CN114757124A - CFD workflow modeling method and device based on XML, computer and storage medium - Google Patents
CFD workflow modeling method and device based on XML, computer and storage medium Download PDFInfo
- Publication number
- CN114757124A CN114757124A CN202210421249.4A CN202210421249A CN114757124A CN 114757124 A CN114757124 A CN 114757124A CN 202210421249 A CN202210421249 A CN 202210421249A CN 114757124 A CN114757124 A CN 114757124A
- Authority
- CN
- China
- Prior art keywords
- node
- workflow
- model
- attribute
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000012805 post-processing Methods 0.000 claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 238000009877 rendering Methods 0.000 claims abstract description 15
- 230000009471 action Effects 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 13
- 230000006399 behavior Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 abstract description 14
- 230000008569 process Effects 0.000 description 11
- 230000010354 integration Effects 0.000 description 3
- 238000013515 script Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Fluid Mechanics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于XML的CFD工作流建模方法、装置、计算机及存储介质,涉及科学计算领域。解决了解决了现有科学计算工作流不适用于流体力学的问题。所述建模方法包括:根据解析XML文件获取输入参数文件;根据输入参数文件进行几何建模,获取几何模型文件,所述几何模型文件为几何组件节点模型的输出属性;根据几何模型进行网格剖分,获取网格文件,所述网格文件为网格组件节点模型的输出属性;根据输入参数文件和网格文件进行求解计算,获取求解结果,所述求解结果为求解器组件节点模型的输出属性;根据求解结果获取后处理渲染图像,完成CFD工作流模型的建立;所述后处理渲染图像为后处理组件节点模型的输出属性。适用于流体力学的科学计算工作流领域。
An XML-based CFD workflow modeling method, device, computer and storage medium relate to the field of scientific computing. It solves the problem that the existing scientific computing workflow is not suitable for fluid mechanics. The modeling method includes: obtaining an input parameter file according to the parsing XML file; performing geometric modeling according to the input parameter file, and obtaining a geometric model file, where the geometric model file is an output attribute of a geometric component node model; meshing according to the geometric model Divide, obtain a grid file, the grid file is the output attribute of the grid component node model; perform the solution calculation according to the input parameter file and the grid file, and obtain the solution result, the solution result is the solver component node model. output attribute; the post-processing rendering image is obtained according to the solution result, and the establishment of the CFD workflow model is completed; the post-processing rendering image is the output attribute of the post-processing component node model. The field of scientific computing workflows applicable to fluid mechanics.
Description
技术领域technical field
本发明涉及的流体力学技术领域中的流体仿真技术领域。The present invention relates to the field of fluid simulation technology in the technical field of fluid mechanics.
背景技术Background technique
科学计算工作流提供了流程定义与控制、任务管理、作业调度与执行、容错处理等功能,屏蔽底层资源,帮助科学研究人员减少对流程的部署操作等时间花费,提高求解问题的效率。Kepler(开普勒)等典型科学工作流系统在应用上需要花费大量的时间去熟悉各类活动节点的含义,而其他集成方法如HSWAP(适用于高性能计算环境的数值模拟工作流管理平台)针对CFD(计算流体力学)领域没有分析总结其数据耦合方式,而基于STEP(产品模型数据交互规范)的集成方法和基于Agent(代理)架构的集成方法的扩展性有所欠缺。Scientific computing workflow provides functions such as process definition and control, task management, job scheduling and execution, and fault-tolerant processing, shielding underlying resources, helping scientific researchers reduce the time spent on process deployment operations, and improving the efficiency of problem solving. Typical scientific workflow systems such as Kepler (Kepler) require a lot of time to be familiar with the meaning of various active nodes, while other integration methods such as HSWAP (a numerical simulation workflow management platform for high-performance computing environments) For the field of CFD (Computational Fluid Dynamics), there is no analysis and summary of its data coupling method, and the integration method based on STEP (Product Model Data Interaction Specification) and the integration method based on Agent architecture are lacking in scalability.
目前缺乏一种适用于流体力学领域的科学计算工作流,即没有适用于流体力学的流体仿真建模技术。At present, there is a lack of a scientific computing workflow suitable for the field of fluid mechanics, that is, there is no fluid simulation modeling technology suitable for fluid mechanics.
发明内容SUMMARY OF THE INVENTION
本发明解决了现有科学计算工作流不适用于流体力学的问题。The invention solves the problem that the existing scientific computing workflow is not suitable for fluid mechanics.
一种基于XML的CFD工作流建模方法,所述建模方法包括:An XML-based CFD workflow modeling method, the modeling method comprising:
根据解析XML文件获取输入参数文件;Obtain the input parameter file according to the parsing XML file;
根据输入参数文件进行几何建模,获取几何模型文件,所述几何模型文件为几何组件节点模型的输出属性;Perform geometric modeling according to the input parameter file, and obtain a geometric model file, where the geometric model file is the output attribute of the geometric component node model;
根据几何模型进行网格剖分,获取网格文件,所述网格文件为网格组件节点模型的输出属性;Perform mesh division according to the geometric model, and obtain a mesh file, where the mesh file is the output attribute of the mesh component node model;
根据输入参数文件和网格文件进行求解计算,获取求解结果,所述求解结果为求解器组件节点模型的输出属性;Perform the solution calculation according to the input parameter file and the grid file, and obtain the solution result, where the solution result is the output attribute of the node model of the solver component;
根据求解结果获取后处理渲染图像,完成CFD工作流模型的建立;所述后处理渲染图像为后处理组件节点模型的输出属性。The post-processing rendering image is obtained according to the solution result, and the establishment of the CFD workflow model is completed; the post-processing rendering image is the output attribute of the post-processing component node model.
进一步,所述几何组件节点模型、网格组件模型、求解器节点模型和后处理组件节点模型均包括:对象属性、执行动作和对象端口;Further, the geometric component node model, grid component model, solver node model and post-processing component node model all include: object attributes, execution actions and object ports;
所述对象属性用于描述工作流节点的相关参数;The object attribute is used to describe the relevant parameters of the workflow node;
所述执行动作用于描述工作流节点的行为动作;The execution action is used to describe the behavior action of the workflow node;
所述对象端口用于描述工作流节点的数据输入和数据输出,所述数据输入表示将工作流节点所需数据通过输入端口输入,所述数据输出表示将工作流节点产生的数据通过输出端口,向下一个节点传输。The object port is used to describe the data input and data output of the workflow node, the data input means that the data required by the workflow node is input through the input port, and the data output means that the data generated by the workflow node is passed through the output port, transfer to the next node.
进一步,所述CFD工作流模型包括根元素;Further, the CFD workflow model includes a root element;
所述根元素包括三种属性:name属性、desp属性和type属性;The root element includes three attributes: name attribute, desp attribute and type attribute;
所述name属性用于描述工作流模型的名字;The name attribute is used to describe the name of the workflow model;
所述desp属性用于描述工作流模型的信息,提供工作流模型的说明性文字;The desp attribute is used to describe the information of the workflow model, and provides the descriptive text of the workflow model;
所述type属性用于描述工作流模型的类型。The type attribute is used to describe the type of workflow model.
进一步,所述根元素还包括四个子元素:子元素Property、子元素Step、子元素Relation和子元素Link;Further, the root element also includes four sub-elements: sub-element Property, sub-element Step, sub-element Relation and sub-element Link;
所述子元素Property用于描述工作流模型自身属性信息;The sub-element Property is used to describe the attribute information of the workflow model itself;
所述子元素Step用于描述工作流模型中节点信息,所述一个工作流模型中至少含有两个子元素Step描述工作流节点,所述两个子元素Step分别为开始节点和结束节点;The sub-element Step is used to describe the node information in the workflow model, and the one workflow model contains at least two sub-elements Step to describe the workflow node, and the two sub-elements Step are respectively the start node and the end node;
所述子元素Relation用于描述工作流模型中各个节点的连接信息,不具有方向属性;The sub-element Relation is used to describe the connection information of each node in the workflow model, and does not have a direction attribute;
所述子元素Link用于关联节点之间的输入端口和输出端口。The sub-element Link is used to associate the input port and the output port between the nodes.
进一步,所述子元素Property包括:Further, the sub-element Property includes:
子元素Author、子元素CreateTime、子元素Location;Sub-element Author, sub-element CreateTime, sub-element Location;
所述子元素Author用于说明工作流模型的作者;The sub-element Author is used to describe the author of the workflow model;
所述子元素CreateTime用于说明工作流模型创建时间;The sub-element CreateTime is used to describe the creation time of the workflow model;
所述子元素Location用于说明工作流模型存储位置。The sub-element Location is used to describe the storage location of the workflow model.
进一步,所述子元素Step包括:属性name、属性desp、属性id和属性type;Further, the sub-element Step includes: attribute name, attribute desp, attribute id and attribute type;
所述属性name用于说明子元素Step所对应节点的名字,所述在整个工作流模型中,所述节点的名字唯一且不可重复;The attribute name is used to describe the name of the node corresponding to the child element Step, and in the entire workflow model, the name of the node is unique and cannot be repeated;
所述属性desp用于说明子元素Step所对应节点的描述信息,提供对应节点的描述性文字;The attribute desp is used to describe the description information of the node corresponding to the sub-element Step, and provides the descriptive text of the corresponding node;
所述属性id用于作为标识符标识节点;The attribute id is used as an identifier to identify the node;
所述属性type用于说明工作流节点的类型,决定工作流节点的工作内容。The attribute type is used to describe the type of the workflow node and determine the work content of the workflow node.
进一步,所述子元素Step还包括:节点标签的子元素标签Property、节点标签的子元素标签Actions和节点标签的子元素标签Ports;Further, the sub-element Step also includes: the sub-element label Property of the node label, the sub-element label Actions of the node label and the sub-element label Ports of the node label;
所述节点标签的子元素标签Property用于描述所述节点类中所包含的属性信息;The child element label Property of the node label is used to describe the attribute information contained in the node class;
所述节点标签的子元素标签Actions用于描述所述节点所支持的所有操作的集合;The sub-element label Actions of the node label is used to describe the set of all operations supported by the node;
所述节点标签的子元素标签Ports用于表示输入所述节点数据通道,以及所述节点输出数据的通道。The sub-element label Ports of the node label is used to indicate a channel for inputting data to the node and a channel for outputting data from the node.
基于同一构思,本发明还提供一种基于XML的CFD工作流建模装置,所述建模装置包括:Based on the same concept, the present invention also provides a CFD workflow modeling device based on XML, and the modeling device includes:
解析单元,用于根据解析XML文件获取输入参数文件;The parsing unit is used to obtain the input parameter file according to the parsing XML file;
几何建模单元,用于根据输入参数文件进行几何建模,获取几何模型文件,所述几何模型文件为几何组件节点模型的输出属性;a geometric modeling unit, configured to perform geometric modeling according to the input parameter file, and obtain a geometric model file, where the geometric model file is the output attribute of the geometric component node model;
网格文件获取单元,用于根据几何模型进行网格剖分,获取网格文件,所述网格文件为网格组件节点模型的输出属性;a grid file acquiring unit, used for performing grid division according to the geometric model to acquire a grid file, where the grid file is an output attribute of a grid component node model;
求解结果获取单元,用于根据输入参数文件和网格文件进行求解计算,获取求解结果,所述求解结果为求解器组件节点模型的输出属性;a solution result obtaining unit, configured to perform solution calculation according to the input parameter file and the grid file, and obtain the solution result, where the solution result is the output attribute of the node model of the solver component;
后处理单元,用于根据求解结果获取后处理渲染图像,完成CFD工作流模型的建立;所述后处理渲染图像为后处理组件节点模型的输出属性。The post-processing unit is used for obtaining a post-processing rendering image according to the solution result, and completing the establishment of the CFD workflow model; the post-processing rendering image is an output attribute of the post-processing component node model.
本发明还提供一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行根据上述所述的一种基于XML的CFD工作流建模方法。The present invention also provides a computer device, comprising a memory and a processor, wherein a computer program is stored in the memory, and when the processor executes the computer program stored in the memory, the processor executes one of the above-mentioned methods. An XML-based CFD workflow modeling method.
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质用于储存计算机程序,所述计算机程序执行上述所述的一种基于XML的CFD工作流建模方法。The present invention also provides a computer-readable storage medium for storing a computer program, and the computer program executes the above-mentioned XML-based CFD workflow modeling method.
本发明的有益之处在于:The benefits of the present invention are:
(1)本发明基于XML可扩展标记语言定义了一套语义语法规范,构建了面向流体力学技术领域的科学计算工作流程,形成一套形式化的CFD模型的建立和描述方法。(1) The present invention defines a set of semantic grammar specifications based on XML extensible markup language, constructs a scientific computing workflow oriented to the technical field of fluid mechanics, and forms a set of formalized CFD model establishment and description methods.
(2)典型科学工作流形式化描述语言的节点复杂,需要花费大量的时间去熟悉各类活动节点的含义,本发明的基于XML的语义语法规范集中于描述流体运动的空间物理特性和非定常流体运动的时空物理特征的模型,该模型更加适合操作使用。(2) The nodes of the formalized description language of typical scientific workflow are complex, and it takes a lot of time to get familiar with the meanings of various active nodes. The XML-based semantic grammar specification of the present invention focuses on describing the spatial physical characteristics and unsteady characteristics of fluid motion. A model of the spatiotemporal physical characteristics of fluid motion, which is more suitable for operational use.
(3)本发明提供了面向流体力学技术领域的专用组件,包括几何、网格、求解器、后处理等业务节点,建立的CFD工作流模型可以集成现有的多种语言开发的科学计算任务;支持进行完整性、逻辑性和一致性校验,实现工作流的静态检查,提前发现错误,减少在工作流运行时的错误排查时间。(3) The present invention provides special components for the technical field of fluid mechanics, including business nodes such as geometry, grid, solver, post-processing, etc. The established CFD workflow model can integrate existing scientific computing tasks developed in multiple languages ;Support integrity, logic and consistency check, realize static check of workflow, find errors in advance, and reduce the time of error checking when the workflow is running.
(4)基于本发明构建的建模方法,可以开发自定义工作流组件,进行扩展,封装自己的逻辑,整个工作流都可以很好的兼容并支持对该自定义组件的调用,方便用户使用。(4) Based on the modeling method constructed by the present invention, a custom workflow component can be developed, extended, and encapsulated with its own logic. The entire workflow can be well compatible and support the calling of the custom component, which is convenient for users to use .
本发明适用于流体力学的科学计算工作流领域。The invention is suitable for the scientific computing workflow field of fluid mechanics.
附图说明Description of drawings
图1为本发明所述的一种基于XML的CFD工作流建模方法流程图。FIG. 1 is a flowchart of an XML-based CFD workflow modeling method according to the present invention.
图2为本发明实施例六所述的判断组件流程图。FIG. 2 is a flowchart of a judgment component according to Embodiment 6 of the present invention.
图3为本发明实施例六所述的循环组件流程图。FIG. 3 is a flow chart of the circulation component according to the sixth embodiment of the present invention.
图4为本发明实施例所述的工作流模型描述文件示意图。FIG. 4 is a schematic diagram of a description file of a workflow model according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments.
实施例一、参见图1说明本实施例。本实施例所述的一种基于XML的CFD工作流建模方法,所述建模方法包括:
根据解析XML文件获取输入参数文件;Obtain the input parameter file according to the parsing XML file;
根据输入参数文件进行几何建模,获取几何模型文件,所述几何模型文件为几何组件节点模型的输出属性;Perform geometric modeling according to the input parameter file, and obtain a geometric model file, where the geometric model file is the output attribute of the geometric component node model;
根据几何模型进行网格剖分,获取网格文件,所述网格文件为网格组件节点模型的输出属性;Perform mesh division according to the geometric model, and obtain a mesh file, where the mesh file is the output attribute of the mesh component node model;
根据输入参数文件和网格文件进行求解计算,获取求解结果,所述求解结果为求解器组件节点模型的输出属性;Perform the solution calculation according to the input parameter file and the grid file, and obtain the solution result, where the solution result is the output attribute of the node model of the solver component;
根据求解结果获取后处理渲染图像,完成CFD工作流模型的建立;所述后处理渲染图像为后处理组件节点模型的输出属性。The post-processing rendering image is obtained according to the solution result, and the establishment of the CFD workflow model is completed; the post-processing rendering image is the output attribute of the post-processing component node model.
在实际应用中,所述几何组件节点模型内封装了在科学计算领域几何建模阶段常见的操作和数据配置项,方便操作几何建模相关的输入数据和输出数据;所述网格组件节点模型内封装了科学计算领域网格剖分阶段常见的操作和数据配置项,可以提供对几何模型的网格剖分操作;所述求解器节点模型内封装了科学计算领域有限元求解计算阶段常见的操作和数据配置项,可以提供针对输入参数文件和网格文件的求解计算过程;所述后处理组件节点模型封装了科学计算领域后处理可视化阶段常见的操作和数据配置项,可以将求解器输出的计算结果文件,通过可视化的技术手段(常见软件的调用)呈现出云图、矢量图、等值面等常见后处理渲染图像。In practical applications, the geometric component node model encapsulates common operations and data configuration items in the geometric modeling stage in the field of scientific computing, which facilitates the operation of input data and output data related to geometric modeling; the grid component node model It encapsulates common operations and data configuration items in the meshing stage in the field of scientific computing, and can provide meshing operations for geometric models; the solver node model encapsulates the common operations and data configuration items in the finite element solution calculation stage in the field of scientific computing. Operation and data configuration items, which can provide the solution calculation process for input parameter files and grid files; the post-processing component node model encapsulates common operations and data configuration items in the post-processing visualization stage in the field of scientific computing, and can output the solver The calculation result file of the cloud map, vector diagram, isosurface and other common post-processing rendering images are presented through visual technical means (calls of common software).
每个基础组件节点模型都是以C++类的形式进行定义,作为基础组件节点对象使用。工作流模型框架部分支持对基础组件模型的扩展,在实际操作上体现为对基础组件类的继承,通过集成不同类别的基础组件类写出最终需要的子类类型,在框架中加载后能够和基础组件一起进行显示。Each basic component node model is defined in the form of a C++ class and used as a basic component node object. The workflow model framework partially supports the extension of the basic component model, which is reflected in the actual operation as the inheritance of the basic component class. By integrating different types of basic component classes, the final required subclass type can be written. After loading in the framework, it can be combined with The base components are displayed together.
基础组件模型以及基于基础组件模型的扩展组件模型,可以封装Widget界面实现,Widget界面部分主要实现该节点属性信息的收集工作。The basic component model and the extended component model based on the basic component model can be implemented by encapsulating the Widget interface, and the Widget interface part mainly implements the collection of attribute information of the node.
实施例二、本实施例是对实施例一所述的一种基于XML的CFD工作流建模方法的进一步限定,所述几何组件节点模型、网格组件节点模型、求解器节点模型和后处理组件节点模型均包括:对象属性、执行动作和对象端口;
所述对象属性用于描述工作流节点的相关参数;The object attribute is used to describe the relevant parameters of the workflow node;
所述执行动作用于描述工作流节点的行为动作;The execution action is used to describe the behavior action of the workflow node;
所述对象端口用于描述工作流节点的数据输入和数据输出,所述数据输入表示将工作流节点所需数据通过输入端口输入,所述数据输出表示将工作流节点产生的数据通过输出端口,向下一个节点传输。The object port is used to describe the data input and data output of the workflow node, the data input means that the data required by the workflow node is input through the input port, and the data output means that the data generated by the workflow node is passed through the output port, transfer to the next node.
在实际应用中,相关参数可以为节点状态信息、输入参数信息、输出参数信息、中间结果数据等。In practical applications, the relevant parameters may be node state information, input parameter information, output parameter information, intermediate result data, and the like.
执行动物具体为进入工作流节点之前的前置动作、进入工作流节点后的节点动作、离开工作流节点后的后置动作等;所述三种类型的动作,都可以使用python脚本或者Shell脚本的形式表示,具体执行在执行引擎处理。The execution animal is specifically the pre-action before entering the workflow node, the node action after entering the workflow node, the post-action after leaving the workflow node, etc.; the three types of actions can all use python scripts or shell scripts In the form of representation, the specific execution is processed in the execution engine.
所述对象端口可以将节点所需数据通过输入端口接入,也可以将节点产生的数据通过输出端口,向下一个节点传输。端口是节点之间的数据传输通道,其中传输的数据是通过绑定节点对象属性实现的。The object port can access the data required by the node through the input port, and can also transmit the data generated by the node to the next node through the output port. A port is a data transmission channel between nodes, in which the transmitted data is realized by binding the properties of the node object.
实施例三、本实施例是对实施例二所述的一种基于XML的CFD工作流建模方法的进一步限定,所述CFD工作流模型包括根元素;
所述根元素包括三种属性:name属性、desp属性和type属性;The root element includes three attributes: name attribute, desp attribute and type attribute;
所述name属性用于描述工作流模型的名字;The name attribute is used to describe the name of the workflow model;
所述desp属性用于描述工作流模型的信息,提供工作流模型的说明性文字;The desp attribute is used to describe the information of the workflow model, and provides the descriptive text of the workflow model;
所述type属性用于描述工作流模型的类型。The type attribute is used to describe the type of workflow model.
所述3种属性的详细说明如表1所示:The detailed description of the three properties is shown in Table 1:
表1Table 1
在实际应用中,工作流节点描述文件以XML的形式体现。In practical applications, the workflow node description file is embodied in the form of XML.
实施例四、本实施例是对实施例三所述的一种基于XML的CFD工作流建模方法的进一步限定,所述根元素还包括四个子元素:子元素Property、子元素Step、子元素Relation和子元素Link;Embodiment 4. This embodiment further defines the XML-based CFD workflow modeling method described in
所述子元素Property用于描述工作流模型自身属性信息;The sub-element Property is used to describe the attribute information of the workflow model itself;
所述子元素Step用于描述工作流模型中节点信息,所述一个工作流模型中至少含有两个子元素Step描述工作流节点,所述两个子元素Step分别为开始节点和结束节点;The sub-element Step is used to describe the node information in the workflow model, and the one workflow model contains at least two sub-elements Step to describe the workflow node, and the two sub-elements Step are respectively the start node and the end node;
所述子元素Relation用于描述工作流模型中各个节点的连接信息,不具有方向属性;The sub-element Relation is used to describe the connection information of each node in the workflow model, and does not have a direction attribute;
所述子元素Link用于关联节点之间的输入和输出端口。The sub-element Link is used to associate the input and output ports between nodes.
所述子元素Relation的详细说明如表2所示:The detailed description of the sub-element Relation is shown in Table 2:
表2Table 2
所述子元素Link能够反映具有连接关系的节点之间,彼此的输入端口和输出端口的关联关系。一般情况下,一个连接线,关联两个节点,一端是其中一个节点的输入端口,一端是另外一个节点的输出端口。The sub-element Link can reflect the relationship between the input ports and output ports of the nodes with the connection relationship. In general, a connection line is associated with two nodes, one end is the input port of one node, and the other end is the output port of the other node.
所述子元素Link的详细说明如表3所示:The detailed description of the sub-element Link is shown in Table 3:
表3table 3
实施例五、参见图4说明本实施例。本实施例是对实施例四所述的一种基于XML的CFD工作流建模方法的进一步限定,所述子元素Property包括:Embodiment 5. This embodiment is described with reference to FIG. 4 . This embodiment further defines the XML-based CFD workflow modeling method described in Embodiment 4, and the sub-element Property includes:
子元素Author、子元素CreateTime、子元素Location;Sub-element Author, sub-element CreateTime, sub-element Location;
所述子元素Author用于说明工作流模型的作者;The sub-element Author is used to describe the author of the workflow model;
所述子元素CreateTime用于说明工作流模型创建时间;The sub-element CreateTime is used to describe the creation time of the workflow model;
所述子元素Location用于说明工作流模型存储位置。The sub-element Location is used to describe the storage location of the workflow model.
在实际用于中,所述子元素Property的详细说明如表4所示:In actual use, the detailed description of the sub-element Property is shown in Table 4:
表4Table 4
实施例六、参见图2、图3和图4说明本实施例。本实施例是对实施例四所述的一种基于XML的CFD工作流建模方法的进一步限定,所述子元素Step包括:属性name、属性desp、属性id和属性type;Embodiment 6 This embodiment will be described with reference to FIG. 2 , FIG. 3 and FIG. 4 . This embodiment further defines the XML-based CFD workflow modeling method described in the fourth embodiment, and the sub-element Step includes: attribute name, attribute desp, attribute id and attribute type;
所述属性name用于说明子元素Step所对应节点的名字,所述在整个工作流模型中,所述节点的名字唯一且不可重复;The attribute name is used to describe the name of the node corresponding to the child element Step, and in the entire workflow model, the name of the node is unique and cannot be repeated;
所述属性desp用于说明子元素Step所对应节点的描述信息,提供对应节点的描述性文字;The attribute desp is used to describe the description information of the node corresponding to the sub-element Step, and provides the descriptive text of the corresponding node;
所述属性id用于作为标识符标识节点;The attribute id is used as an identifier to identify the node;
所述属性type用于说明工作流节点的类型,决定工作流节点的工作内容。The attribute type is used to describe the type of the workflow node and determine the work content of the workflow node.
在实际应用中,属性type包括12种基础组件类型,分别为:开始节点WFBeginStep、几何节点WFGeoStep、网格节点WFMeshStep、求解节点WFSolverStep、后处理节点WFPostStep、条件分支节点WFConditionStep、循环节点WFLoopStep、并行启动节点WFParalBeginStep、并行结束节点WFParalEndStep、自定义节点WFCustomizeStep和结束节点WFEndStep。In practical applications, the attribute type includes 12 basic component types, namely: start node WFBeginStep, geometry node WFGeoStep, mesh node WFMeshStep, solve node WFSolverStep, post-processing node WFPostStep, conditional branch node WFConditionStep, loop node WFLoopStep, parallel start Node WFParalBeginStep, Parallel End Node WFParalEndStep, Custom Node WFCustomizeStep, and End Node WFEndStep.
其中,几何节点WFGeoStep、网格节点WFMeshStep、求解节点WFSolverStep和后处理节点WFPostStep为业务节点。Among them, the geometric node WFGeoStep, the mesh node WFMeshStep, the solving node WFSolverStep and the post-processing node WFPostStep are service nodes.
在实际使用中,在一个工作流描述文件中至少含有一个开始节点WFBeginStep和结束节点WFEndStep描述工作流节点。In actual use, a workflow description file contains at least a start node WFBeginStep and an end node WFEndStep to describe the workflow node.
并行启动节点WFParalBeginStep、并行结束节点WFParalEndStep是为了在优化设计流程业务中,有两个分支流程提高计算效率,通过并行启动n个子流程进行计算(n为大于等于1的整数)。每个子流程的计算过程相同,且每个子流程之间的计算数据相互不干扰;并行开始节点和并行结束节点之间定义的流程就是需要并行启动的子流程,并行开始节点和并行结束节点需要一一对应。The parallel start node WFParalBeginStep and the parallel end node WFParalEndStep are for the purpose of optimizing the design process business, there are two branch processes to improve the calculation efficiency, and the calculation is performed by starting n sub-processes in parallel (n is an integer greater than or equal to 1). The calculation process of each sub-process is the same, and the calculation data between each sub-process does not interfere with each other; the process defined between the parallel start node and the parallel end node is the sub-process that needs to be started in parallel, and the parallel start node and the parallel end node need a A correspondence.
并行启动的子流程的详细说明如表5所示:The detailed description of the sub-processes started in parallel is shown in Table 5:
表5table 5
所述CFD科学计算只允许有一个开始节点和一个结束节点,当运行过程中出现多个分支后,在结束前需要将各个分支流程汇总到一个主干流程之后结束,所述将分支流程汇总的节点为汇聚节点WFAndOrStep,也称与或节点;所述汇聚节点WFAndOrStep的详细说明如表6所示:The CFD scientific calculation only allows one start node and one end node. When multiple branches appear in the running process, each branch process needs to be aggregated into a trunk process before the end. The node that aggregates the branch processes is a sink node WFAndOrStep, also called an AND-OR node; the detailed description of the sink node WFAndOrStep is shown in Table 6:
表6Table 6
在运算过程中,根据运算结果来决定走哪一个分支流程。条件分支节点比其他节点多一个条件判断动作,条件判断动作中执行的程序/脚本执行后回返回一个Result属性,系统根据Result属性来判断走哪一个分支,所述判断节点为WFConditionStep条件分支节点;所述WFConditionStep条件分支节点详细说明如表7所示:In the operation process, which branch flow to take is determined according to the operation result. The conditional branch node has one more conditional judgment action than other nodes. The program/script executed in the conditional judgment action returns a Result attribute after execution. The system judges which branch to take according to the Result attribute, and the judgment node is the WFConditionStep conditional branch node; The detailed description of the WFConditionStep conditional branch node is shown in Table 7:
表7Table 7
在实际实用中,根据业务需要对一个运算循环执行n次(n为大于等于1的整数),使用循环节点WFLoopStep,所述循环节点WFLoopStep详细说明如表8所示:In actual practice, according to business needs, execute an operation loop n times (n is an integer greater than or equal to 1), and use the loop node WFLoopStep. The detailed description of the loop node WFLoopStep is shown in Table 8:
表8Table 8
当系统允许用户自行开发自定义组件,以扩展系统的功能组件。当自定义组件装载入系统后,用户可用该自定义组件配置工作流,生成自定义节点WFCustomizeStep;所述自定义节点WFCustomizeStep详细说明如表9所示:When the system allows users to develop their own custom components to extend the functional components of the system. After the custom component is loaded into the system, the user can use the custom component to configure the workflow to generate a custom node WFCustomizeStep; the detailed description of the custom node WFCustomizeStep is shown in Table 9:
表9Table 9
实施例七、参见图4说明本实施例。本实施例是对实施例四所述的一种基于XML的CFD工作流建模方法的进一步限定,所述子元素Step还包括:节点标签的子元素标签Property、节点标签的子元素标签Actions和节点标签的子元素标签Ports;Embodiment 7 This embodiment will be described with reference to FIG. 4 . This embodiment further defines the XML-based CFD workflow modeling method described in Embodiment 4. The sub-element Step further includes: the sub-element tag Property of the node tag, the sub-element tag Actions of the node tag and The child element label Ports of the node label;
所述节点标签的子元素标签Property用于描述所述节点类中所包含的属性信息;The child element label Property of the node label is used to describe the attribute information contained in the node class;
所述节点标签的子元素标签Actions用于描述所述节点所支持的所有操作的集合;The sub-element label Actions of the node label is used to describe the set of all operations supported by the node;
所述节点标签的子元素标签Ports用于表示输入所述节点数据通道,以及所述节点输出数据的通道。The sub-element label Ports of the node label is used to indicate a channel for inputting data to the node and a channel for outputting data from the node.
在实际使用中,所述子元素标签Property目前支持两种类型的子元素标签:一个是Param标签,所述Param标签用来标识节点类中使用到的变量数据;另一个是File标签,所述File标签用来标识节点类中所使用的文件。In actual use, the sub-element tag Property currently supports two types of sub-element tags: one is the Param tag, the Param tag is used to identify the variable data used in the node class; the other is the File tag, the The File tag is used to identify the file used in the node class.
Param标签的各个属性给出详细说明如表10所示:Each attribute of the Param tag is given a detailed description as shown in Table 10:
表10Table 10
File标签的各个属性给出详细说明如表11所示:Each attribute of the File tag is given a detailed description as shown in Table 11:
表11Table 11
所述Action标签包含多个属性和子元素标签,详细说明如表12所示:The Action tag contains multiple attributes and sub-element tags, the details are shown in Table 12:
表12Table 12
所述子元素标签Ports是节点数据通道的集合,所述子元素标签Ports详细说明如表13所示:The sub-element label Ports is a collection of node data channels, and the detailed description of the sub-element label Ports is as shown in Table 13:
表13Table 13
实施例八、本实施例所述的一种基于XML的CFD工作流建模装置,所述建模装置包括:Embodiment 8. An XML-based CFD workflow modeling device described in this embodiment, the modeling device includes:
解析单元,用于根据解析XML文件获取输入参数文件;The parsing unit is used to obtain the input parameter file according to the parsing XML file;
几何建模单元,用于根据输入参数文件进行几何建模,获取几何模型文件,所述几何模型文件为几何组件节点模型的输出属性;a geometric modeling unit, configured to perform geometric modeling according to the input parameter file, and obtain a geometric model file, where the geometric model file is the output attribute of the geometric component node model;
网格文件获取单元,用于根据几何模型进行网格剖分,获取网格文件,所述网格文件为网格组件节点模型的输出属性;a grid file acquiring unit, used for performing grid division according to the geometric model to acquire a grid file, where the grid file is an output attribute of a grid component node model;
求解结果获取单元,用于根据输入参数文件和网格文件进行求解计算,获取求解结果,所述求解结果为求解器组件节点模型的输出属性;a solution result obtaining unit, configured to perform solution calculation according to the input parameter file and the grid file, and obtain the solution result, where the solution result is the output attribute of the node model of the solver component;
后处理单元,用于根据求解结果获取后处理渲染图像,完成CFD工作流模型的建立;所述后处理渲染图像为后处理组件节点模型的输出属性。The post-processing unit is configured to obtain a post-processing rendering image according to the solution result, and complete the establishment of the CFD workflow model; the post-processing rendering image is an output attribute of the post-processing component node model.
实施例九、本实施例所述的一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行根据实施例一至实施例七任一项中所述的一种基于XML的CFD工作流建模方法。Embodiment 9. A computer device according to this embodiment includes a memory and a processor, where a computer program is stored in the memory. When the processor executes the computer program stored in the memory, the processor executes the computer program. According to an XML-based CFD workflow modeling method described in any one of
实施例十、本实施例所述的一种计算机可读存储介质,所述计算机可读存储介质用于储存计算机程序,所述计算机程序执行实施例一至实施例七任一项所述的一种基于XML的CFD工作流建模方法。Embodiment 10. A computer-readable storage medium described in this embodiment, the computer-readable storage medium is used to store a computer program, and the computer program executes the one described in any one of
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421249.4A CN114757124B (en) | 2022-04-21 | 2022-04-21 | CFD workflow modeling method and device based on XML, computer and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421249.4A CN114757124B (en) | 2022-04-21 | 2022-04-21 | CFD workflow modeling method and device based on XML, computer and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114757124A true CN114757124A (en) | 2022-07-15 |
CN114757124B CN114757124B (en) | 2024-02-27 |
Family
ID=82331349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210421249.4A Active CN114757124B (en) | 2022-04-21 | 2022-04-21 | CFD workflow modeling method and device based on XML, computer and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114757124B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115794447A (en) * | 2023-02-07 | 2023-03-14 | 青岛哈尔滨工程大学创新发展中心 | A Mesh Data Transfer Method for Multiphysics Coupling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033933A1 (en) * | 2003-09-02 | 2005-04-14 | Infoglide Software Corporation | System and method for workflow process management |
CN104077428A (en) * | 2014-02-26 | 2014-10-01 | 浙江工业大学 | Remote finite element analysis method serving for industry alliance |
CN111125949A (en) * | 2019-12-06 | 2020-05-08 | 北京科技大学 | A Massively Parallel Meshing System and Method for Finite Element Analysis |
CN112231086A (en) * | 2020-10-22 | 2021-01-15 | 中国科学院空天信息创新研究院 | A production workflow description and scheduling method and device for remote sensing information products |
WO2022056735A1 (en) * | 2020-09-16 | 2022-03-24 | 深圳晶泰科技有限公司 | Cloud high-performance scientific calculation workflow design control system and graphical user interface |
-
2022
- 2022-04-21 CN CN202210421249.4A patent/CN114757124B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033933A1 (en) * | 2003-09-02 | 2005-04-14 | Infoglide Software Corporation | System and method for workflow process management |
CN104077428A (en) * | 2014-02-26 | 2014-10-01 | 浙江工业大学 | Remote finite element analysis method serving for industry alliance |
CN111125949A (en) * | 2019-12-06 | 2020-05-08 | 北京科技大学 | A Massively Parallel Meshing System and Method for Finite Element Analysis |
WO2022056735A1 (en) * | 2020-09-16 | 2022-03-24 | 深圳晶泰科技有限公司 | Cloud high-performance scientific calculation workflow design control system and graphical user interface |
CN112231086A (en) * | 2020-10-22 | 2021-01-15 | 中国科学院空天信息创新研究院 | A production workflow description and scheduling method and device for remote sensing information products |
Non-Patent Citations (5)
Title |
---|
X.YANG等: "The Cambridge CFD grid for large-scale distributed CFD applications", FUTURE GENERATION COMPUTER SYSTEMS * |
单威俊;蒲海;金建海;吴乘胜;: "基于标准中间文件的CAD-CFD接口开发与应用", 船海工程, no. 04 * |
孟令聪等: "基于热载荷优化修正的电主轴热特性分析方法", 《机械强度》, pages 2 - 3 * |
张胜男;宝莹;: "XML和Java在工作流过程模型设计中的应用", 沈阳工业大学学报, no. 01 * |
成益鑫: "基于XML的船舶数字化平台的数据交换技术研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》, pages 3 - 3 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115794447A (en) * | 2023-02-07 | 2023-03-14 | 青岛哈尔滨工程大学创新发展中心 | A Mesh Data Transfer Method for Multiphysics Coupling |
Also Published As
Publication number | Publication date |
---|---|
CN114757124B (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Coria et al. | Intelligent business processes composition based on multi-agent systems | |
CN104484216B (en) | Service interface document and on-line testing instrument generation method, device | |
JP5679989B2 (en) | Debug pipeline | |
CN101271475B (en) | Commercial intelligent system | |
CN113032244B (en) | Interface test method, device, computer system and computer readable storage medium | |
CN112130993B (en) | Electric power edge internet of things proxy edge calculation method and system based on graphical modeling | |
EP2492806A1 (en) | Unified interface for meta model checking, modifying, and reporting | |
CN108037913B (en) | Conversion method from xUML4MC model to MSVL language program, computer readable storage medium | |
US10540150B2 (en) | Composable context menus | |
CN111026634A (en) | Interface automation test system, method, device and storage medium | |
US10459696B2 (en) | Composable action flows | |
Raj et al. | Patterns for migration of SOA based applications to microservices architecture | |
Remenska et al. | From UML to process algebra and back: An automated approach to model-checking software design artifacts of concurrent systems | |
CN110618810A (en) | Metadata-driven diversified service mixed arrangement method | |
Tribastone et al. | Automatic translation of UML sequence diagrams into PEPA models | |
US20100250228A1 (en) | Modeling a composite application | |
CN114757124B (en) | CFD workflow modeling method and device based on XML, computer and storage medium | |
Chondamrongkul et al. | PAT approach to Architecture Behavioural Verification. | |
CN114625448A (en) | Flow generation method and device combining RPA and AI, electronic equipment and storage medium | |
CN117573758A (en) | Data stream arrangement method based on BI platform | |
CN111580409A (en) | A fault simulation test method for real-time embedded systems | |
Rivero et al. | Improving user involvement through a model-driven requirements approach | |
CN114677114A (en) | Approval process generation method and device based on graph dragging | |
Zhang | A practical approach to developing a web-based geospatial workflow composition and execution system | |
CN114546670A (en) | Coroutine-based functional asynchronous data distribution system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |