;In the formula, is the state transition matrix of the interceptor from the modification time t 1 to the interception time t f ; is the partial derivative matrix of the position vector at the interception time of the interceptor to the position vector at the correction time, is the partial derivative matrix of the position vector at the interception time of the interceptor to the velocity vector at the correction time;
由于施加修正脉冲的目的是使得拦截器和目标器在拦截时刻处于同一位置,即满足如下条件Since the purpose of applying the correction pulse is to make the interceptor and the target at the same position at the moment of interception, that is, the following conditions are met
则可计算得到施加的修正脉冲为Then the applied correction pulse can be calculated as
上式可以简记为The above formula can be abbreviated as
其中in
式中,是D1表示q受δr10影响的系数矩阵;D2表示q受δv10影响的系数矩阵;D3表示q受δr20影响的系数矩阵;D4表示q受δv20影响的系数矩阵;D5表示q受δr11影响的系数矩阵;D6表示q受δv11影响的系数矩阵;D7表示q受δr21影响的系数矩阵;D8表示q受δv21影响的系数矩阵;where D 1 represents the coefficient matrix of q affected by δr 10 ; D 2 represents the coefficient matrix of q affected by δv 10 ; D 3 represents the coefficient matrix of q affected by δr 20 ; D 4 represents the coefficient of q affected by δv 20 matrix; D 5 represents the coefficient matrix of q affected by δr 11 ; D 6 represents the coefficient matrix of q affected by δv 11 ; D 7 represents the coefficient matrix of q affected by δr 21 ; D 8 represents the coefficient matrix of q affected by δv 21 ;
则施加修正脉冲的协方差矩阵为Then the covariance matrix of the applied correction pulse is
Pq=E[qqΤ]P q =E[qq Τ ]
施加修正脉冲幅值的标准差为The standard deviation of the applied correction pulse amplitude is
在此基础上,拦截器的真实初始状态,在施加通过带有导航误差的轨道数据计算得到的“不准确”的初始脉冲和修正脉冲后,在最优拦截时刻,拦截器和目标器的真实的相对位置误差可表示为On this basis, the real initial state of the interceptor, after applying the "inaccurate" initial pulse and correction pulse calculated by the orbit data with navigation error, at the optimal interception time, the real interceptor and target The relative position error of can be expressed as
式中,是拦截器真实的初始状态在施加“不准确”的初始脉冲和修正脉冲后,在拦截时刻的位置误差;In the formula, is the position error of the interceptor at the moment of interception after the "inaccurate" initial pulse and correction pulse are applied to the real initial state of the interceptor;
则施加修正后的终端相对位置误差协方差矩阵为Then the covariance matrix of the terminal relative position error after applying the correction is
施加修正后的终端相对距离的标准差为The standard deviation of the terminal relative distance after applying the correction is
综上估计得到在t1时刻施加的修正脉冲q和施加修正后的终端相对位置误差以及计算得到相应修正脉冲幅值标准差σ(q)和修正后的终端拦截误差标准差 In summary, the correction pulse q applied at time t 1 and the terminal relative position error after correction are obtained And calculate the standard deviation of the corresponding corrected pulse amplitude σ(q) and the corrected standard deviation of the terminal interception error
本发明中,采用终端拦截误差的1σ值作为衡量终端拦截精度的指标,其中σ(Δrf)对应于不施加修正脉冲的情况,对应于施加修正脉冲的情况;In the present invention, the 1σ value of the terminal interception error is used as an index to measure the terminal interception accuracy, wherein σ(Δr f ) corresponds to the situation where no correction pulse is applied, Corresponding to the case of applying a correction pulse;
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as in one of the
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述步骤四中按照设定的某种指标最优或者根据任务给定的相关精度要求,确定合适的修正脉冲施加时刻或对应的时间范围;具体过程为:Embodiment 6: The difference between this embodiment and one of
在步骤四中,某种指标可假设为终端拦截误差标准差和修正脉冲幅值标准差σ(q)的加权指标。根据步骤三中的结果可知和σ(q)均是修正脉冲施加时刻t1的一元函数,可表示为In step four, some indicator can be assumed to be terminal intercept error standard deviation and the weighted index of the standard deviation σ(q) of the corrected pulse amplitude. According to the results in
式中,h1()表示终端拦截误差标准差和修正脉冲施加时刻的函数关系,h2()表示修正脉冲幅值标准差和修正脉冲施加时刻的函数关系;In the formula, h 1 () represents the functional relationship between the terminal interception error standard deviation and the correction pulse application time, and h 2 () represents the functional relationship between the correction pulse amplitude standard deviation and the correction pulse application time;
因此,可设计加权指标J为Therefore, the weighted index J can be designed as
其中J表示加权指标,w1和w2分别表示两个指标的权重系数,且满足w1+w2=1,和是归一化参数,可根据任务需求合理设计使得归一化后两个指标的量级相当;Where J represents the weighted index, w 1 and w 2 represent the weight coefficients of the two indexes respectively, and satisfy w 1 +w 2 =1, and is a normalization parameter, which can be reasonably designed according to the task requirements so that the magnitudes of the two indicators after normalization are equivalent;
最终,加权指标可表示为修正脉冲施加时刻的一元函数,即J=h3(t1),进而可通过一维搜索算法确定使得加权指标J最优的修正脉冲施加时刻;Finally, the weighting index can be expressed as a unary function of the moment of applying the correction pulse, that is, J=h 3 (t 1 ), and then a one-dimensional search algorithm can be used to determine the moment of applying the correction pulse that makes the weighting index J optimal;
式中,h3()表示加权指标J和修正脉冲施加时刻t1的函数关系。In the formula, h 3 () represents the functional relationship between the weighting index J and the correction pulse application time t 1 .
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the
具体实施方式七:本实施方式与具体实施方式一至五之一不同的是,所述步骤四中按照设定的某种指标最优或者根据任务给定的相关精度要求,确定合适的修正脉冲施加时刻或对应的时间范围;具体过程为:Embodiment 7: The difference between this embodiment and one of
在步骤四中,给定任务的相关精度要求可以考虑为对的精度要求,如设置的精度上限为 In step four, the relative accuracy requirements for a given task can be considered as The accuracy requirements, such as setting has an upper precision limit of
由于是脉冲修正时刻的一元函数。因此,可通过二分法求解方程的零根,从而得到满足终端拦截精度要求的修正脉冲施加时刻范围;because is a unary function of the pulse correction time. Therefore, the equation can be solved by bisection The zero root of , so as to obtain the corrected pulse application time range that meets the requirements of terminal interception accuracy;
式中,h1()表示终端拦截误差标准差和修正脉冲施加时刻的函数关系。In the formula, h 1 () represents the functional relationship between the terminal interception error standard deviation and the correction pulse application time.
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the
采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:
实施例一:Embodiment one:
设初始时刻拦截器初始时刻的标称位置速度矢量为:Let the nominal position velocity vector of the interceptor at the initial moment be:
目标器初始时刻的标称位置速度矢量为:The nominal position and velocity vector of the target at the initial moment is:
拦截器的导航误差标准差为The standard deviation of the interceptor's navigation error is
目标器的导航误差标准差为The standard deviation of the navigation error of the target is
首先,设置初始时刻t0=0,拦截终端时刻的搜索范围为[0,14400]s,然后在标称状态下,求解拦截起点固定而拦截终点不定的能量最优单脉冲拦截问题。最终通过分段黄金分割法搜索得到最优拦截时刻标称值为初始时刻施加脉冲的标称值为其脉冲幅值大小为 First, set the initial time t 0 =0, and the search range of the interception terminal time is [0,14400]s, and then under the nominal state, solve the energy-optimal monopulse interception problem with a fixed interception starting point and an uncertain interception end point. Finally, the nominal value of the optimal interception time is obtained by searching the segmented golden section method The nominal value of the pulse applied at the initial moment is Its pulse amplitude is
在考虑初始时刻拦截器和目标器的导航误差存在的情况下,根据步骤二中的解析方法可计算得到最优拦截时刻、机动脉冲幅值以及终端拦截误差标准差,并采用Monte-Carlo方法打靶仿真1000次进行验证,结果如表1所示:Considering the existence of the navigation error between the interceptor and the target at the initial moment, the optimal interception time, maneuver pulse amplitude, and terminal interception error standard deviation can be calculated according to the analytical method in
表1初始导航误差对最优拦截参数的影响(1σ)Table 1 Influence of initial navigation error on optimal intercept parameters (1σ)
从上述结果可以发现,在考虑初始导航误差存在的情况下,若按标称设计结果进行拦截,终端拦截误差标准差(1σ)约为50km,拦截任务极有可能失败。因此,必须在拦截过程中施加相应的修正脉冲弥补导航误差对终端拦截精度的影响。From the above results, it can be found that, considering the existence of the initial navigation error, if the interception is carried out according to the nominal design result, the standard deviation of the terminal interception error (1σ) is about 50km, and the interception mission is very likely to fail. Therefore, corresponding correction pulses must be applied during the interception process to compensate for the influence of navigation errors on terminal interception accuracy.
首先根据步骤三中的结果,分析不同修正脉冲施加时刻对施加脉冲幅值和终端拦截误差的影响,具体情况如图3所示;First, according to the results in
情况一:设置归一化参数加权系数取为w1=w2=0.5。则加权指标随修正时刻的变化情况如图4所示;Case 1: Setting normalization parameters The weighting coefficient is taken as w 1 =w 2 =0.5. Then, the change of the weighted index with the correction time is shown in Figure 4;
图4显示,加权指标在整个拦截过程中存在一个极小值点,因此采用黄金分割法求得加权指标极小值处对应的修正时刻为t1=5333.767s。采用步骤三中的方法可估计得到该时刻施加的修正脉冲幅值标准差为σ(q)=0.0142km/s,修正后的终端拦截误差标准差为为了验证所得结果的正确性,采用Monte-Carlo方法打靶仿真1000次,对所得结果进行统计分析,得到修正脉冲幅值标准差为0.0144km/s,修正后的终端拦截误差标准差为13.7425km。可以看出与解析方法所得结果基本一致,证明了本发明中方法的有效性。Figure 4 shows that there is a minimum value point in the weighting index throughout the interception process, so the correction time corresponding to the minimum value of the weighting index obtained by using the golden section method is t 1 =5333.767s. Using the method in
情况二:设置任务对终端拦截精度的要求为由于为拦截时刻t1的函数,因此,只要求解方程的零根即可。采用二分法求解得到方程的解为t1=6332.827s,即修正脉冲只需在该时刻之后添加,即可满足任务给定的终端拦截精度要求。由本发明中的解析方法可计算得到,在该时刻施加的修正脉冲幅值标准差为σ(q)=0.0200km/s,修正后的终端拦截误差标准差为采用Monte-Carlo方法打靶仿真1000次,对所得结果进行统计分析,得到修正脉冲幅值标准差为0.0203km/s,修正后的终端拦截误差标准差为10.0493km。由此说明,本发明所提出的方法是正确有效的。Situation 2: The requirement of setting task for terminal interception accuracy is because is a function of the interception time t 1 , therefore, only the solution of the equation The zero roots of . The solution of the equation obtained by using the dichotomy method is t 1 =6332.827s, that is, the correction pulse only needs to be added after this time to meet the terminal interception accuracy requirement given by the task. Can be calculated by the analytical method in the present invention, the correction pulse amplitude standard deviation that applies at this moment is σ (q)=0.0200km/s, the terminal interception error standard deviation after correction is The Monte-Carlo method was used to simulate 1000 times of target shooting, and the statistical analysis of the obtained results showed that the standard deviation of the corrected pulse amplitude was 0.0203km/s, and the standard deviation of the corrected terminal interception error was 10.0493km. This shows that the method proposed by the present invention is correct and effective.
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210582482.0A CN114771877B (en) | 2022-05-26 | 2022-05-26 | Optimal interception guidance method considering navigation error |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210582482.0A CN114771877B (en) | 2022-05-26 | 2022-05-26 | Optimal interception guidance method considering navigation error |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114771877A CN114771877A (en) | 2022-07-22 |
CN114771877B true CN114771877B (en) | 2022-11-18 |
Family
ID=82409083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210582482.0A Active CN114771877B (en) | 2022-05-26 | 2022-05-26 | Optimal interception guidance method considering navigation error |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114771877B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118770578B (en) * | 2024-07-29 | 2024-12-13 | 哈尔滨工业大学 | Space-based interception guidance control method and system for same-orbit satellite group |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000283699A (en) * | 1999-03-31 | 2000-10-13 | Mitsubishi Electric Corp | Guidance and control system for missile |
US6302354B1 (en) * | 2000-06-07 | 2001-10-16 | The Aerospace Corporation | Space vehicular fly-by guidance method |
JP2009198175A (en) * | 2009-06-08 | 2009-09-03 | Technical Research & Development Institute Ministry Of Defence | Active defensive method against missile |
CN108363299A (en) * | 2018-01-26 | 2018-08-03 | 北京航空航天大学 | A kind of optimal terminal guidance method of exosphere interception |
US10386165B1 (en) * | 2016-03-18 | 2019-08-20 | Lockheed Martin Corporation | Flexible energy management kill vehicle for exo-atmospheric intercept |
CN110550240A (en) * | 2019-09-11 | 2019-12-10 | 哈尔滨工业大学 | Method for intercepting multi-star cooperative game |
CN111125926A (en) * | 2019-12-30 | 2020-05-08 | 哈尔滨工业大学 | A state estimation method for interceptor aircraft based on variable structure multi-model |
CN113788166A (en) * | 2021-09-16 | 2021-12-14 | 中国科学院国家天文台 | Differential interception and tracking method based on orbital error of space objects |
CN113911398A (en) * | 2021-11-09 | 2022-01-11 | 中国人民解放军火箭军工程大学 | Aircraft monopulse avoidance strategy determination method and system |
CN114357807A (en) * | 2022-03-11 | 2022-04-15 | 北京航空航天大学 | An optimal medium guidance method and device for extra-atmospheric interception |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7370834B2 (en) * | 1993-11-12 | 2008-05-13 | The Baron Company, Ltd. | Apparatus and methods for in-space satellite operations |
JP4046476B2 (en) * | 2001-02-01 | 2008-02-13 | 三菱電機株式会社 | Navigation calculation apparatus and navigation calculation method |
DE102007007403A1 (en) * | 2007-02-12 | 2008-08-21 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Method and device for protection against flying attack ammunition |
EP2603769A4 (en) * | 2010-08-12 | 2015-05-13 | Us Gov Sec Navy | SYSTEM AND METHOD FOR ENHANCED ORBITAL COVARIANCE ESTIMATION AND ANALYSIS (OCEAN) |
KR101647479B1 (en) * | 2014-09-25 | 2016-08-10 | 국방과학연구소 | System and method for simulation of real time visualizable electronic warfare |
CN106529073B (en) * | 2016-11-24 | 2019-11-12 | 哈尔滨工业大学 | Analysis method of handover condition of hypersonic target interceptor based on interception geometry |
FR3094589B1 (en) * | 2019-03-28 | 2021-02-19 | Thales Sa | SYSTEM AND METHOD FOR ESTIMATING A SATELLITE ANTENNA POINTING ERROR |
CN110926464B (en) * | 2019-12-11 | 2020-10-16 | 中国人民解放军海军潜艇学院 | Inertial navigation method and system based on dual modes |
DE102020006465B4 (en) * | 2020-10-21 | 2022-06-30 | Diehl Defence Gmbh & Co. Kg | Interceptor missile and method of guiding it |
-
2022
- 2022-05-26 CN CN202210582482.0A patent/CN114771877B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000283699A (en) * | 1999-03-31 | 2000-10-13 | Mitsubishi Electric Corp | Guidance and control system for missile |
US6302354B1 (en) * | 2000-06-07 | 2001-10-16 | The Aerospace Corporation | Space vehicular fly-by guidance method |
JP2009198175A (en) * | 2009-06-08 | 2009-09-03 | Technical Research & Development Institute Ministry Of Defence | Active defensive method against missile |
US10386165B1 (en) * | 2016-03-18 | 2019-08-20 | Lockheed Martin Corporation | Flexible energy management kill vehicle for exo-atmospheric intercept |
CN108363299A (en) * | 2018-01-26 | 2018-08-03 | 北京航空航天大学 | A kind of optimal terminal guidance method of exosphere interception |
CN110550240A (en) * | 2019-09-11 | 2019-12-10 | 哈尔滨工业大学 | Method for intercepting multi-star cooperative game |
CN111125926A (en) * | 2019-12-30 | 2020-05-08 | 哈尔滨工业大学 | A state estimation method for interceptor aircraft based on variable structure multi-model |
CN113788166A (en) * | 2021-09-16 | 2021-12-14 | 中国科学院国家天文台 | Differential interception and tracking method based on orbital error of space objects |
CN113911398A (en) * | 2021-11-09 | 2022-01-11 | 中国人民解放军火箭军工程大学 | Aircraft monopulse avoidance strategy determination method and system |
CN114357807A (en) * | 2022-03-11 | 2022-04-15 | 北京航空航天大学 | An optimal medium guidance method and device for extra-atmospheric interception |
Non-Patent Citations (3)
Title |
---|
基于微分改正的Lambert拦截摄动修正方法研究;刘光明等;《弹箭与制导学报》;20091015(第05期);全文 * |
小卫星追踪拦截制导问题研究;齐映红;《中国博士学位论文全文数据库工程科技II辑》;20191215(第12期);全文 * |
航天器轨道的不确定性传播与机动优化;马慧东;《中国优秀硕士学位论文全文数据库工程科技II辑》;20210215(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114771877A (en) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11313698B2 (en) | Method for initial alignment of radar assisted airborne strapdown inertial navigation system | |
CN107966156B (en) | A Guidance Law Design Method Applicable to the Vertical Recovery Section of a Launch Vehicle | |
Soken et al. | UKF-based reconfigurable attitude parameters estimation and magnetometer calibration | |
CN106979781B (en) | High-precision transfer alignment method based on distributed inertial network | |
CN104061928B (en) | Method for automatically and preferentially using star sensor information | |
Ruiping et al. | Trajectory prediction of ballistic missiles using Gaussian process error model | |
CN108534783A (en) | A kind of aircraft navigation method based on Beidou navigation technology | |
Maley | Efficient attitude estimation for a spin-stabilized projectile | |
CN112414413A (en) | Relative angular momentum-based angle-only maneuvering detection and tracking method | |
CN114771877B (en) | Optimal interception guidance method considering navigation error | |
CN110779531B (en) | A space-based method for precise orbit determination using only angular differential evolution | |
CN110262240B (en) | Guidance Law Design Method for Split Guidance | |
Yang et al. | A high-accuracy system model and accuracy evaluation method for transfer alignment | |
CN104848857A (en) | Method for automatically distributing accuracy indexes of ballistic missile inertia measurement system | |
Linyu et al. | A analytical method of trajectory prediction considering J 2 perturbations and including short-period terms | |
CN102980583B (en) | Ballistic missile boosting section tracking method based on dimension-augmenting shifted Rayleigh filtering | |
Huang et al. | Radar tracking for hypersonic glide vehicle based on aerodynamic model | |
CN111090830B (en) | On-orbit light pressure identification method for high-orbit non-cooperative target | |
CN107747944A (en) | Airborne distributed POS Transfer Alignments and device based on fusion weight matrix | |
Weng et al. | Estimation algorithm of pod installation angles based on cubature Kalman filter | |
Ma et al. | Impact time control guidance law for guided projectile considering time-varying velocity | |
CN114964237B (en) | Time zero point deviation correction method based on feature discrimination and mathematical inference | |
CN111475767A (en) | Minimum energy trajectory strict construction method considering earth rotation influence | |
CN114923489B (en) | A orbital maneuver optimization method for improving the observability of an autonomous navigation system | |
Kang et al. | Integrated Navigation Method of Aerospace Vehicle Based on Rank Statistics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |