CN114744163B - Organic positive electrode material, preparation method and application thereof in alkali metal ion battery - Google Patents
Organic positive electrode material, preparation method and application thereof in alkali metal ion battery Download PDFInfo
- Publication number
- CN114744163B CN114744163B CN202210421217.4A CN202210421217A CN114744163B CN 114744163 B CN114744163 B CN 114744163B CN 202210421217 A CN202210421217 A CN 202210421217A CN 114744163 B CN114744163 B CN 114744163B
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- electrode material
- organic positive
- organic
- tetra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 45
- 229910001413 alkali metal ion Inorganic materials 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000011734 sodium Substances 0.000 claims abstract description 32
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 20
- 229910001414 potassium ion Inorganic materials 0.000 claims abstract description 18
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- -1 hexyl ester Chemical class 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 239000003054 catalyst Substances 0.000 claims description 14
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 6
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 4
- 238000005893 bromination reaction Methods 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 239000003377 acid catalyst Substances 0.000 claims description 3
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- NYEOQIBNHAVZSO-UHFFFAOYSA-N (4-boronooxyphenoxy)boronic acid Chemical compound OB(O)OC1=CC=C(OB(O)O)C=C1 NYEOQIBNHAVZSO-UHFFFAOYSA-N 0.000 claims 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052744 lithium Inorganic materials 0.000 abstract description 14
- 239000007772 electrode material Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- 150000002500 ions Chemical class 0.000 description 21
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 239000000203 mixture Substances 0.000 description 13
- 229940037179 potassium ion Drugs 0.000 description 13
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 12
- 229910052700 potassium Inorganic materials 0.000 description 12
- 239000011591 potassium Substances 0.000 description 12
- 239000003208 petroleum Substances 0.000 description 10
- 239000010406 cathode material Substances 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- 238000011056 performance test Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- BODYVHJTUHHINQ-UHFFFAOYSA-N (4-boronophenyl)boronic acid Chemical compound OB(O)C1=CC=C(B(O)O)C=C1 BODYVHJTUHHINQ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- MHEBVKPOSBNNAC-UHFFFAOYSA-N potassium;bis(fluorosulfonyl)azanide Chemical compound [K+].FS(=O)(=O)[N-]S(F)(=O)=O MHEBVKPOSBNNAC-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- KVFIZLDWRFTUEM-UHFFFAOYSA-N potassium;bis(trifluoromethylsulfonyl)azanide Chemical compound [K+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F KVFIZLDWRFTUEM-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及电池技术领域,具体涉及一种有机正极材料、制备方法及在碱金属离子电池中的应用。The invention relates to the technical field of batteries, in particular to an organic positive electrode material, a preparation method and an application in an alkali metal ion battery.
背景技术Background technique
目前商业化锂离子电池由于锂资源存量有限,正极含锂、含钴材料成本高昂、污染环境,难以大规模开展低成本储能应用。当务之急是开发新型电极材料,同时开发成本低廉、性能出色的其他二次电池体系。At present, due to the limited stock of lithium resources in commercial lithium-ion batteries, the high cost of lithium- and cobalt-containing materials in the positive electrode, and the pollution of the environment, it is difficult to carry out large-scale low-cost energy storage applications. There is an urgent need to develop new electrode materials, as well as other secondary battery systems with low cost and excellent performance.
对于钠离子电池和钾离子电池,钠元素和钾元素储量极其丰富,是具有潜力的新型二次电池体系。For sodium-ion batteries and potassium-ion batteries, the reserves of sodium and potassium are extremely rich, and they are a new type of secondary battery system with potential.
当前,能同时适用于锂/钠/钾离子电池的无机正负极材料都少有报道。At present, there are few reports on inorganic positive and negative electrode materials that can be simultaneously applied to lithium/sodium/potassium ion batteries.
相比较无机电极材料,有机电极材料由于具备更空的固体晶格,从而能比无机材料更高效、稳定的存储锂/钠/钾离子。尽管如此,当前适用于锂/钠/钾离子电池的单一有机正极和有机负极材料鲜有报道。此外,使用单一有机正极材料在钠/钾离子全电池的案例更是稀少,且钠/钾离子全电池的能量密度、倍率性能和循环稳定性有待进一步提高。Compared with inorganic electrode materials, organic electrode materials can store lithium/sodium/potassium ions more efficiently and stably than inorganic materials due to their more empty solid lattice. Nevertheless, there are currently few reports on single organic cathode and organic anode materials suitable for Li/Na/K-ion batteries. In addition, the cases of sodium/potassium ion full batteries using a single organic cathode material are even rarer, and the energy density, rate performance and cycle stability of sodium/potassium ion full batteries need to be further improved.
发明内容Contents of the invention
基于上述技术背景,本发明提供了解决上述问题的一种有机正极材料、制备方法及在碱金属离子电池中的应用,有机正极材料能够作为单一正极材料同时应用在锂/钠/钾离子电池中。Based on the above technical background, the present invention provides an organic positive electrode material, a preparation method and an application in an alkali metal ion battery to solve the above problems. The organic positive electrode material can be used as a single positive electrode material in lithium/sodium/potassium ion batteries at the same time .
本发明通过下述技术方案实现:The present invention realizes through following technical scheme:
一种有机正极材料,结构式如下所示:A kind of organic cathode material, structural formula is as follows:
命名为2PTCDA。 Named 2PTCDA.
本发明提供的有机电极材料成本极其低廉,是一种能够在锂/钠/钾离子电池中使用单一的、具有电化学活性的有机电极材料,能进一步降低碱金属离子二次电池的生产成本。The cost of the organic electrode material provided by the invention is extremely low, and it is a single, electrochemically active organic electrode material that can be used in lithium/sodium/potassium ion batteries, and can further reduce the production cost of alkali metal ion secondary batteries.
一种有机正极材料的制备方法,在催化剂作用下,以1,1’-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)]为原料经加热反应制备获得(可选的,经加热关环反应制备获得):A method for preparing an organic positive electrode material. Under the action of a catalyst, 1,1'-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)] is used as a raw material through Preparation by heating reaction (optional, preparation by heating ring closure reaction):
其中,R表示烷基,优选为-CH2(CH2)4CH3。Wherein, R represents an alkyl group, preferably -CH 2 (CH 2 ) 4 CH 3 .
进一步优选,所述催化剂采用酸催化剂,优选酸催化剂包括甲苯磺酸;所述反应溶剂包括甲苯。Further preferably, the catalyst is an acid catalyst, preferably the acid catalyst includes toluenesulfonic acid; the reaction solvent includes toluene.
具体地,将1,1’-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylichexyl ester)]、对甲苯磺酸和甲苯加入反应器中混合;将混合物加热反应,制备获得有机正极材料(2PTCDA),最后在提纯处理即可。加热温度如在100℃下加热反应30小时,冷却至室温后。Specifically, 1,1'-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylichexyl ester)], p-toluenesulfonic acid and toluene were added to the reactor and mixed; the mixture Heating and reacting to prepare the organic cathode material (2PTCDA), and finally purifying. The heating temperature is such as heating at 100° C. for 30 hours, and then cooling to room temperature.
提纯处理如在反应结束后,用甲醇和水洗涤残余物数次。在此之后,使用索氏仪器在氯仿(150mL)中提取干燥沉淀物以去除可溶性酸酐杂质,并干燥以获得纯2PTCDA最终产物。For purification, the residue was washed several times with methanol and water after the reaction. After this, the dried precipitate was extracted in chloroform (150 mL) using a Soxhlet apparatus to remove soluble anhydride impurities and dried to obtain pure 2PTCDA final product.
进一步优选,所述1,1’-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)]通过以下方法制备获得:6-bromo-perylene-3,4,9,10-tetra(carboxylic hexyl ester)和1,4-亚苯基双硼酸经催化反应制备获得:Further preferably, the 1,1'-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)] is prepared by the following method: 6-bromo-perylene-3 ,4,9,10-tetra(carboxylic hexyl ester) and 1,4-phenylene bisboronic acid are prepared by catalytic reaction:
进一步优选,所述催化反应采用的催化剂为钯催化剂;优选钯催化剂包括四(三苯基膦)钯。Further preferably, the catalyst used in the catalytic reaction is a palladium catalyst; preferably, the palladium catalyst includes tetrakis(triphenylphosphine)palladium.
具体地,在惰性气体气氛下(如氮气气氛下),将6-bromo-perylene-3,4,9,10-tetra(carboxylic hexyl ester)、1,4-亚苯基双硼酸、四(三苯基膦)钯和碳酸钾加入反应器中,然后加入含有1,4-二氧六环和去离子水的混合溶剂,在加热、惰性气氛下反应制备获得,进一步经提纯处理即可。加热反应如,在110℃下在N2气氛下搅拌3天,冷却至室温。Specifically, under an inert gas atmosphere (such as a nitrogen atmosphere), 6-bromo-perylene-3,4,9,10-tetra (carboxylic hexyl ester), 1,4-phenylene bisboronic acid, tetrakis (tri Phenylphosphine) palladium and potassium carbonate are added into the reactor, and then a mixed solvent containing 1,4-dioxane and deionized water is added, and it is prepared by heating and reacting under an inert atmosphere, and it can be further purified. The reaction was heated eg, stirred at 110 °C under N2 atmosphere for 3 days, cooled to room temperature.
最后提纯处理方法如:用二氯甲烷(DCM,40mL)萃取。提取物在Na2SO4上干燥,过滤,并在真空中浓缩以去除多余的溶剂(H2O)。通过柱色谱法(硅胶、石油醚/乙酸乙酯=10/1至8/1至5/1)纯化粗品,得到呈粘性橙色固体1,1-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)]。The final purification treatment method such as: extraction with dichloromethane (DCM, 40 mL). The extract was dried over Na 2 SO 4 , filtered, and concentrated in vacuo to remove excess solvent (H 2 O). The crude product was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 10/1 to 8/1 to 5/1) to give 1,1-(1,4-phenylene)-bis[perylene- 3,4,9,10-tetra(carboxylic hexyl ester)].
进一步优选,所述6-bromo-perylene-3,4,9,10-tetra(carboxylic hexylester)通过以下方法制备获得:在催化剂作用下,perylene-3,4,9,10-tetra(carboxylichexyl ester)发生溴化反应,生成6-bromo-perylene-3,4,9,10-tetra(carboxylic hexylester):Further preferably, the 6-bromo-perylene-3,4,9,10-tetra (carboxylic hexylester) is prepared by the following method: under the action of a catalyst, perylene-3,4,9,10-tetra (carboxylichexyl ester) A bromination reaction occurs to generate 6-bromo-perylene-3,4,9,10-tetra(carboxylic hexylester):
进一步优选,perylene-3,4,9,10-tetra(carboxylic hexyl ester)与N-溴代琥珀酰亚胺发生溴化反应;催化剂包括FeCl3。Further preferably, perylene-3,4,9,10-tetra (carboxylic hexyl ester) undergoes bromination reaction with N-bromosuccinimide; the catalyst includes FeCl 3 .
具体地,将perylene-3,4,9,10-tetra(carboxylic hexyl ester)、N-溴代琥珀酰亚胺和FeCl3添加到反应器中,然后在惰性气体气氛下(如N2气氛下)添加乙腈混合;再将混合物加热处理反应制备获得,进一步经提纯处理即可。加入反应条件如在80℃下反应3天,冷却至室温。提纯处理方法如:去除溶剂后,通过柱色谱法(硅胶,石油醚/乙酸乙酯=8:1)纯化混合物,然后从石油醚中再结晶,得到橙色固体6-bromo-perylene-3,4,9,10-tetra(carboxylic hexyl ester)。Specifically, perylene-3,4,9,10-tetra (carboxylic hexyl ester), N-bromosuccinimide and FeCl 3 were added to the reactor, and then under an inert gas atmosphere (such as N 2 atmosphere ) was added with acetonitrile and mixed; then the mixture was heated and reacted to obtain it, and further purified. Add reaction conditions such as reacting at 80° C. for 3 days, and cool to room temperature. Purification treatment methods such as: after removing the solvent, purify the mixture by column chromatography (silica gel, petroleum ether/ethyl acetate = 8:1), and then recrystallize from petroleum ether to obtain orange solid 6-bromo-perylene-3,4 ,9,10-tetra (carboxylic hexyl ester).
进一步优选,所述perylene-3,4,9,10-tetra(carboxylic hexyl ester)通过以下方法制备获得:以苝四甲酸二酐为原料,与1-溴代己烷反应制备获得:Further preferably, the perylene-3,4,9,10-tetra (carboxylic hexyl ester) is prepared by the following method: using perylenetetracarboxylic dianhydride as raw material and reacting with 1-bromohexane to obtain:
具体地,将苝四甲酸二酐、1-己醇和1-溴代己烷加入到反应器中。然后向混合物中加入DMF溶液和DBU(一种有机碱)混合,再将混合物加热反应制备获得,进一步经提纯处理即可。加热反应条件如将混合物在80℃下搅拌3天,然后冷却至室温。Specifically, perylenetetracarboxylic dianhydride, 1-hexanol, and 1-bromohexane were charged into the reactor. Then add DMF solution and DBU (an organic base) to the mixture to mix, and then heat the mixture to react to prepare it, and then it can be further purified. The reaction conditions were heated such as stirring the mixture at 80° C. for 3 days and then cooled to room temperature.
提纯处理方法如:将反应溶液倒入混合溶剂(无水乙醇:水=1:20)中,搅拌后静置5小时。过滤后,将固体重新溶解在二氯甲烷(DCM)中,并使用石油醚(PE)作为洗脱剂在硅胶柱上纯化。在真空下去除溶剂后,粗产物由乙酸乙酯(EA)/石油醚重结晶,得到淡黄色固体。The purification treatment method is as follows: pour the reaction solution into a mixed solvent (absolute ethanol: water = 1:20), stir and let stand for 5 hours. After filtration, the solid was redissolved in dichloromethane (DCM) and purified on a silica gel column using petroleum ether (PE) as eluent. After removing the solvent under vacuum, the crude product was recrystallized from ethyl acetate (EA)/petroleum ether to give a pale yellow solid.
一种有机正极材料的应用,上述的有机正极材料、或者上述的有机正极材料的制备方法制备得到的有机正极材料在碱金属离子电池中的应用。An application of an organic positive electrode material, the application of the above organic positive electrode material or the organic positive electrode material prepared by the above method for preparing the organic positive electrode material in an alkali metal ion battery.
进一步优选,碱金属离子包括锂离子、钠离子或钾离子,即本发明提供的有机正极材料可同时用于锂离子电池、钾离子电池和钠离子电池。Further preferably, the alkali metal ions include lithium ions, sodium ions or potassium ions, that is, the organic positive electrode material provided by the present invention can be used in lithium ion batteries, potassium ion batteries and sodium ion batteries at the same time.
一种正极片,正极材料包括有机正极材料,有机正极材料的结构式如下所示:A positive electrode sheet, the positive electrode material includes an organic positive electrode material, and the structural formula of the organic positive electrode material is as follows:
本发明提供的有机正极材料可作为碱金属离子电池的单一有机正极材料。更一步优选,制备的正极片的原料组成包括60%-80wt%的有机正极材料2PTCDA、10%-30wt%的导电碳添加剂和10wt%的粘结剂。The organic positive electrode material provided by the invention can be used as the single organic positive electrode material of the alkali metal ion battery. Further preferably, the raw material composition of the prepared positive electrode sheet includes 60%-80wt% organic positive electrode material 2PTCDA, 10%-30wt% conductive carbon additive and 10wt% binder.
正极片制备时,可将所有正极片的原料混合后均匀涂在铝箔上,2PTCDA在电极片上的负载质量大于2mg cm-2。压成圆形铝电极片;将此电极片应用到碱金属离子半电池和全电池中。When preparing the positive electrode sheet, all the raw materials of the positive electrode sheet can be mixed and evenly coated on the aluminum foil, and the load mass of 2PTCDA on the electrode sheet is greater than 2mg cm -2 . Pressed into a round aluminum electrode sheet; this electrode sheet is used in alkali metal ion half cells and full cells.
一种碱金属离子电池,正极材料包括上述有机正极材料、或者上述的有机正极材料的制备方法制备得到的有机正极材料;或电极片包括上述的正极片。An alkali metal ion battery, the positive electrode material includes the above-mentioned organic positive electrode material, or the organic positive electrode material prepared by the above-mentioned method for preparing the organic positive electrode material; or the electrode sheet includes the above-mentioned positive electrode sheet.
本发明具有如下的优点和有益效果:The present invention has following advantage and beneficial effect:
本发明通过有机分子设计与合成,得到一个高性能普适的锂/钠/钾离子电池有机正极材料(2PTCDA)。将2PTCDA作为单一正极材料同时应用在锂/钠/钾离子半电池和钠/钾离子全电池中,取得了非常出色的电池性能。The invention obtains a high-performance and universal organic cathode material (2PTCDA) for lithium/sodium/potassium ion batteries through the design and synthesis of organic molecules. The application of 2PTCDA as a single cathode material in lithium/sodium/potassium ion half-cells and sodium/potassium-ion full batteries has achieved excellent battery performance.
附图说明Description of drawings
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:The drawings described here are used to provide a further understanding of the embodiments of the present invention, constitute a part of the application, and do not limit the embodiments of the present invention. In the attached picture:
图1为2PTCDA的氢谱核磁图(1H-NMR spectrum)。Fig. 1 is the hydrogen NMR spectrum ( 1 H-NMR spectrum) of 2PTCDA.
图2为2PTCDA的有机合成路线图。Figure 2 is an organic synthesis route map of 2PTCDA.
图3为2PTCDA在锂(Li)离子半电池中的电化学性能;其中(a)表示锂(Li)离子半电池的充放电电压曲线图,(b)表示锂(Li)离子半电池在小电流条件下的循环测试图,(c)表示锂(Li)离子半电池在倍率性能图,(d)表示锂(Li)离子半电池大电流长循环测试图。Figure 3 is the electrochemical performance of 2PTCDA in lithium (Li) ion half-cells; where (a) represents the charge and discharge voltage curves of lithium (Li) ion half-cells, (b) represents lithium (Li) ion half-cells in small The cycle test graph under current conditions, (c) shows the rate performance graph of the lithium (Li) ion half-cell, and (d) shows the high-current long-cycle test graph of the lithium (Li) ion half-cell.
图4为2PTCDA在钠(Na)离子半电池中的电化学性能;其中(a)表示钠(Na)离子半电池的充放电电压曲线图,(b)表示钠(Na)离子半电池的循环测试图。Figure 4 is the electrochemical performance of 2PTCDA in sodium (Na) ion half-cells; where (a) represents the charge and discharge voltage curves of sodium (Na) ion half-cells, and (b) represents the cycle of sodium (Na) ion half-cells test chart.
图5为2PTCDA在钠(Na)离子全电池中的电化学性能;其中(a)表示钠(Na)离子全电池的充放电电压曲线图,(b)表示钠(Na)离子全电池的循环测试图。Figure 5 is the electrochemical performance of 2PTCDA in sodium (Na) ion full battery; where (a) represents the charge and discharge voltage curve of sodium (Na) ion full battery, (b) represents the cycle of sodium (Na) ion full battery test chart.
图6为2PTCDA在钾(K)离子半电池的6种不同电解液的充放电曲线图。Fig. 6 is a charge-discharge curve diagram of 2PTCDA in six different electrolytes of a potassium (K) ion half-cell.
图7为2PTCDA在钾(K)离子半电池中的电化学性能;其中(a)表示钾(K)离子半电池在小电流条件下的循环测试图,(b)表示钾(K)离子半电池在倍率性能图,(c)表示钾(K)离子半电池大电流长循环测试图。Figure 7 is the electrochemical performance of 2PTCDA in a potassium (K) ion half-cell; where (a) represents the cycle test diagram of the potassium (K) ion half-cell under low current conditions, and (b) represents the potassium (K) ion half-cell The rate performance diagram of the battery, (c) shows the high current long cycle test diagram of the potassium (K) ion half-cell.
图8为2PTCDA在钾(K)离子全电池中的电化学性能;其中(a)表示钾(K)离子全电池的充放电电压曲线图,(b)表示钾(K)离子全电池在小电流条件下的循环测试图,(c)表示钾(K)离子全电池在倍率性能图,(d)表示钾(K)离子全电池大电流长循环测试图。Figure 8 is the electrochemical performance of 2PTCDA in a potassium (K) ion full battery; wherein (a) represents the charge and discharge voltage curve of a potassium (K) ion full battery, and (b) represents a potassium (K) ion full battery at a small The cycle test graph under current conditions, (c) shows the rate performance graph of the potassium (K) ion full battery, and (d) shows the high current long cycle test graph of the potassium (K) ion full battery.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples and accompanying drawings. As a limitation of the present invention.
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的结构、电路、材料或方法。In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that these specific details need not be employed to practice the present invention. In other instances, well-known structures, circuits, materials, or methods have not been described in detail in order to avoid obscuring the present invention.
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。Throughout this specification, reference to "one embodiment," "an embodiment," "an example," or "example" means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in the present invention. In at least one embodiment. Thus, appearances of the phrases "one embodiment," "an embodiment," "an example," or "example" in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, particular features, structures or characteristics may be combined in any suitable combination and/or subcombination in one or more embodiments or examples. Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and are not necessarily drawn to scale. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
实施例1Example 1
本实施例提供了一种有机正极材料,有机正极材料命名为2PTCDA,结构式如下所示:This embodiment provides an organic positive electrode material named 2PTCDA, and its structural formula is as follows:
有机正极材料2PTCDA的制备方法如下所示:The preparation method of organic cathode material 2PTCDA is as follows:
步骤1:将苝四甲酸二酐PTCDA(1.00g,2.55mmol)、1-己醇(0.61g,6mmol)和1-溴代己烷(1.24g,7.5mmol)添加到250mL Schlenk烧瓶中。然后向混合物中加入40mLN,N-二甲基甲酰胺(DMF)和1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU;1.52g,10mmol)。将混合物在80℃下搅拌3天,然后冷却至室温。将反应溶液倒入混合溶剂(无水乙醇:水=1:20)中,搅拌后静置5小时。过滤后,将固体重新溶解在二氯甲烷(DCM)中,并使用石油醚(PE)作为洗脱剂在硅胶柱上纯化。在真空下去除溶剂后,粗产物由乙酸乙酯(EA)/石油醚重结晶,得到淡黄色固体perylene-3,4,9,10-tetra(carboxylic hexyl ester)(命名为化合物1)(1.55g,2.03mmol,80%)。Step 1: Perylenetetracarboxylic dianhydride PTCDA (1.00 g, 2.55 mmol), 1-hexanol (0.61 g, 6 mmol) and 1-bromohexane (1.24 g, 7.5 mmol) were added to a 250 mL Schlenk flask. Then 40 mL of N,N-dimethylformamide (DMF) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 1.52 g, 10 mmol) were added to the mixture. The mixture was stirred at 80 °C for 3 days, then cooled to room temperature. The reaction solution was poured into a mixed solvent (absolute ethanol: water = 1:20), stirred and left to stand for 5 hours. After filtration, the solid was redissolved in dichloromethane (DCM) and purified on a silica gel column using petroleum ether (PE) as eluent. After removing the solvent under vacuum, the crude product was recrystallized from ethyl acetate (EA)/petroleum ether to give perylene-3,4,9,10-tetra(carboxylic hexyl ester) (named compound 1) (1.55 g, 2.03 mmol, 80%).
步骤2:将化合物1(1.00g,1.3mmol)、N-溴代琥珀酰亚胺(NBS;0.3g,1.69mmol)和FeCl3(32.4mg,0.2mmol)添加到250mL Schlenk烧瓶中,然后在N2气氛下添加40mL乙腈(MeCN)。混合物在80℃下反应3天,然后冷却至室温。去除溶剂后,通过柱色谱法(硅胶,石油醚/乙酸乙酯=8:1)纯化混合物,然后从石油醚中再结晶,得到橙色固体6-bromo-perylene-3,4,9,10-tetra(carboxylic hexyl ester)(命名为化合物2)(0.87g,1.03mmol,80%)。Step 2: Compound 1 (1.00g, 1.3mmol), N-bromosuccinimide (NBS; 0.3g, 1.69mmol) and FeCl ( 32.4mg , 0.2mmol) were added to a 250mL Schlenk flask, and then 40 mL of acetonitrile (MeCN) was added under N2 atmosphere. The mixture was reacted at 80°C for 3 days and then cooled to room temperature. After removal of the solvent, the mixture was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 8:1), followed by recrystallization from petroleum ether to give 6-bromo-perylene-3,4,9,10- tetra (carboxylic hexyl ester) (named compound 2) (0.87 g, 1.03 mmol, 80%).
步骤3:在氮气气氛下,将化合物2(1g,1.18mmol)、1,4-亚苯基双硼酸(0.096g,0.58mmol)、四(三苯基膦)钯(Pd(PPh3)4,5mg,0.004mmol)和碳酸钾(K2CO3,2.764g,0.02mol)加入250ml schlenk烧瓶中,然后加入含有1,4-二氧六环(40mL)和去离子水(10mL)的混合溶剂,并在110℃下在N2气氛下搅拌3天。将混合物冷却至室温,并用二氯甲烷(DCM,40mL)萃取。提取物在Na2SO4上干燥,过滤,并在真空中浓缩以去除多余的溶剂(H2O)。通过柱色谱法(硅胶、石油醚/乙酸乙酯=10/1至8/1至5/1)纯化粗品,得到呈粘性橙色固体1,1’-(1,4-phenylene)-bis[perylene-3,4,9,10-tetra(carboxylic hexyl ester)](命名为化合物3)(0.74g,0.913mmol,78%)。Step 3: Under nitrogen atmosphere, compound 2 (1g, 1.18mmol), 1,4-phenylene bisboronic acid (0.096g, 0.58mmol), tetrakis (triphenylphosphine) palladium (Pd (PPh3) 4, 5 mg, 0.004 mmol) and potassium carbonate (K 2 CO 3 , 2.764 g, 0.02 mol) were added to a 250 ml schlenk flask, followed by a mixed solvent containing 1,4-dioxane (40 mL) and deionized water (10 mL) , and stirred at 110 °C under N2 atmosphere for 3 days. The mixture was cooled to room temperature and extracted with dichloromethane (DCM, 40 mL). The extract was dried over Na 2 SO 4 , filtered, and concentrated in vacuo to remove excess solvent (H 2 O). The crude product was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 10/1 to 8/1 to 5/1) to give 1,1'-(1,4-phenylene)-bis[perylene -3,4,9,10-tetra(carboxylic hexyl ester)] (designated as compound 3) (0.74 g, 0.913 mmol, 78%).
步骤4:将化合物3(1g,0.62mmol)、对甲苯磺酸(对TsOH,1.178g,6.2mmol)和40mL甲苯(在氩气气氛下用钠干燥)添加到250mL双颈管中。将混合物在100℃下加热30小时。冷却至室温后,过滤反应混合物,并用甲醇和水洗涤残余物数次。在此之后,使用索氏仪器在氯仿(150mL)中提取干燥沉淀物以去除可溶性酸酐,并干燥以获得纯2PTCDA最终产物(0.48g,0.56mmol,90%)。制备获得的有机正极材料2PTCDA的氢谱核磁图如图1所示。Step 4: Compound 3 (1 g, 0.62 mmol), p-toluenesulfonic acid (p-TsOH, 1.178 g, 6.2 mmol) and 40 mL of toluene (dried over sodium under argon atmosphere) were added to a 250 mL double necked tube. The mixture was heated at 100°C for 30 hours. After cooling to room temperature, the reaction mixture was filtered, and the residue was washed several times with methanol and water. After this, the dried precipitate was extracted in chloroform (150 mL) using a Soxhlet apparatus to remove soluble anhydrides, and dried to obtain pure 2PTCDA final product (0.48 g, 0.56 mmol, 90%). The H NMR spectrum of the prepared organic cathode material 2PTCDA is shown in Fig. 1 .
有机正极材料2PTCDA的合成路线如图2所示。The synthetic route of the organic cathode material 2PTCDA is shown in Figure 2.
实施例2Example 2
本实施例提供了一种正极片,2PTCDA电极片,具体制备方法如下所示:This embodiment provides a positive electrode sheet, 2PTCDA electrode sheet, the specific preparation method is as follows:
先将实施例1制备的2PTCDA(65wt%)、导电碳添加剂(25wt%)、粘结剂混合(10wt%);然后均匀涂在铝箔上;2PTCDA在电极片上的负载质量大于2mg cm-2。压成圆形铝电极片;将此电极片应用到碱金属离子半电池和全电池中;测试其氧化还原电位、实际比容量、循环稳定性和倍率性能。通过后续碱金属离子电池性能证明2PTCDA是一种在碱金属离子电池中具备高容量、高倍率性能、高电压、高稳定性的新型有机小分子正极材料。2PTCDA (65wt%) prepared in Example 1, conductive carbon additive (25wt%), and binder (10wt%) were mixed; then evenly coated on the aluminum foil; the loading mass of 2PTCDA on the electrode sheet was greater than 2mg cm -2 . Press into a circular aluminum electrode sheet; apply this electrode sheet to alkali metal ion half-cells and full cells; test its redox potential, actual specific capacity, cycle stability and rate performance. The performance of subsequent alkali metal ion batteries proves that 2PTCDA is a new type of organic small molecule cathode material with high capacity, high rate performance, high voltage and high stability in alkali metal ion batteries.
实施例3Example 3
关于2PTCDA在锂离子电池中的性能测试About the performance test of 2PTCDA in lithium ion battery
本实施例提供了一种半电池:使用实施例2制备的2PTCDA电极片作为正极、金属锂作为负极、6M LiTFSI+DME/DOL为电解液。This embodiment provides a half battery: use the 2PTCDA electrode sheet prepared in Example 2 as the positive electrode, metal lithium as the negative electrode, and 6M LiTFSI+DME/DOL as the electrolyte.
性能测试结果如图3所示。具体地如图3中:The performance test results are shown in Figure 3. Specifically as shown in Figure 3:
从图(a)看出,在工作电压为1.4-3.6V下,2PTCDA的氧化还原电压在2.35V(vs.Li+/Li),比容量峰值可达142mAh g-1。It can be seen from figure (a) that when the working voltage is 1.4-3.6V, the redox voltage of 2PTCDA is 2.35V (vs. Li + /Li), and the peak specific capacity can reach 142mAh g -1 .
从图(b)看出,在62.5mA g-1(0.5C)的电流密度下循环200圈后,容量保持率为83%(124~102mAh g-1);It can be seen from Figure (b) that after 200 cycles at a current density of 62.5mA g -1 (0.5C), the capacity retention rate is 83% (124~102mAh g -1 );
从图(d)看出,在大电流(1000mA g-1)循环下,3000次循环后仍能保持66%比容量(110~73mAh g-1)。It can be seen from figure (d) that under the high current (1000mA g -1 ) cycle, 66% specific capacity (110~73mAh g -1 ) can still be maintained after 3000 cycles.
从图(c)看出,2PTCDA在锂离子电池也拥有优异的倍率性能:在100/200/500/1000/2000/3000/4000/5000mA g-1的电流密度下,分别展现出比容量为132/126/122/115/113/112/110/107mAh g-1。It can be seen from Figure (c) that 2PTCDA also has excellent rate performance in lithium-ion batteries: at current densities of 100/200/500/1000/2000/3000/4000/5000mA g -1 , the specific capacities are respectively 132/126/122/115/113/112/110/107mAh g -1 .
实施例4Example 4
关于2PTCDA在钠离子电池中的性能测试About the performance test of 2PTCDA in sodium-ion battery
(一)本实施例提供了一种半电池:使用实施例2制备的2PTCDA电极片作为正极、金属钠作为负极、4M NaPF6+DME为电解液。(1) This example provides a half-cell: the 2PTCDA electrode sheet prepared in Example 2 is used as the positive electrode, metal sodium is used as the negative electrode, and 4M NaPF 6 +DME is used as the electrolyte.
性能测试结果如图4所示。具体地如图4中:The performance test results are shown in Figure 4. Specifically as shown in Figure 4:
从图(a)看出,2PTCDA在钠离子半电池中氧化还原电位在2.3V(vs.Na+/Na)左右,比容量在130mAhg-1左右。It can be seen from figure (a) that the oxidation-reduction potential of 2PTCDA in the sodium-ion half-cell is about 2.3V (vs. Na + /Na), and the specific capacity is about 130mAhg -1 .
从图(b)看出,在0.5C(62.5mA g-1)小电流下可以稳定循环95圈并保留125mAh g-1,放电比容量最大值可达到131mAh g-1,容量保持率为95%。It can be seen from Figure (b) that at a small current of 0.5C (62.5mA g -1 ), it can cycle stably for 95 cycles and retain 125mAh g -1 , the maximum discharge specific capacity can reach 131mAh g -1 , and the capacity retention rate is 95. %.
(二)本实施例提供了一种全电池:使用实施例2制备的2PTCDA电极片作为正极、使用铋钠合金Na3Bi电极片作为负极、4M NaPF6 in DME作为电解液组装全电池。Na3Bi电极的导电碳为Super-P,其余的电极片的制备过程为与2PTCDA电极片的制备过程相一致。(2) This embodiment provides a full battery: use the 2PTCDA electrode sheet prepared in Example 2 as the positive electrode, use the sodium bismuth alloy Na3Bi electrode sheet as the negative electrode, and use 4M NaPF 6 in DME as the electrolyte to assemble the full battery. The conductive carbon of the Na 3 Bi electrode is Super-P, and the preparation process of the rest of the electrode sheets is consistent with the preparation process of the 2PTCDA electrode sheets.
性能测试结果如图5所示。具体地如图5中:The performance test results are shown in Figure 5. Specifically as shown in Figure 5:
从图(a)看出,全电的平台电压大约在1.7V左右,比容量在125mAh g-1左右。It can be seen from the figure (a) that the platform voltage of the all-electric is about 1.7V, and the specific capacity is about 125mAh g -1 .
从图(b)看出,在100mA g-1小电流下,经过100圈的长循环,放电比容量可稳定在120mAh g-1左右,容量保持率约为94%。It can be seen from Figure (b) that at a small current of 100mA g -1 , after a long cycle of 100 cycles, the discharge specific capacity can be stabilized at about 120mAh g -1 , and the capacity retention rate is about 94%.
实施例5Example 5
关于2PTCDA在钾离子电池中的性能测试About the Performance Test of 2PTCDA in Potassium-ion Batteries
(一)本实施例提供了一种半电池:使用实施例2制备的2PTCDA电极片作为正极、金属钾作为负极、6种电解液(1M KFSI in EC/DEC/DMC,1M KFSI in DME,1M KTFSI in EC/DEC/DMC,1M KTFSI in DME,0.8M KPF6 in EC/DEC and 1M KPF6 in DME)。(1) This example provides a half-battery: use the 2PTCDA electrode sheet prepared in Example 2 as the positive electrode, metal potassium as the negative electrode, and 6 kinds of electrolytes (1M KFSI in EC/DEC/DMC, 1M KFSI in DME, 1M KTFSI in EC/DEC/DMC, 1M KTFSI in DME, 0.8M KPF 6 in EC/DEC and 1M KPF 6 in DME).
性能测试结果如图6和7所示。具体地如图6中:Performance test results are shown in Figures 6 and 7. Specifically as shown in Figure 6:
从图(6)看出,2PTCDA在6种电解液中都具备出色的电化学活性。其氧化还原电压在2-3V(vs.K+/K)之间,比容量在120-140mAhg-1。It can be seen from Figure (6) that 2PTCDA has excellent electrochemical activity in all six electrolytes. Its redox voltage is between 2-3V (vs. K+/K), and its specific capacity is 120-140mAhg -1 .
选择电解液为1M KFSI in EC/DEC/DMC,工作电压为1.5-3.6V下,2PTCDA在钾离子半电池同样具有优异的循环稳定性,具体地如图7中:When the electrolyte is 1M KFSI in EC/DEC/DMC, and the working voltage is 1.5-3.6V, 2PTCDA also has excellent cycle stability in potassium-ion half-cells, as shown in Figure 7:
从图(a)看出,在62.5mA g-1(0.5C)的电流密度下循环200圈后,容量保持率为85%(136~115mAh g-1);It can be seen from Figure (a) that after 200 cycles at a current density of 62.5mA g -1 (0.5C), the capacity retention rate is 85% (136~115mAh g -1 );
从图(c)看出,在大电流(1000mA g-1)循环下,2500次循环后仍能保持49%的比容量(136~66mAh g-1)。It can be seen from figure (c) that under the high current (1000mA g -1 ) cycle, 49% of the specific capacity (136~66mAh g -1 ) can still be maintained after 2500 cycles.
从图(b)看出,同时,钾离子半电池也拥有优异的倍率性能:在100/200/500/1000/2000/3000/4000/5000mA g-1的电流密度下,分别具有比容量为136/132/128/125/123/119/113/105mAh g-1。It can be seen from Figure (b) that at the same time, potassium ion half-cells also have excellent rate performance: at current densities of 100/200/500/1000/2000/3000/4000/5000mA g -1 , they have specific capacities of 136/132/128/125/123/119/113/105mAh g -1 .
(二)本实施例提供了一种全电池:使用实施例2制备的2PTCDA电极片作为正极、使用K4TP电极片作为负极、1M KPF6 in DME作为电解液组装全电池。K4TP电极片的制备过程与2PTCDA电极片的制备过程相一致。(2) This embodiment provides a full battery: use the 2PTCDA electrode sheet prepared in Example 2 as the positive electrode, use the K 4 TP electrode sheet as the negative electrode, and use 1M KPF 6 in DME as the electrolyte to assemble the full battery. The preparation process of K 4 TP electrode sheet is consistent with that of 2PTCDA electrode sheet.
性能测试结果如图8所示。具体地如图8中:The performance test results are shown in Figure 8. Specifically as shown in Figure 8:
从图(a)看出,在0.8-3.0V的工作电压下,全电池能够达到130mAh g-1的正极峰值容量,中值电压约在1.76V。因此,基于正极材料计算,全电池能够达到能量密度为229Whkg-1(130mAh g-1×Vaverage=1.76V)。It can be seen from Figure (a) that under the working voltage of 0.8-3.0V, the full battery can reach the peak capacity of the positive electrode of 130mAh g -1 , and the median voltage is about 1.76V. Therefore, based on the calculation of the positive electrode material, the full battery can achieve an energy density of 229Whkg -1 (130mAh g -1 ×V average =1.76V).
从图(b)看出,在小电流(100mA g-1)循环下,100圈后仍能保持80%比容量(130~104mAh g-1);It can be seen from the figure (b) that under the low current (100mA g -1 ) cycle, 80% of the specific capacity (130~104mAh g -1 ) can still be maintained after 100 cycles;
从图(d)看出,在大电流(1000mA g-1)循环下,2500圈后仍能保持54%比容量(133~72mAh g-1)。It can be seen from figure (d) that under the high current (1000mA g -1 ) cycle, 54% specific capacity (133~72mAh g -1 ) can still be maintained after 2500 cycles.
从图(c)看出,同时,全电池也拥有优异的倍率性能:对于正极材料,在100/200/500/1000/2000mA g-1的电流密度下,分别具有122/113/112/107/101mAh g-1的比容量,即使在3A g-1的高电流密度下仍然可达到99mAh g-1的比容量。It can be seen from Figure (c) that at the same time, the full battery also has excellent rate performance: for the positive electrode material, at the current density of 100/200/500/1000/2000mA g -1 , it has 122/113/112/107 /101mAh g -1 specific capacity, even at a high current density of 3A g -1 can still reach 99mAh g -1 specific capacity.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421217.4A CN114744163B (en) | 2022-04-21 | 2022-04-21 | Organic positive electrode material, preparation method and application thereof in alkali metal ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421217.4A CN114744163B (en) | 2022-04-21 | 2022-04-21 | Organic positive electrode material, preparation method and application thereof in alkali metal ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114744163A CN114744163A (en) | 2022-07-12 |
CN114744163B true CN114744163B (en) | 2023-04-25 |
Family
ID=82283261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210421217.4A Active CN114744163B (en) | 2022-04-21 | 2022-04-21 | Organic positive electrode material, preparation method and application thereof in alkali metal ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114744163B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050119889A (en) * | 2004-06-17 | 2005-12-22 | 삼성에스디아이 주식회사 | A thin film transistor, a method for manufacturing the same, and a flat panel display device having the same |
CN106299369A (en) * | 2016-09-27 | 2017-01-04 | 华中科技大学 | A kind of aqueous solution organic cathode material for sodium ion battery and preparation method thereof |
WO2017048341A1 (en) * | 2015-09-14 | 2017-03-23 | Nanotek Instruments, Inc. | Alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities |
CN111342047A (en) * | 2019-12-27 | 2020-06-26 | 欧格尼材料科技江苏有限公司 | High-performance organic positive electrode material and application thereof in potassium ion battery |
CN113501956A (en) * | 2021-07-08 | 2021-10-15 | 兰州大学 | D-A type perylene conjugated polymer lithium ion battery positive electrode material with high rate performance and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150061605A (en) * | 2013-11-27 | 2015-06-04 | 국립대학법인 울산과학기술대학교 산학협력단 | Sea water secondary battery and sea water secondary battery system |
US10170789B2 (en) * | 2017-05-31 | 2019-01-01 | Nanotek Instruments, Inc. | Method of producing a shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode |
-
2022
- 2022-04-21 CN CN202210421217.4A patent/CN114744163B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050119889A (en) * | 2004-06-17 | 2005-12-22 | 삼성에스디아이 주식회사 | A thin film transistor, a method for manufacturing the same, and a flat panel display device having the same |
WO2017048341A1 (en) * | 2015-09-14 | 2017-03-23 | Nanotek Instruments, Inc. | Alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities |
CN106299369A (en) * | 2016-09-27 | 2017-01-04 | 华中科技大学 | A kind of aqueous solution organic cathode material for sodium ion battery and preparation method thereof |
CN111342047A (en) * | 2019-12-27 | 2020-06-26 | 欧格尼材料科技江苏有限公司 | High-performance organic positive electrode material and application thereof in potassium ion battery |
CN113501956A (en) * | 2021-07-08 | 2021-10-15 | 兰州大学 | D-A type perylene conjugated polymer lithium ion battery positive electrode material with high rate performance and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
Michael Ruby Raj等.A perylene-based aromatic polyimide with multiple carbonyls enabling high-capacity and stable organic lithium and sodium ion batteries.《Sustainable Energy Fuels》.2021,第5卷(第1期),第175-187页. * |
Yang Hu等.Ultra-Stable, Ultra-Long-Lifespan and Ultra-High-Rate Na-ion Batteries Using Small-Molecule Organic Cathodes.《Energy Storage Mater.》.2021,第41卷第738-747页. * |
胡嘉慧.钠离子电池正极材料蒽醌衍生物的合成与电化学性能研究.《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》.2022,(第01期),B014-850. * |
褚荣荣等.3,4,9,10-苝四甲酸二酐(PTCDA)用作钠离子电池正极材料的电化学性能研究.《分子科学学报》.第36卷(第05期),第417-421页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114744163A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oubaha et al. | Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries | |
CN103022496A (en) | Aromatic condensed ring quinones compound positive pole material for one-class lithium secondary battery | |
CN109020982A (en) | Two quinoxaline phenazene derivatives and its synthetic method and application | |
CN103531810A (en) | Lithium ion secondary battery anode material of aromatic heterocyclic ketone compound and application | |
CN113512033B (en) | Phenoxazine and phenothiazine covalent triazine framework material, and preparation method and application thereof | |
CN104409735A (en) | Ferrocene group-containing aniline derivative polymer and use thereof | |
CN104744674B (en) | Polyoxy nitrogen free radical derivative containing polypyrrole skeleton, its application and by its obtained lithium ion battery | |
CN112409364A (en) | Hexazanaphthalene derivatives, preparation method and application thereof | |
CN108461752A (en) | A kind of side chain carries triphen amine polymer and the preparation and application of conjugated carbonyl compound | |
CN114744163B (en) | Organic positive electrode material, preparation method and application thereof in alkali metal ion battery | |
CN114204020A (en) | A general organic electrode material for alkali metal ion battery and its application | |
CN110718717B (en) | Electrolyte composed of solvent and electrolyte | |
CN113979957A (en) | A kind of self-crosslinking cross-shaped organic positive electrode material and its preparation method and application | |
CN115160323B (en) | Conjugated macrocyclic dicarbazole derivative R- (BCz-Ph) m and synthetic method and application thereof | |
CN105826563B (en) | A kind of free radical polyalcohol material and its preparation and application | |
CN114122399B (en) | A battery silicon carbon negative electrode composite binder and its preparation method and application | |
CN110590789A (en) | Preparation and Application of Nitrogen-Rich Triphenylamine Derivative Conjugated Polymer Materials and Monomers | |
CN114079084B (en) | Electrolyte additive, electrolyte and lithium ion secondary battery | |
CN111211327B (en) | Compound for lithium ion battery anode material and preparation method and application thereof | |
CN110835406B (en) | A kind of free radical monomer containing diphenylamine structure and preparation method and use of polymer thereof | |
CN116315085B (en) | Electrolyte additive, preparation method and application thereof | |
CN113278134B (en) | Microporous polymer organic electrode material and preparation method and application thereof | |
CN113277970B (en) | Tetraphenylpyrrole derivative containing carbonyl and preparation method and application thereof | |
CN112694613B (en) | A kind of polyimide material, its preparation method and application in alkali metal ion battery | |
CN116354971B (en) | A porphyrin compound and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |