CN114763546B - dU5' adapter and application thereof, and cDNA library constructed by same - Google Patents
dU5' adapter and application thereof, and cDNA library constructed by same Download PDFInfo
- Publication number
- CN114763546B CN114763546B CN202110037475.8A CN202110037475A CN114763546B CN 114763546 B CN114763546 B CN 114763546B CN 202110037475 A CN202110037475 A CN 202110037475A CN 114763546 B CN114763546 B CN 114763546B
- Authority
- CN
- China
- Prior art keywords
- adapter
- nucleic acid
- adaptor
- cdna
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002299 complementary DNA Substances 0.000 title claims abstract description 50
- JTBBWRKSUYCPFY-UHFFFAOYSA-N 2,3-dihydro-1h-pyrimidin-4-one Chemical compound O=C1NCNC=C1 JTBBWRKSUYCPFY-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000004048 modification Effects 0.000 claims abstract description 17
- 238000012986 modification Methods 0.000 claims abstract description 17
- 230000000295 complement effect Effects 0.000 claims abstract description 12
- 230000026731 phosphorylation Effects 0.000 claims abstract description 8
- 238000006366 phosphorylation reaction Methods 0.000 claims abstract description 8
- 239000012634 fragment Substances 0.000 claims abstract description 5
- 125000006850 spacer group Chemical group 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 101150010487 are gene Proteins 0.000 claims abstract description 3
- 238000003776 cleavage reaction Methods 0.000 claims description 39
- 230000007017 scission Effects 0.000 claims description 39
- 238000010276 construction Methods 0.000 claims description 28
- 108090000790 Enzymes Proteins 0.000 claims description 26
- 102000004190 Enzymes Human genes 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 108020004707 nucleic acids Proteins 0.000 claims description 23
- 102000039446 nucleic acids Human genes 0.000 claims description 23
- 150000007523 nucleic acids Chemical class 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 19
- 125000003729 nucleotide group Chemical group 0.000 claims description 19
- 238000000746 purification Methods 0.000 claims description 19
- 239000000872 buffer Substances 0.000 claims description 16
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 claims description 3
- 230000009870 specific binding Effects 0.000 claims 1
- 238000012408 PCR amplification Methods 0.000 abstract description 13
- 239000000539 dimer Substances 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 13
- 238000011160 research Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 10
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 239000008118 PEG 6000 Substances 0.000 description 6
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000027455 binding Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000006254 arylation reaction Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000011535 reaction buffer Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 2
- 108091081406 G-quadruplex Proteins 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010959 commercial synthesis reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012165 high-throughput sequencing Methods 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012803 optimization experiment Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1096—Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B50/00—Methods of creating libraries, e.g. combinatorial synthesis
- C40B50/06—Biochemical methods, e.g. using enzymes or whole viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B80/00—Linkers or spacers specially adapted for combinatorial chemistry or libraries, e.g. traceless linkers or safety-catch linkers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical Field
本发明属于生物技术领域,涉及一种dU5’衔接子及其应用和构建的cDNA文库。The invention belongs to the field of biotechnology and relates to a dU5' adapter and its application and constructed cDNA library.
背景技术Background technique
cDNA文库构建对很多高通量测序应用至关重要。近年来由于开发了多种cDNA文库构建方法,达到对RNA新特性的探索和研究目的,例如,RNA结构领域的研究深入。cDNA library construction is crucial for many high-throughput sequencing applications. In recent years, a variety of cDNA library construction methods have been developed to explore and study new properties of RNA, for example, in-depth research in the field of RNA structure.
近年来本研究团队开发了RNA G-四链体结构测序(rG4-seq)技术(Kwok,Marsicoet al.2016),从转录组水平揭示了RNA G-四链体结构存在于人体内,为进一步研究rG4结构和功能的研究提供有效的依据,其中文库构建所用到的5’衔接子可以降低连接cDNA过程中的非特异结合,从而提高连接效率,此项设计已申请专利(No.9,816,120,USA,授权)。但是,rG4-seq测序技术的实验流程需要的RNA起始量较大,文库构建时间长,因此我们对整个cDNA文库构建过程的一些关键实验步骤做了系统性评估与优化,希望提高文库构建的效率与质量,此项研究成果已于2019年发表(Yeung,Zhao et al.2019),并申请了专利(No.15/957,037,USA,审中)。In recent years, our research team has developed RNA G-quadruplex structure sequencing (rG4-seq) technology (Kwok, Marsico et al. 2016), which revealed the existence of RNA G-quadruplex structure in the human body from the transcriptome level, providing an effective basis for further research on rG4 structure and function. The 5' adapter used in library construction can reduce non-specific binding during cDNA ligation, thereby improving ligation efficiency. This design has been patented (No. 9,816,120, USA, authorized). However, the experimental process of rG4-seq sequencing technology requires a large amount of RNA starting material and a long library construction time. Therefore, we have systematically evaluated and optimized some key experimental steps in the entire cDNA library construction process, hoping to improve the efficiency and quality of library construction. This research result has been published in 2019 (Yeung, Zhao et al. 2019) and a patent has been applied for (No. 15/957,037, USA, pending).
基于以上研究,我们发现建库过程中PCR效率较低,完成文库的构建所需反应循环数较多,从而影响了文库的质量,导致后续二代测序分析得到的有效数据较少。因此,亟待设计一种全新的5’衔接子,以提高PCR扩增效率,减少PCR周期,提高文库质量,为构建广泛的生物应用cDNA文库提供一个新的重要平台。Based on the above research, we found that the PCR efficiency was low during library construction, and the number of reaction cycles required to complete the library construction was large, which affected the quality of the library and resulted in less valid data obtained from subsequent second-generation sequencing analysis. Therefore, it is urgent to design a new 5' adapter to improve PCR amplification efficiency, reduce PCR cycles, improve library quality, and provide a new and important platform for the construction of cDNA libraries for a wide range of biological applications.
发明内容Summary of the invention
基于现有技术存在的问题,本发明的第一目的在于提供一种dU5’衔接子,该dU5’衔接子为发明人特殊设计的含脱氧尿嘧啶的结构,其能够减少接头-引物二聚体的形成,提高PCR扩增效率;本发明的第二目的在于提供所述dU5’衔接子在构建cDNA文库中的应用;本发明的第三目的在于提供一种cDNA文库的构建方法,该构建方法中采用了本发明特殊设计的含脱氧尿嘧啶的dU5’衔接子;本发明的第四目的在于提供上述构建方法构建获得的cDNA文库。Based on the problems existing in the prior art, the first purpose of the present invention is to provide a dU5’ adaptor, which is a deoxyuracil-containing structure specially designed by the inventor, which can reduce the formation of linker-primer dimers and improve PCR amplification efficiency; the second purpose of the present invention is to provide the use of the dU5’ adaptor in constructing a cDNA library; the third purpose of the present invention is to provide a method for constructing a cDNA library, in which the deoxyuracil-containing dU5’ adaptor specially designed by the present invention is used; the fourth purpose of the present invention is to provide a cDNA library constructed by the above-mentioned construction method.
本发明的目的通过以下技术手段得以实现:The purpose of the present invention is achieved by the following technical means:
一方面,本发明提供一种dU5’衔接子,该dU5’衔接子具有如下式(I)所示的结构:In one aspect, the present invention provides a dU5' adaptor having a structure as shown in the following formula (I):
5’-p-S1-S2-S3-S4-SpC3-3’ (I)5'-p-S1-S2-S3-S4-SpC3-3' (I)
其中,S1、S2、S3和S4为依次通过化学键相连接的基因片段,p表示5’端进行的磷酸化修饰;S1为第一茎部;S2为环部;S3为第二茎部,其含有1个脱氧尿嘧啶dU;S1的5’→3’序列与S3的3’→5’序列互补;S4为引导部(N)m,其中,N选自A、T、G和C碱基中的任一种,且(N)m中的N相同或不同,m为10;SpC3表示3’端进行的C3间隔修饰。Among them, S1, S2, S3 and S4 are gene fragments connected in sequence by chemical bonds, p represents phosphorylation modification at the 5'end; S1 is the first stem; S2 is the loop; S3 is the second stem, which contains 1 deoxyuracil dU; the 5'→3' sequence of S1 is complementary to the 3'→5' sequence of S3; S4 is the guide part (N) m , wherein N is selected from any one of A, T, G and C bases, and N in (N) m is the same or different, and m is 10; SpC3 represents C3 interval modification at the 3' end.
本发明dU5’衔接子中3’端的引导部(N)m的设计和C3间隔修饰能够实现dU5’衔接子在与cDNA核酸样品连接过程中能够降低非特异性结合,阻止和避免自齐聚,提高连接效率。3’端的C3间隔修饰及5’端的磷酸化修饰均为本领域常规的修饰方式。The design of the guide (N) m at the 3' end of the dU5' adapter and the C3 spacer modification can reduce non-specific binding, prevent and avoid self-aggregation, and improve the connection efficiency during the connection process of the dU5' adapter with the cDNA nucleic acid sample. The C3 spacer modification at the 3' end and the phosphorylation modification at the 5' end are both conventional modification methods in the art.
上述的dU5’衔接子中,优选地,所述S1具有如下所示核苷酸序列:In the above-mentioned dU5' adaptor, preferably, the S1 has the following nucleotide sequence:
5’-AGATCGGAAGAGC-3’(SEQ ID NO:1)。5'-AGATCGGAAGAGC-3' (SEQ ID NO: 1).
上述的dU5’衔接子中,优选地,所述S2具有如下所示核苷酸序列:In the above-mentioned dU5' adapter, preferably, the S2 has the following nucleotide sequence:
5’-GTCGTGTA-3’。5’-GTCGTGTA-3’.
上述的dU5’衔接子中,优选地,所述S3具有如下所示核苷酸序列:In the above-mentioned dU5' adaptor, preferably, the S3 has the following nucleotide sequence:
5’-GC/dU/CTTCCGATCT-3’(SEQ ID NO:2)。5'-GC/ dU /CTTCCGATCT-3' (SEQ ID NO: 2).
本发明的dU5’衔接子具有SEQ ID NO:3所示核苷酸序列。The dU5' adaptor of the present invention has the nucleotide sequence shown in SEQ ID NO:3.
SEQ ID NO:3如下所示:SEQ ID NO: 3 is as follows:
5’-/5Phos/-AGATCGGAAGAGCGTCGTGTAGC/dU/CTTCCGATCTNNNNNNNNNN-/3SpC3/-3’。5′-/5Phos/-AGATCGGAAGAGCGTCGTGTAGC/ dU /CTTCCGATCTNNNNNNNNNN-/3SpC3/-3′.
在dU5’衔接子的设计过程中,申请人分析原有的5’衔接子具有特殊的茎环结构,在后续的PCR扩增过程中可能阻碍了正向引物结合的效率,从而降低了PCR的扩增效率,因此,申请人创造性地在保证正向引物结合最大化的前提下取其临近的位置作了T-dU的置换,使得dU的插入位置为自5’端起的第24位,此插入位更有利于后续PCR正向引物进行配对,且将其互补配对部分保留完整,有利于正向引物与模板的结合,能够有效减少接头-引物二聚体的形成,降低反应所需的循环数,从而提高PCR的扩增效率,从而提高文库的质量。During the design of the dU5' adapter, the applicant analyzed that the original 5' adapter had a special stem-loop structure, which might hinder the efficiency of the forward primer binding in the subsequent PCR amplification process, thereby reducing the PCR amplification efficiency. Therefore, the applicant creatively replaced the adjacent position with T-dU while ensuring the maximum binding of the forward primer, so that the insertion position of dU was the 24th position from the 5' end. This insertion position was more conducive to the pairing of the subsequent PCR forward primer, and its complementary pairing part was kept intact, which was conducive to the binding of the forward primer to the template, and could effectively reduce the formation of adapter-primer dimers and reduce the number of cycles required for the reaction, thereby improving the PCR amplification efficiency and thus improving the quality of the library.
另一方面,本发明还提供上述dU5’衔接子在构建cDNA文库中的应用。On the other hand, the present invention also provides the use of the above-mentioned dU5' adaptor in constructing a cDNA library.
由于5’衔接子连接步骤广泛存在于其他RNA高通量测序的文库构建过程中,因此,此项研究除了适用于rG4-seq技术,亦可适用于其他基于二代测序的DNA和RNA的研究中,为构建广泛的生物应用cDNA文库提供一个新的重要平台。Since the 5’ adapter ligation step is widely used in the library construction process of other RNA high-throughput sequencing, this study is not only applicable to rG4-seq technology, but also to other DNA and RNA research based on second-generation sequencing, providing a new and important platform for constructing cDNA libraries for a wide range of biological applications.
再一方面,本发明还提供一种基于RNA-G四链体测序文库构建方法改进的cDNA文库的构建方法,其改进部分包括如下步骤:In another aspect, the present invention further provides a method for constructing a cDNA library based on an improved method for constructing a RNA-G quadruplex sequencing library, wherein the improved method comprises the following steps:
将带有3’衔接子的cDNA核酸样品与dU5’衔接子混合后进行连接反应,得到dU5’衔接子-cDNA核酸复合物,并进行柱纯化;The cDNA nucleic acid sample with the 3' adapter is mixed with the dU5' adapter and then subjected to a ligation reaction to obtain a dU5' adapter-cDNA nucleic acid complex, which is then purified by a column;
对纯化后的dU5’衔接子-cDNA核酸复合物中的脱氧尿嘧啶进行裂解,形成末端部分互补的衔接子-核酸复合物;通过柱纯化去除裂解后的残余衔接子片段;The deoxyuracil in the purified dU5' adapter-cDNA nucleic acid complex is cleaved to form an adapter-nucleic acid complex with complementary end portions; residual adapter fragments after cleavage are removed by column purification;
以末端部分互补的衔接子-核酸复合物为模板,采用特异性结合的正向引物、反向引物和聚合酶进行PCR反应,扩增产物,构建得到cDNA文库。The adapter-nucleic acid complex with complementary end portions is used as a template, and a PCR reaction is performed using a specifically bound forward primer, a reverse primer and a polymerase to amplify the product and construct a cDNA library.
上述的构建方法中,优选地,进行连接反应采用的为快速连接试剂盒NEB M2200L。In the above construction method, preferably, the ligation reaction is carried out using the rapid ligation kit NEB M2200L.
上述的构建方法中,优选地,进行裂解的具体过程包括:向纯化后的dU5’衔接子-cDNA核酸复合物中加入USER II酶(NEB M5508S)、缓冲液,裂解脱氧尿嘧啶。In the above construction method, preferably, the specific process of cleavage includes: adding USER II enzyme (NEB M5508S) and buffer to the purified dU5' adapter-cDNA nucleic acid complex to cleave deoxyuracil.
其中,缓冲液可以包括CutSmart buffer(CS,NEB B7204S)、Quick ligationbuffer(QL)等;聚乙二醇可以包括聚乙二醇PEG 6000等。The buffer may include CutSmart buffer (CS, NEB B7204S), Quick ligation buffer (QL), etc.; the polyethylene glycol may include polyethylene glycol PEG 6000, etc.
上述的构建方法中,优选地,PCR反应过程中,所述聚合酶包括KAPA HiFi热启动高保真聚合酶(Roche KK2601)。In the above construction method, preferably, during the PCR reaction, the polymerase includes KAPA HiFi hot start high-fidelity polymerase (Roche KK2601).
上述的构建方法中,优选地,所述带有3’衔接子的cDNA核酸样品具有SEQ ID NO:4所示核苷酸序列。In the above construction method, preferably, the cDNA nucleic acid sample with a 3' adaptor has a nucleotide sequence shown in SEQ ID NO:4.
SEQ ID NO:4如下所示:SEQ ID NO: 4 is as follows:
5’-CAGACGTGTGCTCTTCCGATCT(N)40-3’。5′-CAGACGTGTGCTCTTCCGATCT(N) 40 -3′.
其中,N选自A、T、G和C碱基中的任一种,(N)40中的N相同或不同。Wherein, N is selected from any one of A, T, G and C bases, and N in (N) 40 are the same or different.
上述的构建方法中,优选地,所述正向引物具有SEQ ID NO:5所示核苷酸序列;所述反向引物具有SEQ ID NO:6所示核苷酸序列。In the above construction method, preferably, the forward primer has the nucleotide sequence shown in SEQ ID NO: 5; and the reverse primer has the nucleotide sequence shown in SEQ ID NO: 6.
SEQ ID NO:5如下所示:SEQ ID NO: 5 is as follows:
5’-AATGATACGGCGACCACCGAGATCTACACTACACGACGCTCTTCCGATCT-3’。5’-AATGATACGGCGACCACCGAGATCTACACTACACGACGCTCTTCCGATCT-3’.
SEQ ID NO:6如下所示:SEQ ID NO: 6 is as follows:
5’-CAAGCAGAAGACGGCATACGAGAT-(6nt index序列)-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’。5’-CAAGCAGAAGACGGCATACGAGAT-(6nt index sequence)-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’.
SEQ ID NO:6序列为Illumina测序平台Truseq Kit里通用的测序引物序列;其中,“6nt index序列”为通用的特定index,以便于区分测序过程中不同的样本,该特定index序列为本领域公知。SEQ ID NO: 6 is a universal sequencing primer sequence in the Truseq Kit of the Illumina sequencing platform; wherein, the "6nt index sequence" is a universal specific index to facilitate distinguishing different samples during the sequencing process, and the specific index sequence is well known in the art.
上述的构建方法中,优选地,所述USER II酶进行裂解的时间为15min。In the above construction method, preferably, the cleavage time of the USER II enzyme is 15 minutes.
上述的构建方法中,优选地,所述带有3’衔接子的cDNA核酸样品与所述dU5’衔接子的摩尔比为1:10。In the above construction method, preferably, the molar ratio of the cDNA nucleic acid sample with 3’ adaptor to the dU5’ adaptor is 1:10.
再一方面,本发明还提供一种cDNA文库,其是由上述构建方法构建获得。In yet another aspect, the present invention also provides a cDNA library, which is constructed by the above construction method.
本发明的dU5’衔接子能够减少接头-引物二聚体的形成,提高PCR扩增效率,减少PCR循环周期数,提高库质量,从而在后续的NGS数据分析过程,提高有效分析数据,降低成本;为构建广泛的生物应用cDNA文库提供一个新的重要平台。由于基因表达差异,对于一些表达量少的RNA样本,无法达到普通的建库样本起始量,而此方法可以降低反应的起始量,从而可以扩大RNA研究范围,尤其对低表达量的rG4测序、转录组结构测序等领域的RNA研究具有重要的意义。The dU5' adapter of the present invention can reduce the formation of linker-primer dimers, improve PCR amplification efficiency, reduce the number of PCR cycles, and improve library quality, thereby improving effective analysis data and reducing costs in the subsequent NGS data analysis process; it provides a new and important platform for building a wide range of biological application cDNA libraries. Due to differences in gene expression, some RNA samples with low expression levels cannot reach the starting amount of ordinary library construction samples, and this method can reduce the starting amount of the reaction, thereby expanding the scope of RNA research, especially for RNA research in the fields of low expression rG4 sequencing, transcriptome structure sequencing, etc., which is of great significance.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例2中dU5’衔接子构建cDNA文库的流程图。FIG1 is a flow chart of the construction of a cDNA library using the dU5′ adapter in Example 2 of the present invention.
图2为本发明实施例3中USER II酶在不同裂解时间下对裂解dU5’衔接子中脱氧尿嘧啶的裂解影响实验结果图。Figure 2 is a graph showing the experimental results of the effect of USER II enzyme on the cleavage of deoxyuracil in the dU5' linker at different cleavage times in Example 3 of the present invention.
图3为本发明实施例4中USER II酶在不同反应缓冲液和不同浓度聚乙二醇中对dU5’衔接子中脱氧尿嘧啶裂解效率的影响实验结果图。FIG3 is a graph showing the experimental results of the effect of USER II enzyme on the cleavage efficiency of deoxyuracil in dU5' linker in different reaction buffers and different concentrations of polyethylene glycol in Example 4 of the present invention.
图4为本发明实施例4中USER II酶在不同反应缓冲液和特定比例聚乙二醇中对于对比例2和对比例3的dU5’衔接子中脱氧尿嘧啶裂解效率的影响实验结果图。Figure 4 is a graph showing the experimental results of the effect of the USER II enzyme in Example 4 of the present invention on the cleavage efficiency of deoxyuracil in the dU5' linker of Comparative Examples 2 and 3 in different reaction buffers and specific proportions of polyethylene glycol.
图5为本发明实施例5中残余dU5’衔接子的去除影响优化实验结果图。Figure 5 is a graph showing the results of an optimization experiment on the effect of removal of the residual dU5' linker in Example 5 of the present invention.
图6为本发明实施例6中模拟的cDNA样品与dU5’衔接子的连接比例的影响优化实验结果图。Figure 6 is a graph showing the optimization experimental results of the influence of the connection ratio of the simulated cDNA sample and the dU5' adaptor in Example 6 of the present invention.
图7为本发明实施例7中连接反应后进行柱纯化对USER II酶裂解率的影响实验结果图。FIG. 7 is a graph showing the experimental results of the effect of column purification after the ligation reaction on the cleavage rate of USER II enzyme in Example 7 of the present invention.
图8为本发明实施例8中USER II酶裂解后的柱纯化实验结果图。FIG8 is a graph showing the results of a column purification experiment after USER II enzyme cleavage in Example 8 of the present invention.
图9为本发明实施例2和对比例1的PCR扩增实验对比结果图。FIG9 is a graph showing the comparison of the PCR amplification results of Example 2 of the present invention and Comparative Example 1.
具体实施方式Detailed ways
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。In order to have a clearer understanding of the technical features, purposes and beneficial effects of the present invention, the technical solution of the present invention is now described in detail below, but it should not be construed as limiting the applicable scope of the present invention.
实施例1:Embodiment 1:
本实施例提供一种dU5’衔接子,其具备如下核苷酸序列:5’-/5Phos/-AGATCGGAAGAGCGTCGTGTAGC/dU/CTTCCGATCTNNNNNNNNNN-/3SpC3/-3’(SEQ ID NO:3)。This embodiment provides a dU5' adaptor having the following nucleotide sequence: 5'-/5Phos/-AGATCGGAAGAGCGTCGTGTAGC/ dU /CTTCCGATCTNNNNNNNNNN-/3SpC3/-3' (SEQ ID NO: 3).
该dU5’衔接子为发明人特殊设计的含脱氧尿嘧啶的结构,新设计的dU5’衔接子中,dU的插入位置为自5’端起的第24位,此插入位更有利于后续PCR正向引物进行配对,且将其互补配对部分保留完整,有利于正向引物与模板的结合,能够有效减少接头-引物二聚体的形成,降低反应所需的循环数,从而提高PCR的扩增效率,从而提高文库的质量。The dU5' adapter is a deoxyuracil-containing structure specially designed by the inventors. In the newly designed dU5' adapter, the insertion position of dU is the 24th position from the 5' end. This insertion position is more conducive to the pairing of the subsequent PCR forward primer, and its complementary pairing part is kept intact, which is conducive to the binding of the forward primer to the template, can effectively reduce the formation of adapter-primer dimers, and reduce the number of cycles required for the reaction, thereby improving the amplification efficiency of PCR, thereby improving the quality of the library.
本实施例dU5’衔接子按照其核苷酸序列,采用商业合成的方法获得,将商业合成的dU5’衔接子核酸样品溶于超纯水得到浓度为100μM的溶液,于-20℃温度下保存。The dU5' adaptor of this example was obtained by commercial synthesis according to its nucleotide sequence. The commercially synthesized dU5' adaptor nucleic acid sample was dissolved in ultrapure water to obtain a solution with a concentration of 100 μM, and stored at -20°C.
实施例2:Embodiment 2:
本实施例提供一种改进cDNA文库的构建方法,改进部分如图1所示,其包括如下步骤:This embodiment provides an improved method for constructing a cDNA library, the improved part of which is shown in FIG1 , and comprises the following steps:
将模拟的cDNA核酸样品(其带有3’衔接子,序列参见SEQ ID NO:4)与实施例1的dU5’衔接子混合后采用快速连接试剂盒(NEB,M2200L)进行连接反应,所述核酸样品与所述dU5’衔接子的摩尔比为1:10,反应条件为37℃,2h;得到dU5’衔接子-cDNA核酸复合物并进行柱纯化(Zymo Research,R1016);The simulated cDNA nucleic acid sample (with a 3' adapter, the sequence of which is shown in SEQ ID NO: 4) was mixed with the dU5' adapter of Example 1 and then subjected to a ligation reaction using a quick ligation kit (NEB, M2200L), the molar ratio of the nucleic acid sample to the dU5' adapter being 1:10, and the reaction conditions being 37°C for 2h; the dU5' adapter-cDNA nucleic acid complex was obtained and column purified (Zymo Research, R1016);
向纯化后的dU5’衔接子-cDNA核酸复合物中加入CutSmart缓冲液(1X final)USERII酶(0.1U/μL final),裂解脱氧尿嘧啶,裂解温度为37℃,反应时间为15min,形成末端部分互补的衔接子-核酸复合物;通过柱纯化去除多余衔接子(Zymo Research,R1016);Add CutSmart buffer (1X final) USERII enzyme (0.1U/μL final) to the purified dU5' adapter-cDNA nucleic acid complex to cleave deoxyuracil at 37°C for 15 min to form an adapter-nucleic acid complex with complementary ends; remove excess adapters by column purification (Zymo Research, R1016);
以末端部分互补的衔接子-核酸复合物为模板,采用特异性结合的正向引物(序列参见SEQ ID NO:5)和反向引物(序列参见SEQ ID NO:6),在KAPA HiFi热启动高保真DNA聚合酶作用下进行PCR反应,扩增产物,构建得到cDNA文库。Using the terminal partially complementary adapter-nucleic acid complex as a template, a specifically bound forward primer (sequence see SEQ ID NO: 5) and a reverse primer (sequence see SEQ ID NO: 6) were used to perform a PCR reaction under the action of KAPA HiFi hot start high-fidelity DNA polymerase to amplify the product and construct a cDNA library.
对比例1:Comparative Example 1:
本对比例提供一种基于普通的5’衔接子的核苷酸序列如下:5’-/5Phos/-AGATCGGAAGAGCGTCGTGTAGCTCTTCCGATCTNNNNNNNNNN-/SpC3/-3’(SEQ ID NO:7)。其中,将该对比例的5’衔接子与dU5’衔接子对比,对试验条件进行优化,不同之处在于将实施例2中用到的dU5’衔接子替换为该对比例1的普通5’衔接子。This comparative example provides a nucleotide sequence based on a common 5' adapter as follows: 5'-/5Phos/-AGATCGGAAGAGCGTCGTGTAGCTCTTCCGATCTNNNNNNNNNN-/SpC3/-3' (SEQ ID NO: 7). The 5' adapter of the comparative example is compared with the dU5' adapter, and the experimental conditions are optimized. The difference is that the dU5' adapter used in Example 2 is replaced by the common 5' adapter of the comparative example 1.
对比例2:Comparative Example 2:
本对比例提供一种插入dU的5’衔接子,dU在5’端第18位(Loop18)。This comparative example provides a 5' adaptor into which dU is inserted, wherein dU is at the 18th position (Loop18) at the 5' end.
其中,该插入dU的5’衔接子的核苷酸序列如下:5’-/5Phos/-AGATCGGAAGAGCGTCG/dU/GTAGCTCTTCCGATCTNNNNNNNNNN-/3SpC3/-3’(SEQ ID NO:8)。The nucleotide sequence of the 5' adapter for inserting dU is as follows: 5'-/5Phos/-AGATCGGAAGAGCGTCG/ dU /GTAGCTCTTCCGATCTNNNNNNNNNN-/3SpC3/-3' (SEQ ID NO: 8).
对比例3:Comparative Example 3:
本对比例提供一种插入dU的5’衔接子,dU在5’端第20位(Loop20)。This comparative example provides a 5' adaptor into which dU is inserted, wherein dU is at the 20th position (Loop20) at the 5' end.
其中,该插入dU的5’衔接子的核苷酸序列如下:5’-/5Phos/-AGATCGGAAGAGCGTCGTG/dU/AGCTCTTCCGATCTNNNNNNNNNN-/3SpC3/-3’(SEQ ID NO:9)。The nucleotide sequence of the 5' adapter for inserting dU is as follows: 5'-/5Phos/-AGATCGGAAGAGCGTCGTG/ dU /AGCTCTTCCGATCTNNNNNNNNNN-/3SpC3/-3' (SEQ ID NO: 9).
实施例3:USER II酶裂解dU5’衔接子中脱氧尿嘧啶的裂解时间优化Example 3: Optimization of cleavage time of deoxyuracil in dU5' adapter by USER II enzyme
本实施例考察USER II酶在不同裂解时间下对裂解dU5’衔接子中脱氧尿嘧啶的裂解影响,反应条件设置为37℃。实验结果如图2所示。This example investigates the effect of USER II enzyme on the cleavage of deoxyuracil in the dU5' linker at different cleavage times, and the reaction condition is set at 37° C. The experimental results are shown in FIG2 .
由图2可以看出:裂解率随反应时间的增加而增加,为了实现裂解率最大化,优选采用15min的裂解时间。As can be seen from FIG. 2 , the cleavage rate increases with the increase of reaction time. In order to maximize the cleavage rate, a cleavage time of 15 min is preferably used.
实施例4:USER II酶裂解dU5’衔接子中脱氧尿嘧啶过程中,反应缓冲液和聚乙二醇对裂解效率的影响优化Example 4: Optimization of the effects of reaction buffer and polyethylene glycol on cleavage efficiency during cleavage of deoxyuracil in dU5' linker by USER II enzyme
本实施例考察了USER II酶在不同浓度的反应缓冲液和聚乙二醇中对dU5’衔接子中脱氧尿嘧啶裂解效率的影响,其中缓冲液采用CutSmart buffer(CS)或Quick ligationbuffer(QL),聚乙二醇采用PEG 6000,质量浓度分别为7.5%、12.5%和17.5%,其中QL本身含有质量浓度为7.5%的PEG 6000。实验结果如图3和图4所示。This example investigates the effect of USER II enzyme on the cleavage efficiency of deoxyuracil in dU5' linker in reaction buffer and polyethylene glycol at different concentrations, wherein the buffer is CutSmart buffer (CS) or Quick ligation buffer (QL), and the polyethylene glycol is PEG 6000, with mass concentrations of 7.5%, 12.5% and 17.5%, respectively, wherein QL itself contains PEG 6000 with a mass concentration of 7.5%. The experimental results are shown in Figures 3 and 4.
由图3可以看出:对于本发明设计的dU5’衔接子(参见SEQ ID NO:3),两种缓冲液的裂解率无明显差异,裂解率均为97%。三种浓度的聚乙二醇裂解率也无明显差异,分别为97%、97%和98%。As shown in Figure 3, for the dU5' adaptor designed in the present invention (see SEQ ID NO: 3), there was no significant difference in the cleavage rate between the two buffers, both of which were 97%. There was also no significant difference in the cleavage rate between the three concentrations of polyethylene glycol, which were 97%, 97% and 98% respectively.
由图4可以看出:无论在CS还是QL缓冲液,USER II裂解dU Loop 18(参见SEQ IDNO:8)和dU Loop 20(参见SEQ ID NO:9)的效率为37%~68%不等,dU衔接子裂解不完全,而本发明第24位dU的设计(参见SEQ ID NO:3)的裂解率达到98%,有利于正向引物的结合最大化。实验结果表明本发明设计的dU5’衔接子优于对比例2和3的设计。As can be seen from Figure 4: whether in CS or QL buffer, the efficiency of USER II cleaving dU Loop 18 (see SEQ ID NO: 8) and dU Loop 20 (see SEQ ID NO: 9) ranges from 37% to 68%, and the dU linker cleavage is incomplete, while the cleavage rate of the 24th dU design of the present invention (see SEQ ID NO: 3) reaches 98%, which is conducive to maximizing the binding of the forward primer. The experimental results show that the dU5' linker designed by the present invention is better than the designs of Comparative Examples 2 and 3.
实施例5:残余dU5’衔接子的去除影响优化Example 5: Removal of residual dU5' adapter affects optimization
为了避免转移污染和减少接头-引物二聚体的产生,在进行PCR扩增之前,需要去掉多余的衔接子。本实施例考察采用CS缓冲液和QL缓冲液中不同质量浓度的PEG6000及USER II处理后的柱纯化去除策略,并与未进行柱纯化去除进行比较,判断纯化效率是否受缓冲液种类与PEG 6000浓度的影响。实验结果如图5所示。In order to avoid transfer contamination and reduce the generation of adapter-primer dimers, it is necessary to remove excess adapters before PCR amplification. This example investigates the column purification removal strategy after treatment with different mass concentrations of PEG6000 and USER II in CS buffer and QL buffer, and compares it with the removal without column purification to determine whether the purification efficiency is affected by the type of buffer and the concentration of PEG 6000. The experimental results are shown in Figure 5.
由图5可以看出:通过柱纯化能够有效去除残余的dU5’衔接子,反应条件不受两种缓冲液类型和PEG 6000的浓度影响。As shown in Figure 5, residual dU5' linker can be effectively removed by column purification, and the reaction conditions are not affected by the two buffer types and the concentration of PEG 6000.
实施例6:模拟的cDNA核酸样品与dU5’衔接子的连接比例的影响优化Example 6: Optimization of the influence of the ligation ratio of the simulated cDNA nucleic acid sample and the dU5' adapter
采用商业合成的方法合成带有3’衔接子模拟的cDNA核酸样品(66nt DNA),包括40个随机核苷酸和22nt的3’衔接子序列(N40+22)来模拟真实文库中的cDNA模板(参见SEQ IDNO:4)。测试了(N40+22)cDNA模版与dU5’衔接子的摩尔比例为1:1、1:2.5、1:5和1:10的ssDNA(dU5’衔接子-cDNA核酸复合物)的连接产率,实验结果如图6所示。A cDNA nucleic acid sample (66 nt DNA) with a 3' adapter simulation was synthesized using a commercial synthesis method, including 40 random nucleotides and a 22 nt 3' adapter sequence (N40+22) to simulate the cDNA template in the real library (see SEQ ID NO: 4). The ligation yield of ssDNA (dU5' adapter-cDNA nucleic acid complex) with a molar ratio of (N40+22) cDNA template to dU5' adapter of 1:1, 1:2.5, 1:5 and 1:10 was tested, and the experimental results are shown in Figure 6.
由图6可以看出,当(N40+22)cDNA模版与dU5’衔接子的摩尔比例为1:10时,ssDNA的连接产率高达90%。As can be seen from Figure 6, when the molar ratio of the (N40+22) cDNA template to the dU5' adaptor is 1:10, the ssDNA connection yield is as high as 90%.
实施例7:连接反应后进行柱纯化对USER II酶裂解率的影响Example 7: Effect of column purification after ligation reaction on USER II enzyme cleavage rate
dU5’衔接子与核酸样品进行连接反应后,需进行下一步的USER II酶裂解。为了研究连接过程的反应环境对接下来的USER II酶裂解的影响,在进行USER II酶裂解之前,采用柱纯化去除连接过程中产物之外的物质,比较其与连接反应之后直接进行USER II酶裂解的效率。实验结果如图7所示。After the dU5' adapter and the nucleic acid sample are connected, the next step of USER II enzyme cleavage is required. In order to study the effect of the reaction environment of the connection process on the subsequent USER II enzyme cleavage, column purification is used to remove substances other than the product of the connection process before USER II enzyme cleavage, and the efficiency is compared with that of USER II enzyme cleavage directly after the connection reaction. The experimental results are shown in Figure 7.
由图7可以看出:连接反应后进行了柱纯化,USER II酶裂解率达到88±1%,而连接反应后未进行柱纯化,USER II酶裂解率仅为24±1%。由此可以看出,连接反应后进行柱纯化有助于提高USER II酶裂解率。基于以上结果,对于纯化后续的USER II裂解过程,我们最终采用CS缓冲液即可,无需添加聚乙二醇,此优选既可以节省试剂,又可以节约成本。As can be seen from Figure 7, after the ligation reaction, column purification was performed, and the USER II enzyme cleavage rate reached 88±1%, while without column purification after the ligation reaction, the USER II enzyme cleavage rate was only 24±1%. It can be seen that column purification after the ligation reaction helps to improve the USER II enzyme cleavage rate. Based on the above results, for the subsequent purification of USER II cleavage process, we finally used CS buffer without adding polyethylene glycol. This preference can save both reagents and costs.
实施例8:USER II酶裂解后的柱纯化Example 8: Column purification after USER II enzyme cleavage
在经过了USER II酶裂解后,由于残留的接头-引物二聚体和非特异性产物的形成会影响PCR扩增,进而降低目标产物的生成。因此,在USER II酶裂解后进行柱纯化,以去除多余的dU5’衔接子裂解产物,实验结果如图8所示。After USER II enzyme cleavage, the residual adapter-primer dimer and the formation of non-specific products will affect PCR amplification, thereby reducing the generation of the target product. Therefore, column purification was performed after USER II enzyme cleavage to remove excess dU5' adapter cleavage products. The experimental results are shown in Figure 8.
由图8可以看出:在USER II酶裂解后进行柱纯化可以去除91±1%的dU5’衔接子裂解产物。As can be seen from Figure 8, column purification after USER II enzyme cleavage can remove 91±1% of the dU5' adapter cleavage products.
实施例9:PCR扩增实验对比Example 9: Comparison of PCR amplification experiments
以实施例2所述的分别带有本发明设计的dU5’衔接子(参见SEQ ID NO:3)和对比例1普通5’衔接子(参见SEQ ID NO:7)的末端部分互补的衔接子-核酸复合物为模版,进行PCR扩增构建cDNA文库的实验结果进行对比。实验结果如图9所示。The experimental results of PCR amplification and construction of cDNA library were compared using the adapter-nucleic acid complexes with complementary ends of the dU5' adapter designed by the present invention (see SEQ ID NO: 3) and the common 5' adapter (see SEQ ID NO: 7) of Comparative Example 1 as templates. The experimental results are shown in FIG9 .
由图9可以看出:采用本发明的dU5’衔接子,在PCR循环数4、6、8、10、12和14中,所得PCR产物的相对产率分别为1.1、1.1、1.3、1.4、1.1和1.1,其PCR产物的产率均要高于采用普通的5’衔接子。具体为:在PCR循环数为4和6时,由于PCR扩增的初始产物有限,因此,本发明的dU5’衔接子与对比例1的普通5’衔接子的PCR产物的产率相似;而在PCR循环数为8和10时,本发明的PCR产物产率为对比例1的普通5’衔接子的1.3~1.4倍,扩增效率明显高于普通5’衔接子的扩增效率;此外,在PCR循环数为12和14时,PCR产物已经开始出现过度扩增现象,产物长度增加,但产率仍然高于对比例1的普通5’衔接子,是其1.1倍。As can be seen from FIG9 , the relative yields of the PCR products obtained by using the dU5' adapter of the present invention in PCR cycle numbers 4, 6, 8, 10, 12 and 14 are 1.1, 1.1, 1.3, 1.4, 1.1 and 1.1, respectively, and the yields of the PCR products are all higher than those of the common 5' adapter. Specifically, when the PCR cycle numbers are 4 and 6, due to the limited initial product of PCR amplification, the yields of the PCR products of the dU5' adapter of the present invention and the common 5' adapter of Comparative Example 1 are similar; and when the PCR cycle numbers are 8 and 10, the yield of the PCR products of the present invention is 1.3 to 1.4 times that of the common 5' adapter of Comparative Example 1, and the amplification efficiency is significantly higher than that of the common 5' adapter; in addition, when the PCR cycle numbers are 12 and 14, the PCR products have begun to show over-amplification, and the product length increases, but the yield is still higher than that of the common 5' adapter of Comparative Example 1, which is 1.1 times.
由此表明,在同等循环数的扩增前提下,本发明经过特殊设计的含脱氧尿嘧啶的dU5’衔接子相比对比例1的普通5’衔接子而言,PCR效率明显提升。This shows that under the premise of the same number of amplification cycles, the specially designed dU5' adapter containing deoxyuracil in the present invention has significantly improved PCR efficiency compared with the common 5' adapter in comparative example 1.
序列表Sequence Listing
<110> 香港城市大学深圳研究院<110> Shenzhen Research Institute, City University of Hong Kong
<120> 一种dU5'衔接子及其应用和构建的cDNA文库<120> A dU5' adapter and its application and cDNA library constructed
<130> GAI20CN7028<130> GAI20CN7028
<160> 9<160> 9
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 13<211> 13
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 第一茎部<223> First stem
<400> 1<400> 1
agatcggaag agc 13agatcggaag agc 13
<210> 2<210> 2
<211> 13<211> 13
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 第二茎部<223> Second stem
<220><220>
<221> misc_feature<221> misc_feature
<222> (3)..(3)<222> (3)..(3)
<223> n=dU<223> n=dU
<400> 2<400> 2
gcncttccga tct 13gcncttccga tct 13
<210> 3<210> 3
<211> 44<211> 44
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> dU5'衔接子<223> dU5' adapter
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> n=a且磷酸化修饰<223> n=a and phosphorylation modification
<220><220>
<221> misc_feature<221> misc_feature
<222> (24)..(24)<222> (24)..(24)
<223> n=dU<223> n=dU
<220><220>
<221> misc_feature<221> misc_feature
<222> (35)..(43)<222> (35)..(43)
<223> n=a或g或c或t<223> n=a or g or c or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (44)..(44)<222> (44)..(44)
<223> n=a或g或c或t且C3间隔修饰<223> n=a or g or c or t and C3 interval modification
<400> 3<400> 3
ngatcggaag agcgtcgtgt agcncttccg atctnnnnnn nnnn 44ngatcggaag agcgtcgtgt agcncttccg atctnnnnnn nnnn 44
<210> 4<210> 4
<211> 62<211> 62
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 带有3'衔接子的cDNA核酸<223> cDNA nucleic acid with 3' adapter
<220><220>
<221> misc_feature<221> misc_feature
<222> (23)..(62)<222> (23)..(62)
<223> n=a或g或c或t<223> n=a or g or c or t
<400> 4<400> 4
cagacgtgtg ctcttccgat ctnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 60cagacgtgtg ctcttccgat ctnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 60
nn 62nn 62
<210> 5<210> 5
<211> 50<211> 50
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 引物<223> Primer
<400> 5<400> 5
aatgatacgg cgaccaccga gatctacact acacgacgct cttccgatct 50aatgatacgg cgaccaccga gatctacact acacgacgct cttccgatct 50
<210> 6<210> 6
<211> 64<211> 64
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 人工序列<223> Artificial sequence
<220><220>
<221> misc_feature<221> misc_feature
<222> (25)..(30)<222> (25)..(30)
<223> 25~30的6个n为6nt index序列<223> The 6 n from 25 to 30 are 6nt index sequences
<400> 6<400> 6
caagcagaag acggcatacg agatnnnnnn gtgactggag ttcagacgtg tgctcttccg 60caagcagaag acggcatacg agatnnnnnn gtgactggag ttcagacgtg tgctcttccg 60
atct 64atct 64
<210> 7<210> 7
<211> 44<211> 44
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 普通的5'衔接子<223> Common 5' adapter
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> n=a且磷酸化修饰<223> n=a and phosphorylation modification
<220><220>
<221> misc_feature<221> misc_feature
<222> (35)..(43)<222> (35)..(43)
<223> n=a或g或c或t<223> n=a or g or c or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (44)..(44)<222> (44)..(44)
<223> n=a或g或c或t且C3间隔修饰<223> n=a or g or c or t and C3 interval modification
<400> 7<400> 7
ngatcggaag agcgtcgtgt agctcttccg atctnnnnnn nnnn 44ngatcggaag agcgtcgtgt agctcttccg atctnnnnnn nnnn 44
<210> 8<210> 8
<211> 44<211> 44
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Loop18的dU5'衔接子<223> dU5' adapter of Loop18
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> n=a且磷酸化修饰<223> n=a and phosphorylation modification
<220><220>
<221> misc_feature<221> misc_feature
<222> (18)..(18)<222> (18)..(18)
<223> n=dU<223> n=dU
<220><220>
<221> misc_feature<221> misc_feature
<222> (35)..(43)<222> (35)..(43)
<223> n=a或g或c或t<223> n=a or g or c or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (44)..(44)<222> (44)..(44)
<223> n=a或g或c或t且C3间隔修饰<223> n=a or g or c or t and C3 interval modification
<400> 8<400> 8
ngatcggaag agcgtcgngt agctcttccg atctnnnnnn nnnn 44ngatcggaag agcgtcgngt agctcttccg atctnnnnnn nnnn 44
<210> 9<210> 9
<211> 44<211> 44
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Loop20的dU5'衔接子<223> dU5' adapter of Loop20
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> n=a且磷酸化修饰<223> n=a and phosphorylation modification
<220><220>
<221> misc_feature<221> misc_feature
<222> (20)..(20)<222> (20)..(20)
<223> n=dU<223> n=dU
<220><220>
<221> misc_feature<221> misc_feature
<222> (35)..(43)<222> (35)..(43)
<223> n=a或g或c或t<223> n=a or g or c or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (44)..(44)<222> (44)..(44)
<223> n=a或g或c或t且C3间隔修饰<223> n=a or g or c or t and C3 interval modification
<400> 9<400> 9
ngatcggaag agcgtcgtgn agctcttccg atctnnnnnn nnnn 44ngatcggaag agcgtcgtgn agctcttccg atctnnnnnn nnnn 44
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110037475.8A CN114763546B (en) | 2021-01-12 | 2021-01-12 | dU5' adapter and application thereof, and cDNA library constructed by same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110037475.8A CN114763546B (en) | 2021-01-12 | 2021-01-12 | dU5' adapter and application thereof, and cDNA library constructed by same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114763546A CN114763546A (en) | 2022-07-19 |
CN114763546B true CN114763546B (en) | 2024-04-12 |
Family
ID=82364031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110037475.8A Active CN114763546B (en) | 2021-01-12 | 2021-01-12 | dU5' adapter and application thereof, and cDNA library constructed by same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114763546B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180041331A (en) * | 2016-10-14 | 2018-04-24 | 김성천 | The method and kit of the selection of Molecule-Binding Nucleic Acids and the identification of the targets, and their use |
CN108699554A (en) * | 2016-05-27 | 2018-10-23 | 深圳市海普洛斯生物科技有限公司 | A kind of connector and its application suitable for ultramicron DNA sequencing |
CN110734908A (en) * | 2019-11-15 | 2020-01-31 | 福州福瑞医学检验实验室有限公司 | Construction method of high-throughput sequencing library and kit for library construction |
CN111849965A (en) * | 2019-04-26 | 2020-10-30 | 新英格兰生物实验室公司 | Polynucleotide adaptor design for reduced bias |
CN111936635A (en) * | 2018-03-02 | 2020-11-13 | 豪夫迈·罗氏有限公司 | Generation of single-stranded circular DNA templates for single-molecule sequencing |
-
2021
- 2021-01-12 CN CN202110037475.8A patent/CN114763546B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108699554A (en) * | 2016-05-27 | 2018-10-23 | 深圳市海普洛斯生物科技有限公司 | A kind of connector and its application suitable for ultramicron DNA sequencing |
KR20180041331A (en) * | 2016-10-14 | 2018-04-24 | 김성천 | The method and kit of the selection of Molecule-Binding Nucleic Acids and the identification of the targets, and their use |
CN111936635A (en) * | 2018-03-02 | 2020-11-13 | 豪夫迈·罗氏有限公司 | Generation of single-stranded circular DNA templates for single-molecule sequencing |
CN111849965A (en) * | 2019-04-26 | 2020-10-30 | 新英格兰生物实验室公司 | Polynucleotide adaptor design for reduced bias |
CN110734908A (en) * | 2019-11-15 | 2020-01-31 | 福州福瑞医学检验实验室有限公司 | Construction method of high-throughput sequencing library and kit for library construction |
Non-Patent Citations (2)
Title |
---|
Enhanced transcriptome-wide RNA G-quardruplex sequencing for low RNA input samples with rG4-seq 2.0;Jieyu Zhao等;BMC;全文 * |
基于Galaxy平台及miRspring的测序数据分析技术研究;唐彦表;中国优秀硕士学位论文全文数据库 基础科学辑;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114763546A (en) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110734908B (en) | Construction method of high-throughput sequencing library and kit for library construction | |
Van Dijk et al. | Library preparation methods for next-generation sequencing: tone down the bias | |
EP3388519B1 (en) | Vesicular adaptor and uses thereof in nucleic acid library construction and sequencing | |
EP3215618B1 (en) | Transposase compositions for reduction of insertion bias | |
CN105400776B (en) | Oligonucleotide linker and application thereof in constructing nucleic acid sequencing single-stranded circular library | |
JP6894501B2 (en) | Isothermal nucleic acid self-amplification method | |
CN112795620A (en) | Double-stranded nucleic acid cyclization method, methylation sequencing library construction method and kit | |
US12065684B2 (en) | Demand synthesis of polynucleotide sequences | |
CN112176031A (en) | Construction method and kit of enucleated ribosome RNA sequencing library | |
WO2022156823A1 (en) | Optimized dna linear amplification method and test kit | |
CN110872610B (en) | Method for constructing a sequencing library of target sequences | |
CN111549025B (en) | Strand displacement primer and cell transcriptome library construction method | |
CN108166069A (en) | A kind of novel methylate banking process and its application | |
Xu et al. | TGIRT-seq protocol for the comprehensive profiling of coding and non-coding RNA biotypes in cellular, extracellular vesicle, and plasma RNAs | |
CN104531874B (en) | EGFR gene mutation detection method and kit | |
CN108624666B (en) | Linker nucleic acid molecules for construction of sequencing libraries | |
CN107488655A (en) | 5 ' the minimizing technologies for connecting accessory substance with 3 ' joints in sequencing library structure | |
CN108166067A (en) | A kind of Novel DNA banking process and its application | |
CN114763546B (en) | dU5' adapter and application thereof, and cDNA library constructed by same | |
CN110964794A (en) | Primers suitable for sequencing DNA-encoding compound sequencing libraries | |
CN114032288A (en) | Kit and method for preparing target nucleotide for sequencing by using same | |
CN113201793A (en) | Construction method and kit of RNA library | |
CN114438185B (en) | Method for double-end amplification sequencing of chip surface | |
CN112176422A (en) | Construction method of RNA library | |
CN112359090A (en) | Nucleic acid fragment connection method, sequencing library construction method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |