CN114752657A - Polydisperse liquid drop digital nucleic acid detection method and application thereof - Google Patents
Polydisperse liquid drop digital nucleic acid detection method and application thereof Download PDFInfo
- Publication number
- CN114752657A CN114752657A CN202210482347.9A CN202210482347A CN114752657A CN 114752657 A CN114752657 A CN 114752657A CN 202210482347 A CN202210482347 A CN 202210482347A CN 114752657 A CN114752657 A CN 114752657A
- Authority
- CN
- China
- Prior art keywords
- detection
- nucleic acid
- droplets
- detection method
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 133
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 68
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 68
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 67
- 239000007788 liquid Substances 0.000 title claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000003321 amplification Effects 0.000 claims abstract description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 230000010355 oscillation Effects 0.000 claims description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 11
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 5
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 5
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 5
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims 1
- 239000006185 dispersion Substances 0.000 abstract description 15
- 230000035945 sensitivity Effects 0.000 abstract description 14
- 239000000839 emulsion Substances 0.000 abstract description 3
- 230000007026 protein scission Effects 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 22
- 239000000523 sample Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 16
- 238000011901 isothermal amplification Methods 0.000 description 14
- 238000007397 LAMP assay Methods 0.000 description 7
- 239000000872 buffer Substances 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 108700002099 Coronavirus Nucleocapsid Proteins Proteins 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000011895 specific detection Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 108700004991 Cas12a Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007847 digital PCR Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种多分散液滴数字核酸检测方法及其应用,包括如下步骤:将油相溶液、检测样品和检测试剂混合,通过简单方法生成液滴并孵育后,根据阳性液滴的数量与体积,定量检测样品中的目标核酸分子。该方法通过简易的分散操作快速地将反应试剂分割成独立的液滴,从而降低了对环境以及仪器的要求,同时,也使样品和检测试剂的需求量得到的显著的下降。而且通过快速的乳液分割,有效地避免在试剂分割之前进行的核酸扩增或Cas蛋白对靶标的切割,并基于液滴尺寸计算目标核酸浓度,检测灵敏度可达到aM水平。The invention discloses a polydisperse droplet digital nucleic acid detection method and application thereof, comprising the following steps: mixing an oil phase solution, a detection sample and a detection reagent, generating droplets by a simple method and incubating, according to the number of positive droplets With volume, the target nucleic acid molecule in the sample is quantitatively detected. The method rapidly divides the reaction reagent into independent droplets through a simple dispersion operation, thereby reducing the requirements on the environment and instruments, and at the same time, the demand for samples and detection reagents is also significantly reduced. Moreover, through rapid emulsion splitting, nucleic acid amplification or Cas protein cleavage of the target before reagent splitting can be effectively avoided, and the target nucleic acid concentration is calculated based on the droplet size, and the detection sensitivity can reach aM level.
Description
技术领域technical field
本发明属于基因检测领域,具体涉及一种多分散液滴数字核酸检测方法及其应用。The invention belongs to the field of gene detection, and in particular relates to a polydisperse droplet digital nucleic acid detection method and application thereof.
背景技术Background technique
核酸检测是传染病预防、诊断和监测的重要手段。相关技术中,对于核酸检测的方法包括实时定量聚合酶链式反应(qPCR)和核酸等温扩增技术等。其中,实时定量聚合酶链式反应(qPCR)是临床上核酸检测和定量的金标准。尤其是随着微流控技术的发展,数字PCR也逐渐成为新一代的绝对定量PCR技术。除此之外,核酸等温扩增技术,如环介导等温扩增(LAMP)、滚环扩增(RCA)、重组酶聚合酶扩增(RPA)、链置换扩增(SDA)、序列依赖的核酸扩增(NASBA)、解旋酶依赖扩增(HDA)等也均因为不需要温度循环,对仪器的依赖性低,灵敏度高、选择性好等优势被逐渐应用在各领域中。而其他技术,如基于规律间隔成簇短回文重复序列(CRISPR)技术(如SHERLOCK、DETECTR),也因其快速又灵敏的特性备受关注。但在实际使用中,基于CRISPR的方法虽然被用于与核酸扩增技术结合,实现高灵敏度的检测,但由于反应温度和缓冲液成分浓度的差异,这种结合往往被分为多段进行,无法实现一步检测,既增加了实验操作难度,又增大了交叉污染的可能性。而且,这种分段式操作也使得这些方法不适用于数字化的核酸检测当中,限制了其应用。而且,当前已有的单分散液滴的制备方法操作复杂,耗时长,易出现死体积,造成试剂的浪费。不利于数字化核酸检测技术的有机结合。Nucleic acid detection is an important means of infectious disease prevention, diagnosis and monitoring. In the related art, methods for nucleic acid detection include real-time quantitative polymerase chain reaction (qPCR) and nucleic acid isothermal amplification technology. Among them, real-time quantitative polymerase chain reaction (qPCR) is the gold standard for clinical nucleic acid detection and quantification. Especially with the development of microfluidic technology, digital PCR has gradually become a new generation of absolute quantitative PCR technology. In addition, nucleic acid isothermal amplification techniques, such as loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), recombinase polymerase amplification (RPA), strand displacement amplification (SDA), sequence-dependent amplification Nucleic acid amplification (NASBA), helicase-dependent amplification (HDA), etc. are also gradually applied in various fields because they do not require temperature cycling, have low dependence on instruments, high sensitivity, and good selectivity. Other techniques, such as those based on clustered regularly interspaced short palindromic repeats (CRISPR) (eg SHERLOCK, DETECTR), have also attracted much attention due to their fast and sensitive properties. However, in practice, although CRISPR-based methods are used in combination with nucleic acid amplification technology to achieve high-sensitivity detection, due to differences in reaction temperature and buffer component concentrations, this combination is often divided into multiple sections, which cannot be The realization of one-step detection not only increases the difficulty of experimental operation, but also increases the possibility of cross-contamination. Moreover, this segmented operation also makes these methods unsuitable for digital nucleic acid detection, limiting their application. Moreover, the existing methods for preparing monodisperse droplets are complicated in operation, time-consuming, prone to dead volume, and waste of reagents. It is not conducive to the organic combination of digital nucleic acid detection technology.
因此,开发一种能够与数字化的核酸检测结合的一步式核酸检测技术,将对于核酸检测的稳定性、高通量性和高灵敏度提供有力的技术支持。Therefore, developing a one-step nucleic acid detection technology that can be combined with digital nucleic acid detection will provide strong technical support for the stability, high throughput and high sensitivity of nucleic acid detection.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种多分散液滴数字核酸检测方法,本发明中的检测方法能够通过简易操作快速地将反应试剂分割成独立的液滴,降低了对复杂仪器的要求。而且通过这种快速的乳液分割有效地避免在试剂分割之前进行的核酸扩增或Cas蛋白对靶标的切割。与单分散液滴相比,同一目标分子浓度下,多分散液滴所需要的样品体积更少,检测过程方便、快速、灵敏度高。即使不结合预扩增过程,基于多分散液滴的CRISPR检测方法也能达到aM水平的检测灵敏度。The present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a polydisperse droplet digital nucleic acid detection method. The detection method in the present invention can quickly divide the reaction reagent into independent droplets through simple operations, thereby reducing the requirements for complex instruments. Furthermore, nucleic acid amplification or cleavage of the target by Cas protein prior to reagent splitting is effectively avoided by this rapid emulsion fractionation. Compared with monodisperse droplets, under the same target molecule concentration, polydisperse droplets require less sample volume, and the detection process is convenient, fast and highly sensitive. The polydisperse droplet-based CRISPR assay can achieve aM-level detection sensitivity even without incorporating a pre-amplification process.
本发明的第一个方面,提供一种多分散液滴数字核酸检测方法,包括如下步骤:将油相溶液、检测样品和检测试剂混合,分散为液滴并孵育后,根据阳性液滴的数量以及体积,定量检测样品中的目标核酸分子。A first aspect of the present invention provides a polydisperse droplet digital nucleic acid detection method, comprising the following steps: mixing an oil phase solution, a detection sample and a detection reagent, dispersing into droplets and incubating, according to the number of positive droplets As well as volume, quantitatively detect target nucleic acid molecules in a sample.
数字式核酸检测方法是将包含目标分子的反应液分散成成千上万个小腔室,使得每个腔室只包含一个或零个目标分子。反应之后,根据荧光强度可区分阳性与阴性腔室,通过腔室的总数与阳性腔室的总数和体积,可以实现准确定量。由于限域效应,目标分子在腔室中的浓度升高,使得数字化的检测方法比本体检测更加灵敏。而其计数方式使其能够实现目标核酸的绝对定量。The digital nucleic acid detection method is to disperse the reaction solution containing the target molecule into thousands of small chambers, so that each chamber contains only one or zero target molecules. After the reaction, positive and negative chambers can be distinguished according to the fluorescence intensity, and accurate quantification can be achieved by the total number of chambers and the total number and volume of positive chambers. Due to the confinement effect, the concentration of target molecules in the chamber increases, making digital detection methods more sensitive than bulk detection. And its counting method makes it possible to achieve absolute quantification of target nucleic acid.
本发明中的检测方法相对于基于当前已有的单分散液滴的检测方法,其操作简单、用时短,不容易出现死体积,有效避免了试剂的浪费,提高检测灵敏度以及定量准确性。Compared with the existing detection methods based on monodisperse droplets, the detection method in the present invention has the advantages of simple operation, short time, no dead volume, effectively avoiding waste of reagents, and improving detection sensitivity and quantitative accuracy.
根据本发明的第一个方面,在本发明的一些实施方式中,所述检测试剂为恒温扩增检测试剂。According to the first aspect of the present invention, in some embodiments of the present invention, the detection reagent is an isothermal amplification detection reagent.
在本发明的一些实施方式中,所述恒温扩增检测试剂包括引物、酶、显色液、dNTP。In some embodiments of the present invention, the isothermal amplification detection reagent includes primers, enzymes, chromogenic solutions, and dNTPs.
当然,本领域技术人员根据实际使用需求,可以合理选择特定的恒温扩增检测试剂,包括但不限于LAMP、RPA、RCA、NASBA、SDA等恒温扩增反应,以配合本发明中的检测方法实现核酸检测的目的。Of course, those skilled in the art can reasonably select specific isothermal amplification detection reagents according to actual use requirements, including but not limited to isothermal amplification reactions such as LAMP, RPA, RCA, NASBA, SDA, etc., in order to cooperate with the detection method in the present invention. The purpose of nucleic acid detection.
根据本发明的第一个方面,在本发明的一些实施方式中,所述检测试剂为CRISPR-Cas反应体系试剂。According to the first aspect of the present invention, in some embodiments of the present invention, the detection reagent is a CRISPR-Cas reaction system reagent.
在本发明的一些实施方式中,所述CRISPR-Cas反应体系试剂包括Cas蛋白、crRNA。In some embodiments of the present invention, the CRISPR-Cas reaction system reagents include Cas protein and crRNA.
当然,本领域技术人员根据实际使用需求,可以合理选择特定的CRISPR-Cas反应体系试剂,以配合本发明中的检测方法实现核酸检测的目的。Of course, those skilled in the art can reasonably select specific CRISPR-Cas reaction system reagents according to actual use requirements, so as to cooperate with the detection method in the present invention to achieve the purpose of nucleic acid detection.
在本发明的一些实施方式中,所述CRISPR-Cas反应体系包括CRISPR-Cas12a反应体系、CRISPR-Cas13a反应体系。In some embodiments of the present invention, the CRISPR-Cas reaction system includes a CRISPR-Cas12a reaction system and a CRISPR-Cas13a reaction system.
当然,本领域技术人员可以根据实际使用需求,选择其他的CRISPR-Cas反应体系进行替代使用,包括但不限于CRISPR-Cas12a、CRISPR-Cas13a、CRISPR-Cas14。Of course, those skilled in the art can choose other CRISPR-Cas reaction systems for alternative use, including but not limited to CRISPR-Cas12a, CRISPR-Cas13a, and CRISPR-Cas14, according to actual use requirements.
在本发明的一些实施方式中,所述油相溶液包括氟油、碳油。In some embodiments of the present invention, the oil phase solution includes fluorine oil and carbon oil.
当然,本领域技术人员可以根据实际使用需求,合理选择所适用的油相溶液,包括但不限于上述的氟油、碳油。Of course, those skilled in the art can reasonably select the applicable oil phase solution according to actual use requirements, including but not limited to the above-mentioned fluorine oil and carbon oil.
在本发明的一些实施方式中,所述油相溶液还包括表面活性剂。In some embodiments of the present invention, the oil phase solution further includes a surfactant.
在本发明的一些实施方式中,所述表面活性剂包括Span 80、Tween 20、AbilEM90、Abil EM180。In some embodiments of the present invention, the surfactant includes Span 80, Tween 20, AbilEM90, Abil EM180.
当然,本领域技术人员可以根据实际使用需求,合理选择适当的表面活性剂与对应的油进行复配使用,包括但不限于上述Span 80、Tween 20、Abil EM90、Abil EM180。Of course, those skilled in the art can reasonably select appropriate surfactants for compounding with corresponding oils according to actual use requirements, including but not limited to the above-mentioned Span 80, Tween 20, Abil EM90, and Abil EM180.
在本发明的一些实施方式中,所述油相溶液具体为90%(v/v)棕榈酸异丙酯和10%Abil EM180的混合溶液。In some embodiments of the present invention, the oil phase solution is specifically a mixed solution of 90% (v/v) isopropyl palmitate and 10% Abil EM180.
在本发明的一些实施方式中,通过如下式(1)~(4)中的至少一个定量计算目标核酸分子,In some embodiments of the present invention, the target nucleic acid molecule is quantitatively calculated by at least one of the following formulas (1) to (4),
其中,各式中,n代表液滴总数,b代表阴性液滴总数,v代表液滴的体积,λ代表待测样品的浓度,P表示阳性液滴的概率,m代表液滴尺寸种类(>20000),x代表阳性液滴尺寸种类,ni代表某一体积液滴的总数,bi代表某一体积液滴中阴性的总数,vi代表某一液滴的体积,vj代表体积唯一化后的液滴体积。where n represents the total number of droplets, b represents the total number of negative droplets, v represents the volume of the droplet, λ represents the concentration of the sample to be tested, P represents the probability of positive droplets, and m represents the type of droplet size (> 20000), x represents the type of positive droplet size, ni represents the total number of droplets in a certain volume, bi represents the total number of negative droplets in a certain volume, vi represents the volume of a certain droplet, and vj represents the unique volume The volume of the droplet after liquefaction.
在本发明的一些实施方式中,式(1)为当液滴为均一体积时,阳性液滴的概率计算公式。而式(2)则是基于式(1)推导得到的多分散情况下阳性液滴的概率计算公式。而对式(2)求一介导等于零,即可得到使得阳性液滴概率最大时的浓度,这一计算公式则为上述式(3)。进一步假设在多分散液滴下,每个液滴的体积都是唯一的,即可将式(3)化简为式(4)。In some embodiments of the present invention, formula (1) is a formula for calculating the probability of positive droplets when the droplets are of uniform volume. Equation (2) is a formula for calculating the probability of positive droplets in the case of polydispersity derived from Equation (1). And for formula (2), if the mediation is equal to zero, the concentration at which the probability of positive droplets is maximized can be obtained, and this calculation formula is the above formula (3). Further assuming that under polydisperse droplets, the volume of each droplet is unique, equation (3) can be simplified to equation (4).
在本发明的一些实施方式中,所述检测方法还包括在油相溶液、检测样品和检测试剂混合后进行分散。In some embodiments of the present invention, the detection method further comprises dispersing after the oil phase solution, the detection sample and the detection reagent are mixed.
在本发明的一些实施方式中,所述分散包括振荡分散、吹吸分散、搅拌分散、超声分散。In some embodiments of the present invention, the dispersion includes vibration dispersion, blowing and suction dispersion, stirring dispersion, and ultrasonic dispersion.
当然,本领域技术人员也可以根据实际使用需求,采用其他简易分散方式进行分散,包括但不限于上述振荡分散、吹吸分散、搅拌分散、超声分散。Of course, those skilled in the art can also use other simple dispersion methods for dispersion according to actual use requirements, including but not limited to the above-mentioned vibration dispersion, blowing and suction dispersion, stirring dispersion, and ultrasonic dispersion.
在本发明的一些实施方式中,振荡频率为2000-2500rpm,振荡时间为1-5s。In some embodiments of the present invention, the oscillation frequency is 2000-2500 rpm, and the oscillation time is 1-5 s.
在本发明的一些实施方式中,振荡频率为2500rpm,振荡时间为1s。In some embodiments of the present invention, the oscillation frequency is 2500 rpm, and the oscillation time is 1 s.
在本发明的一些实施方式中,吹吸次数为4-7次。In some embodiments of the present invention, the number of blows and suctions is 4-7 times.
在本发明的一些实施方式中,吹吸次数为4次。In some embodiments of the present invention, the number of blows and suctions is 4 times.
振荡的时间长短与振荡频率有关,吹吸次数与不同量程的枪头有关,因此,本领域技术人员可以根据实际使用需求,合理调整振荡的时间长短以及吹吸次数,以获得相似的分散效果。The duration of the oscillation is related to the oscillation frequency, and the number of blows and suctions is related to the different ranges of tips. Therefore, those skilled in the art can reasonably adjust the length of the oscillation time and the number of blows and suctions according to actual use requirements to obtain similar dispersion effects.
在本发明的一些实施方式中,具体分散方式为:将油相溶液与目标分子、检测反应试剂混合后,在涡旋振荡器上振荡1-5秒或移液枪吹吸4-7次,从而可将试剂快速分割成多分散液滴。In some embodiments of the present invention, the specific dispersion method is: after mixing the oil phase solution with the target molecule and the detection reaction reagent, oscillate on a vortex shaker for 1-5 seconds or blow and suck with a pipette 4-7 times, The reagent can thus be rapidly divided into polydisperse droplets.
现有技术中的样品的分割主要通过微流控芯片、毛细管和不混溶相的切割等技术来实现,然而这些方法都存在一些无法避免的问题。如微流控芯片的制造需要复杂而又精密的仪器,且依赖于有经验的工作人员。液滴的大小和均匀性与仪器的稳定性、通道大小、微细加工的精度以及连续相的黏度等等因素相关。这些方法需要专门的仪器和复杂的操作步骤,将导致检测的时间和成本提高。并且长时间的液滴制备过程会导致核酸的提前扩增以及不希望的酶反应,导致最后结果定量不准确。而本发明利用涡旋振荡器振荡数秒或移液枪反复吹吸,使反应试剂在油相中快速形成体积不一的多分散液滴,同样适用于各种核酸检测方法中。The segmentation of samples in the prior art is mainly achieved by techniques such as microfluidic chips, capillary tubes, and immiscible phase cutting. However, these methods all have some unavoidable problems. For example, the fabrication of microfluidic chips requires complex and sophisticated instruments and relies on experienced staff. The size and uniformity of the droplets are related to the stability of the instrument, the size of the channel, the precision of the microfabrication, and the viscosity of the continuous phase. These methods require specialized instruments and complex operating steps, which will result in increased detection time and cost. And the long-term droplet preparation process will lead to early amplification of nucleic acids and undesired enzymatic reactions, resulting in inaccurate quantification of the final results. In the present invention, the vortex oscillator is used to oscillate for several seconds or the pipette is repeatedly sucked and sucked, so that the reaction reagent quickly forms polydisperse droplets with different volumes in the oil phase, which is also applicable to various nucleic acid detection methods.
在本发明的一些实施方式中,当采用基于多分散液滴的恒温扩增核酸检测方法时,其检测步骤为:将检测样品与LAMP反应体系混合后,迅速加入适量的油相溶液进行覆盖。以最大的振荡频率2500rpm振荡1~2s后进行恒温扩增,收集荧光信号,计算阳性液滴的体积,定量样品中目标分子的浓度。In some embodiments of the present invention, when a polydispersed droplet-based isothermal amplification nucleic acid detection method is used, the detection step is: after mixing the detection sample with the LAMP reaction system, quickly add an appropriate amount of oil phase solution to cover. After oscillating at the maximum oscillation frequency of 2500 rpm for 1-2 s, perform isothermal amplification, collect fluorescent signals, calculate the volume of positive droplets, and quantify the concentration of target molecules in the sample.
在本发明的一些实施方式中,当采用基于多分散液滴的CRISPR-Cas免扩增核酸检测技术时,其检测步骤为:将检测样品与CRISPR-Cas反应体系混合后,迅速加入适量的油相溶液进行覆盖。以2500rpm振荡1~2s后,收集荧光信号,计算阳性液滴的数量以及体积,定量样品中目标分子的浓度。In some embodiments of the present invention, when the polydisperse droplet-based CRISPR-Cas amplification-free nucleic acid detection technology is used, the detection step is: after mixing the detection sample with the CRISPR-Cas reaction system, quickly adding an appropriate amount of oil phase solution to cover. After shaking at 2500rpm for 1-2s, the fluorescence signal was collected, the number and volume of positive droplets were calculated, and the concentration of target molecules in the sample was quantified.
本发明的第二个方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,用于执行本发明第一个方面所述的检测方法。A second aspect of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions for executing the detection method described in the first aspect of the present invention.
本发明的第三个方面,提供一种核酸检测系统,所述系统中输入有本发明第一个方面所述的检测方法。A third aspect of the present invention provides a nucleic acid detection system, into which the detection method described in the first aspect of the present invention is input.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明在样品的分割上不再如现有技术中采用复杂的微流控系统、芯片或仪器产生均一的液滴,且不需要复杂操作,对设备依赖程度低,可在几秒内完成生成试剂的快速分割,液滴集中在50μm以下。1. The present invention no longer uses complex microfluidic systems, chips or instruments to generate uniform droplets as in the prior art in the segmentation of samples, and does not require complex operations, and has a low degree of dependence on equipment, which can be achieved within a few seconds. The rapid segmentation of the generated reagents is completed, and the droplets are concentrated below 50 μm.
2.本发明中的样品需求量和试剂损耗量低,所需的试剂总量在5μL以下,没有传统数字核酸检测方法中的死体积问题,灵敏度更高,定量更准确,亦不会造成试剂浪费,降低了实验成本。2. The sample demand and reagent consumption in the present invention are low, the total amount of reagents required is less than 5 μL, there is no dead volume problem in traditional digital nucleic acid detection methods, the sensitivity is higher, the quantification is more accurate, and it will not cause reagents. waste, reducing the cost of experiments.
3.本发明是通过快速的乳液分割,有效地避免在试剂分割之前进行的核酸扩增或Cas蛋白对靶标的切割,并基于液滴数量以及尺寸计算目标核酸浓度,检测灵敏度可达到aM水平。3. The present invention effectively avoids nucleic acid amplification or Cas protein cleavage of the target through rapid emulsion splitting, and calculates the target nucleic acid concentration based on the number and size of droplets, and the detection sensitivity can reach aM level.
附图说明Description of drawings
图1为本发明实施例中的多分散液滴核酸检测方法流程示意图。FIG. 1 is a schematic flowchart of a method for detecting polydisperse droplet nucleic acid in an embodiment of the present invention.
图2为本发明实施例中的多分散液滴核酸检测方法生成的液滴大小分布,其中,A为振荡分散,B为吹吸分散。Fig. 2 is the droplet size distribution generated by the polydisperse droplet nucleic acid detection method in the embodiment of the present invention, wherein A is oscillation dispersion, and B is blowing and suction dispersion.
图3为本发明实施例中的基于多分散液滴的恒温扩增核酸检测方法的液滴明场(A)和荧光场(B)图像。FIG. 3 is a droplet bright field (A) and a fluorescence field (B) image of the polydisperse droplet-based isothermal amplification nucleic acid detection method in the embodiment of the present invention.
图4为本发明实施例中的基于多分散液滴的CRISPR-Cas免扩增核酸检测方法的空白对照液滴(A)和含有目标分子的阳性液滴(B)图像。4 is an image of a blank control droplet (A) and a positive droplet (B) containing target molecules of the polydisperse droplet-based CRISPR-Cas amplification-free nucleic acid detection method in the embodiment of the present invention.
图5为本发明实施例中的基于多分散液滴的CRISPR-Cas12a免扩增DNA检测方法的灵敏度测试,A为不同浓度下的对比图,B为同一浓度下的对比图。Fig. 5 is the sensitivity test of the polydisperse droplet-based CRISPR-Cas12a amplification-free DNA detection method in the embodiment of the present invention, A is a comparison diagram under different concentrations, and B is a comparison diagram under the same concentration.
图6为本发明实施例中的基于多分散液滴的CRISPR-Cas13a免扩增RNA检测方法的灵敏度测试,A为不同浓度下的对比图,B为同一浓度下的对比图。Fig. 6 is the sensitivity test of the polydisperse droplet-based CRISPR-Cas13a amplification-free RNA detection method in the embodiment of the present invention, A is a comparison diagram under different concentrations, and B is a comparison diagram under the same concentration.
图7为本发明实施例中的基于多分散液滴的CRISPR-Cas12a/Cas13a免扩增双基因(DNA与RNA)同时检测方法的测试,A为体系中存在DNA与RNA模板时FAM和HEX荧光通道的液滴图像,B为体系中存在DNA与RNA模板时各通道阳性液滴的统计结果。7 is the test of the polydisperse droplet-based CRISPR-Cas12a/Cas13a dual gene (DNA and RNA) simultaneous detection method in the embodiment of the present invention, A is the FAM and HEX fluorescence when there are DNA and RNA templates in the system The droplet image of the channel, B is the statistical result of positive droplets in each channel when DNA and RNA templates exist in the system.
具体实施方式Detailed ways
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。In order to make the invention purpose, technical solutions and technical effects of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments. It should be understood that the specific embodiments described in this specification are only for explaining the present invention, rather than for limiting the present invention.
所使用的实验材料和试剂,若无特别说明,均为常规可从商业途径所获得的耗材和试剂。The experimental materials and reagents used, unless otherwise specified, are conventional consumables and reagents that can be obtained from commercial sources.
一种多分散液滴数字核酸检测方法A kind of polydisperse droplet digital nucleic acid detection method
检测流程如图1所示。本发明实施例中的多分散液滴数字核酸检测方法检测原理为:本发明实施例中的核酸检测方法主要是基于多分散液滴与核酸等温扩增技术结合实现的核酸检测。The detection process is shown in Figure 1. The detection principle of the polydisperse droplet digital nucleic acid detection method in the embodiment of the present invention is as follows: the nucleic acid detection method in the embodiment of the present invention is mainly based on the nucleic acid detection realized by the combination of polydisperse droplet and nucleic acid isothermal amplification technology.
其中,多分散液滴是利用特定的油相溶液包覆目标分子和检测反应试剂得的。Among them, polydisperse droplets are obtained by coating target molecules and detection reagents with a specific oil phase solution.
检测反应试剂包括本领域中常规的核酸检测试剂,如dNTPs、特异性引物、探针、聚合酶等成分,也包括基于CRISPR-Cas系统下的非扩增技术相关试剂,如Cas12a或Cas13a相关蛋白、crRNA、检测缓冲液。当然,本领域技术人员可以根据实际使用需求,合理选择其他的核酸检测试剂,包括但不限于上述的dNTPs、特异性引物、探针、聚合酶、Cas12a或Cas13a相关蛋白、crRNA、检测缓冲液。Detection reaction reagents include conventional nucleic acid detection reagents in the art, such as dNTPs, specific primers, probes, polymerases and other components, as well as non-amplification technology-related reagents based on the CRISPR-Cas system, such as Cas12a or Cas13a-related proteins , crRNA, detection buffer. Of course, those skilled in the art can reasonably select other nucleic acid detection reagents according to actual use requirements, including but not limited to the above-mentioned dNTPs, specific primers, probes, polymerases, Cas12a or Cas13a-related proteins, crRNA, and detection buffers.
而对于油相溶液,其可以采用本领域中单一性的油相溶液,如氟油、碳油等,也可以将其与表面活性剂复配得到。当然,本领域技术人员可以根据实际使用需求,合理选择所适用的油相溶液,包括但不限于上述的氟油、碳油。而对于表面活性剂的选择,在本发明实施例中,具体采用的是非离子型表面活性剂,包括span80、tween20、Abil EM90、Abil EM180等。当然,本领域技术人员可以根据实际使用需求,合理选择适当的表面活性剂与对应的油进行复配使用,包括但不限于上述span80、tween20、Abil EM90、Abil EM 180。As for the oil phase solution, a single oil phase solution in the art, such as fluorine oil, carbon oil, etc., can be used, or it can be obtained by compounding it with a surfactant. Of course, those skilled in the art can reasonably select the applicable oil phase solution according to actual use requirements, including but not limited to the above-mentioned fluorine oil and carbon oil. As for the selection of surfactants, in the embodiments of the present invention, non-ionic surfactants are specifically used, including span80, tween20, Abil EM90, Abil EM180 and the like. Of course, those skilled in the art can reasonably select appropriate surfactants for compounding with corresponding oils according to actual use requirements, including but not limited to the above span80, tween20, Abil EM90, and Abil EM 180.
其中,对于多分散液滴的具体制备方法,具体为:将油相溶液与目标分子、检测反应试剂混合后,在涡旋振荡器上振荡1-5秒或移液枪吹吸4-7次,从而可将试剂快速分割成多分散液滴。但需要注意的是,振荡的时间长短与振荡频率有关,吹吸次数与不同量程的枪头有关,因此,本领域技术人员可以根据实际使用需求,合理调整振荡的时间长短以及吹吸次数,以获得相似的分散效果。Among them, for the specific preparation method of polydisperse droplets, the specific method is: after mixing the oil phase solution with the target molecule and the detection reaction reagent, oscillate on a vortex shaker for 1-5 seconds or blow and suck with a pipette 4-7 times , so that the reagent can be rapidly divided into polydisperse droplets. However, it should be noted that the length of the oscillation is related to the oscillation frequency, and the number of blows and suctions is related to the tips of different ranges. Therefore, those skilled in the art can reasonably adjust the length of the oscillation time and the number of blows and suctions according to the actual use requirements. A similar dispersion effect is obtained.
而当形成了多分散液滴后即可送至温控装置中进行孵育扩增。所用温控装置包括但不限于PCR仪、恒温仪、恒温水浴、恒温培养箱。在孵育结束后,通过荧光显微镜或基于手机的简易装置读取阳性液滴并记录其明场位置,计算阳性液滴的体积以及个数。When the polydisperse droplets are formed, they can be sent to a temperature control device for incubation and amplification. The temperature control devices used include but are not limited to PCR instruments, thermostats, constant temperature water baths, and constant temperature incubators. After the incubation, the positive droplets were read by a fluorescence microscope or a simple mobile phone-based device and their brightfield positions were recorded, and the volume and number of positive droplets were calculated.
其中,对于检测的目标分子原始浓度的计算方式为:Among them, the calculation method for the original concentration of the detected target molecule is:
当液滴为均一体积时,阳性液滴的概率为:When the droplet is of uniform volume, the probability of a positive droplet is:
其中,式(1)中,n代表液滴总数,b代表阴性液滴总数,v代表液滴的体积,λ代表待测样品的浓度,P表示均一体积时阳性液滴的概率。Among them, in formula (1), n represents the total number of droplets, b represents the total number of negative droplets, v represents the volume of the droplet, λ represents the concentration of the sample to be tested, and P represents the probability of positive droplets when the volume is uniform.
由此推导得到多分散情况下,阳性液滴的概率为:It is derived from this that the probability of positive droplets in the case of polydispersity is:
其中,式(2)中,ni代表某一体积液滴的总数,bi代表某一体积液滴中阴性的总数,vi代表某一液滴的体积,λ代表待测样品的浓度,P表示多分散情况下阳性液滴的概率。Among them, in formula (2), n i represents the total number of droplets in a certain volume, b i represents the total number of negatives in a certain volume of droplets, v i represents the volume of a certain droplet, λ represents the concentration of the sample to be tested, P represents the probability of positive droplets in the case of polydispersity.
对式(2)求一介导等于零,即可得到使得阳性液滴概率最大时的浓度,具体公式为:For formula (2), if the medium is equal to zero, the concentration that maximizes the probability of positive droplets can be obtained. The specific formula is:
其中,式(3)中,ni代表某一体积液滴的总数,bi代表某一体积液滴中阴性的总数,vi代表某一液滴的体积,λ代表待测样品的浓度,m代表液滴尺寸种类。Among them, in formula (3), n i represents the total number of droplets in a certain volume, b i represents the total number of negatives in a certain volume of droplets, vi represents the volume of a certain droplet, λ represents the concentration of the sample to be tested, m represents the droplet size category.
进一步假设在多分散液滴下,每个液滴的体积都是唯一的,那么上式可化简为:Further assuming that under polydisperse droplets, the volume of each droplet is unique, then the above formula can be simplified to:
其中,式(4)中,vj代表体积唯一化后的液滴体积,λ代表待测样品的浓度,x代表阳性液滴尺寸种类。Among them, in formula (4), v j represents the volume of the droplet after the volume is unique, λ represents the concentration of the sample to be tested, and x represents the size of the positive droplet.
最后,根据样品的总体积以及显微镜读取得到的各个阳性液滴的体积,即可计算样品的浓度。Finally, according to the total volume of the sample and the volume of each positive droplet read by the microscope, the concentration of the sample can be calculated.
基于上述理论得到的多分散液滴恒温扩增或CRISPR免扩增核酸检测技术,其中,采用多分散液滴CRISPR免扩增核酸检测技术时,其不仅不需要预先核酸扩增就能实现Cas蛋白介导的核酸检测,还有效的避免了因扩增带来的假阳性或假阴性问题。而且,当采用多分散液滴CRISPR免扩增核酸检测技术时,其相对于多分散液滴恒温扩增核酸检测技术的优势在于:由于目标分子没有进行扩增反应放大信号,因此不能保证每个核酸模板都产生信号,因此采用测定标准曲线进行定量,该方法检测线性范围为0.1-100fM,因此,能够相对灵敏的检测各类核酸分子。The polydisperse droplet isothermal amplification or CRISPR amplification-free nucleic acid detection technology obtained based on the above theory, wherein, when the polydisperse droplet CRISPR amplification-free nucleic acid detection technology is used, it not only does not require pre-nucleic acid amplification to realize the Cas protein The mediated nucleic acid detection also effectively avoids the problem of false positives or false negatives caused by amplification. Moreover, when the polydisperse droplet CRISPR amplification-free nucleic acid detection technology is used, its advantage over the polydisperse droplet constant temperature amplification nucleic acid detection technology is that since the target molecule does not undergo an amplification reaction to amplify the signal, it cannot be guaranteed that each Nucleic acid templates all generate signals, so the standard curve is used for quantification. The detection linear range of this method is 0.1-100 fM, so it can relatively sensitively detect various nucleic acid molecules.
实施例1基于多分散液滴的恒温扩增核酸检测方法Example 1 Detection method of isothermal amplification nucleic acid based on polydisperse droplets
在本实施例中,使用基于多分散液滴的恒温扩增核酸检测方法对目标分子进行检测。In this embodiment, the target molecule is detected using a polydisperse droplet-based isothermal amplification nucleic acid detection method.
具体检测步骤如下:The specific detection steps are as follows:
1)将总计3μL的包含目标分子的LAMP反应体系转移至EP管中,迅速向EP管中加入适量的油相溶液进行覆盖。1) A total of 3 μL of the LAMP reaction system containing the target molecule was transferred to an EP tube, and an appropriate amount of oil phase solution was quickly added to the EP tube to cover.
其中,在本实施例中,目标分子具体为含有新冠病毒N基因DNA的pEF-nsp125-3HA质粒(质粒的构建方法参考本领域常规技术手册进行,其中,新冠病毒N基因DNA是经由新冠病毒N基因RNA(数据库编号为NC-045512)反转录得到);具体的LAMP反应体系如表1所示。Wherein, in this embodiment, the target molecule is specifically the pEF-nsp125-3HA plasmid containing the new coronavirus N gene DNA (the construction method of the plasmid is carried out with reference to the conventional technical manual in the field, wherein the new coronavirus N gene DNA is obtained through the new coronavirus N Gene RNA (database No. NC-045512) was obtained by reverse transcription); the specific LAMP reaction system is shown in Table 1.
表1Table 1
其中,引物的具体核苷酸序列为:Wherein, the specific nucleotide sequence of the primer is:
FIP:5’-GCGGCCAATGTTTGTAATCAGTAGACGTGGTCCAGAACAA-3’(SEQ ID NO:1);FIP: 5'-GCGGCCAATGTTTGTAATCAGTAGACGTGGTCCAGAACAA-3' (SEQ ID NO: 1);
BIP:5’-TCAGCGTTCTTCGGAATGTCGCTGTGTAGGTCAACCACG-3’(SEQ ID NO:2);BIP: 5'-TCAGCGTTCTTCGGAATGTCGCTGTGTAGGTCAACCACG-3' (SEQ ID NO: 2);
F3:5’-GCTGCTGAGGCTTCTAAG-3’(SEQ ID NO:3);F3: 5'-GCTGCTGAGGCTTCTAAG-3' (SEQ ID NO:3);
B3:5’-GCGTCAATATGCTTATTCAGC-3’(SEQ ID NO:4);B3: 5'-GCGTCAATATGCTTATTCAGC-3' (SEQ ID NO: 4);
Loop F:5’-CCTTGTCTGATTAGTTCCTGGT-3’(SEQ ID NO:5);Loop F: 5'-CCTTGTCTGATTAGTTCCTGGT-3' (SEQ ID NO:5);
Loop B:5’-TGGCATGGAAGTCACACC-3’(SEQ ID NO:6)。Loop B: 5'-TGGCATGGAAGTCACACC-3' (SEQ ID NO: 6).
在本实施例中,油相溶液具体为90%(v/v)棕榈酸异丙酯和10%Abil EM180的混合溶液。In this embodiment, the oil phase solution is specifically a mixed solution of 90% (v/v) isopropyl palmitate and 10% Abil EM180.
2)以2500rpm振荡1s,LAMP体系被分割成大小不一的液滴。使用显微镜进行观察,发现液体尺寸主要分布在10-50μm(如图2所示)。2) Shaking at 2500 rpm for 1 s, the LAMP system was divided into droplets of different sizes. Observation using a microscope revealed that the liquid size was mainly distributed in the 10-50 μm range (as shown in Figure 2).
3)将生成的液滴转移至恒温仪中进行扩增(温度控制在60-65℃,反应时长为30-60分钟)。然后使用荧光显微镜收集液滴的信号,并记录同一视野下的明场,确定阳性液滴的体积。根据上述实施例中的公式(1)~(4)和阳性液滴体积,计算样品中目标分子的浓度。3) Transfer the generated droplets to a thermostat for amplification (the temperature is controlled at 60-65° C., and the reaction time is 30-60 minutes). The droplet signal was then collected using a fluorescence microscope and brightfield recorded in the same field of view to determine the volume of the positive droplet. The concentration of the target molecule in the sample is calculated according to the formulas (1) to (4) and the positive droplet volume in the above-mentioned embodiment.
其中,阳性液滴的判定方法为:将空白对照组液滴的平均荧光强度与3倍标准偏差之和设置为阳性液滴的阈值,当检测发现超过此阈值的液滴时,即认定为阳性液滴。Among them, the determination method of positive droplets is: the sum of the average fluorescence intensity of the droplets in the blank control group and 3 times the standard deviation is set as the threshold value of positive droplets. droplets.
结果如图3所示。The results are shown in Figure 3.
当目标分子为新冠病毒N基因DNA(质粒浓度为30.3pg/μL)为例,采用实施例1中的基于多分散液滴的恒温扩增核酸检测方法进行检测,可以发现,在明场和荧光场下能够明显看出液滴的形成以及阳性液滴的表征,从而说明在至少30.3pg/μL的模板质粒浓度下,上述方法具有极好的分辨率以及检测灵敏度。When the target molecule is the new coronavirus N gene DNA (plasmid concentration is 30.3pg/μL) as an example, using the polydisperse droplet-based isothermal amplification nucleic acid detection method in Example 1 for detection, it can be found that in bright field and fluorescence The formation of droplets and the characterization of positive droplets were clearly visible under the field, demonstrating the excellent resolution and detection sensitivity of the above method at template plasmid concentrations of at least 30.3 pg/μL.
实施例2基于多分散液滴的CRISPR-Cas免扩增核酸检测方法Example 2 CRISPR-Cas amplification-free nucleic acid detection method based on polydisperse droplets
在本实施例中,使用基于多分散液滴的CRISPR-Cas免扩增核酸检测方法对目标分子进行检测。In this example, the target molecule was detected using the polydisperse droplet-based CRISPR-Cas amplification-free nucleic acid detection method.
在本实施例中,所用的CRISPR-Cas系统选择为CRISPR-Cas12a,当然,本领域技术人员也可以根据实际使用需求,选择其他CRISPR-Cas系统进行替代。In this example, the CRISPR-Cas system used is selected as CRISPR-Cas12a. Of course, those skilled in the art can also choose other CRISPR-Cas systems to be substituted according to actual usage requirements.
具体检测步骤如下:The specific detection steps are as follows:
1)将待测目标分子与CRISPR-Cas12a检测试剂按照表2所示组成在EP管中进行混合后,迅速向EP管中加入适量的油相溶液进行覆盖。1) After mixing the target molecule to be tested and the CRISPR-Cas12a detection reagent in the EP tube according to the composition shown in Table 2, quickly add an appropriate amount of oil phase solution to the EP tube to cover.
其中,在本实施例中,目标分子具体为新冠N基因DNA;具体的CRISPR-Cas反应体系如表2所示。Among them, in this embodiment, the target molecule is specifically the DNA of the new crown N gene; the specific CRISPR-Cas reaction system is shown in Table 2.
表2Table 2
其中,在本实施例中,crRNA的具体核苷酸序列为:5’-UAAUUUCUACUAAGUGUAGAUCCCCCAGCGCUUCAGCGUUC-3’(SEQ ID NO:7)。模板DNA序列:5’-ATGCGCGACATTCCGAAGAACGCTGAAGCGCTGGGGGCAAATTGTGCAAT-3’(SEQ ID NO:8)。Wherein, in this embodiment, the specific nucleotide sequence of crRNA is: 5'-UAAUUUCUACUAAAGUGUAGAUCCCCCAGCGCUUCAGCGUUC-3' (SEQ ID NO:7). Template DNA sequence: 5'-ATGCGCGACATTCCGAAGAACGCTGAAGCGCTGGGGGCAAATTGTGCAAT-3' (SEQ ID NO: 8).
2)以2500rpm振荡1s,CRISPR-Cas反应体系被分割成大小不一的液滴。使用显微镜进行观察,发现液体尺寸主要分布在10-50μm。2) Shake at 2500rpm for 1s, the CRISPR-Cas reaction system is divided into droplets of different sizes. Observation using a microscope revealed that the liquid size was mainly distributed in the 10-50 μm range.
3)将生成的液滴转移至恒温仪中进行CRISPR-Cas切割(37-45℃,反应60-120分钟)。然后使用荧光显微镜收集液滴的信号,并记录同一视野下的明场,确定阳性液滴的数量体积。根据不同浓度下阳性液滴数量多少,绘制标准曲线。根据标准曲线,定量未知样品浓度。3) Transfer the resulting droplets to a thermostat for CRISPR-Cas cleavage (37-45°C, reaction for 60-120 minutes). The signal from the droplets was then collected using a fluorescence microscope, and brightfield recorded in the same field of view to determine the number and volume of positive droplets. According to the number of positive droplets at different concentrations, draw a standard curve. Quantify unknown sample concentrations based on the standard curve.
结果如图4~5所示。The results are shown in Figures 4-5.
如图4所示,可以发现,在10fM模板浓度下,其阳性液滴能清楚的从镜检中被发现,并能够准确的被测定。As shown in Fig. 4, it can be found that at the template concentration of 10 fM, its positive droplets can be clearly found from microscopy and can be accurately determined.
如图5所示。发明人进一步调整模板的浓度范围(0(NTC)、102、103、104、105aM),并同时对于102aM进行多次重复试验以验证检测技术的稳定(如图5B),可以发现,本发明中的检测方法的检测灵敏度可达到102aM且多次测定后结果稳定,均与对照组有显著差异性,说明本实施例中的检测方法的检测灵敏度高、稳定性好。As shown in Figure 5. The inventors further adjusted the concentration range of the template (0(NTC), 10 2 , 10 3 , 10 4 , 10 5 aM), and at the same time carried out repeated experiments for 10 2 aM to verify the stability of the detection technology (as shown in Figure 5B ) , it can be found that the detection sensitivity of the detection method in the present invention can reach 10 2 aM and the results are stable after multiple measurements, which are significantly different from the control group, indicating that the detection method in this embodiment has high detection sensitivity and stability. it is good.
实施例3基于多分散液滴的CRISPR-Cas免扩增核酸检测方法Example 3 CRISPR-Cas amplification-free nucleic acid detection method based on polydisperse droplets
在本实施例中,使用基于多分散液滴的CRISPR-Cas免扩增核酸检测方法对目标分子进行检测。In this example, the target molecule was detected using the polydisperse droplet-based CRISPR-Cas amplification-free nucleic acid detection method.
在本实施例中,所用的CRISPR-Cas系统选择为CRISPR-Cas13a,当然,本领域技术人员也可以根据实际使用需求,选择其他CRISPR-Cas系统进行替代。本发明可用的CRISPR-Cas系统包括但不限于CRISPR-Cas12a、CRISPR-Cas13a。In this embodiment, the CRISPR-Cas system used is selected as CRISPR-Cas13a. Of course, those skilled in the art can also choose other CRISPR-Cas systems to be substituted according to actual usage requirements. CRISPR-Cas systems useful in the present invention include, but are not limited to, CRISPR-Cas12a, CRISPR-Cas13a.
具体检测步骤如下:The specific detection steps are as follows:
1)将待测目标分子与CRISPR-Cas13a检测试剂按照表2所示组成在EP管中进行混合后,迅速向EP管中加入适量的油相溶液进行覆盖。1) After mixing the target molecule to be tested and the CRISPR-Cas13a detection reagent in the EP tube according to the composition shown in Table 2, quickly add an appropriate amount of oil phase solution to the EP tube to cover.
其中,在本实施例中,目标分子具体为新冠N基因单链RNA分子(NC-045512);具体的CRISPR-Cas反应体系如表3所示。Among them, in this embodiment, the target molecule is specifically the single-stranded RNA molecule of the new crown N gene (NC-045512); the specific CRISPR-Cas reaction system is shown in Table 3.
表3table 3
其中,在本实施例中,crRNA的具体核苷酸序列为:5’-GACCACCCCAAAAAUGAAGGGGACUAAAACUUUGCGGCCAAUGUUUGUAA-3’(SEQ ID NO:9)。模板RNA序列为:5’-AACACAAGCUUUCGGCAGACGUGGUCCAGAACAAACCCAAGGAAAUUUUGGGGACCAGGAACUAAUCAGACAAGGAACUGAUUACAAACAUUGGCCGCAAAUUGCACAAUUUGCCCCCAGCGCUUCAGCGUUCUUCGGAAUGUCGCGCAUUGGCAUGGAAGUC-3’(SEQ ID NO:10)。Wherein, in this embodiment, the specific nucleotide sequence of the crRNA is: 5'-GACCACCCCAAAAAUGAAGGGGACUAAAACUUUGCGGCCAAUGUUUGUAA-3' (SEQ ID NO: 9). The template RNA sequence is: 5'-AACACAAGCUUUCGGCAGACGUGGUCCAGAACAAACCCAAGGAAAUUUUGGGGACCAGGAACUAAUCAGACAAGGAACUGAUUACAAACAUUGGCCGCAAAUUGCACAAUUUGCCCCAGCGCUUCAGCGUUCUUCGGAAUGUCGCGCAUUGGCAUGGAAGUC-3' (SEQ ID NO: 10).
2)以2500rpm振荡1s,CRISPR-Cas反应体系被分割成大小不一的液滴。使用显微镜进行观察,发现液体尺寸主要分布在10-50μm。2) Shake at 2500rpm for 1s, the CRISPR-Cas reaction system is divided into droplets of different sizes. Observation using a microscope revealed that the liquid size was mainly distributed in the 10-50 μm range.
3)将生成的液滴转移至恒温仪中进行CRISPR-Cas切割(37-45℃,反应60-120分钟)。然后使用荧光显微镜收集液滴的信号,并记录同一视野下的明场,确定阳性液滴的数量与体积。根据不同浓度下阳性液滴数量多少,绘制标准曲线。根据标准曲线,定量未知样品浓度。3) Transfer the resulting droplets to a thermostat for CRISPR-Cas cleavage (37-45°C, reaction for 60-120 minutes). The droplet signal was then collected using a fluorescence microscope, and brightfield recorded in the same field of view to determine the number and volume of positive droplets. According to the number of positive droplets at different concentrations, draw a standard curve. Quantify unknown sample concentrations based on the standard curve.
结果如图6所示。The results are shown in Figure 6.
如图6所示。发明人进一步调整模板的浓度范围(0(NTC)、101、102、103、104、105aM),并同时对于101aM进行多次重复试验以验证检测技术的稳定(如图6B),可以发现,本发明中的检测方法的检测灵敏度可达到101aM且多次测定后结果稳定,均与对照组有显著差异性,说明本实施例中的检测方法的检测灵敏度高、稳定性好。As shown in Figure 6. The inventors further adjusted the concentration range of the template (0(NTC), 10 1 , 10 2 , 10 3 , 10 4 , 10 5 aM), and at the same time carried out repeated experiments for 10 1 aM to verify the stability of the detection technology (such as Figure 6B), it can be found that the detection sensitivity of the detection method in the present invention can reach 10 1 aM and the result is stable after multiple measurements, all have significant differences with the control group, illustrating that the detection sensitivity of the detection method in the present embodiment is high , Good stability.
实施例4基于多分散液滴的CRISPR-Cas免扩增双基因检测方法Example 4 CRISPR-Cas amplification-free dual-gene detection method based on polydisperse droplets
在本实施例中,使用基于多分散液滴的CRISPR-Cas免扩增核酸检测方法对DNA、RNA进行同时检测。In this example, the polydisperse droplet-based CRISPR-Cas amplification-free nucleic acid detection method is used to simultaneously detect DNA and RNA.
在本实施例中,所用的CRISPR-Cas系统选择为CRISPR-Cas12a和CRISPR-Cas13a,当然,本领域技术人员也可以根据实际使用需求,选择其他CRISPR-Cas系统进行替代。本发明可用的CRISPR-Cas系统包括但不限于CRISPR-Cas12a、CRISPR-Cas13a。In this embodiment, the CRISPR-Cas systems used are selected as CRISPR-Cas12a and CRISPR-Cas13a. Of course, those skilled in the art can also choose other CRISPR-Cas systems for substitution according to actual usage requirements. CRISPR-Cas systems useful in the present invention include, but are not limited to, CRISPR-Cas12a, CRISPR-Cas13a.
具体检测步骤如下:The specific detection steps are as follows:
1)将待测目标DNA/RNA与CRISPR-Cas12a/Cas13a检测试剂按照表3所示组成在EP管中进行混合后,迅速向EP管中加入适量的油相溶液进行覆盖。1) After mixing the target DNA/RNA and CRISPR-Cas12a/Cas13a detection reagent in the EP tube according to the composition shown in Table 3, quickly add an appropriate amount of oil phase solution to the EP tube to cover.
其中,在本实施例中,DNA目标分子具体为合成的双链DNA序列,RNA目标分子为合成的单链RNA序列;具体的CRISPR-Cas反应体系如表4所示。Wherein, in this embodiment, the DNA target molecule is specifically a synthetic double-stranded DNA sequence, and the RNA target molecule is a synthetic single-stranded RNA sequence; the specific CRISPR-Cas reaction system is shown in Table 4.
表4Table 4
其中,在本实施例中,Cas12a-crRNA和Cas13a-crRNA为实施例2和实施例3中的crRNA。Wherein, in this example, Cas12a-crRNA and Cas13a-crRNA are crRNAs in Example 2 and Example 3.
2)以2500rpm振荡1s,CRISPR-Cas反应体系被分割成大小不一的液滴。使用显微镜进行观察,发现液体尺寸主要分布在10-50μm。2) Shake at 2500rpm for 1s, the CRISPR-Cas reaction system is divided into droplets of different sizes. Observation using a microscope revealed that the liquid size was mainly distributed in the 10-50 μm range.
3)将生成的液滴转移至恒温仪中进行CRISPR-Cas切割(37-45℃,反应60-120分钟)。3) Transfer the resulting droplets to a thermostat for CRISPR-Cas cleavage (37-45°C, reaction for 60-120 minutes).
结果如图7所示。The results are shown in Figure 7.
如图7所示。模板DNA和RNA浓度为100fM,进行多次重复试验以验证检测技术的稳定,可以发现,本发明中的检测方法在体系中含有模板时,均与对照组有显著差异性,说明本实施例中的检测方法可以实现DNA和RNA的双基因检测。As shown in Figure 7. The template DNA and RNA concentrations were 100 fM, and repeated tests were carried out to verify the stability of the detection technology. It can be found that when the detection method in the present invention contains a template in the system, there are significant differences with the control group. The detection method can realize the double gene detection of DNA and RNA.
本发明实施例中的检测方法还可以通过计算机可读存储介质或检测系统的形式用于实际的检测作业中,通过执行相关指令,执行上述实施例中的检测方法,完成对特定核酸分子的检测。The detection methods in the embodiments of the present invention can also be used in actual detection operations in the form of computer-readable storage media or detection systems, and the detection methods in the above-mentioned embodiments are executed by executing relevant instructions to complete the detection of specific nucleic acid molecules. .
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中山大学<110> Sun Yat-Sen University
<120> 一种多分散液滴数字核酸检测方法及其应用<120> A polydisperse droplet digital nucleic acid detection method and its application
<130><130>
<160> 10<160> 10
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 40<211> 40
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
gcggccaatg tttgtaatca gtagacgtgg tccagaacaa 40gcggccaatg tttgtaatca gtagacgtgg tccagaacaa 40
<210> 2<210> 2
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
tcagcgttct tcggaatgtc gctgtgtagg tcaaccacg 39tcagcgttct tcggaatgtc gctgtgtagg tcaaccacg 39
<210> 3<210> 3
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 3<400> 3
gctgctgagg cttctaag 18gctgctgagg cttctaag 18
<210> 4<210> 4
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 4<400> 4
gcgtcaatat gcttattcag c 21gcgtcaatat gcttattcag c 21
<210> 5<210> 5
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 5<400> 5
ccttgtctga ttagttcctg gt 22ccttgtctga ttagttcctg gt 22
<210> 6<210> 6
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 6<400> 6
tggcatggaa gtcacacc 18tggcatggaa gtcacacc 18
<210> 7<210> 7
<211> 41<211> 41
<212> RNA<212> RNA
<213> 人工序列<213> Artificial sequences
<400> 7<400> 7
uaauuucuac uaaguguaga ucccccagcg cuucagcguu c 41uaauuucuac uaaguguaga ucccccagcg cuucagcguu c 41
<210> 8<210> 8
<211> 50<211> 50
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 8<400> 8
atgcgcgaca ttccgaagaa cgctgaagcg ctgggggcaa attgtgcaat 50atgcgcgaca ttccgaagaa cgctgaagcg ctgggggcaa attgtgcaat 50
<210> 9<210> 9
<211> 50<211> 50
<212> RNA<212> RNA
<213> 人工序列<213> Artificial sequences
<400> 9<400> 9
gaccacccca aaaaugaagg ggacuaaaac uuugcggcca auguuuguaa 50gaccacccca aaaaugaagg ggacuaaaac uuugcggcca auguuuguaa 50
<210> 10<210> 10
<211> 163<211> 163
<212> RNA<212> RNA
<213> 人工序列<213> Artificial sequences
<400> 10<400> 10
aacacaagcu uucggcagac gugguccaga acaaacccaa ggaaauuuug gggaccagga 60aacacaagcu uucggcagac gugguccaga acaaacccaa ggaaauuuug gggaccagga 60
acuaaucaga caaggaacug auuacaaaca uuggccgcaa auugcacaau uugcccccag 120acuaaucaga caaggaacug auuacaaaca uuggccgcaa auugcacaau uugcccccag 120
cgcuucagcg uucuucggaa ugucgcgcau uggcauggaa guc 163cgcuucagcg uucuucggaa ugucgcgcau uggcauggaa guc 163
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210482347.9A CN114752657A (en) | 2022-05-05 | 2022-05-05 | Polydisperse liquid drop digital nucleic acid detection method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210482347.9A CN114752657A (en) | 2022-05-05 | 2022-05-05 | Polydisperse liquid drop digital nucleic acid detection method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114752657A true CN114752657A (en) | 2022-07-15 |
Family
ID=82333499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210482347.9A Pending CN114752657A (en) | 2022-05-05 | 2022-05-05 | Polydisperse liquid drop digital nucleic acid detection method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114752657A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115820816A (en) * | 2022-11-29 | 2023-03-21 | 深圳大学 | Multiple digital nucleic acid detection method, device and related media based on deep learning |
CN116590293A (en) * | 2023-04-20 | 2023-08-15 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | A crRNA combination for detection of Epstein-Barr virus based on micro-droplet digital analysis and its application |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413034A (en) * | 2008-11-21 | 2009-04-22 | 东南大学 | Method for preparing molecular cloning chip for high-throughput cloning of nucleic acid molecule |
CN103757115A (en) * | 2014-01-17 | 2014-04-30 | 上海市农业科学院 | Biological gene qualitative, quantitative and high-flux detection method based on multiple microdroplet PCR (Polymerase Chain Reaction) coupling fluorescence spectrophotometry |
CN103966333A (en) * | 2014-05-20 | 2014-08-06 | 上海市农业科学院 | Biogen high-throughput qualitative detection method for multiple microdroplet polymerase chain reactions |
CN108841939A (en) * | 2018-06-21 | 2018-11-20 | 北京致雨生物科技有限公司 | Multiple digital pcr concentration measuring method and droplet type digital pcr system |
CN109337963A (en) * | 2018-10-24 | 2019-02-15 | 四川大学华西医院 | Continuous volume gradient capillary digital PCR method and kit |
CN110042151A (en) * | 2019-05-16 | 2019-07-23 | 北京达微生物科技有限公司 | A kind of oil phase composition being used to prepare digital pcr droplet and its application |
CN111763768A (en) * | 2020-06-30 | 2020-10-13 | 安徽微分基因科技有限公司 | COVID-19 rapid detection color development indication kit |
CN112813195A (en) * | 2020-12-09 | 2021-05-18 | 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) | Novel quantitative detection kit for coronavirus nucleic acid based on micro-droplet digital analysis |
WO2021102942A1 (en) * | 2019-11-29 | 2021-06-03 | 深圳华大智造科技有限公司 | Random emulsification digital absolute quantitative analysis method and device |
CN112961943A (en) * | 2021-04-30 | 2021-06-15 | 广州普世利华科技有限公司 | Primer probe combination product for detecting SARS-CoV-2 |
CN113151599A (en) * | 2021-04-22 | 2021-07-23 | 厦门大学 | Primer group, reagent, kit and detection method for detecting novel coronavirus |
CN113373264A (en) * | 2021-06-10 | 2021-09-10 | 安徽医科大学 | Novel coronavirus double-target rapid detection method and kit based on CRISPR/Cas system |
CN113490548A (en) * | 2019-02-08 | 2021-10-08 | 光投发现有限公司 | Droplet operations method |
WO2022047154A2 (en) * | 2020-08-28 | 2022-03-03 | Chan Zuckerberg Biohub, Inc. | Point of care and improved detection and quantification of biomolecules |
-
2022
- 2022-05-05 CN CN202210482347.9A patent/CN114752657A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413034A (en) * | 2008-11-21 | 2009-04-22 | 东南大学 | Method for preparing molecular cloning chip for high-throughput cloning of nucleic acid molecule |
CN103757115A (en) * | 2014-01-17 | 2014-04-30 | 上海市农业科学院 | Biological gene qualitative, quantitative and high-flux detection method based on multiple microdroplet PCR (Polymerase Chain Reaction) coupling fluorescence spectrophotometry |
CN103966333A (en) * | 2014-05-20 | 2014-08-06 | 上海市农业科学院 | Biogen high-throughput qualitative detection method for multiple microdroplet polymerase chain reactions |
CN108841939A (en) * | 2018-06-21 | 2018-11-20 | 北京致雨生物科技有限公司 | Multiple digital pcr concentration measuring method and droplet type digital pcr system |
CN109337963A (en) * | 2018-10-24 | 2019-02-15 | 四川大学华西医院 | Continuous volume gradient capillary digital PCR method and kit |
CN113490548A (en) * | 2019-02-08 | 2021-10-08 | 光投发现有限公司 | Droplet operations method |
CN110042151A (en) * | 2019-05-16 | 2019-07-23 | 北京达微生物科技有限公司 | A kind of oil phase composition being used to prepare digital pcr droplet and its application |
WO2021102942A1 (en) * | 2019-11-29 | 2021-06-03 | 深圳华大智造科技有限公司 | Random emulsification digital absolute quantitative analysis method and device |
CN111763768A (en) * | 2020-06-30 | 2020-10-13 | 安徽微分基因科技有限公司 | COVID-19 rapid detection color development indication kit |
WO2022047154A2 (en) * | 2020-08-28 | 2022-03-03 | Chan Zuckerberg Biohub, Inc. | Point of care and improved detection and quantification of biomolecules |
CN112813195A (en) * | 2020-12-09 | 2021-05-18 | 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) | Novel quantitative detection kit for coronavirus nucleic acid based on micro-droplet digital analysis |
CN113151599A (en) * | 2021-04-22 | 2021-07-23 | 厦门大学 | Primer group, reagent, kit and detection method for detecting novel coronavirus |
CN112961943A (en) * | 2021-04-30 | 2021-06-15 | 广州普世利华科技有限公司 | Primer probe combination product for detecting SARS-CoV-2 |
CN113373264A (en) * | 2021-06-10 | 2021-09-10 | 安徽医科大学 | Novel coronavirus double-target rapid detection method and kit based on CRISPR/Cas system |
Non-Patent Citations (5)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115820816A (en) * | 2022-11-29 | 2023-03-21 | 深圳大学 | Multiple digital nucleic acid detection method, device and related media based on deep learning |
CN116590293A (en) * | 2023-04-20 | 2023-08-15 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | A crRNA combination for detection of Epstein-Barr virus based on micro-droplet digital analysis and its application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200370097A1 (en) | Quantitating high titer samples by digital pcr | |
CN114752657A (en) | Polydisperse liquid drop digital nucleic acid detection method and application thereof | |
CN109337963B (en) | Continuous volume gradient capillary digital PCR method and kit | |
CN113718063A (en) | Multi-chip digital PCR primer, kit and detection method for simultaneously detecting ASFV, PCV2 and PRV viruses | |
CN112813195A (en) | Novel quantitative detection kit for coronavirus nucleic acid based on micro-droplet digital analysis | |
Luo et al. | Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level | |
Cao et al. | Establishment of scalable nanoliter digital LAMP technology for the quantitative detection of multiple myeloproliferative neoplasm molecular markers | |
CN112980924B (en) | Amplification-free DNA single-molecule quantitative detection method, kit and buffer solution | |
CN110760596A (en) | Droplet digital PCR detection kit for Clonorchis sinensis and its application | |
WO2023078347A1 (en) | Primers, kit and method for detecting residual amount of sgrna in environment | |
CN109457052A (en) | Detect primer, probe, kit and the detection method of human immunodeficiency virus nucleic acid | |
CN108300804A (en) | Material and method for HBV miR-3 fluorescence quantitative PCR detections | |
CN111286503B (en) | Aptamer and application thereof in PDGF-BB detection kit | |
CN106191317A (en) | A kind of based on digital pcr detection HPV16 virus primer to and test kit | |
US20250231209A1 (en) | Method for providing user interface and device therefor | |
US20250037799A1 (en) | Device and method for providing interface for setting parameters | |
CN116590293B (en) | A crRNA combination for detecting Epstein-Barr virus based on microdroplet digital analysis and its application | |
Malewski et al. | RT-PCR technique and its applications. State-of the-art | |
Loveday et al. | Screening of additives for droplet qRT-PCR thermocycling enables single influenza A virus genome quantification | |
CN117143834A (en) | Application of inactivated form of influenza A virus in preparation of nucleic acid standard substance | |
Guo et al. | Development of a reliable method to diagnose Streptococcus agalactiae infection by droplet digital PCR | |
CN117143835A (en) | Application of inactivated form of human adenovirus type 5 in preparation of nucleic acid standard substance | |
CN117660692A (en) | CRISPR nucleic acid diagnosis method based on AIEgens fluorescent probe | |
CN118465286A (en) | A single-molecule detection and analysis method based on proximity ligation for the quantitative detection of low-abundance biomarker proteins | |
CN117165536A (en) | Application of inactivated human respiratory syncytial virus in preparation of nucleic acid standard substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |