CN114759569B - Wind power consumption method for northeast region based on electric heating load fine adjustment - Google Patents
Wind power consumption method for northeast region based on electric heating load fine adjustment Download PDFInfo
- Publication number
- CN114759569B CN114759569B CN202210359216.1A CN202210359216A CN114759569B CN 114759569 B CN114759569 B CN 114759569B CN 202210359216 A CN202210359216 A CN 202210359216A CN 114759569 B CN114759569 B CN 114759569B
- Authority
- CN
- China
- Prior art keywords
- array
- maxstep
- value
- electric heating
- weitiaocounter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005485 electric heating Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000007667 floating Methods 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Central Heating Systems (AREA)
Abstract
Description
技术领域Technical Field
本发明公开一种针对东北地区的基于电采暖负荷微调的风电消纳方法,能够根据温度和时间对电采暖的用电负荷进行微调,从而更加有效的消纳风电负荷,属于风电系统的控制技术领域。The present invention discloses a wind power consumption method based on electric heating load fine-tuning for the Northeast region, which can fine-tune the electric heating power load according to temperature and time, thereby more effectively absorbing the wind power load, and belongs to the field of wind power system control technology.
背景技术Background Art
风电作为一种清洁能源,对于降低碳排放、减少供电系统对煤炭等资源的依赖非常重要。电力系统中的实际负荷需求通常与风电的输出有一定的差别,这就导致了弃风现象,造成风电资源的浪费,需要进行风电消纳。在冬季由于电采暖的负荷占有较大比例,构筑合理电采暖负荷需求,尽可能的消纳风电输出对于电网管理与降低碳排放十分重要。As a clean energy, wind power is very important for reducing carbon emissions and reducing the power supply system's dependence on resources such as coal. The actual load demand in the power system is usually different from the output of wind power, which leads to the phenomenon of wind abandonment and waste of wind power resources, and it is necessary to absorb wind power. In winter, since the load of electric heating accounts for a large proportion, it is very important to build a reasonable electric heating load demand and absorb wind power output as much as possible for power grid management and reducing carbon emissions.
要进行风电消纳,当前普遍采用的方法包括:一、在众多小的负荷中,利用遗传算法、聚类等方法寻找一个与风电输出功率相近的负荷组和来尽可能的消纳风电;这种方式最大问题是,对于产业结构较为近似的区域,各个单位的负荷曲线较为近似,难以找到足够多样的曲线来组合消纳风电;在产业结构多样的区域,由于负荷预测曲线来自于不同的单位,多重的组合会产生较大误差传递,计算的结果可能与真正消纳的结果存在较大偏差。二、引入一些蓄能设备或调整企业用电策略,这种模式由于受到固定策略的影响,在风电快速发生变化的时候可能不能随时响应。在我国东北地区的冬季,典型而稳定的负荷就是电采暖设备,这种设备在供热的时候有一个典型特点是其使用负荷的时间、时长可以微调调整,目前已有的发明或方法中也存在利用电采暖提高风电消纳能力的方法,但是现有的方法多基于大规模的调整用户的用电策略,或者提前指定不同峰谷电价引导用户在用电低谷的时候调整供暖;这些方法虽然可以解决一定问题,但是这些方法也存在不能紧随着风电波动而变化的问题,虽然可以在风力大发的时候辅助削峰,尤其是偶尔出现风力输出低谷的时候反而会起到副作用。此外,大幅度的负荷调整可能与用户真正的使用需求相悖(如:将供热时间调整到一个单位上班时间之外),引起调整策略无法真正有效实施。To absorb wind power, the currently commonly used methods include: 1. Among many small loads, use genetic algorithms, clustering and other methods to find a load group close to the wind power output power to absorb as much wind power as possible; the biggest problem with this method is that for areas with similar industrial structures, the load curves of each unit are relatively similar, and it is difficult to find sufficiently diverse curves to combine and absorb wind power; in areas with diverse industrial structures, since the load forecast curves come from different units, multiple combinations will produce large error transmissions, and the calculated results may have a large deviation from the actual absorption results. 2. Introduce some energy storage equipment or adjust the enterprise's electricity consumption strategy. This model may not be able to respond at any time when wind power changes rapidly due to the influence of fixed strategies. In the winter in Northeast my country, the typical and stable load is electric heating equipment. A typical feature of this equipment when providing heat is that the time and duration of its load can be fine-tuned. There are also methods of using electric heating to improve the wind power absorption capacity in existing inventions or methods, but the existing methods are mostly based on large-scale adjustment of users' electricity consumption strategies, or specifying different peak and valley electricity prices in advance to guide users to adjust heating when electricity consumption is low; although these methods can solve certain problems, they also have the problem of not being able to change closely with wind power fluctuations. Although they can assist in peak shaving when the wind is strong, they will have side effects, especially when the wind output is occasionally low. In addition, large-scale load adjustments may be contrary to the actual use needs of users (such as: adjusting the heating time to outside the working hours of a unit), causing the adjustment strategy to be unable to be effectively implemented.
因此,针对东北地区需要提出一种风电消纳方法,能够更加充分利用电采暖用电的功率和时长可以调整的特性来消纳风电,并构建供热用户可以更加接受的负荷微调策略,提高风电的利用率。Therefore, a wind power consumption method needs to be proposed for the Northeast region, which can make fuller use of the adjustable power and duration of electric heating electricity to consume wind power, and build a load fine-tuning strategy that is more acceptable to heating users to improve the utilization rate of wind power.
发明内容Summary of the invention
本发明提供一种针对东北地区的基于电采暖负荷微调的风电消纳方法,该方法能够根据温度和时间对电采暖的用电负荷进行微调,从而更加有效的消纳风电负荷。The present invention provides a wind power consumption method based on electric heating load fine-tuning for the Northeast region. The method can fine-tune the power load of electric heating according to temperature and time, thereby more effectively absorbing the wind power load.
本发明所公开的一种针对东北地区的基于电采暖负荷微调的风电消纳方法,包括以下步骤:The present invention discloses a wind power consumption method based on electric heating load fine-tuning for the Northeast region, comprising the following steps:
S1. 输入风电输出功率数组FengArray,输入电采暖负荷数组FuheArray,输入最大可调步调值MaxStep,输入气温数组QiwenArray;建立调整数值数组NumArray;获取气温最高值HQiwen,获取气温最低值LQiwen;获取电采暖负荷最高值HFuhe,获得电采暖负荷最低值LFuhe;S1. Input wind power output power array FengArray, input electric heating load array FuheArray, input maximum adjustable step value MaxStep, input temperature array QiwenArray; establish adjustment value array NumArray; obtain maximum temperature value HQiwen, obtain minimum temperature value LQiwen; obtain maximum electric heating load value HFuhe, obtain minimum electric heating load value LFuhe;
S101,输入风电输出功率数组FengArray,FengArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的风电输出功率数值;S101, input wind power output power array FengArray, FengArray is a floating point array of 96 elements, corresponding to wind power output power values at 96 time points with 0:00 as the starting point and 15 minutes as the interval in a day;
S102,输入电采暖负荷数组FuheArray,FuheArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的电采暖负荷数值;S102, inputting an electric heating load array FuheArray, which is a 96-element floating-point array corresponding to electric heating load values at 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S103,输入最大可调步调值MaxStep,MaxStep是一个整型数,默认值为5;S103, input the maximum adjustable step value MaxStep, MaxStep is an integer, and the default value is 5;
S104,输入气温数组QiwenArray,QiwenArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的气温值;S104, inputting a temperature array QiwenArray, which is a floating-point array of 96 elements, corresponding to the temperature values of 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S105,建立调整数值数组NumArray,NumArray是一个96个元素的浮点型数组,数组的所有元素全为0;S105, creating an adjustment value array NumArray, NumArray is a floating point array of 96 elements, and all elements of the array are 0;
S106,获取气温最高值HQiwen=QiwenArray的最大值;,获取气温最低值LQiwen=QiwenArray的最低值;S106, obtaining the maximum temperature value HQiwen=the maximum value of QiwenArray; obtaining the minimum temperature value LQiwen=the minimum value of QiwenArray;
S107,获取电采暖负荷最高值HFuhe=FuheArray的最高值,获得电采暖负荷最低值LFuhe=FuheArray的最低值;S107, obtaining a maximum electric heating load value HFuhe=the maximum value of FuheArray, and obtaining a minimum electric heating load value LFuhe=the minimum value of FuheArray;
S2,建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,输出为可调数值KetiaoResult;S2, establish an adjustable amplitude operator OpKetao, the input of OpKetao is the adjustable position variable KetaoPos, and the output is the adjustable value KetiaoResult;
S201,建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,KetaoPos为一个整型变量;S201, establish an adjustable amplitude operator OpKetao, the input of OpKetao is the adjustable position variable KetaoPos, KetaoPos is an integer variable;
S202,可调幅度暂存数组KetaoTempArray=取出FuheArray的第KetaoPos-MaxStep元素至第KetaoPos+MaxStep元素,构成一个2×MaxStep+1个元素的数组;S202, adjustable amplitude temporary storage array KetaoTempArray = take out the KetaoPos-MaxStep element to the KetaoPos+MaxStep element of FuheArray to form an array of 2×MaxStep+1 elements;
S203,可调幅度第一暂存变量KetaoTemp1=KetaoTempArray的标准差;S203, standard deviation of the first temporary variable KetaoTemp1=KetaoTempArray of adjustable amplitude;
S204,可调数值KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;S204, adjustable value KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;
S205,KetiaoResult=KetiaoResult×((QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));S205, KetiaoResult=KetiaoResult×((QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));
S206,将KetiaoResult作为OpKetao算子的结果输出;S206, outputting KetiaoResult as the result of the OpKetao operator;
S3,基于OpKetao算子建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单步微调位置变量WeitiaoPos,输出为微调结果数组WeitiaoArray;S3, based on the OpKetao operator, establish the load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is the single-step fine-tuning position variable WeitiaoPos, and the output is the fine-tuning result array WeitiaoArray;
S301,建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单部微调位置变量WeitiaoPos,WeitiaoPos为一个整型变量;S301, establish a load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is a single-step fine-tuning position variable WeitiaoPos, and WeitiaoPos is an integer variable;
S302,建立微调结果数组WeitiaoArray=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S302, establish a fine-tuning result array WeitiaoArray = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,建立微调第一暂存数组WeitiaoTemp1=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S303, establish a fine-tuning first temporary storage array WeitiaoTemp1 = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,负荷单步微调算子迭代变量WeitiaoCounter=1;S303, load single-step fine-tuning operator iteration variable WeitiaoCounter=1;
S304,WeitiaoTemp1[WeitiaoCounter]=调用OpKetao算子,其中OpKetao算子的KetaoPos的值为:KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;S304, WeitiaoTemp1[WeitiaoCounter]=call OpKetao operator, wherein the value of KetaoPos of OpKetao operator is: KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;
S305,WeitiaoCounter=WeitiaoCounter+1;S305, WeitiaoCounter=WeitiaoCounter+1;
S306,如果WeitiaoCounter>(2×MaxStep+1)则转到S307,否则转到S304;S306, if WeitiaoCounter>(2×MaxStep+1), go to S307, otherwise go to S304;
S307,微调暂存总和值WeitiaoSum=WeitiaoTemp1的总和-WeitiaoTemp1[MaxStep+1];S307, fine-tune the temporary sum value WeitiaoSum = the sum of WeitiaoTemp1 - WeitiaoTemp1[MaxStep+1];
S308,单步微调算子总体幅度WeitiaoFudu=WeitiaoTemp1[MaxStep+1];S308, single-step fine-tuning operator overall amplitude WeitiaoFudu=WeitiaoTemp1[MaxStep+1];
S309,真实调整幅度RealWeitiao=WeitiaoFudu;S309, real adjustment range RealWeitiao=WeitiaoFudu;
S310,如果FuheArray[WeitiaoPos]>FengArray[WeitiaoPos]则RealWeitiao=(-RealWeitiao);S310, if FuheArray[WeitiaoPos]>FengArray[WeitiaoPos] then RealWeitiao=(-RealWeitiao);
S311,WeitiaoCounter=1;S311, WeitiaoCounter=1;
S312,基于如下公式修改WeitiaoArray元素的值:S312, modify the value of the WeitiaoArray element based on the following formula:
WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);
S313,WeitiaoCounter=WeitiaoCounter+1;S313, WeitiaoCounter=WeitiaoCounter+1;
S314,如果WeitiaoCounter>(2×MaxStep+1)则转到S315,否则转到S312;S314, if WeitiaoCounter>(2×MaxStep+1), go to S315, otherwise go to S312;
S315,WeitiaoArray[MaxStep+1]=RealWeitiao;S315, WeitiaoArray[MaxStep+1]=RealWeitiao;
S316,将WeitiaoArray作为OpWeitiao的结果输出;S316, outputting WeitiaoArray as the result of OpWeitiao;
S4,基于OpWeitiao算子,对电采暖负荷进行微调,输出风电消纳调整后的结果;S4, based on the OpWeitiao operator, fine-tunes the electric heating load and outputs the adjusted result of wind power consumption;
S401,总体步骤计数器OverAllCounter=MaxStep+1;S401, overall step counter OverAllCounter=MaxStep+1;
S402,总体步骤第一暂存变量OverAllTemp1=OverAllCounter;S402, overall step 1 temporary storage variable OverAllTemp1=OverAllCounter;
S403,总体步骤第二暂存变量OverAllTemp2=96-OverAllCounter;S403, overall step second temporary storage variable OverAllTemp2=96-OverAllCounter;
S404,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp1;S404, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp1;
S405,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp2;S405, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp2;
S406,局部计数器LocalCounter=1;S406, local counter LocalCounter=1;
S407,计算:S407, calculation:
NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];
S408,计算:S408, calculation:
NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];
S409,LocalCounter=LocalCounter+1;S409, LocalCounter=LocalCounter+1;
S410,如果LocalCounter>(2×MaxStep+1)则转到S411,否则转到S407;S410, if LocalCounter>(2×MaxStep+1), go to S411, otherwise go to S407;
S411,OverAllCounter=OverAllCounter+1;S411, OverAllCounter=OverAllCounter+1;
S412,如果OverAllCounter>(96-MaxStep-1)则转到S413,否则转到S402;S412, if OverAllCounter>(96-MaxStep-1), go to S413, otherwise go to S402;
S413,总体输出计数器OutputCounter=1;S413, overall output counter OutputCounter=1;
S414,FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];S414, FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];
S415,OutputCounter=OutputCounter+1;S415, OutputCounter=OutputCounter+1;
S416,如果OutputCounter>96则转到S417,否则转到S414;S416, if OutputCounter>96, go to S417, otherwise go to S414;
S417,将FuheArray作为调整后的结果输出。S417, outputting FuheArray as the adjusted result.
本发明的有益效果在于:The beneficial effects of the present invention are:
能够根据温度和时间对电采暖的用电负荷进行微调,从而更加有效的消纳风电负荷;可以根据风电曲线不断的微调电采暖负荷,一方面可以使得负荷曲线更加匹配风电输出功率曲线,另一方面,由于调整幅度较小,与电采暖用户原有使用习惯近似,所以获得的调整结果更加容易被接受;本发明对于东北地区更加有效利用风电资源有着十分重要作用。The power load of electric heating can be fine-tuned according to temperature and time, so as to more effectively absorb wind power load; the electric heating load can be continuously fine-tuned according to the wind power curve, which can make the load curve more matched with the wind power output power curve on the one hand, and on the other hand, since the adjustment range is small and similar to the original usage habits of electric heating users, the obtained adjustment result is easier to accept; the present invention plays a very important role in more effectively utilizing wind power resources in Northeast China.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例2的输入风电输出功率数组FengArray;FIG1 is an input wind power output power array FengArray of Example 2;
图2为实施例2的输入电采暖负荷数组FuheArray;FIG2 is an input electric heating load array FuheArray of Example 2;
图3为实施例2的输入气温数组QiwenArray;FIG3 is an input temperature array QiwenArray of Example 2;
图4为实施例2本发明方法输出的FuheArray获得的结果。FIG. 4 is a result obtained by FuheArray output by the method of the present invention in Example 2.
具体实施方式DETAILED DESCRIPTION
通过以下实施例进一步举例描述本发明,并不以任何方式限制本发明,在不背离本发明的技术解决方案的前提下,对本发明所作的本领域普通技术人员容易实现的任何改动或改变都将落入本发明的权利要求范围之内。The present invention is further described by way of the following examples, which do not limit the present invention in any way. Without departing from the technical solution of the present invention, any modification or change made to the present invention that is easily implemented by a person of ordinary skill in the art will fall within the scope of the claims of the present invention.
实施例1Example 1
本发明提供的一种针对东北地区的基于电采暖负荷微调的风电消纳方法,包括以下步骤:The present invention provides a wind power consumption method based on electric heating load fine-tuning for the Northeast region, comprising the following steps:
S1. 输入风电输出功率数组FengArray,输入电采暖负荷数组FuheArray,输入最大可调步调值MaxStep,输入气温数组QiwenArray;建立调整数值数组NumArray;获取气温最高值HQiwen,获取气温最低值LQiwen;获取电采暖负荷最高值HFuhe,获得电采暖负荷最低值LFuhe;S1. Input wind power output power array FengArray, input electric heating load array FuheArray, input maximum adjustable step value MaxStep, input temperature array QiwenArray; establish adjustment value array NumArray; obtain maximum temperature value HQiwen, obtain minimum temperature value LQiwen; obtain maximum electric heating load value HFuhe, obtain minimum electric heating load value LFuhe;
S101,输入风电输出功率数组FengArray,FengArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的风电输出功率数值;S101, input wind power output power array FengArray, FengArray is a floating point array of 96 elements, corresponding to wind power output power values at 96 time points with 0:00 as the starting point and 15 minutes as the interval in a day;
S102,输入电采暖负荷数组FuheArray,FuheArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的电采暖负荷数值;S102, inputting an electric heating load array FuheArray, which is a 96-element floating-point array corresponding to electric heating load values at 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S103,输入最大可调步调值MaxStep,MaxStep是一个整型数,默认值为5;S103, input the maximum adjustable step value MaxStep, MaxStep is an integer, and the default value is 5;
S104,输入气温数组QiwenArray,QiwenArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的气温值;S104, inputting a temperature array QiwenArray, which is a floating-point array of 96 elements, corresponding to the temperature values of 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S105,建立调整数值数组NumArray,NumArray是一个96个元素的浮点型数组,数组的所有元素全为0;S105, creating an adjustment value array NumArray, NumArray is a floating point array of 96 elements, and all elements of the array are 0;
S106,获取气温最高值HQiwen=QiwenArray的最大值;,获取气温最低值LQiwen=QiwenArray的最低值;S106, obtaining the maximum temperature value HQiwen=the maximum value of QiwenArray; obtaining the minimum temperature value LQiwen=the minimum value of QiwenArray;
S107,获取电采暖负荷最高值HFuhe=FuheArray的最高值,获得电采暖负荷最低值LFuhe=FuheArray的最低值;S107, obtaining a maximum electric heating load value HFuhe=the maximum value of FuheArray, and obtaining a minimum electric heating load value LFuhe=the minimum value of FuheArray;
S2,建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,输出为可调数值KetiaoResult;S2, establish an adjustable amplitude operator OpKetao, the input of OpKetao is the adjustable position variable KetaoPos, and the output is the adjustable value KetiaoResult;
S201,建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,KetaoPos为一个整型变量;S201, establish an adjustable amplitude operator OpKetao, the input of OpKetao is the adjustable position variable KetaoPos, KetaoPos is an integer variable;
S202,可调幅度暂存数组KetaoTempArray=取出FuheArray的第KetaoPos-MaxStep元素至第KetaoPos+MaxStep元素,构成一个2×MaxStep+1个元素的数组;S202, adjustable amplitude temporary storage array KetaoTempArray = take out the KetaoPos-MaxStep element to the KetaoPos+MaxStep element of FuheArray to form an array of 2×MaxStep+1 elements;
S203,可调幅度第一暂存变量KetaoTemp1=KetaoTempArray的标准差;S203, standard deviation of the first temporary variable KetaoTemp1=KetaoTempArray of adjustable amplitude;
S204,可调数值KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;S204, adjustable value KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;
S205,KetiaoResult=KetiaoResult×((QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));S205, KetiaoResult=KetiaoResult×((QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));
S205,将KetiaoResult作为OpKetao算子的结果输出;S205, outputting KetiaoResult as the result of the OpKetao operator;
S3,基于OpKetao算子建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单步微调位置变量WeitiaoPos,输出为微调结果数组WeitiaoArray;S3, based on the OpKetao operator, establish the load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is the single-step fine-tuning position variable WeitiaoPos, and the output is the fine-tuning result array WeitiaoArray;
S301,建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单部微调位置变量WeitiaoPos,WeitiaoPos为一个整型变量;S301, establish a load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is a single-step fine-tuning position variable WeitiaoPos, and WeitiaoPos is an integer variable;
S302,建立微调结果数组WeitiaoArray=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S302, establish a fine-tuning result array WeitiaoArray = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,建立微调第一暂存数组WeitiaoTemp1=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S303, establish a fine-tuning first temporary storage array WeitiaoTemp1 = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,负荷单步微调算子迭代变量WeitiaoCounter=1;S303, load single-step fine-tuning operator iteration variable WeitiaoCounter=1;
S304,WeitiaoTemp1[WeitiaoCounter]=调用OpKetao算子,其中OpKetao算子的KetaoPos的值为:KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;S304, WeitiaoTemp1[WeitiaoCounter]=call OpKetao operator, wherein the value of KetaoPos of OpKetao operator is: KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;
S305,WeitiaoCounter=WeitiaoCounter+1;S305, WeitiaoCounter=WeitiaoCounter+1;
S306,如果WeitiaoCounter>(2×MaxStep+1)则转到S307,否则转到S304;S306, if WeitiaoCounter>(2×MaxStep+1), go to S307, otherwise go to S304;
S307,微调暂存总和值WeitiaoSum=WeitiaoTemp1的总和-WeitiaoTemp1[MaxStep+1];S307, fine-tune the temporary sum value WeitiaoSum = the sum of WeitiaoTemp1 - WeitiaoTemp1[MaxStep+1];
S308,单步微调算子总体幅度WeitiaoFudu=WeitiaoTemp1[MaxStep+1];S308, single-step fine-tuning operator overall amplitude WeitiaoFudu=WeitiaoTemp1[MaxStep+1];
S309,真实调整幅度RealWeitiao=WeitiaoFudu;S309, real adjustment range RealWeitiao=WeitiaoFudu;
S310,如果FuheArray[WeitiaoPos]>FengArray[WeitiaoPos]则RealWeitiao=(-RealWeitiao);S310, if FuheArray[WeitiaoPos]>FengArray[WeitiaoPos] then RealWeitiao=(-RealWeitiao);
S311,WeitiaoCounter=1;S311, WeitiaoCounter=1;
S312,基于如下公式修改WeitiaoArray元素的值:S312, modify the value of the WeitiaoArray element based on the following formula:
WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);
S313,WeitiaoCounter=WeitiaoCounter+1;S313, WeitiaoCounter=WeitiaoCounter+1;
S314,如果WeitiaoCounter>(2×MaxStep+1)则转到S315,否则转到S312;S314, if WeitiaoCounter>(2×MaxStep+1), go to S315, otherwise go to S312;
S315,WeitiaoArray[MaxStep+1]=RealWeitiao;S315, WeitiaoArray[MaxStep+1]=RealWeitiao;
S316,将WeitiaoArray作为OpWeitiao的结果输出;S316, outputting WeitiaoArray as the result of OpWeitiao;
S4,基于OpWeitiao算子,对电采暖负荷进行微调,输出风电消纳调整后的结果;S4, based on the OpWeitiao operator, fine-tunes the electric heating load and outputs the adjusted result of wind power consumption;
S401,总体步骤计数器OverAllCounter=MaxStep+1;S401, overall step counter OverAllCounter=MaxStep+1;
S402,总体步骤第一暂存变量OverAllTemp1=OverAllCounter;S402, overall step 1 temporary storage variable OverAllTemp1=OverAllCounter;
S403,总体步骤第二暂存变量OverAllTemp2=96-OverAllCounter;S403, overall step second temporary storage variable OverAllTemp2=96-OverAllCounter;
S404,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp1;S404, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp1;
S405,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp2;S405, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp2;
S406,局部计数器LocalCounter=1;S406, local counter LocalCounter=1;
S407,计算S407, calculation
NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];
S408,计算S408, calculation
NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];
S409,LocalCounter=LocalCounter+1;S409, LocalCounter=LocalCounter+1;
S410,如果LocalCounter>(2×MaxStep+1)则转到S411,否则转到S407;S410, if LocalCounter>(2×MaxStep+1), go to S411, otherwise go to S407;
S411,OverAllCounter=OverAllCounter+1;S411, OverAllCounter=OverAllCounter+1;
S412,如果OverAllCounter>(96-MaxStep-1)则转到S413,否则转到S402;S412, if OverAllCounter>(96-MaxStep-1), go to S413, otherwise go to S402;
S413,总体输出计数器OutputCounter=1;S413, overall output counter OutputCounter=1;
S414,FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];S414, FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];
S415,OutputCounter=OutputCounter+1;S415, OutputCounter=OutputCounter+1;
S416,如果OutputCounter>96则转到S417,否则转到S414;S416, if OutputCounter>96, go to S417, otherwise go to S414;
S417,将FuheArray作为调整后的结果输出。S417, outputting FuheArray as the adjusted result.
实施例2Example 2
1)以某地区的风电机组和一个电采暖负荷为例;输入风电输出功率数组FengArray,该数组的内容如图1所示:1) Take a wind turbine and an electric heating load in a certain area as an example; input the wind power output power array FengArray, the content of which is shown in Figure 1:
2)输入电采暖负荷数组FuheArray,该数组的内容如图2所示:2) Input the electric heating load array FuheArray, the content of which is shown in Figure 2:
3)输入最大可调步调值MaxStep=5;3) Enter the maximum adjustable step value MaxStep=5;
4)输入气温数组QiwenArray,该数组的内容如图3所示:4) Input the temperature array QiwenArray. The content of the array is shown in Figure 3:
5)建立调整数值数组NumArray;获取气温最高值HQiwen=3,获取气温最低值LQiwen=-12.5;获取电采暖负荷最高值HFuhe=130,获得电采暖负荷最低值LFuhe=1;5) Establish the adjustment value array NumArray; obtain the maximum temperature value HQiwen=3, obtain the minimum temperature value LQiwen=-12.5; obtain the maximum electric heating load value HFuhe=130, obtain the minimum electric heating load value LFuhe=1;
具体实施过程如下:The specific implementation process is as follows:
S1. 输入风电输出功率数组FengArray,输入电采暖负荷数组FuheArray,输入最大可调步调值MaxStep,输入气温数组QiwenArray;建立调整数值数组NumArray;获取气温最高值HQiwen,获取气温最低值LQiwen;获取电采暖负荷最高值HFuhe,获得电采暖负荷最低值LFuhe;S1. Input wind power output power array FengArray, input electric heating load array FuheArray, input maximum adjustable step value MaxStep, input temperature array QiwenArray; establish adjustment value array NumArray; obtain maximum temperature value HQiwen, obtain minimum temperature value LQiwen; obtain maximum electric heating load value HFuhe, obtain minimum electric heating load value LFuhe;
S101,输入风电输出功率数组FengArray,FengArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的风电输出功率数值;S101, input wind power output power array FengArray, FengArray is a floating point array of 96 elements, corresponding to wind power output power values at 96 time points with 0:00 as the starting point and 15 minutes as the interval in a day;
S102,输入电采暖负荷数组FuheArray,FuheArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的电采暖负荷数值;S102, inputting an electric heating load array FuheArray, which is a 96-element floating-point array corresponding to electric heating load values at 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S103,输入最大可调步调值MaxStep,MaxStep是一个整型数,默认值为5;S103, input the maximum adjustable step value MaxStep, MaxStep is an integer, and the default value is 5;
S104,输入气温数组QiwenArray,QiwenArray是一个96个元素的浮点型数组,对应着一天内以0时0分为起始点,以15分钟为间隔共计96个时间点的气温值;S104, inputting a temperature array QiwenArray, which is a floating-point array of 96 elements, corresponding to the temperature values of 96 time points in a day starting at 0:00 and at intervals of 15 minutes;
S105,建立调整数值数组NumArray,NumArray是一个96个元素的浮点型数组,数组的所有元素全为0;S105, creating an adjustment value array NumArray, NumArray is a floating point array of 96 elements, and all elements of the array are 0;
S106,获取气温最高值HQiwen=QiwenArray的最大值;,获取气温最低值LQiwen=QiwenArray的最低值;S106, obtaining the maximum temperature value HQiwen=the maximum value of QiwenArray; obtaining the minimum temperature value LQiwen=the minimum value of QiwenArray;
S107,获取电采暖负荷最高值HFuhe=FuheArray的最高值,获得电采暖负荷最低值LFuhe=FuheArray的最低值;S107, obtaining a maximum electric heating load value HFuhe=the maximum value of FuheArray, and obtaining a minimum electric heating load value LFuhe=the minimum value of FuheArray;
S2, 建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,输出为可调数值KetiaoResult;S2, establish an adjustable amplitude operator OpKetao, the input of OpKetao is the adjustable position variable KetaoPos, and the output is the adjustable value KetiaoResult;
S201, 建立可调幅度算子OpKetao,OpKetao的输入为可调位置变量KetaoPos,KetaoPos为一个整型变量;S201, establishing an adjustable amplitude operator OpKetao, the input of OpKetao is an adjustable position variable KetaoPos, KetaoPos is an integer variable;
S202, 可调幅度暂存数组KetaoTempArray=取出FuheArray的第KetaoPos-MaxStep元素至第KetaoPos+MaxStep元素,构成一个2×MaxStep+1个元素的数组;S202, the adjustable amplitude temporary storage array KetaoTempArray = takes out the KetaoPos-MaxStep element to the KetaoPos+MaxStep element of FuheArray to form an array of 2×MaxStep+1 elements;
S203,可调幅度第一暂存变量KetaoTemp1=KetaoTempArray的标准差;S203, standard deviation of the first temporary variable KetaoTemp1=KetaoTempArray of adjustable amplitude;
S204,可调数值KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;S204, adjustable value KetiaoResult=tanh((FuheArray[KetaoPos]-LFuhe)/(HFuhe-LFuhe))×KetaoTemp1;
S205,KetiaoResult=KetiaoResult×( (QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));S205, KetiaoResult=KetiaoResult×((QiwenArray[KetaoPos]-LQiwen)/(HQiwen-LQiwen));
S205,将KetiaoResult作为OpKetao算子的结果输出;S205, outputting KetiaoResult as the result of the OpKetao operator;
S3,基于OpKetao算子建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单步微调位置变量WeitiaoPos,输出为微调结果数组WeitiaoArray;S3, based on the OpKetao operator, establish the load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is the single-step fine-tuning position variable WeitiaoPos, and the output is the fine-tuning result array WeitiaoArray;
S301,建立负荷单步微调算子OpWeitiao,OpWeitiao的输入为单部微调位置变量WeitiaoPos,WeitiaoPos为一个整型变量;S301, establish a load single-step fine-tuning operator OpWeitiao, the input of OpWeitiao is a single-step fine-tuning position variable WeitiaoPos, and WeitiaoPos is an integer variable;
S302,建立微调结果数组WeitiaoArray=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S302, establish a fine-tuning result array WeitiaoArray = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,建立微调第一暂存数组WeitiaoTemp1=一个2×MaxStep+1元素的数组,数组每个元素的值为0;S303, establish a fine-tuning first temporary storage array WeitiaoTemp1 = an array of 2×MaxStep+1 elements, and the value of each element of the array is 0;
S303,负荷单步微调算子迭代变量WeitiaoCounter=1;S303, load single-step fine-tuning operator iteration variable WeitiaoCounter=1;
S304,WeitiaoTemp1[WeitiaoCounter]=调用OpKetao算子,其中OpKetao算子的KetaoPos的值为:KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;S304, WeitiaoTemp1[WeitiaoCounter]=call OpKetao operator, wherein the value of KetaoPos of OpKetao operator is: KetaoPos=WeitiaoPos-MaxStep+WeitiaoCounter-1;
S305,WeitiaoCounter=WeitiaoCounter+1;S305, WeitiaoCounter=WeitiaoCounter+1;
S306, 如果WeitiaoCounter>(2×MaxStep+1)则转到S307,否则转到S304;S306, if WeitiaoCounter>(2×MaxStep+1), go to S307, otherwise go to S304;
S307,微调暂存总和值WeitiaoSum=WeitiaoTemp1的总和-WeitiaoTemp1[MaxStep+1];S307, fine-tune the temporary sum value WeitiaoSum = the sum of WeitiaoTemp1 - WeitiaoTemp1[MaxStep+1];
S308,单步微调算子总体幅度WeitiaoFudu=WeitiaoTemp1[MaxStep+1];S308, single-step fine-tuning operator overall amplitude WeitiaoFudu=WeitiaoTemp1[MaxStep+1];
S309, 真实调整幅度RealWeitiao=WeitiaoFudu;S309, real adjustment range RealWeitiao=WeitiaoFudu;
S310,如果FuheArray[WeitiaoPos]>FengArray[WeitiaoPos]则RealWeitiao=(-RealWeitiao);S310, if FuheArray[WeitiaoPos]>FengArray[WeitiaoPos] then RealWeitiao=(-RealWeitiao);
S311,WeitiaoCounter=1;S311, WeitiaoCounter=1;
S312,基于如下公式修改WeitiaoArray元素的值:S312, modify the value of the WeitiaoArray element based on the following formula:
WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);WeitiaoArray[WeitiaoCounter]=WeitiaoTemp1[WeitiaoCounter]/WeitiaoFudu×(-RealWeitiao);
S313,WeitiaoCounter=WeitiaoCounter+1;S313, WeitiaoCounter=WeitiaoCounter+1;
S314,如果WeitiaoCounter>(2×MaxStep+1)则转到S315,否则转到S312;S314, if WeitiaoCounter>(2×MaxStep+1), go to S315, otherwise go to S312;
S315,WeitiaoArray[MaxStep+1]=RealWeitiao;S315, WeitiaoArray[MaxStep+1]=RealWeitiao;
S316,将WeitiaoArray作为OpWeitiao的结果输出;S316, outputting WeitiaoArray as the result of OpWeitiao;
S4,基于OpWeitiao算子,对电采暖负荷进行微调,输出调整后的结果;S4, based on the OpWeitiao operator, fine-tune the electric heating load and output the adjusted result;
S401,总体步骤计数器OverAllCounter=MaxStep+1;S401, overall step counter OverAllCounter=MaxStep+1;
S402,总体步骤第一暂存变量OverAllTemp1=OverAllCounter;S402, overall step 1 temporary storage variable OverAllTemp1=OverAllCounter;
S403,总体步骤第二暂存变量OverAllTemp2=96-OverAllCounter;S403, overall step second temporary storage variable OverAllTemp2=96-OverAllCounter;
S404,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp1;S404, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp1;
S405,第一调整数组T1Array=利用OpWeitiao算子进行计算,该算子的WeitiaoPos为OverAllTemp2;S405, the first adjustment array T1Array=is calculated using the OpWeitiao operator, and the WeitiaoPos of the operator is OverAllTemp2;
S406,局部计数器LocalCounter=1;S406, local counter LocalCounter=1;
S407,计算:S407, calculation:
NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];NumArray[LocalCounter+OverAllTemp1-MaxStep]=NumArray[LocalCounter+OverAllTemp1-MaxStep]+T1Array[LocalCounter];
S408,计算:S408, calculation:
NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];NumArray[LocalCounter+OverAllTemp2-MaxStep]=NumArray[LocalCounter+OverAllTemp2-MaxStep]+T2Array[LocalCounter];
S409,LocalCounter=LocalCounter+1;S409, LocalCounter=LocalCounter+1;
S410,如果LocalCounter>(2×MaxStep+1)则转到S411,否则转到S407;S410, if LocalCounter>(2×MaxStep+1), go to S411, otherwise go to S407;
S411,OverAllCounter=OverAllCounter+1;S411, OverAllCounter=OverAllCounter+1;
S412,如果OverAllCounter>(96-MaxStep-1)则转到S413,否则转到S402;S412, if OverAllCounter>(96-MaxStep-1), go to S413, otherwise go to S402;
S413,总体输出计数器OutputCounter=1;S413, overall output counter OutputCounter=1;
S414,FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];S414, FuheArray[OutputCounter]=FuheArray[OutputCounter]+NumArray[OutputCounter];
S415,OutputCounter=OutputCounter+1;S415, OutputCounter=OutputCounter+1;
S416,如果OutputCounter>96则转到S417,否则转到S414;S416, if OutputCounter>96, go to S417, otherwise go to S414;
S417,将FuheArray作为调整后的结果输出。S417, outputting FuheArray as the adjusted result.
经过上述计算,本发明方法输出的FuheArray获得的结果如图4所示:After the above calculations, the result obtained by the FuheArray output by the method of the present invention is shown in FIG4:
结论:在供电的负荷中,对负荷进行了调整,使得它更加匹配风电的输出。Conclusion: The load of the power supply is adjusted to make it more matching the output of wind power.
实施例3Example 3
以2019年冬季中国东北地区一个风电场和30个供热负荷的输出作为风电消纳的
测试对象,在进行风电消纳之前风电利用率为30.2%;本发明方法与传统方法进行对比:
结论:本发明能够根据温度和时间对电采暖的用电负荷进行微调,利用风电曲线不断的微调电采暖负荷,使得负荷曲线更加匹配风电输出功率曲线,从而更加有效的消纳风电负荷。Conclusion: The present invention can fine-tune the electricity load of electric heating according to temperature and time, and continuously fine-tune the electric heating load using the wind power curve, so that the load curve better matches the wind power output power curve, thereby more effectively absorbing the wind power load.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210359216.1A CN114759569B (en) | 2022-04-07 | 2022-04-07 | Wind power consumption method for northeast region based on electric heating load fine adjustment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210359216.1A CN114759569B (en) | 2022-04-07 | 2022-04-07 | Wind power consumption method for northeast region based on electric heating load fine adjustment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114759569A CN114759569A (en) | 2022-07-15 |
CN114759569B true CN114759569B (en) | 2024-09-13 |
Family
ID=82328745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210359216.1A Active CN114759569B (en) | 2022-04-07 | 2022-04-07 | Wind power consumption method for northeast region based on electric heating load fine adjustment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114759569B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110365063A (en) * | 2019-07-28 | 2019-10-22 | 哈尔滨理工大学 | Controllable electric heating and wind power consumption method based on particle swarm |
CN110796302A (en) * | 2019-10-24 | 2020-02-14 | 长春工程学院 | Gradually-adjusted load prediction method for directly-heated electric boiler in residential district in northeast region |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102157214B1 (en) * | 2018-12-19 | 2020-09-17 | 포항공과대학교 산학협력단 | Method for calculating power rate of commercial hvac system, apparatus and method for scheduling load using the same |
-
2022
- 2022-04-07 CN CN202210359216.1A patent/CN114759569B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110365063A (en) * | 2019-07-28 | 2019-10-22 | 哈尔滨理工大学 | Controllable electric heating and wind power consumption method based on particle swarm |
CN110796302A (en) * | 2019-10-24 | 2020-02-14 | 长春工程学院 | Gradually-adjusted load prediction method for directly-heated electric boiler in residential district in northeast region |
Also Published As
Publication number | Publication date |
---|---|
CN114759569A (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111340274A (en) | Virtual power plant participation-based comprehensive energy system optimization method and system | |
CN105990838B (en) | A kind of island microgrid Optimization Scheduling of meter and schedulable and translatable load | |
CN110619425A (en) | Multifunctional area comprehensive energy system collaborative planning method considering source network load storage difference characteristics | |
CN102684201B (en) | Voltage threshold probability-based reactive power optimizing method for grid containing wind power plant | |
CN108197726B (en) | Family energy data optimization method based on improved evolutionary algorithm | |
CN110323740B (en) | Economic peak regulation method considering dynamic correlation of photovoltaic output and air conditioner load | |
CN107546781A (en) | Micro-capacitance sensor multiple target running optimizatin method based on PSO innovatory algorithms | |
CN114744638B (en) | Optimization method of adjustable load capacity of power system based on new energy consumption | |
CN112186802A (en) | Multi-time scale rolling scheduling method and system for dynamic economic scheduling | |
CN110336285B (en) | Calculation method of optimal economic power flow in power system | |
CN110889581A (en) | Electric vehicle-participated transformer area optimal scheduling method and system | |
CN116799828A (en) | Energy storage multi-time scale capacity configuration method for flexible interconnection power distribution network | |
CN116826752A (en) | A multi-objective low-carbon loss reduction optimization dispatching strategy method for energy use in Taiwan area | |
CN101022220A (en) | Electric distributing network reactive trend optimization scheduling method | |
Gao et al. | A solar radiation intelligent forecasting framework based on feature selection and multivariable fuzzy time series | |
CN114759569B (en) | Wind power consumption method for northeast region based on electric heating load fine adjustment | |
CN115796540B (en) | A demand-side resource scheduling method and device for virtual capacity expansion of a substation | |
CN104538984B (en) | A kind of demand response solution formulation method considering wind electricity digestion | |
CN118213973A (en) | A commercial building energy management method based on improved particle swarm optimization | |
CN117892935A (en) | A method and system for allocating shared energy storage resources in a new energy power plant | |
CN111082442A (en) | An optimal allocation method for energy storage capacity based on improved FPA | |
Lei et al. | Capacity Optimization of Joint Thermal-Storage System for Frequency Regulation Considering Battery Life | |
CN114447976A (en) | Capacity optimization configuration method of grid-connected wind-solar-storage microgrid | |
CN106532768A (en) | Dynamic photovoltaic microgrid energy management method | |
Zhao et al. | Capacity optimization of lithium battery-flywheel hybrid energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |