CN114744939B - An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor - Google Patents
An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN114744939B CN114744939B CN202210230349.9A CN202210230349A CN114744939B CN 114744939 B CN114744939 B CN 114744939B CN 202210230349 A CN202210230349 A CN 202210230349A CN 114744939 B CN114744939 B CN 114744939B
- Authority
- CN
- China
- Prior art keywords
- axis
- voltage
- current
- controller
- ref
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 24
- 230000000694 effects Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000010349 pulsation Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/34—Modelling or simulation for control purposes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域Technical Field
本发明属于死区电压补偿相关技术领域,更具体地,涉及一种永磁同步电机电流环死区电压的在线补偿方法及设备。The present invention belongs to the technical field related to dead zone voltage compensation, and more specifically, relates to an online compensation method and device for the dead zone voltage of a permanent magnet synchronous motor current loop.
背景技术Background technique
永磁同步电机拥有众多的优点,使得其应用范围非常广泛。逆变器因为其上下桥臂要避免直接导通的特点,而产生了死区效应,死区效应造成电流畸变、转矩波动,特别是在低速情况下,造成的影响尤为明显和恶劣。Permanent magnet synchronous motors have many advantages, making them widely used. The inverter has a dead zone effect because its upper and lower bridge arms must avoid direct conduction. The dead zone effect causes current distortion and torque fluctuations, especially at low speeds, where the impact is particularly obvious and severe.
随着伺服系统在工业机器人、智能机器人和高端数控机床中的广泛应用,这些装备需要伺服系统拥有很高的低速性能表现,伺服系统在低速时的表现极大地影响着各种高端装备的定位精度和响应性能。With the widespread application of servo systems in industrial robots, intelligent robots and high-end CNC machine tools, these equipment require the servo systems to have very high low-speed performance. The performance of the servo system at low speed greatly affects the positioning accuracy and response performance of various high-end equipment.
为了获得正弦度更好的相电流波形,一般通过死区补偿的方式消除死区效应的影响。由于死区引起的干扰电压与相电流的极性存在着密切联系,相电流极性判断出错导致的误补偿会引起电流出现更大的畸变,因此死区补偿的关键在于相电流过零点的检测,如专利201010566483.3、201010268341.9等都是直接根据A/D转换得到的检测值来判断相电流极性,其容易受到采样噪声的影响,发生误补偿的几率比较大。传统方法根据输出电压矢量的位置判断相电流极性,避免了电流采样噪声带来的不利影响,同时提出在特定电流区域中只需对其中一相输出电压进行补偿的策略,然而对“电压矢量和感应电动势之间的夹角”的计算方法只适用于稳态过程,对于转速与电流等工况处于频繁波动的伺服系统并不适用。In order to obtain a phase current waveform with better sinusoidality, the dead zone effect is generally eliminated by dead zone compensation. Since the interference voltage caused by the dead zone is closely related to the polarity of the phase current, the wrong compensation caused by the wrong judgment of the phase current polarity will cause greater distortion of the current. Therefore, the key to dead zone compensation lies in the detection of the phase current zero crossing point. For example, patents 201010566483.3 and 201010268341.9 directly judge the phase current polarity based on the detection value obtained by A/D conversion, which is easily affected by sampling noise and has a high probability of wrong compensation. The traditional method judges the phase current polarity based on the position of the output voltage vector, avoiding the adverse effects of current sampling noise. At the same time, it proposes a strategy of compensating only one phase output voltage in a specific current region. However, the calculation method of "the angle between the voltage vector and the induced electromotive force" is only applicable to the steady-state process, and is not applicable to servo systems with frequent fluctuations in speed and current.
死区补偿算法目前主要分类三类:1.基于死区电压模型的补偿算法:需要直接或者间接获取电流极性,容易造成误补偿。2.基于死区时间补偿的算法:由于死区时间使得上桥臂或者下桥臂的作用时间减小,直接重新计算桥臂作用时间,同样需要直接或者间接获取电流极性造成误补偿。3.基于观测器的补偿算法:主要是基于模型观测的方法,利用前馈或者反馈补偿死区电压,如专利201110440513中用到了一种电压闭环控制补偿方法,但是需要检测线电压的传感器,增加了硬件成本。Dead zone compensation algorithms are currently classified into three categories: 1. Compensation algorithm based on dead zone voltage model: it is necessary to directly or indirectly obtain the current polarity, which is easy to cause miscompensation. 2. Algorithm based on dead zone time compensation: because the dead zone time reduces the action time of the upper bridge arm or the lower bridge arm, the bridge arm action time is directly recalculated, which also requires direct or indirect acquisition of current polarity and causes miscompensation. 3. Compensation algorithm based on observer: mainly based on model observation method, using feedforward or feedback to compensate dead zone voltage, such as patent 201110440513 uses a voltage closed-loop control compensation method, but requires a sensor to detect line voltage, which increases hardware cost.
发明内容Summary of the invention
针对现有技术的以上缺陷或改进需求,本发明提供了一种永磁同步电机电流环死区电压的在线补偿方法及设备,所述设备能够实时监测出d轴逆变器误差电压和q轴逆变器误差电压,并经过分数阶PI控制器实时补偿到永磁同步电机电流环控制系统中,分数阶PI控制器具有响应速度快,鲁棒性好的特点,能够让死区误差电压迅速收敛,从而极大的提高永磁同步电机电流环在低电流响应时的响应性能。In view of the above defects or improvement needs of the prior art, the present invention provides an online compensation method and device for the dead-zone voltage of the current loop of a permanent magnet synchronous motor. The device can monitor the d-axis inverter error voltage and the q-axis inverter error voltage in real time, and compensate them in real time to the permanent magnet synchronous motor current loop control system through a fractional-order PI controller. The fractional-order PI controller has the characteristics of fast response speed and good robustness, and can make the dead-zone error voltage converge quickly, thereby greatly improving the response performance of the permanent magnet synchronous motor current loop at low current response.
为实现上述目的,按照本发明的一个方面,提供了一种永磁同步电机电流环死区电压的在线补偿设备,所述设备包括电流控制装置及分数阶死区电压补偿装置,所述电流控制装置包括q轴电流PI控制器及d轴电流PI控制器;所述死区电压补偿装置包括q轴电压估计模块、d轴电压估计模块、q轴误差电压分数阶PI控制器及d轴电压分数阶PI控制器;To achieve the above-mentioned object, according to one aspect of the present invention, there is provided an online compensation device for the dead zone voltage of the current loop of a permanent magnet synchronous motor, the device comprising a current control device and a fractional-order dead zone voltage compensation device, the current control device comprising a q-axis current PI controller and a d-axis current PI controller; the dead zone voltage compensation device comprising a q-axis voltage estimation module, a d-axis voltage estimation module, a q-axis error voltage fractional-order PI controller and a d-axis voltage fractional-order PI controller;
q轴电流PI控制器用于接收q轴参考电流值Iqref和q轴电流Iq,并依据接收到的q轴参考电流值Iqref和q轴电流Iq计算出q轴参考电压Vq_ref;d轴电流PI控制器用于接收d轴参考电流值Idref和d轴电流值Id,并依据接收到的d轴参考电流值Idref和d轴电流值Id计算出d轴参考电压Vd_ref;所述q轴电压估计模块的输入为q轴电流Iq,其输出为q轴估计电压Vq;q轴误差电压分数阶PI控制器的输入为来自q轴电流PI控制器的q轴参考电压Vq_ref和来自q轴电压估计模块的q轴估计电压Vq的差值,其输出为q轴补偿电压ΔVq;将q轴补偿电压ΔVq加到q轴参考电压Vq_ref之上得到给逆变器的q轴实际指令电压Vq*,将d轴补偿电压ΔVd加到d轴参考电压之上得到给逆变器的d轴实际指令电压Vd*,将q轴实际指令电压Vq*和d轴实际指令电压Vd*经过IPARK变换后,通过SVPWM算法施加到逆变器上,经过逆变器输出给永磁同步电机,以消除逆变器死区电压误差造成的影响。The q-axis current PI controller is used to receive the q-axis reference current value Iqref and the q-axis current Iq, and calculate the q-axis reference voltage Vq_ref according to the received q-axis reference current value Iqref and the q-axis current Iq; the d-axis current PI controller is used to receive the d-axis reference current value Idref and the d-axis current value Id, and calculate the d-axis reference voltage Vd_ref according to the received d-axis reference current value Idref and the d-axis current value Id; the input of the q-axis voltage estimation module is the q-axis current Iq, and its output is the q-axis estimated voltage Vq; the input of the q-axis error voltage fractional-order PI controller is the q from the q-axis current PI controller The difference between the q-axis reference voltage Vq_ref and the q-axis estimated voltage Vq from the q-axis voltage estimation module is output as the q-axis compensation voltage ΔVq; the q-axis compensation voltage ΔVq is added to the q-axis reference voltage Vq_ref to obtain the q-axis actual command voltage Vq* for the inverter, and the d-axis compensation voltage ΔVd is added to the d-axis reference voltage to obtain the d-axis actual command voltage Vd* for the inverter. After the q-axis actual command voltage Vq* and the d-axis actual command voltage Vd* are transformed by IPARK, they are applied to the inverter through the SVPWM algorithm, and are output to the permanent magnet synchronous motor through the inverter to eliminate the influence of the inverter dead zone voltage error.
进一步地,q轴电流PI控制器和d轴电流PI控制器均为普通PI控制器,用于生成q轴参考电压Vq_ref和d轴参考电压Vd_ref,其具体公式为:Furthermore, the q-axis current PI controller and the d-axis current PI controller are both common PI controllers, which are used to generate the q-axis reference voltage Vq_ref and the d-axis reference voltage Vd_ref, and the specific formulas thereof are:
GPI=kp+ki/s GPI =kp+ki/s
err_q=iqref-iqerr_q=iq ref -iq
Vq_ref=err_q*GPI Vq_ref=err_q*G PI
err_d=idref-iderr_d=id ref -id
Vd_ref=err_d*GPI Vd_ref=err_d*G PI
其中,GPI为PI控制器的传递函数,kp为比例系数,ki为积分系数,s为拉普拉斯算子,iqref为q轴参考电流值,iq为q轴电流值,idref为d轴参考电流值,id为d轴电流值,Vq_ref为q轴参考电压,Vd_ref为d轴参考电压。Wherein, G PI is the transfer function of the PI controller, kp is the proportional coefficient, ki is the integral coefficient, s is the Laplace operator, iq ref is the q-axis reference current value, iq is the q-axis current value, id ref is the d-axis reference current value, id is the d-axis current value, Vq_ref is the q-axis reference voltage, and Vd_ref is the d-axis reference voltage.
进一步地,q轴电压估计模块根据永磁同步电机q轴电压模型计算出q轴电压,其计算公式为:Furthermore, the q-axis voltage estimation module calculates the q-axis voltage according to the q-axis voltage model of the permanent magnet synchronous motor, and the calculation formula is:
式中:Vq(k-1)表示第k-1个周期的q轴电压,iq(k-1)表示第k-1个周期的q轴电流,iq(k-2)表示第k-2个周期的q轴电流,id(k-1)表示第k-1个周期的d轴电流,we(k-1)表示第k-1个周期的电角速度,Rs为电机电阻,Lq为q轴电感,Ld为d轴电感,λf为反电动势系数,Ts为离散周期。Where: V q (k-1) represents the q-axis voltage of the k-1th period, i q (k-1) represents the q-axis current of the k-1th period, i q (k-2) represents the q-axis current of the k-2th period, id (k-1) represents the d-axis current of the k-1th period, we (k-1) represents the electrical angular velocity of the k-1th period, Rs is the motor resistance, Lq is the q-axis inductance, Ld is the d-axis inductance, λf is the back electromotive force coefficient, and Ts is the discrete period.
进一步地,d轴电压估计模块的计算公式为:Furthermore, the calculation formula of the d-axis voltage estimation module is:
式中,Vd(k-1)表示第k-1个周期的d轴电压,id(k-1)表示第k-1个周期的d轴电流,id(k-2)表示第k-2个周期的d轴电流,iq(k-1)表示第k-1个周期的q轴电流,we(k-1)表示第k-1个周期的电角速度,Rs为电机电阻,Lq为q轴电感,Ld为d轴电感,Ts为离散周期。Wherein, Vd (k-1) represents the d-axis voltage of the k-1th period, id (k-1) represents the d-axis current of the k-1th period, id (k-2) represents the d-axis current of the k-2th period, iq (k-1) represents the q-axis current of the k-1th period, we (k-1) represents the electrical angular velocity of the k-1th period, Rs is the motor resistance, Lq is the q-axis inductance, Ld is the d-axis inductance, and Ts is the discrete period.
进一步地,q轴误差电压分数阶PI控制器和d轴误差电压分数阶PI控制器的传递函数为:Furthermore, the transfer functions of the q-axis error voltage fractional-order PI controller and the d-axis error voltage fractional-order PI controller are:
GFOPI=kp+ki/sα G FOPI = kp + ki/s α
式中,GFOPI为FOPI控制器的传递函数,kp为比例系数,ki为积分系数,s为拉普拉斯算子,α为分数阶阶次。Where G FOPI is the transfer function of the FOPI controller, kp is the proportional coefficient, ki is the integral coefficient, s is the Laplace operator, and α is the fractional order.
进一步地,将第k个周期的q轴误差电压估计值近似等于第k-1个周期的q轴误差电压,通过q轴误差电压分数阶PI控制器能够计算出q轴补偿电压ΔVq:Furthermore, the estimated value of the q-axis error voltage in the k-th cycle is approximately equal to the q-axis error voltage in the k-1-th cycle, and the q-axis compensation voltage ΔVq can be calculated through the q-axis error voltage fractional-order PI controller:
err_Vq(k)≈err_Vq(k-1)=Vq_ref(k-1)-Vq(k-1)err_Vq(k)≈err_Vq(k-1)=Vq_ref(k-1) -Vq (k-1)
ΔVq(k)=err_Vq(k)*GFOPI ΔVq(k)=err_Vq(k)*G FOPI
式中,err_Vq(k)为第k个周期的q轴误差电压,err_Vq(k-1)为第k-1个周期的q轴误差压,Vq_ref(k-1)为第k-1个周期的q轴参考电压;Vq(k-1)为第k-1个周期的q轴电压,ΔVq(k)为第k个周期的q轴补偿电压,GFOPI为FOPI控制器的传递函数。Wherein, err_Vq(k) is the q-axis error voltage of the k-th cycle, err_Vq(k-1) is the q-axis error voltage of the k-1-th cycle, Vq_ref(k-1) is the q-axis reference voltage of the k-1-th cycle; Vq(k-1) is the q-axis voltage of the k-1-th cycle, ΔVq(k) is the q-axis compensation voltage of the k-th cycle, and G FOPI is the transfer function of the FOPI controller.
进一步地,将第k个周期的d轴误差电压估计值近似等于第k-1个周期的d轴误差电压,通过d轴误差电压分数阶PI控制器可以计算出d轴补偿电压ΔVd:Furthermore, the estimated value of the d-axis error voltage in the kth cycle is approximately equal to the d-axis error voltage in the k-1th cycle, and the d-axis compensation voltage ΔVd can be calculated through the d-axis error voltage fractional-order PI controller:
err_Vd(k)≈err_Vd(k-1)=Vd_ref(k-1)-Vd(k-1)err_Vd(k)≈err_Vd(k-1)=Vd_ref(k-1)-Vd(k-1)
ΔVd(k)=err_Vd(k)*GFOPI ΔVd(k)=err_Vd(k)*G FOPI
式中,err_Vd(k)为第k个周期的d轴误差电压,err_Vd(k-1)为第k-1个周期的d轴误差压,Vd_ref(k-1)为第k-1个周期的d轴参考电压,Vd(k-1)为第k-1个周期的d轴电压,ΔVd(k)为第k个周期的d轴补偿电压,GFOPI为FOPI控制器的传递函数。Where err_Vd(k) is the d-axis error voltage of the k-th cycle, err_Vd(k-1) is the d-axis error voltage of the k-1-th cycle, Vd_ref(k-1) is the d-axis reference voltage of the k-1-th cycle, Vd(k-1) is the d-axis voltage of the k-1-th cycle, ΔVd(k) is the d-axis compensation voltage of the k-th cycle, and G FOPI is the transfer function of the FOPI controller.
进一步地,q轴实际指令电压为:Furthermore, the actual command voltage of the q-axis is:
Vq*(k)=Vq_ref(k)+ΔVq(k);Vq * (k)=Vq_ref(k)+ΔVq(k);
d轴实际指令电压为:The actual command voltage of the d-axis is:
Vd*(k)=Vd_ref(k)+ΔVd(k)。Vd * (k)=Vd_ref(k)+ΔVd(k).
按照本发明的另一个方面,提供了一种永磁同步电机电流环死区电压的在线补偿方法,所述方法采用如上所述的永磁同步电机电流环死区电压的在线补偿设备对永磁同步电机进行电压补偿。According to another aspect of the present invention, a method for online compensation of a permanent magnet synchronous motor current loop dead zone voltage is provided, wherein the method uses the above-mentioned online compensation device for the permanent magnet synchronous motor current loop dead zone voltage to perform voltage compensation on the permanent magnet synchronous motor.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的永磁同步电机电流环死区电压的在线补偿方法及设备主要具有以下有益效果:In general, compared with the prior art, the above technical solution conceived by the present invention, the online compensation method and device for the dead zone voltage of the permanent magnet synchronous motor current loop provided by the present invention mainly have the following beneficial effects:
1.分数阶PI控制器具有响应速度快,鲁棒性好的特点,能够让死区误差电压迅速收敛,从而极大地提高永磁同步电机电流环在低电流响应时的响应性能。1. The fractional-order PI controller has the characteristics of fast response speed and good robustness, which can make the dead zone error voltage converge quickly, thereby greatly improving the response performance of the permanent magnet synchronous motor current loop at low current response.
2.采用在线死区电压补偿,并实时计算误差电压,补偿准确且补偿速度快,不需要检测电流极性,避免了极性检测带来的误差补偿。2. Adopt online dead zone voltage compensation and calculate the error voltage in real time. The compensation is accurate and fast. There is no need to detect the current polarity, thus avoiding the error compensation caused by polarity detection.
3.所述设备利用了分数阶控制器的响应速度快,鲁棒性好的特性,对于转速与电流等工况处于频繁波动的伺服系统等非稳态条件下依旧具有良好的补偿控制性能。3. The device utilizes the fast response speed and good robustness of the fractional-order controller, and still has good compensation control performance under non-steady-state conditions such as servo systems where the speed and current are frequently fluctuating.
4.相对于使用整数阶PI和不使用PI的死区补偿策略,本发明的q轴电流响应具有更快的响应速度,更小的转矩脉动。4. Compared with the dead zone compensation strategy using integer-order PI and not using PI, the q-axis current response of the present invention has a faster response speed and smaller torque pulsation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明提供的永磁同步电机电流环死区电压的在线补偿设备的结构示意图;1 is a schematic structural diagram of an online compensation device for a permanent magnet synchronous motor current loop dead zone voltage provided by the present invention;
图2是采用永磁同步电机普通电流环PI控制的整体结构示意图;FIG2 is a schematic diagram of the overall structure of a conventional current loop PI control of a permanent magnet synchronous motor;
图3是本发明采用的q/d轴误差电压分数阶PI控制器的结构示意图;3 is a schematic diagram of the structure of the q/d axis error voltage fractional-order PI controller used in the present invention;
图4是采用本发明和采用普通电流环PI控制的q轴电流阶跃响应对比图;FIG4 is a comparison diagram of q-axis current step response using the present invention and using a conventional current loop PI control;
图5是采用本发明和采用普通电流环PI控制的d轴电流响应对比图;FIG5 is a comparison diagram of d-axis current response using the present invention and using a conventional current loop PI control;
图6中的(a)、(b)分别是本发明和采用普通电流环PI控制的三相电流响应对比图。(a) and (b) in FIG6 are comparison diagrams of the three-phase current response of the present invention and that of the common current loop PI control, respectively.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
请参阅图1及图3,本发明提供了一种永磁同步电机电流环死区电压的在线补偿设备,所述设备包括电流控制装置及分数阶死区电压补偿装置,所述电流控制装置包括q轴电流PI控制器及d轴电流PI控制器。所述死区电压补偿装置包括q轴电压估计模块、d轴电压估计模块、q轴误差电压分数阶PI控制器及d轴电压分数阶PI控制器。Please refer to Figures 1 and 3. The present invention provides an online compensation device for the dead zone voltage of the current loop of a permanent magnet synchronous motor, the device comprising a current control device and a fractional-order dead zone voltage compensation device, the current control device comprising a q-axis current PI controller and a d-axis current PI controller. The dead zone voltage compensation device comprises a q-axis voltage estimation module, a d-axis voltage estimation module, a q-axis error voltage fractional-order PI controller and a d-axis voltage fractional-order PI controller.
所述电流控制装置主要用于生成d轴参考电压及q轴参考电压并控制d轴和q轴的电流。q轴电流PI控制器用于接收q轴参考电流值Iqref和q轴电流Iq,并依据接收到的q轴参考电流值Iqref和q轴电流Iq计算出q轴参考电压Vq_ref。d轴电流PI控制器用于接收d轴参考电流值Idref和d轴电流值Id,并依据接收到的d轴参考电流值Idref和d轴电流值Id计算出d轴参考电压Vd_ref。The current control device is mainly used to generate a d-axis reference voltage and a q-axis reference voltage and control the current of the d-axis and q-axis. The q-axis current PI controller is used to receive the q-axis reference current value Iqref and the q-axis current Iq, and calculate the q-axis reference voltage Vq_ref based on the received q-axis reference current value Iqref and the q-axis current Iq. The d-axis current PI controller is used to receive the d-axis reference current value Idref and the d-axis current value Id, and calculate the d-axis reference voltage Vd_ref based on the received d-axis reference current value Idref and the d-axis current value Id.
所述分数阶死区电压补偿装置主要用于计算逆变器带来的d轴误差电压及q轴误差电压,并借助分数阶PI控制器的快速响应和鲁棒性进行死区误差电压补偿。所述q轴电压估计模块的输入为q轴电流Iq,其输出为q轴估计电压Vq。q轴误差电压分数阶PI控制器的输入为来自q轴电流PI控制器的q轴参考电压Vq_ref和来自q轴电压估计模块的q轴估计电压Vq的差值,其输出为q轴补偿电压ΔVq。The fractional-order dead-zone voltage compensation device is mainly used to calculate the d-axis error voltage and q-axis error voltage caused by the inverter, and to compensate for the dead-zone error voltage by means of the fast response and robustness of the fractional-order PI controller. The input of the q-axis voltage estimation module is the q-axis current Iq, and its output is the q-axis estimated voltage Vq. The input of the q-axis error voltage fractional-order PI controller is the difference between the q-axis reference voltage Vq_ref from the q-axis current PI controller and the q-axis estimated voltage Vq from the q-axis voltage estimation module, and its output is the q-axis compensation voltage ΔVq.
将q轴补偿电压ΔVq加到q轴参考电压Vq_ref之上得到给逆变器的q轴实际指令电压Vq*,将d轴补偿电压ΔVd加到d轴参考电压之上得到给逆变器的d轴实际指令电压Vd*,将q轴实际指令电压Vq*和d轴实际指令电压Vd*经过IPARK变换后,通过SVPWM算法施加到逆变器上,经过逆变器输出给永磁同步电机,可以有效消除逆变器死区电压误差带来的电流畸变、转矩脉动和响应速度缓慢等不利影响。The q-axis compensation voltage ΔVq is added to the q-axis reference voltage Vq_ref to obtain the q-axis actual command voltage Vq* for the inverter, and the d-axis compensation voltage ΔVd is added to the d-axis reference voltage to obtain the d-axis actual command voltage Vd* for the inverter. The q-axis actual command voltage Vq* and the d-axis actual command voltage Vd* are transformed by IPARK, applied to the inverter through the SVPWM algorithm, and output to the permanent magnet synchronous motor through the inverter, which can effectively eliminate the adverse effects of current distortion, torque pulsation and slow response speed caused by the dead zone voltage error of the inverter.
q轴电流PI控制器和d轴电流PI控制器均为普通PI控制器,用于生成q轴参考电压Vq_ref和d轴参考电压Vd_ref,其具体的传递函数公式为:The q-axis current PI controller and the d-axis current PI controller are both common PI controllers, which are used to generate the q-axis reference voltage Vq_ref and the d-axis reference voltage Vd_ref. The specific transfer function formula is:
GPI=kp+ki/s GPI =kp+ki/s
err_q=iqref-iqerr_q=iq ref -iq
Vq_ref=err_q*GPI Vq_ref=err_q*G PI
err_d=idref-iderr_d=id ref -id
Vd_ref=err_d*GPI Vd_ref=err_d*G PI
其中,GPI为PI控制器的传递函数,kp为比例系数,ki为积分系数,s为拉普拉斯算子,iqref为q轴参考电流值,iq为q轴电流值,idref为d轴参考电流值,id为d轴电流值,Vq_ref为q轴参考电压,Vd_ref为d轴参考电压。Wherein, G PI is the transfer function of the PI controller, kp is the proportional coefficient, ki is the integral coefficient, s is the Laplace operator, iq ref is the q-axis reference current value, iq is the q-axis current value, id ref is the d-axis reference current value, id is the d-axis current value, Vq_ref is the q-axis reference voltage, and Vd_ref is the d-axis reference voltage.
q轴电压估计模块根据永磁同步电机q轴电压模型计算出q轴电压,其计算公式为:The q-axis voltage estimation module calculates the q-axis voltage according to the q-axis voltage model of the permanent magnet synchronous motor. The calculation formula is:
式中:Vq(k-1)表示第k-1个周期的q轴电压,iq(k-1)表示第k-1个周期的q轴电流,iq(k-2)表示第k-2个周期的q轴电流,id(k-1)表示第k-1个周期的d轴电流,we(k-1)表示第k-1个周期的电角速度,Rs为电机电阻,Lq为q轴电感,Ld为d轴电感,λf为反电动势系数,Ts为离散周期。Where: V q (k-1) represents the q-axis voltage of the k-1th period, i q (k-1) represents the q-axis current of the k-1th period, i q (k-2) represents the q-axis current of the k-2th period, id (k-1) represents the d-axis current of the k-1th period, we (k-1) represents the electrical angular velocity of the k-1th period, Rs is the motor resistance, Lq is the q-axis inductance, Ld is the d-axis inductance, λf is the back electromotive force coefficient, and Ts is the discrete period.
d轴电压估计模块的计算公式为:The calculation formula of the d-axis voltage estimation module is:
式中,Vd(k-1)表示第k-1个周期的d轴电压,id(k-1)表示第k-1个周期的d轴电流,id(k-2)表示第k-2个周期的d轴电流,iq(k-1)表示第k-1个周期的q轴电流,we(k-1)表示第k-1个周期的电角速度,Rs为电机电阻,Lq为q轴电感,Ld为d轴电感,Ts为离散周期。Wherein, Vd (k-1) represents the d-axis voltage of the k-1th period, id (k-1) represents the d-axis current of the k-1th period, id (k-2) represents the d-axis current of the k-2th period, iq (k-1) represents the q-axis current of the k-1th period, we (k-1) represents the electrical angular velocity of the k-1th period, Rs is the motor resistance, Lq is the q-axis inductance, Ld is the d-axis inductance, and Ts is the discrete period.
q轴误差电压分数阶PI控制器和d轴误差电压分数阶PI控制器的传递函数为:The transfer functions of the q-axis error voltage fractional-order PI controller and the d-axis error voltage fractional-order PI controller are:
GFOPI=kp+ki/sα G FOPI = kp + ki/s α
式中,GFOPI为FOPI控制器的传递函数,kp为比例系数,ki为积分系数,s为拉普拉斯算子,α为分数阶阶次。Where G FOPI is the transfer function of the FOPI controller, kp is the proportional coefficient, ki is the integral coefficient, s is the Laplace operator, and α is the fractional order.
将第k个周期的q轴误差电压估计值近似等于第k-1个周期的q轴误差电压,通过q轴误差电压分数阶PI控制器可以计算出q轴补偿电压ΔVq:The estimated value of the q-axis error voltage in the kth cycle is approximately equal to the q-axis error voltage in the k-1th cycle. The q-axis compensation voltage ΔVq can be calculated through the q-axis error voltage fractional-order PI controller:
err_Vq(k)≈err_Vq(k-1)=Vq_ref(k-1)-Vq(k-1)err_Vq(k)≈err_Vq(k-1)=Vq_ref(k-1) -Vq (k-1)
ΔVq(k)=err_Vq(k)*GFOPI ΔVq(k)=err_Vq(k)*G FOPI
式中,err_Vq(k)为第k个周期的q轴误差电压,err_Vq(k-1)为第k-1个周期的q轴误差压,Vq_ref(k-1)为第k-1个周期的q轴参考电压;Vq(k-1)为第k-1个周期的q轴电压,ΔVq(k)为第k个周期的q轴补偿电压,GFOPI为FOPI控制器的传递函数。Wherein, err_Vq(k) is the q-axis error voltage of the k-th cycle, err_Vq(k-1) is the q-axis error voltage of the k-1-th cycle, Vq_ref(k-1) is the q-axis reference voltage of the k-1-th cycle; Vq(k-1) is the q-axis voltage of the k-1-th cycle, ΔVq(k) is the q-axis compensation voltage of the k-th cycle, and G FOPI is the transfer function of the FOPI controller.
将第k个周期的d轴误差电压估计值近似等于第k-1个周期的d轴误差电压,通过d轴误差电压分数阶PI控制器可以计算出d轴补偿电压ΔVd:The estimated value of the d-axis error voltage in the kth cycle is approximately equal to the d-axis error voltage in the k-1th cycle. The d-axis compensation voltage ΔVd can be calculated through the d-axis error voltage fractional-order PI controller:
err_Vd(k)≈err_Vd(k-1)=Vd_ref(k-1)-Vd(k-1)err_Vd(k)≈err_Vd(k-1)=Vd_ref(k-1)-Vd(k-1)
ΔVd(k)=err_Vd(k)*GFOPI ΔVd(k)=err_Vd(k)*G FOPI
式中,err_Vd(k)为第k个周期的d轴误差电压,err_Vd(k-1)为第k-1个周期的d轴误差压,Vd_ref(k-1)为第k-1个周期的d轴参考电压,Vd(k-1)为第k-1个周期的d轴电压,ΔVd(k)为第k个周期的d轴补偿电压,GFOPI为FOPI控制器的传递函数。Where err_Vd(k) is the d-axis error voltage of the k-th cycle, err_Vd(k-1) is the d-axis error voltage of the k-1-th cycle, Vd_ref(k-1) is the d-axis reference voltage of the k-1-th cycle, Vd(k-1) is the d-axis voltage of the k-1-th cycle, ΔVd(k) is the d-axis compensation voltage of the k-th cycle, and G FOPI is the transfer function of the FOPI controller.
q轴实际指令电压为:The actual command voltage of the q-axis is:
Vq*(k)=Vq_ref(k)+ΔVq(k)Vq * (k)=Vq_ref(k)+ΔVq(k)
d轴实际指令电压为:The actual command voltage of the d-axis is:
Vd*(k)=Vd_ref(k)+ΔVd(k)。Vd * (k)=Vd_ref(k)+ΔVd(k).
以下以具体实施例来对本发明进行进一步的详细说明:首先在matlab/simulink中建立永磁同步电机伺服系统死区补偿的仿真模型,电机模型参数为R=0.3872欧姆、L=4.37mH、J=0.02727kg.m^2、B=5.027N.m.s、p=5,死区时间为2.2us;采用Idref=0的SVPWM驱动方式进行电流闭环的Iq电流阶跃响应实验,给定Iqref=1.536A,其中q轴电流PI控制器和d轴电流PI控制器的参数Kp和Ki通过对消永磁同步电机电磁环节和给定穿越频率整定,给定穿越频率为5000Hz,整定得到的Kp=1.5008,Ki=221.3782;q轴误差电压分数阶PI控制器和d轴误差电压分数阶PI控制器的参数kp、ki、α采用粒子群优化算法进行整定,整定的适应度指标采用q轴电流响应ITAE标准如下:The present invention is further described in detail with a specific embodiment as follows: First, a simulation model of the dead zone compensation of the permanent magnet synchronous motor servo system is established in matlab/simulink, and the motor model parameters are R=0.3872 ohm, L=4.37mH, J=0.02727kg.m^2, B=5.027N.m.s, p=5, and the dead zone time is 2.2us; the SVPWM driving mode with Idref=0 is used to perform the Iq current step response experiment of the current closed loop, and given Iqref =1.536A, where the parameters Kp and Ki of the q-axis current PI controller and the d-axis current PI controller are adjusted by canceling the electromagnetic link of the permanent magnet synchronous motor and the given cross-over frequency. The given cross-over frequency is 5000Hz, and the adjusted Kp=1.5008 and Ki=221.3782; the parameters kp, ki, and α of the q-axis error voltage fractional-order PI controller and the d-axis error voltage fractional-order PI controller are adjusted using the particle swarm optimization algorithm, and the adjusted fitness index adopts the q-axis current response ITAE standard as follows:
利用粒子群算法整定得到的q轴误差电压分数阶PI控制器的参数为kp=1.6938、ki=503.6825、α=-0.7226。同时,利用粒子群算法整定得到的d轴误差电压分数阶PI控制器的参数为kp=2.1861、ki=503.68、α=-0.6514。The parameters of the q-axis error voltage fractional-order PI controller tuned by the particle swarm algorithm are kp=1.6938, ki=503.6825, α=-0.7226. At the same time, the parameters of the d-axis error voltage fractional-order PI controller tuned by the particle swarm algorithm are kp=2.1861, ki=503.68, α=-0.6514.
为了对比本实施方式的死区补偿效果,采用图2所示的普通电流环PI控制的q轴电流阶跃响应进行对比研究,图2所述的普通电流环PI控制同样采用Iqref=1.536A,Idref=0A,SVPWM驱动方式。In order to compare the dead zone compensation effect of this embodiment, the q-axis current step response of the ordinary current loop PI control shown in Figure 2 is used for comparative study. The ordinary current loop PI control described in Figure 2 also adopts Iqref=1.536A, Idref=0A, and SVPWM driving mode.
如图4所示,将本发明的分数阶PI在线补偿和无补偿普通电流环PI控制的q轴电流响应进行对比得到的结果,可以看到,本发明的分数阶PI在线补偿的响应速度要比无补偿普通电流环PI控制要快很多,从电流脉动情况上看,无补偿普通电流环PI控制的q轴电流脉动非常剧烈,分数阶PI在线补偿方法在抑制转矩脉动情况中起到了很好的作用,基本上仅仅有轻微的脉动。As shown in Figure 4, the results of comparing the q-axis current response of the fractional-order PI online compensation of the present invention and the uncompensated ordinary current loop PI control show that the response speed of the fractional-order PI online compensation of the present invention is much faster than that of the uncompensated ordinary current loop PI control. From the current pulsation situation, the q-axis current pulsation of the uncompensated ordinary current loop PI control is very severe. The fractional-order PI online compensation method plays a very good role in suppressing the torque pulsation, and basically there is only a slight pulsation.
如图5所示,将本发明的分数阶PI在线补偿和无补偿普通电流环PI控制的d轴电流响应进行对比得到的结果,可以看到,从d轴电流波动情况上看,无补偿普通电流环PI控制的d轴电流波动非常剧烈,分数阶PI在线补偿方法在控制Id=0的能力要远远强于无补偿普通电流环PI控制,证明分数阶PI在线补偿方法对抑制d轴电流波动有很好的效果。As shown in FIG5 , the results of comparing the d-axis current responses of the fractional-order PI online compensation and the uncompensated ordinary current loop PI control of the present invention show that, from the perspective of the d-axis current fluctuation, the d-axis current fluctuation of the uncompensated ordinary current loop PI control is very severe, and the fractional-order PI online compensation method is much stronger than the uncompensated ordinary current loop PI control in controlling Id=0, which proves that the fractional-order PI online compensation method has a good effect on suppressing d-axis current fluctuation.
如图6所示,将本发明的分数阶PI在线补偿方法和无补偿普通电流环PI控制的三相电流响应进行对比得到的结果,由于死区效应主要造成电流畸变和零点电流钳位,容易观察到分数阶PI在线补偿方法的零点电流钳位时间要远远小于无补偿普通电流环PI控制的零点电流钳位时间;可以看到,无补偿普通电流环PI控制在稳态时相对于理想三相正弦波已经发生了很大的畸变,而分数阶PI在线补偿方法在稳态时相对于理想三相正弦波仅仅发生了很小的畸变,证明分数阶PI在线补偿方法对消除零点电流钳位时间和电流畸变有很好的效果。As shown in Figure 6, the results of comparing the three-phase current responses of the fractional-order PI online compensation method of the present invention and the uncompensated ordinary current loop PI control are obtained. Since the dead zone effect mainly causes current distortion and zero-point current clamping, it is easy to observe that the zero-point current clamping time of the fractional-order PI online compensation method is much shorter than the zero-point current clamping time of the uncompensated ordinary current loop PI control; it can be seen that the uncompensated ordinary current loop PI control has undergone a large distortion relative to the ideal three-phase sine wave in the steady state, while the fractional-order PI online compensation method has only undergone a small distortion relative to the ideal three-phase sine wave in the steady state, which proves that the fractional-order PI online compensation method has a good effect on eliminating the zero-point current clamping time and current distortion.
本发明还提供了一种永磁同步电机电流环死区电压的在线补偿方法,所述方法采用如上所述的永磁同步电机电流环死区电压的在线补偿设备对永磁同步电机进行电压补偿。The present invention also provides an online compensation method for the dead zone voltage of the current loop of a permanent magnet synchronous motor. The method uses the online compensation device for the dead zone voltage of the current loop of the permanent magnet synchronous motor as described above to perform voltage compensation on the permanent magnet synchronous motor.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It will be easily understood by those skilled in the art that the above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210230349.9A CN114744939B (en) | 2022-03-10 | 2022-03-10 | An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210230349.9A CN114744939B (en) | 2022-03-10 | 2022-03-10 | An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114744939A CN114744939A (en) | 2022-07-12 |
CN114744939B true CN114744939B (en) | 2024-06-04 |
Family
ID=82275512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210230349.9A Active CN114744939B (en) | 2022-03-10 | 2022-03-10 | An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114744939B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118381422A (en) | 2024-04-29 | 2024-07-23 | 杨华 | Dead zone compensation method, device, equipment and storage medium for permanent magnet synchronous motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684179A (en) * | 2013-12-17 | 2014-03-26 | 清华大学 | Compensation device and compensation method of current filtering and dead zone of permanent magnet synchronous motor |
CN111092583A (en) * | 2019-12-24 | 2020-05-01 | 南京航空航天大学 | A three-phase permanent magnet synchronous motor drive system current loop delay compensation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9923503B2 (en) * | 2016-05-20 | 2018-03-20 | Ford Global Technologies, Llc | Fractional-order proportional-resonant controller |
-
2022
- 2022-03-10 CN CN202210230349.9A patent/CN114744939B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684179A (en) * | 2013-12-17 | 2014-03-26 | 清华大学 | Compensation device and compensation method of current filtering and dead zone of permanent magnet synchronous motor |
CN111092583A (en) * | 2019-12-24 | 2020-05-01 | 南京航空航天大学 | A three-phase permanent magnet synchronous motor drive system current loop delay compensation method |
Non-Patent Citations (1)
Title |
---|
基于卡尔曼滤波的PMSM驱动器死区补偿;潘扬;徐建明;俞立;于飞;;浙江工业大学学报;20110615(第03期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114744939A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111431460B (en) | Permanent magnet synchronous motor sensorless model prediction flux linkage control method | |
CN110429881B (en) | A kind of active disturbance rejection control method of permanent magnet synchronous motor | |
CN111600523B (en) | Model prediction current control method of permanent magnet synchronous motor | |
CN110224648B (en) | Permanent magnet synchronous motor parameter identification and position sensorless control method and system | |
CN110764418B (en) | Active disturbance rejection controller based on limited time convergence extended state observer | |
CN105790660B (en) | Speed Adaptive Robust Control System and Method of Ultra-high-speed Permanent Magnet Synchronous Motor | |
CN107994826B (en) | A Full-Order Observer Velocity Sensorless Control System Based on Error Weighting | |
CN107659237B (en) | A model-free deadbeat current predictive control device and method for a permanent magnet synchronous motor | |
CN112039390B (en) | Permanent magnet synchronous motor sliding mode control method based on load torque observation | |
CN110518850A (en) | Internal permanent magnet synchronous motor single neuron self-adaptive PID controller field weakening control method | |
CN109194219A (en) | Based on model-free non-singular terminal sliding formwork control permanent magnet synchronous motor method and system | |
CN112953335B (en) | Permanent magnet synchronous motor limited time self-adaptive composite control method and system | |
Wang et al. | An improved deadbeat predictive current control based on parameter identification for PMSM | |
CN108964556A (en) | For driving the senseless control device of permanent magnetic synchronous electrical motor | |
CN108551285A (en) | Direct Torque Control System for Permanent Magnet Synchronous Motor and method based on double synovial membrane structures | |
CN113839589A (en) | Decoupling linear active disturbance rejection control method of permanent magnet synchronous motor | |
CN111585488A (en) | Permanent magnet motor speed sensorless control method and system | |
CN108512476B (en) | Induction motor rotating speed estimation method based on Longbeige observer | |
CN114744939B (en) | An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor | |
CN110336504B (en) | Permanent magnet synchronous motor control method based on virtual signal injection and gradient descent method | |
CN111628689A (en) | A deadbeat current predictive control method based on voltage feedforward compensation method | |
Wang et al. | An online estimation method for both stator inductance and rotor flux linkage of SPMSM without dead-time influence | |
CN119109366A (en) | Motor torque ripple suppression method based on integral proportional and quasi-proportional resonant control | |
CN109995290B (en) | Open-loop iterative learning control method and system based on fractional calculus | |
CN112039388A (en) | Control method of permanent magnet synchronous motor for industrial robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |