CN114759285B - Treatment method of leachate from waste lithium-ion batteries - Google Patents
Treatment method of leachate from waste lithium-ion batteries Download PDFInfo
- Publication number
- CN114759285B CN114759285B CN202210376537.2A CN202210376537A CN114759285B CN 114759285 B CN114759285 B CN 114759285B CN 202210376537 A CN202210376537 A CN 202210376537A CN 114759285 B CN114759285 B CN 114759285B
- Authority
- CN
- China
- Prior art keywords
- ion battery
- lithium ion
- waste lithium
- treating
- leachate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 44
- 239000002699 waste material Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000012535 impurity Substances 0.000 claims abstract description 25
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 21
- 238000002386 leaching Methods 0.000 claims abstract description 14
- 239000008139 complexing agent Substances 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract 3
- 150000001721 carbon Chemical class 0.000 claims description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 4
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 4
- 101710194948 Protein phosphatase PhpP Proteins 0.000 claims description 3
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052744 lithium Inorganic materials 0.000 abstract description 13
- 150000002500 ions Chemical class 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- SFZULDYEOVSIKM-UHFFFAOYSA-N chembl321317 Chemical group C1=CC(C(=N)NO)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=N)NO)O1 SFZULDYEOVSIKM-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- -1 aluminum ions Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Primary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明属于电池回收技术领域,具体涉及含锂浸出液的净化除杂。The invention belongs to the technical field of battery recycling, and in particular relates to purification and impurity removal of lithium-containing leaching solution.
背景技术Background technique
废旧锂离子电池的回收是国家实现长期可持续发展的必然要求。目前电池企业处理废旧锂离子电池的方法是:首先通过预处理得到正极粉末,接着热处理正极粉末得到焙料,焙料经过酸浸、洗涤、除杂、萃取、沉锂等步骤得到电池级碳酸锂和其他有价金属盐。为了得到高纯度的电池级碳酸锂(YST 582-2006),除杂过程流程复杂,工艺繁琐,如硫化钠除铜离子、氟化钠除铝离子、过氧化氢与氨水除铁离子等,除杂过程中使用多种添加剂,有价元素锂损失大,经济效益较低,环境污染严重。The recycling of waste lithium-ion batteries is an inevitable requirement for the country to achieve long-term sustainable development. At present, the method used by battery companies to deal with waste lithium-ion batteries is: first, the positive electrode powder is obtained through pretreatment, and then the positive electrode powder is heat-treated to obtain the roasted material. The roasted material is subjected to acid leaching, washing, impurity removal, extraction, lithium precipitation and other steps to obtain battery-grade lithium carbonate and other valuable metal salts. In order to obtain high-purity battery-grade lithium carbonate (YST 582-2006), the impurity removal process is complicated and the process is cumbersome, such as sodium sulfide to remove copper ions, sodium fluoride to remove aluminum ions, hydrogen peroxide and ammonia water to remove iron ions, etc. A variety of additives are used in the impurity removal process, the valuable element lithium loss is large, the economic benefits are low, and the environmental pollution is serious.
发明内容Summary of the invention
针对现有技术存在的问题,本发明的目的是提供一种工艺流程简单、绿色无污染、杂质离子去除效率高、有价元素锂损失小的废旧锂离子电池浸出液的处理方法。In view of the problems existing in the prior art, the purpose of the present invention is to provide a method for treating waste lithium-ion battery leachate with a simple process flow, being green and pollution-free, having a high efficiency in removing impurity ions and having a small loss of valuable element lithium.
将废旧锂离子电池进行放电、拆解、去集流体、浮选等过程,得到废旧锂离子电池正极活性物质粉末;废旧锂离子电池正极活性物质粉末经过湿法浸出得到含锂离子及少量杂质金属离子如Al3+、Cu2+、Fe2+、Fe3+的废旧锂离子电池浸出液。The waste lithium-ion batteries are discharged, disassembled, current collector removed, and floated to obtain the positive electrode active material powder of the waste lithium-ion batteries; the positive electrode active material powder of the waste lithium-ion batteries is leached by a wet method to obtain a waste lithium-ion battery leachate containing lithium ions and a small amount of impurity metal ions such as Al 3+ , Cu 2+ , Fe 2+ , and Fe 3+ .
为实现上述目的,本发明具体提供以下技术方案。To achieve the above objectives, the present invention specifically provides the following technical solutions.
一种废旧锂离子电池浸出液的处理方法,包括以下步骤:在废旧锂离子电池浸出液中加入络合剂,和电解对电极构建电解槽;向电解槽交替施加不对称的正向电压和逆向电压,直至废旧锂离子电池浸出液中的杂质金属离子浓度达到预期。A method for treating waste lithium ion battery leachate comprises the following steps: adding a complexing agent to the waste lithium ion battery leachate, and constructing an electrolytic cell with an electrolytic counter electrode; and alternately applying an asymmetric forward voltage and a reverse voltage to the electrolytic cell until the concentration of impure metal ions in the waste lithium ion battery leachate reaches an expected value.
络合剂与杂质金属离子形成带负电的络合物,通过施加正向电压,带负电的杂质金属络合物与锂离子朝着相反的方向迁移,分别在阴阳极形成锂离子富集区和杂质离子富集区。再施加逆向电压,杂质离子富集区碳棒电极得到电子,发生还原反应,杂质金属离子被还原沉积在碳棒电极上;锂离子富集区碳棒电极失去电子,发生氧化反应,水分解产生氧气。The complexing agent forms a negatively charged complex with the impurity metal ions. By applying a positive voltage, the negatively charged impurity metal complex and the lithium ions migrate in opposite directions, forming lithium ion-rich areas and impurity ion-rich areas at the cathode and cathode, respectively. When a reverse voltage is applied, the carbon rod electrode in the impurity ion-rich area obtains electrons, a reduction reaction occurs, and the impurity metal ions are reduced and deposited on the carbon rod electrode; the carbon rod electrode in the lithium ion-rich area loses electrons, an oxidation reaction occurs, and water decomposes to produce oxygen.
进一步地,在本发明的部分优选实施方式中,所述络合剂为EDTA(乙二胺四乙酸)、EDTA-2Na(乙二胺四乙酸二钠)、STPP(三聚磷酸钠)、H-501(有机多元磷酸聚合物)中的至少一种,进一步优选为EDTA。Furthermore, in some preferred embodiments of the present invention, the chelating agent is at least one of EDTA (ethylenediaminetetraacetic acid), EDTA-2Na (disodium ethylenediaminetetraacetate), STPP (sodium tripolyphosphate), and H-501 (organic polyphosphate polymer), and EDTA is more preferred.
进一步地,在本发明的部分优选实施方式中,所述络合剂的添加摩尔量与杂质金属离子的摩尔量的比值为0.3~1.2:1。Furthermore, in some preferred embodiments of the present invention, the ratio of the added molar amount of the complexing agent to the molar amount of the impurity metal ions is 0.3-1.2:1.
进一步地,在本发明的部分优选实施方式中,所述对电极为改性碳棒电极或惰性电极。Furthermore, in some preferred embodiments of the present invention, the counter electrode is a modified carbon rod electrode or an inert electrode.
进一步地,所述惰性电极为铂电极。Furthermore, the inert electrode is a platinum electrode.
进一步优选对电极为改性碳棒电极,改性碳棒电极可以提高杂质金属离子的还原电位。It is further preferred that the counter electrode is a modified carbon rod electrode, which can increase the reduction potential of impurity metal ions.
进一步地,在本发明的部分优选实施方式中,所述正向电压为3~7V,优选为3~5V;所述逆向电压为6~14V,优选为10~14V。Furthermore, in some preferred embodiments of the present invention, the forward voltage is 3-7V, preferably 3-5V; the reverse voltage is 6-14V, preferably 10-14V.
进一步地,在本发明的部分优选实施方式中,正向电压的持续时间低于逆向电压的持续时间。Further, in some preferred embodiments of the present invention, the duration of the forward voltage is shorter than the duration of the reverse voltage.
进一步地,正向电压的持续时间为0.2~0.7ms,逆向电压的持续时间为1~3ms。Furthermore, the duration of the forward voltage is 0.2-0.7 ms, and the duration of the reverse voltage is 1-3 ms.
进一步地,在本发明的部分优选实施方式中,还包括以下步骤:向杂质金属离子浓度小于10ppm的废旧锂离子电池浸出液中通入CO2,然后蒸发、浓缩,得到碳酸锂和含络合剂的浓缩液;含络合剂的浓缩液循环利用。Furthermore, in some preferred embodiments of the present invention, the following steps are also included: introducing CO 2 into the waste lithium ion battery leachate with the impurity metal ion concentration less than 10 ppm, then evaporating and concentrating to obtain lithium carbonate and a concentrated solution containing a complexing agent; and recycling the concentrated solution containing a complexing agent.
本发明通过施加不对称交替电压去除废旧锂离子电池浸出液中杂质金属离子,具有以下明显的有益效果:The present invention removes impure metal ions in the leachate of waste lithium-ion batteries by applying an asymmetric alternating voltage, which has the following obvious beneficial effects:
(1)分离纯化废旧锂离子电池浸出液的工艺简单,避免了传统化学沉淀过程中大量化学添加剂的使用,绿色环保,同时大大降低了分离纯化成本,具有较大的经济利益;(1) The process of separating and purifying the leachate from waste lithium-ion batteries is simple, avoiding the use of a large number of chemical additives in the traditional chemical precipitation process, which is green and environmentally friendly. At the same time, it greatly reduces the cost of separation and purification, and has great economic benefits;
(2)对废旧锂离子电池浸出液中可能含有的各种金属离子杂质,如Cu2+、 Al3+、 Fe2 +、 Fe3+、 Ni2+、 Co2+、 Mn2+、 Ca2+、 Mg2+等均具有较好的去除效果,且整个过程不会造成锂元素损失。(2) It has a good removal effect on various metal ion impurities that may be contained in the leachate of waste lithium-ion batteries, such as Cu 2+ , Al 3+ , Fe 2+ , Fe 3+ , Ni 2+ , Co 2+ , Mn 2+ , Ca 2+ , Mg 2+, etc. , and the whole process will not cause lithium element loss.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为施加不对称交替电压的示意图。FIG. 1 is a schematic diagram of applying an asymmetric alternating voltage.
具体实施方式Detailed ways
下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。The present invention is described in detail below in conjunction with the accompanying drawings. The description in this part is only exemplary and explanatory and should not have any limiting effect on the protection scope of the present invention.
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。It should be noted that, unless otherwise specified, the technical terms or scientific terms used in this application should have the common meanings understood by those skilled in the art to which the invention belongs.
图1是下述实施例施加不对称交替电压的示意图,正向电压和逆向电压交替施加,循环往复。FIG1 is a schematic diagram of applying an asymmetric alternating voltage in the following embodiment, where a forward voltage and a reverse voltage are applied alternately and repeatedly.
实施例1Example 1
待处理的废旧锂电池浸出液中主要金属离子的含量表1所示。The contents of major metal ions in the leachate of waste lithium batteries to be treated are shown in Table 1.
表1Table 1
在100 ml废旧锂离子电池浸出液中加入加入6 g EDTA固体,60 ℃水浴搅拌溶解。然后和具有偕胺肟功能团的改性碳棒电极组成电解槽。向电解槽施加0.5 ms正向5 V的电压,再施加2 ms逆向10 V的电压,交替反复,持续30 min。检测废旧锂离子电池浸出液中主要金属离子的浓度,结果如表2所示。6 g of EDTA solid was added to 100 ml of waste lithium-ion battery leachate, and stirred in a 60 °C water bath to dissolve. Then, an electrolytic cell was formed with a modified carbon rod electrode having an amidoxime functional group. A forward voltage of 5 V was applied to the electrolytic cell for 0.5 ms, and a reverse voltage of 10 V was applied for 2 ms, alternately and repeatedly, for 30 min. The concentrations of the main metal ions in the waste lithium-ion battery leachate were detected, and the results are shown in Table 2.
表2Table 2
对比表1和表2的数据可以发现,Li+的去除率为0.16%,Cu2+的去除率为99.54%,Al3+的去除率为73.03%,Fe离子的去除率为97.51%。杂质离子的去除率非常高,而有价锂的损失极小。Comparing the data in Table 1 and Table 2, it can be found that the removal rate of Li + is 0.16%, the removal rate of Cu2 + is 99.54%, the removal rate of Al3 + is 73.03%, and the removal rate of Fe ions is 97.51%. The removal rate of impurity ions is very high, and the loss of valuable lithium is extremely small.
实施例2Example 2
待处理的废旧锂电池浸出液中主要金属离子的含量表3所示。The contents of major metal ions in the leachate of waste lithium batteries to be treated are shown in Table 3.
表3table 3
在100 ml废旧锂离子电池浸出液中加入加入6 g EDTA-2Na固体,常温搅拌溶解。然后和具有偕胺肟功能团的改性碳棒电极组成电解槽。向电解槽施加0.4 ms正向6V的电压,再施加1.5 ms逆向13 V的电压,交替反复,持续30 min。检测废旧锂离子电池浸出液中主要金属离子的浓度,结果如表4所示。Add 6 g of EDTA-2Na solid to 100 ml of waste lithium-ion battery leachate and stir to dissolve at room temperature. Then form an electrolytic cell with a modified carbon rod electrode having an amidoxime functional group. Apply a forward voltage of 6 V to the electrolytic cell for 0.4 ms, and then apply a reverse voltage of 13 V for 1.5 ms, alternately and repeatedly for 30 min. The concentration of the main metal ions in the waste lithium-ion battery leachate was detected, and the results are shown in Table 4.
表4Table 4
对比表3和表4的数据可以发现,Li+的去除率为0.25%,Cu2+的去除率为99.56%,Al3+的去除率为79.81%,Fe离子的去除率为96.03%。杂质离子的去除率非常高,而有价锂的损失极小。Comparing the data in Table 3 and Table 4, it can be found that the removal rate of Li + is 0.25%, the removal rate of Cu2 + is 99.56%, the removal rate of Al3 + is 79.81%, and the removal rate of Fe ions is 96.03%. The removal rate of impurity ions is very high, and the loss of valuable lithium is extremely small.
实施例3Example 3
待处理的废旧锂电池浸出液中主要金属离子的含量表5所示。The contents of major metal ions in the leachate of waste lithium batteries to be treated are shown in Table 5.
表5table 5
在100 ml废旧锂离子电池浸出液中加入加入7 g STPP固体,常温水浴搅拌溶解。然后和具有偕胺肟功能团的改性碳棒电极组成电解槽。向电解槽施加0.7ms正向4 V的电压,再施加3 ms逆向7 V的电压,交替反复,持续30 min。检测废旧锂离子电池浸出液中主要金属离子的浓度,结果如表6所示。7 g of STPP solid was added to 100 ml of waste lithium-ion battery leachate, and stirred in a water bath at room temperature to dissolve. Then, an electrolytic cell was formed with a modified carbon rod electrode having an amidoxime functional group. A forward voltage of 4 V was applied to the electrolytic cell for 0.7 ms, and a reverse voltage of 7 V was applied for 3 ms, alternating and repeating for 30 min. The concentrations of the main metal ions in the waste lithium-ion battery leachate were detected, and the results are shown in Table 6.
表6Table 6
对比表5和表6的数据可以发现,Li+的去除率为0.14%,Cu2+的去除率为99.57%,Al3+的去除率为46.98%,Fe离子的去除率为63.81%。杂质离子的去除率非常高,而有价锂的损失极小。Comparing the data in Table 5 and Table 6, it can be found that the removal rate of Li + is 0.14%, the removal rate of Cu2 + is 99.57%, the removal rate of Al3 + is 46.98%, and the removal rate of Fe ions is 63.81%. The removal rate of impurity ions is very high, and the loss of valuable lithium is extremely small.
实施例4Example 4
待处理的废旧锂电池浸出液中主要金属离子的含量表7所示。The contents of major metal ions in the leachate of waste lithium batteries to be treated are shown in Table 7.
表7Table 7
在100 ml废旧锂离子电池浸出液中加入加入6 g EDTA固体,60 ℃水浴搅拌溶解。然后和具有偕胺肟功能团的改性碳棒电极组成电解槽。向电解槽施加0.5 ms正向5 V的电压,再施加2 ms逆向10 V的电压,交替反复,持续30 min。检测废旧锂离子电池浸出液中主要金属离子的浓度,结果如表8所示。6 g of EDTA solid was added to 100 ml of waste lithium-ion battery leachate, and stirred in a 60 °C water bath to dissolve. Then, an electrolytic cell was formed with a modified carbon rod electrode having an amidoxime functional group. A forward voltage of 5 V was applied to the electrolytic cell for 0.5 ms, and a reverse voltage of 10 V was applied for 2 ms, alternately and repeatedly, for 30 min. The concentrations of the main metal ions in the waste lithium-ion battery leachate were detected, and the results are shown in Table 8.
表8Table 8
对比表7和表8的数据可以发现,Li+的去除率为0.19%,Cu2+的去除率为99.55%,Al3+的去除率为72.20%,Fe离子的去除率为99.48%,Ni2+的去除率为81.02%,Co2+的去除率为87.20%,Mn2+的去除率为85.59%,杂质离子的去除率非常高,而有价锂的损失极小。By comparing the data in Table 7 and Table 8, it can be found that the removal rate of Li + is 0.19%, the removal rate of Cu2 + is 99.55%, the removal rate of Al3 + is 72.20%, the removal rate of Fe ions is 99.48%, the removal rate of Ni2 + is 81.02%, the removal rate of Co2 + is 87.20%, and the removal rate of Mn2 + is 85.59%. The removal rate of impurity ions is very high, and the loss of valuable lithium is extremely small.
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。The present invention is described in detail above in conjunction with specific implementation methods and exemplary examples, but these descriptions cannot be understood as limiting the present invention. Those skilled in the art understand that, without departing from the spirit and scope of the present invention, various equivalent substitutions, modifications or improvements can be made to the technical solution of the present invention and its implementation methods, which all fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210376537.2A CN114759285B (en) | 2022-04-11 | 2022-04-11 | Treatment method of leachate from waste lithium-ion batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210376537.2A CN114759285B (en) | 2022-04-11 | 2022-04-11 | Treatment method of leachate from waste lithium-ion batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114759285A CN114759285A (en) | 2022-07-15 |
CN114759285B true CN114759285B (en) | 2024-06-04 |
Family
ID=82329710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210376537.2A Active CN114759285B (en) | 2022-04-11 | 2022-04-11 | Treatment method of leachate from waste lithium-ion batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114759285B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043042B (en) * | 2022-12-27 | 2024-11-26 | 深圳市中金岭南有色金属股份有限公司韶关冶炼厂 | A method for recovering gallium from gallium arsenide waste |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2189402C1 (en) * | 2001-02-21 | 2002-09-20 | Северо-Кавказский государственный технологический университет | Technology processing waste of hard alloys |
CN102643993A (en) * | 2012-04-27 | 2012-08-22 | 福建金山黄金冶炼有限公司 | Balance control technique for efficient extraction of electro-deposited copper and impurities from complex solution |
CN103199230A (en) * | 2013-03-20 | 2013-07-10 | 佛山市邦普循环科技有限公司 | Process for reversely recycling and preparing lithium nickel manganese oxide by taking waste lithium battery as raw material |
JP2014015647A (en) * | 2012-07-06 | 2014-01-30 | Jx Nippon Mining & Metals Corp | Method for recovering cobalt |
WO2018095162A1 (en) * | 2016-11-23 | 2018-05-31 | 肇庆市飞南金属有限公司 | Low energy consumption method for preparing electrolytic copper from copper-containing sludge |
JP2021070843A (en) * | 2019-10-30 | 2021-05-06 | 住友金属鉱山株式会社 | Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery |
CN113652716A (en) * | 2021-09-13 | 2021-11-16 | 江西新金叶实业有限公司 | Process for electrolyzing high-nickel copper anode by adopting periodic reverse current |
WO2022062675A1 (en) * | 2020-09-24 | 2022-03-31 | 广东邦普循环科技有限公司 | Method for recovering waste lithium battery positive electrode material |
-
2022
- 2022-04-11 CN CN202210376537.2A patent/CN114759285B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2189402C1 (en) * | 2001-02-21 | 2002-09-20 | Северо-Кавказский государственный технологический университет | Technology processing waste of hard alloys |
CN102643993A (en) * | 2012-04-27 | 2012-08-22 | 福建金山黄金冶炼有限公司 | Balance control technique for efficient extraction of electro-deposited copper and impurities from complex solution |
JP2014015647A (en) * | 2012-07-06 | 2014-01-30 | Jx Nippon Mining & Metals Corp | Method for recovering cobalt |
CN103199230A (en) * | 2013-03-20 | 2013-07-10 | 佛山市邦普循环科技有限公司 | Process for reversely recycling and preparing lithium nickel manganese oxide by taking waste lithium battery as raw material |
WO2018095162A1 (en) * | 2016-11-23 | 2018-05-31 | 肇庆市飞南金属有限公司 | Low energy consumption method for preparing electrolytic copper from copper-containing sludge |
JP2021070843A (en) * | 2019-10-30 | 2021-05-06 | 住友金属鉱山株式会社 | Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery |
WO2022062675A1 (en) * | 2020-09-24 | 2022-03-31 | 广东邦普循环科技有限公司 | Method for recovering waste lithium battery positive electrode material |
CN113652716A (en) * | 2021-09-13 | 2021-11-16 | 江西新金叶实业有限公司 | Process for electrolyzing high-nickel copper anode by adopting periodic reverse current |
Non-Patent Citations (2)
Title |
---|
Selective extraction and separation of Li, Co and Mn from leach liquor of discarded lithium ion batteries (LIBs);Choubey, PK 等;《WASTE MANAGEMENT》;20210131;第452-457页 * |
高电流密度电解对阴极铜质量的影响;郑雅杰;赵攀峰;王勇;吕重安;;中南大学学报(自然科学版);20090426(第02期);第53-58页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114759285A (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112331949B (en) | Method for recovering phosphorus, iron and lithium from waste lithium iron phosphate batteries | |
CN112441572B (en) | Method for recovering waste lithium iron phosphate anode material | |
CN115818801B (en) | Method for extracting lithium from salt lake brine | |
CN108899604B (en) | Method for preparing ternary positive electrode material precursor by utilizing waste lithium battery positive electrode piece | |
CN109346741B (en) | Method for recycling waste positive electrode material of lithium battery | |
CN114243041B (en) | A method for regenerating waste vanadium energy storage medium | |
CN101914785A (en) | Method for recycling silver and copper from silver-copper alloy scrap | |
CN115367776B (en) | Recovery method of lithium iron phosphate battery | |
CN108504865A (en) | A method of strengthening waste lithium ion cell anode active material and leaches | |
CN115304042A (en) | Method for preparing battery-grade iron phosphate by recycling waste lithium iron phosphate | |
CN109585962B (en) | Method for resource utilization of waste lithium battery anode material | |
CN114759285B (en) | Treatment method of leachate from waste lithium-ion batteries | |
CN116177516A (en) | A closed-loop regeneration method for waste lithium iron phosphate battery cathode material | |
CN115784268A (en) | Method for jointly recovering lithium and graphite from positive and negative electrode black powder | |
CN112563604B (en) | Method for regenerating anode material of waste lithium ion battery | |
CN108306071A (en) | A kind of waste lithium ion cell anode material recovery technique | |
CN108384957A (en) | A method of the collaboration recycling valuable metal from waste lithium cell and Ni-MH battery | |
CN116902998A (en) | An efficient method for recycling lithium in waste lithium iron phosphate batteries | |
CN112047546A (en) | Treatment process for wastewater containing nitrate nitrogen through anodic oxidation | |
CN113422122B (en) | Solid electrolyte-based waste battery lithium resource recovery method | |
CN116119690A (en) | Method for selectively recycling lithium from waste lithium battery | |
CN116730307A (en) | Method for removing copper and aluminum from lithium iron phosphate waste leachate | |
CN110818038B (en) | A method for treating titanium or titanium alloy pickling waste liquid by capacitive deionization technology | |
CN211998955U (en) | A kind of ammonium sulfate evaporation mother liquor heavy metal purification device | |
CN118497832B (en) | A method for recovering low-concentration platinum by electro-chemical composite adsorption in a short process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |