CN114744092A - Manufacturing method and manufacturing machine of micro light-emitting diodes with reduced non-radiative recombination - Google Patents
Manufacturing method and manufacturing machine of micro light-emitting diodes with reduced non-radiative recombination Download PDFInfo
- Publication number
- CN114744092A CN114744092A CN202110021882.XA CN202110021882A CN114744092A CN 114744092 A CN114744092 A CN 114744092A CN 202110021882 A CN202110021882 A CN 202110021882A CN 114744092 A CN114744092 A CN 114744092A
- Authority
- CN
- China
- Prior art keywords
- etched
- type semiconductor
- atomic layer
- semiconductor layer
- layer deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006798 recombination Effects 0.000 title claims abstract description 49
- 238000005215 recombination Methods 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 116
- 239000004065 semiconductor Substances 0.000 claims abstract description 92
- 238000002161 passivation Methods 0.000 claims abstract description 41
- 230000008439 repair process Effects 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000007547 defect Effects 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims description 47
- 239000007789 gas Substances 0.000 claims description 46
- 238000005530 etching Methods 0.000 claims description 18
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 150000002902 organometallic compounds Chemical class 0.000 claims description 5
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 6
- 125000006850 spacer group Chemical group 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 12
- 238000000407 epitaxy Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910010092 LiAlO2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
Landscapes
- Led Devices (AREA)
Abstract
本发明为一种减少非辐射复合的微发光二极体的制作方法,提供一蚀刻后的发光二极体磊晶片,其中蚀刻后的发光二极体磊晶片包括复数个蚀刻沟槽及复数个平台构造,平台构造的一蚀刻侧墙包括一第一型半导体层、一活性层及一第二型半导体层的层迭。对蚀刻后的发光二极体磊晶片进行两阶段的原子层沉积,其中两阶段的原子层沉积的温度区间不同。第一原子层沉积可用以修补平台构造的蚀刻侧墙上的悬浮键及缺陷,而第二原子层沉积则用以在平台构造的蚀刻侧墙上形成钝化层。通过本发明所述的制作方法,可减少微发光二极体产生非辐射复合,并可有效提高微发光二极体的发光亮度及发光效率。
The present invention provides a method for manufacturing micro-LEDs with reduced non-radiative recombination, and provides an etched LED epiwafer, wherein the etched LED epiwafer includes a plurality of etched grooves and a plurality of In the platform structure, an etched sidewall of the platform structure includes a stack of a first-type semiconductor layer, an active layer and a second-type semiconductor layer. Two-stage atomic layer deposition is performed on the etched light-emitting diode epiwafer, wherein the temperature ranges of the two-stage atomic layer deposition are different. The first atomic layer deposition is used to repair dangling bonds and defects on the etched sidewalls of the mesa structure, and the second atomic layer deposition is used to form a passivation layer on the etched sidewalls of the mesa structure. The manufacturing method of the present invention can reduce the non-radiative recombination of the micro light emitting diode, and can effectively improve the luminous brightness and luminous efficiency of the micro light emitting diode.
Description
技术领域technical field
本发明有关于一种减少非辐射复合的微发光二极体的制作方法及制作机台,可减少微发光二极体产生非辐射复合,并可有效提高微发光二极体的发光亮度及发光效率。The invention relates to a manufacturing method and a manufacturing machine of a micro-light-emitting diode that reduces non-radiative recombination, which can reduce the non-radiative recombination of the micro-light-emitting diode, and can effectively improve the luminous brightness and luminescence of the micro-light-emitting diode. efficiency.
背景技术Background technique
发光二极体具有转换效率高、使用寿命长、体积小及安全性高等优点,已经成为新一代的照明光源。此外发光二极体亦取代传统的冷阴极管成为显示面板的背光源,特别适用于体积较小的可携式电子装置,例如笔记型电脑、手机及平板电脑等。Light-emitting diodes have the advantages of high conversion efficiency, long service life, small size and high safety, and have become a new generation of lighting sources. In addition, light emitting diodes also replace traditional cold cathode tubes as the backlight source of display panels, and are especially suitable for small portable electronic devices, such as notebook computers, mobile phones and tablet computers.
液晶显示器并非自发光,并存在效率不佳的问题,即使液晶显示器显示白色,背光源发射的光通常只有不到10%会穿过面板,增加可携式电子装置的耗电量。液晶显示器除了背光源外,还需要搭配偏光器、液晶及彩色滤光片等装置,造成液晶显示器的尺寸无法进一步缩小。Liquid crystal displays are not self-luminous, and suffer from poor efficiency. Even if the liquid crystal display displays white, less than 10% of the light emitted by the backlight usually passes through the panel, increasing the power consumption of portable electronic devices. In addition to the backlight, the liquid crystal display also needs to be equipped with devices such as polarizers, liquid crystals, and color filters, so that the size of the liquid crystal display cannot be further reduced.
相较之下,有机发光二极体具有自发光、广视角、高对比、低耗电、高反应速率及具可绕性等优点,已逐渐取代液晶显示器成为新一代可携式电子装置的显示器。但有机发光二极体仍存在烙印、寿命较短、色衰退及PWM调光等问题,而各大厂商亦开始发展下一代的显示面板。In contrast, organic light-emitting diodes have the advantages of self-luminescence, wide viewing angle, high contrast, low power consumption, high response rate and flexibility, and have gradually replaced liquid crystal displays as the display of a new generation of portable electronic devices. . However, organic light-emitting diodes still have problems such as branding, short lifespan, color fade, and PWM dimming, and major manufacturers have begun to develop next-generation display panels.
目前来说,微发光二极体显示器(Micro LED Display)很可能成为下一代的显示面板。微发光二极体显示器与有机发光二极体显示器一样是自发光,还具有高色彩饱和度、反应时间短及使用寿命长等优点。At present, Micro LED Display (Micro LED Display) is likely to become the next-generation display panel. Like organic light-emitting diode displays, micro-LED displays are self-luminous, and have the advantages of high color saturation, short response time, and long service life.
目前微发光二极体在商业化上,仍存在许多成本与技术瓶颈需要克服。在发光二极体的制程中,主要是通过有机金属化学气相沉积(MOCVD)在蓝宝石基板上成长磊晶材料以形成发光二极体磊晶片。蚀刻发光二极磊晶片,并在发光二极体磊晶片的表面形成复数个蚀刻沟槽及复数个平台构造(MESA)。而后沿着蚀刻沟槽切割发光二极体磊晶片,以完成发光二极体晶粒的制作。At present, there are still many cost and technical bottlenecks to be overcome in the commercialization of micro-LEDs. In the manufacturing process of light-emitting diodes, epitaxial materials are grown on a sapphire substrate mainly by metal-organic chemical vapor deposition (MOCVD) to form light-emitting diode epitaxial wafers. The LED epiwafer is etched, and a plurality of etching trenches and a plurality of mesa structures (MESA) are formed on the surface of the LED epiwafer. Then, the light-emitting diode epiwafer is cut along the etched trench to complete the fabrication of light-emitting diode crystal grains.
在蚀刻发光二极体磊晶片的过程中,会在平台构造的蚀刻侧墙(sidewall)形成缺陷及悬空键(dangling bond),导致发光二极体的蚀刻侧墙产生非辐射复合(non-radiative recombination),进而影响发光二极体的发光亮度。In the process of etching LED epiwafers, defects and dangling bonds will be formed on the etched sidewalls of the platform structure, resulting in non-radiative recombination of the etched sidewalls of the LEDs. recombination), thereby affecting the luminous brightness of the light-emitting diode.
传统的发光二极体及平台构造的尺寸远大于蚀刻侧墙,因此非辐射复合对整体的发光亮度影响很小,通常可以被忽略。但微发光二极体及平台构造的尺寸很小,使得发生在蚀刻侧墙的非辐射复合会对微发光二极体的发光亮度造成相当大的影响。为此如何减少微发光二极体的蚀刻侧墙产生非辐射复合,已然成为微发光二极体商业化的过程中必须面对的主要问题。The size of the traditional light-emitting diode and platform structure is much larger than that of the etched sidewall, so the non-radiative recombination has little effect on the overall luminous brightness and can usually be ignored. However, the size of the micro-LED and the mesa structure is small, so that the non-radiative recombination that occurs in the etched sidewall will have a considerable impact on the luminous brightness of the micro-LED. Therefore, how to reduce the non-radiative recombination of the etched sidewalls of the micro-LEDs has become a major problem that must be faced during the commercialization of the micro-LEDs.
发明内容SUMMARY OF THE INVENTION
为了解决上述先前技术的问题,本发明提出一种减少非辐射复合的微发光二极体的制作方法,可有效修补微发光二极体及平台构造(MESA)的蚀刻侧墙上的缺陷及悬空键(dangling bond),并在微发光二极体及平台构造上形成钝化层(passivation layer),以减少在微发光二极体的蚀刻侧墙上产生非辐射复合(non-radiative recombination)。In order to solve the above-mentioned problems of the prior art, the present invention proposes a method for manufacturing a micro-LED with reduced non-radiative recombination, which can effectively repair the defects and overhangs on the etched sidewall of the micro-LED and mesa structure (MESA). A dangling bond is formed, and a passivation layer is formed on the micro-LED and the mesa structure to reduce non-radiative recombination on the etched sidewalls of the micro-LED.
本发明的一目的,在于提供一种减少非辐射复合的微发光二极体的制作方法,主要用以处理经过蚀刻的发光二极体磊晶片。发光二极体磊晶片包括一基板、一第一型半导体层、一活性层及一第二型半导体层,其中第一型半导体层、活性层及第二型半导体层以层迭方式设置在基板上。经过蚀刻的发光二极体磊晶片的表面会形成复数个蚀刻沟槽及复数个平台构造,其中平台构造的蚀刻侧墙包括裸露的第一型半导体层、活性层及第二型半导体层。而后可沿着蚀刻沟槽切割发光二极体磊晶片,以产生复数个微发光二极体。An object of the present invention is to provide a method for manufacturing a micro-LED with reduced non-radiative recombination, which is mainly used for processing etched LED epiwafers. The light-emitting diode epitaxy wafer includes a substrate, a first-type semiconductor layer, an active layer and a second-type semiconductor layer, wherein the first-type semiconductor layer, the active layer and the second-type semiconductor layer are arranged on the substrate in a stacked manner superior. A plurality of etching trenches and a plurality of mesa structures are formed on the surface of the etched LED epiwafer, wherein the etched sidewalls of the mesa structures include exposed first-type semiconductor layers, active layers and second-type semiconductor layers. The LED epiwafer can then be cut along the etched trenches to produce a plurality of micro LEDs.
在蚀刻的过程中,会在发光二极体磊晶片的蚀刻侧墙形成至少一悬浮键及/或至少一缺陷,并在微发光二极体及平台构造的蚀刻侧墙产生非辐射复合。微发光二极体的尺寸很小,通常在10-100um之间,使得微发光二极体及平台构造的尺寸与蚀刻侧墙相近。因此当蚀刻侧墙产生非辐射复合时,会大幅度的影响微发光二极体的发光亮度。为此本发明提出一种减少非辐射复合的微发光二极体的制作方法,主要对蚀刻后的发光二极体磊晶片进行悬浮键及/或缺陷的修补,而后再对经过修补的发光二极体磊晶片进行原子层沉积,以在发光二极体磊晶片的蚀刻侧墙上形成一钝化层,以防止微发光二极体及平台构造的蚀刻侧墙上产生非辐射复合,并可有效提高微发光二极体的发光亮度及转换效率During the etching process, at least one floating bond and/or at least one defect will be formed on the etched sidewalls of the LED epiwafer, and non-radiative recombination will be generated on the etched sidewalls of the micro-LED and mesa structures. The size of the micro-LED is very small, usually between 10-100um, so that the size of the micro-LED and platform structure is similar to that of the etched sidewall. Therefore, when the etched sidewall produces non-radiative recombination, the luminous brightness of the micro-LED will be greatly affected. To this end, the present invention proposes a method for manufacturing a micro-LED with reduced non-radiative recombination, which mainly repairs suspending bonds and/or defects on the etched LED epiwafer, and then repairs the repaired LED. Atomic layer deposition is performed on the electrode epitaxy wafer to form a passivation layer on the etched sidewall of the LED epitaxy wafer to prevent non-radiative recombination on the etched sidewall of the micro-LED and platform structure, and can Effectively improve the luminous brightness and conversion efficiency of micro-LEDs
本发明的一目的,在于提供一种减少非辐射复合的微发光二极体的制作方法,主要对至少一蚀刻后的发光二极体磊晶片进行两阶段的原子层沉积,其中两阶段的原子层沉积的温度不同。对蚀刻后的发光二极体磊晶片进行第一原子层沉积,可修补蚀刻侧墙的悬浮键及/或缺陷。对经过第一原子层沉积的蚀刻后的发光二极体磊晶片进行第二原子层沉积,则会在发光二极体磊晶片的蚀刻侧墙上形成一钝化层,以防止微发光二极体及平台构造的蚀刻侧墙上产生非辐射复合。An object of the present invention is to provide a method for manufacturing a micro-LED with reduced non-radiative recombination, which mainly involves two-stage atomic layer deposition on at least one etched LED epiwafer, wherein the two-stage atomic layer is deposited in two stages. The temperature of layer deposition varies. The first atomic layer deposition is performed on the etched light-emitting diode epiwafer, so that the dangling bonds and/or defects of the etched sidewall can be repaired. The second atomic layer deposition is performed on the etched LED epiwafer after the first atomic layer deposition, and a passivation layer is formed on the etched sidewall of the LED epiwafer to prevent micro-LED Non-radiative recombination occurs on the etched side walls of the volume and platform structures.
本发明的一目的,在于提供一种在减少非辐射复合的微发光二极体的制作方法,主要将蚀刻后的发光二极体磊晶片放置到一反应腔体内,并将一修补气体输送至反应腔体,其中修补气体会与蚀刻侧墙的悬浮键及/或缺陷反应,并修补蚀刻后的发光二极体磊晶片的悬浮键及/或缺陷。而后对经过修补的发光二极体磊晶片进行原子层沉积,以在平台构造的蚀刻侧墙上形成一钝化层。An object of the present invention is to provide a method for manufacturing micro-LEDs with reduced non-radiative recombination, mainly placing the etched LED epiwafers in a reaction chamber, and delivering a repair gas to the The reaction chamber, wherein the repairing gas reacts with the dangling bonds and/or defects of the etched sidewall, and repairs the dangling bonds and/or defects of the etched LED epiwafer. Then, atomic layer deposition is performed on the repaired LED epiwafer to form a passivation layer on the etched sidewalls of the mesa structure.
此外可依据修补气体的种类,决定是否对与反应腔体相邻的交流线圈提供一交流电压,使得修补气体形成一电浆,其中电浆化的修补气体可提高修补发光二极体的悬浮键及/或缺陷的效果及效率,并有利于减少在微发光二极体及平台构造的蚀刻侧墙产生非辐射复合。In addition, according to the type of the repairing gas, it can be determined whether to provide an AC voltage to the AC coil adjacent to the reaction chamber, so that the repairing gas can form a plasma, wherein the plasma-forming repairing gas can improve the repairing of the floating bond of the light-emitting diode. and/or defects, and is beneficial for reducing non-radiative recombination in the etched sidewalls of microLEDs and mesa structures.
为了达到上述的目的,本发明提出一种减少非辐射复合的微发光二极体的制作方法,包括:提供至少一蚀刻后的发光二极体磊晶片,蚀刻后的发光二极体磊晶片包括复数个蚀刻沟槽及复数个平台构造,其中平台构造包括一第一型半导体层、一活性层及一第二型半导体层,活性层位于第一型半导体层及第二型半导体层之间;蚀刻后的发光二极体磊晶片在一第一温度区间进行一第一原子层沉积;及经过第一原子层沉积的蚀刻后的发光二极体磊晶片在一第二温度区间进行一第二原子层沉积,并在平台构造的至少一蚀刻侧墙上的第一型半导体层、活性层及第二型半导体层形成一钝化层,其中第一温度区间与第二温度区间不同。In order to achieve the above purpose, the present invention proposes a method for manufacturing a micro-LED with reduced non-radiative recombination, including: providing at least one etched LED epiwafer, the etched LED epiwafer comprising: a plurality of etched trenches and a plurality of platform structures, wherein the platform structure includes a first-type semiconductor layer, an active layer and a second-type semiconductor layer, and the active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; The etched LED epiwafer is subjected to a first atomic layer deposition in a first temperature range; and the etched LED epiwafer subjected to the first atomic layer deposition is subjected to a second temperature range Atomic layer deposition is performed, and a passivation layer is formed on the first type semiconductor layer, the active layer and the second type semiconductor layer on at least one etched sidewall of the mesa structure, wherein the first temperature range is different from the second temperature range.
本发明提供另一种减少非辐射复合的微发光二极体的制作方法,包括:提供至少一蚀刻后的发光二极体磊晶片,蚀刻后的发光二极体磊晶片包括复数个蚀刻沟槽及复数个平台构造,其中平台构造包括一第一型半导体层、一活性层及一第二型半导体层,活性层位于第一型半导体层及第二型半导体层之间;将蚀刻后的发光二极体磊晶片放置到一反应腔体,并将一修补气体输送至反应腔体内,其中修补气体会与蚀刻后的发光二极体磊晶片反应;及对蚀刻后的发光二极体磊晶片进行一原子层沉积,并在平台构造的至少一蚀刻侧墙上的第一型半导体层、活性层及第二型半导体层形成一钝化层。The present invention provides another method for manufacturing micro-LEDs with reduced non-radiative recombination, comprising: providing at least one etched LED epiwafer, wherein the etched LED epiwafer includes a plurality of etched grooves and a plurality of platform structures, wherein the platform structure includes a first-type semiconductor layer, an active layer and a second-type semiconductor layer, and the active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; The diode epitaxy wafer is placed in a reaction chamber, and a repairing gas is delivered into the reaction chamber, wherein the repairing gas will react with the etched LED epitaxy wafer; and the etched LED epitaxy wafer is treated An atomic layer deposition is performed, and a passivation layer is formed on the first type semiconductor layer, the active layer and the second type semiconductor layer on at least one etched sidewall of the mesa structure.
本发明还提供一种减少非辐射复合的微发光二极体的制作机台,包括:一传送腔体,包括至少一传送装置,用以传送至少一蚀刻后的发光二极体磊晶片,其中蚀刻后的发光二极体磊晶片包括复数个蚀刻沟槽及复数个平台构造,平台构造包括一第一型半导体层、一活性层及一第二型半导体层,活性层位于第一型半导体层及第二型半导体层之间;至少一第一原子层沉积腔体,连接传送腔体,其中传送装置将蚀刻后的发光二极体磊晶片传送至第一原子层沉积腔体,并在第一原子层沉积腔体内以一第一温度区间对蚀刻后的发光二极体磊晶片进行一第一原子层沉积;及至少一第二原子层沉积腔体,连接传送腔体,其中传送装置将经过第一原子层沉积的蚀刻后的发光二极体磊晶片传送至第二原子层沉积腔体,并在第二原子层沉积腔体内以一第二温度区间对蚀刻后的发光二极体磊晶片进行一第二原子层沉积,以在平台构造的至少一蚀刻侧墙上的第一型半导体层、活性层及第二型半导体层形成一钝化层,其中第一温度区间与第二温度区间不同。The present invention also provides a manufacturing machine for reducing non-radiative recombination of micro-LEDs, comprising: a transfer cavity, including at least one transfer device, for transferring at least one etched LED epiwafer, wherein The etched light-emitting diode epiwafer includes a plurality of etched trenches and a plurality of platform structures. The platform structure includes a first-type semiconductor layer, an active layer and a second-type semiconductor layer, and the active layer is located in the first-type semiconductor layer. and between the second type semiconductor layer; at least one first atomic layer deposition chamber is connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epiwafer to the first atomic layer deposition chamber, and in the first atomic layer deposition chamber In an atomic layer deposition chamber, a first atomic layer deposition is performed on the etched LED epiwafer in a first temperature range; and at least one second atomic layer deposition chamber is connected to the transfer chamber, wherein the transfer device will The etched light-emitting diode epitaxy wafer after the first atomic layer deposition is transferred to the second atomic layer deposition chamber, and the etched light-emitting diode epitaxy is performed in the second atomic layer deposition chamber at a second temperature range A second atomic layer deposition is performed on the wafer to form a passivation layer on the first type semiconductor layer, the active layer and the second type semiconductor layer on at least one etched sidewall of the mesa structure, wherein the first temperature range and the second temperature range The interval is different.
本发明提供另一种减少非辐射复合的微发光二极体的制作机台,包括:一传送腔体,包括至少一传送装置,用以传送至少一蚀刻后的发光二极体磊晶片,其中蚀刻后的发光二极体磊晶片包括复数个蚀刻沟槽及复数个平台构造,平台构造包括一第一型半导体层、一活性层及一第二型半导体层,活性层位于第一型半导体层及第二型半导体层之间;至少一反应腔体,连接传送腔体,其中传送装置将蚀刻后的发光二极体磊晶片传送至反应腔体,并将一修补气体输送至反应腔体内,使得修补气体与蚀刻后的发光二极体磊晶片反应;及至少一原子层沉积腔体,连接传送腔体,其中传送装置将反应腔体内的蚀刻后的发光二极体磊晶片传送至原子层沉积腔体,并在原子层沉积腔体内对蚀刻后的发光二极体磊晶片进行一原子层沉积,以在平台构造的至少一蚀刻侧墙上的第一型半导体层、活性层及第二型半导体层形成一钝化层。The present invention provides another fabrication machine for reducing non-radiative recombination of micro-LEDs, comprising: a transfer cavity including at least one transfer device for transferring at least one etched LED epiwafer, wherein The etched light-emitting diode epiwafer includes a plurality of etched trenches and a plurality of platform structures. The platform structure includes a first-type semiconductor layer, an active layer and a second-type semiconductor layer, and the active layer is located in the first-type semiconductor layer. and between the second type semiconductor layer; at least one reaction chamber is connected to the transfer chamber, wherein the transfer device transfers the etched LED epiwafer to the reaction chamber, and delivers a repairing gas to the reaction chamber, making the repairing gas react with the etched LED epiwafer; and at least one atomic layer deposition chamber connected to the transfer chamber, wherein the transfer device transfers the etched LED epiwafer in the reaction chamber to the atomic layer A deposition chamber, and an atomic layer deposition is performed on the etched light-emitting diode epiwafer in the atomic layer deposition chamber, so as to etch the first-type semiconductor layer, the active layer and the second-type semiconductor layer on at least one sidewall of the platform structure The type semiconductor layer forms a passivation layer.
所述的减少非辐射复合的微发光二极体的制作方法,其中第一原子层沉积用以修补蚀刻后的发光二极体磊晶片的至少一悬浮键或至少一缺陷,而第二原子层沉积在平台构造的一顶表面设置钝化层。The method for manufacturing a micro-LED with reduced non-radiative recombination, wherein the first atomic layer is deposited for repairing at least one dangling bond or at least one defect in the etched LED epiwafer, and the second atomic layer A passivation layer is deposited on a top surface of the mesa structure.
所述的减少非辐射复合的微发光二极体的制作方法,其中第一原子层沉积、第二原子层沉积及原子层沉积使用的一前驱物气体包括有机金属化合物、有机硅化合物、氯化硅化合物、有机铝化合物、水、二元醇、臭氧或乙醇。The manufacturing method of the reduced non-radiative recombination micro-light emitting diode, wherein a precursor gas used in the first atomic layer deposition, the second atomic layer deposition and the atomic layer deposition includes organometallic compounds, organosilicon compounds, chlorinated Silicon compounds, organoaluminum compounds, water, glycols, ozone or ethanol.
所述的减少非辐射复合的微发光二极体的制作方法,其中原子层沉积在反应腔体内进行。The manufacturing method of the micro-light emitting diode with reduced non-radiative recombination, wherein the atomic layer deposition is carried out in the reaction chamber.
所述的减少非辐射复合的微发光二极体的制作方法,包括提供一交流电压给与反应腔体相邻的一交流线圈,使得反应腔体内的修补气体成为一电浆,其中电浆化的修补气体会与蚀刻后的发光二极体磊晶片反应,并修补蚀刻后的发光二极体磊晶片的至少一悬浮键或至少一缺陷,而第二原子层沉积在平台构造的一顶表面设置钝化层。The manufacturing method of the reduced non-radiative recombination micro-light-emitting diode includes providing an AC voltage to an AC coil adjacent to the reaction chamber, so that the repairing gas in the reaction chamber becomes a plasma, wherein the plasma is The repairing gas will react with the etched LED epiwafer, and repair at least one dangling bond or at least one defect of the etched LED epiwafer, and the second atomic layer is deposited on a top surface of the mesa structure Set passivation layer.
所述的减少非辐射复合的微发光二极体的制作方法,其中修补气体为氮气、氧气或臭氧。In the manufacturing method of the micro-LED with reduced non-radiative recombination, the repairing gas is nitrogen, oxygen or ozone.
本发明的有益效果是:可有效修补微发光二极体及平台构造的蚀刻侧墙上的缺陷及悬空键,并在微发光二极体及平台构造上形成钝化层,以减少在微发光二极体的蚀刻侧墙上产生非辐射复合。The beneficial effects of the present invention are: the defects and dangling bonds on the etched sidewalls of the micro-LED and the platform structure can be effectively repaired, and a passivation layer can be formed on the micro-LED and the platform structure, so as to reduce the occurrence of micro-luminescence The etched sidewalls of the diodes produce non-radiative recombination.
附图说明Description of drawings
图1为本发明减少非辐射复合的微发光二极体的制作方法一实施例的步骤流程图。FIG. 1 is a flow chart of steps of an embodiment of a method for fabricating a micro-LED with reduced non-radiative recombination according to the present invention.
图2为本发明发光二极体磊晶片一实施例的剖面示意图。FIG. 2 is a schematic cross-sectional view of an embodiment of a light-emitting diode epitaxy wafer according to the present invention.
图3为本发明蚀刻后的发光二极体磊晶片一实施例的剖面示意图。FIG. 3 is a schematic cross-sectional view of an embodiment of an etched LED epiwafer according to the present invention.
图4为本发明设置钝化层的蚀刻后的发光二极体磊晶片一实施例的剖面示意图。4 is a schematic cross-sectional view of an embodiment of an etched LED epiwafer provided with a passivation layer according to the present invention.
图5为本发明设置钝化层的蚀刻后的发光二极体磊晶片又一实施例的剖面示意图。FIG. 5 is a schematic cross-sectional view of another embodiment of an etched LED epiwafer provided with a passivation layer according to the present invention.
图6为本发明减少非辐射复合的微发光二极体的制作方法又一实施例的步骤流程图。FIG. 6 is a flow chart of steps of yet another embodiment of the method for manufacturing a micro-LED with reduced non-radiative recombination according to the present invention.
图7为本发明减少非辐射复合的微发光二极体的制作机台一实施例的构造示意图。FIG. 7 is a schematic structural diagram of an embodiment of a manufacturing machine for reducing non-radiative recombination micro-LEDs according to the present invention.
附图标记说明:20-发光二极体磊晶片;200-蚀刻后的发光二极体磊晶片;21-基板;22-蚀刻沟槽;23-第一型半导体层;24-平台构造;241-蚀刻侧墙;243-顶表面;25-活性层;26-接触电极;27-第二型半导体层;29-钝化层;40-微发光二极体的制作机台;41-传送腔体;411-传送装置;42-承载盘;43-第一原子层沉积腔体;430-反应腔体;45-第二原子层沉积腔体;450-原子层沉积腔体。Description of reference numerals: 20-LED epiwafer; 200-etched LED epiwafer; 21-substrate; 22-etched trench; 23-first-type semiconductor layer; 24-platform structure; 241 - etched sidewall; 243 - top surface; 25 - active layer; 26 - contact electrode; 27 - second type semiconductor layer; 29 - passivation layer; 411-conveying device; 42-carrying plate; 43-first atomic layer deposition chamber; 430-reaction chamber; 45-second atomic layer deposition chamber; 450-atomic layer deposition chamber.
具体实施方式Detailed ways
请参阅图1,为本发明减少非辐射复合的微发光二极体的制作方法一实施例的步骤流程图。请配合参阅图2至图5,提供至少一发光二极体磊晶片20,其中发光二极体磊晶片20包括一基板21、一第一型半导体层23、一活性层25及一第二型半导体层27。在发光二极体的制程中,可通过有机金属化学气相沉积(MOCVD)在基板21上依序成长第一型半导体层23、活性层25及第二型半导体层27,其中活性层25位于第一型半导体层23及第二型半导体层27之间,如图2所示。例如基板21为蓝宝石(Sapphire)、碳化硅(SiC)、硅(Si)、砷化镓(GaAs)、偏铝酸锂(LiAlO2)、氧化镁(MgO)、氧化锌(ZnO)、氮化镓(GaN)、氮化铝(AlN)、或氮化铟(InN)等单晶基板,第一型半导体层23为N型半导体,活性层25为复数层量子井(QuantumWell),而第二型半导体层27为P型半导体。Please refer to FIG. 1 , which is a flow chart of steps of an embodiment of a method for fabricating a micro-LED with reduced non-radiative recombination of the present invention. Please refer to FIG. 2 to FIG. 5 , at least one
蚀刻发光二极磊晶片20,在发光二极体磊晶片20的一表面形成复数个蚀刻沟槽22及复数个平台构造24,其中蚀刻沟槽22使得第一型半导体层23露出,并形成一蚀刻后的发光二极体磊晶片200,如步骤11及图3所示。The
蚀刻后的发光二极体磊晶片200的平台构造24包括复数个蚀刻侧墙241,其中蚀刻侧墙241位于平台构造24与蚀刻沟槽22的交界处,平台构造24在蚀刻侧墙241上具有裸露的第一型半导体层23、活性层25及第二型半导体层27。例如蚀刻沟槽22可为棋盘状的沟槽,而平台构造24则是以矩阵方式排列的凸起,可以是方形凸起或圆形凸起等。The
蚀刻的过程中会破坏发光二极体磊晶片20的结构,并在蚀刻后的发光二极体磊晶片200的蚀刻侧墙241形成至少一悬浮键(dangling bond)及/或至少一缺陷,使得蚀刻侧墙241产生非辐射复合(non-radiative recombination)。During the etching process, the structure of the
由于微发光二极体及平台构造24的尺寸很小,例如在10-100um之间,与微发光二极体及平台构造24上蚀刻侧墙241的尺寸相近。因此当蚀刻侧墙241产生非辐射复合时,势必会大幅影响微发光二极体的发光亮度。Since the size of the micro-LED and the
为此本发明在第一温度区间对蚀刻后的发光二极体磊晶片200进行一第一原子层沉积,如步骤13所示。在对蚀刻后的发光二极体磊晶片200进行第一原子层沉积的过程中,前驱物气体可能会与蚀刻后的发光二极体磊晶片200反应,并修补蚀刻后的发光二极体磊晶片200的平台构造24的悬浮键及缺陷,可初步避免蚀刻侧墙241发生非辐射复合。Therefore, the present invention performs a first atomic layer deposition on the etched
对经过第一原子层沉积的蚀刻后的发光二极体磊晶片200在第二温度区间进行第二原子层沉积,在平台构造24的蚀刻侧墙241上的第一型半导体层23、活性层25及第二型半导体层27形成一钝化层29,如步骤15及图4所示。在本发明一实施例中,钝化层29可完整的包覆蚀刻沟槽22,例如包覆蚀刻沟槽22的底部及侧边,防止在平台构造24的蚀刻侧墙241发生非辐射复合。在本发明一实施例中,第一原子层沉积及第二原子层沉积使用的前驱物气体包括有机金属化合物、有机硅化合物、氯化硅化合物、有机铝化合物、TMA、水、二元醇、臭氧或乙醇,而钝化层29可以是三氧化二铝(Al2O3)。The second atomic layer deposition is performed on the etched
在本发明实施例中,进行第一原子层沉积的第一温度区间与进行第二原子层沉积的第二温度区间不同。当第一温度区间小于第二温度区间时,可延长第一原子层沉积的时间,并增加修补蚀刻侧墙241的悬浮键及缺陷的反应时间。第一温度区间大于第二温度区间时,可提高第一原子层沉积时前驱物气体的活性,同样有利于修补蚀刻侧墙241的悬浮键及缺陷。具体而言,上述步骤13至步骤15可应用在批次原子层沉积(Batch ALD)或空间原子层沉积(Spatial ALD)。此外第一原子层沉积的时间可大于或远大于第二原子层沉积的时间。In the embodiment of the present invention, the first temperature interval in which the first atomic layer deposition is performed is different from the second temperature interval in which the second atomic layer deposition is performed. When the first temperature interval is smaller than the second temperature interval, the deposition time of the first atomic layer can be prolonged, and the reaction time of repairing the dangling bonds and defects of the etched
以下表格为只有进行第二原子层沉积,并未进行第一原子层沉积、第一温度区间小于第二温度区间及第一温度区间大于第二温度区间的实验数据。下表中的发光强度差异(%)是上述制程条件形成的微发光二极体,与表面形成约5000A的二氧化硅(SiO2)的微发光二极体磊晶片200的强度比较。另外以下的数据并非在完成发光二极体磊晶片20的蚀刻后,便立即进行第一及/或第二原子层沉积,因此以下的数据并非绝对。The following table shows the experimental data when only the second atomic layer deposition was performed, and the first atomic layer deposition was not performed, the first temperature interval was smaller than the second temperature interval, and the first temperature interval was greater than the second temperature interval. The luminous intensity difference (%) in the table below is the intensity of the micro-LEDs formed under the above process conditions, compared with the intensity of the
如表1所示,在未进行第一原子层沉积时,微发光二极体的亮度未能有效提升。如表2所示,第一温度区间为200℃,且第二温度区间为220℃时,微发光二极体的亮度有小幅的提升。如表3所示,第一温度区间为270℃,且第二温度区间为220℃时,微发光二极体的亮度有相当显着的提升。如表4所示,第一温度区间为150℃,且第二温度区间为220℃时,微发光二极体的亮度亦有明显的提升。可说明第一原子层沉积的第一温度区间与进行第二原子层沉积的第二温度区间不同时,皆可提升微发光二极体的发光亮度。当然上述表格的数据仅为本发明的实验数据,并非本发明权利范围的限制。As shown in Table 1, when the first atomic layer deposition is not performed, the brightness of the micro-LEDs cannot be effectively improved. As shown in Table 2, when the first temperature range is 200° C. and the second temperature range is 220° C., the brightness of the micro-LEDs is slightly improved. As shown in Table 3, when the first temperature range is 270° C. and the second temperature range is 220° C., the brightness of the micro-LEDs is significantly improved. As shown in Table 4, when the first temperature range is 150° C. and the second temperature range is 220° C., the brightness of the micro-LEDs is also significantly improved. It can be explained that when the first temperature range of the first atomic layer deposition is different from the second temperature range of the second atomic layer deposition, the luminous brightness of the micro-LED can be improved. Of course, the data in the above table are only experimental data of the present invention, and are not intended to limit the scope of the rights of the present invention.
在本发明另一实施例中,第二原子层沉积亦可在平台构造24的一顶表面243设置钝化层29,其中钝化层29除了包覆平台构造24的蚀刻侧墙241外,还延伸至平台构造24的顶表面243,如图5所示。此外将钝化层29设置在平台构造24的蚀刻侧墙241及顶表面243,亦可将钝化层29充当反射层,并用以反射微发光二极体及平台构造24产生的光源。In another embodiment of the present invention, the
在实际应用时可先在平台构造24上设置接触电极26,而后再设置钝化层29,其中钝化层29可与接触电极26接触,亦可完成钝化层29的设置之后,再于平台构造24上设置接触电极26。在完成钝化层29的设置后,可沿着蚀刻沟槽22切割蚀刻后的发光二极体磊晶片200,以形成复数个微发光二极体。In practical application, the
在本发明一实施例中,可于蚀刻后的发光二极体磊晶片200上设置接触电极26、反射层、透明电流扩散层等,发光二极体技术领域中常见的构造,上述构造并非本发明的重点,为此便不再详细说明。In an embodiment of the present invention,
请参阅图6,为本发明减少非辐射复合的微发光二极体的制作方法又一实施例的步骤流程图。请配合参阅图2至图5,首先提供至少一发光二极体磊晶片20,其中发光二极体磊晶片20包括一基板21、一第一型半导体层23、一活性层25及一第二型半导体层27。Please refer to FIG. 6 , which is a flow chart of the steps of another embodiment of the method for fabricating a micro-LED with reduced non-radiative recombination according to the present invention. Please refer to FIG. 2 to FIG. 5 , first, at least one
蚀刻发光二极磊晶片20,以在发光二极体磊晶片20上形成复数个蚀刻沟槽22及复数个平台构造24,并形成一蚀刻后的发光二极体磊晶片200,如步骤11及图3所示。蚀刻后的发光二极体磊晶片200的平台构造24包括复数个蚀刻侧墙241,其中蚀刻侧墙241位于平台构造24与蚀刻沟槽22的交界处,而蚀刻侧墙241上具有裸露的第一型半导体层23、活性层25及第二型半导体层27。例如蚀刻沟槽22可为棋盘状的沟槽,而平台构造24则是以矩阵方式排列的凸起,可以是方形凸起或圆形凸起等。Etching the LED epi-
将蚀刻后的发光二极体磊晶片200放置到一反应腔体,并将一修补气体输送至反应腔体内,如步骤33所示。在实际应用时可依据第一型半导体层23、活性层25及第二型半导体层27的材料选择修补气体,其中修补气体包括氧气、氮气或臭氧等。The etched
提供一交流电压给与反应腔体相邻的一交流线圈,使得反应腔体内的修补气体成为电浆,其中电浆化的修补气体会与蚀刻后的发光二极体磊晶片200反应,并修补蚀刻后的发光二极体磊晶片200,如步骤35所示。例如当第一型半导体层23、活性层25及第二型半导体层27为氮化铟镓(InGaN),修补气体可为氮气,并通过电浆化的修补气体修补平台构造24的蚀刻侧边241的悬浮键及缺陷。在本发明一实施例中,反应腔体可以是一般的物理气相沉积腔体或原子层沉积腔体,便可以电浆化的修补气体修补蚀刻后的发光二极体磊晶片200。An AC voltage is supplied to an AC coil adjacent to the reaction chamber, so that the repair gas in the reaction chamber becomes plasma, wherein the plasma repair gas will react with the etched
此外当修补气体而臭氧时,便不需要提供交流电压给交流线圈。只要在反应腔体内提供一定浓度的臭氧,便可使得臭氧与蚀刻后的发光二极体磊晶片200反应,并修补平台构造24的蚀刻侧边241的悬浮键及缺陷。因此步骤35并非本发明的必要步骤,并可依据修补气体的种类决定是否进行步骤35。此外在将修补气体传输至反应腔体后,可提高反应腔体及修补气体的温度。In addition, when repairing gas and ozone, there is no need to supply AC voltage to the AC coil. As long as a certain concentration of ozone is provided in the reaction chamber, the ozone can react with the etched
对经过修补的蚀刻后的发光二极体磊晶片200进行原子层沉积,并在平台构造24的至少一蚀刻侧边241形成一钝化层29,其中钝化层29覆盖平台构造24的蚀刻侧边241上的第一型半导体层23、活性层25及第二型半导体层27,如步骤37所示。在本发明一实施例中,原子层沉积使用的前驱物气体包括有机金属化合物、有机硅化合物、氯化硅化合物、有机铝化合物、TMA、水、二元醇、臭氧或乙醇,而钝化层29可以是三氧化二铝(Al2O3)。Atomic layer deposition is performed on the repaired
上述步骤33至步骤37所述的修补反应及原子层沉积制程,可以在同一个或两个不同的反应腔体进行,例如当修补反应及原子层沉积制程的温度相同或相近时,可以在同一个反应腔体或同一个原子层沉积腔体进行修补反应及原子层沉积制程。具体而言,上述步骤33至步骤37可应用在批次原子层沉积(Batch ALD)或空间原子层沉积(Spatial ALD)。此外修补反应的时间可大于或远大于原子层沉积的时间。The repairing reaction and the ALD process described in the
请参阅图7,为本发明减少非辐射复合的微发光二极体的制作机台一实施例的构造示意图。请配合参阅图1,微发光二极体的制作机台40包括一传送腔体41、至少一第一原子层沉积腔体43及至少一第二原子层沉积腔体45,其中传送腔体41连接第一原子层沉积腔体43及第二原子层沉积腔体45,且传送腔体41、第一原子层沉积腔体43及第二原子层沉积腔体45内保持低压或真空。Please refer to FIG. 7 , which is a schematic structural diagram of an embodiment of a manufacturing machine for reducing non-radiative recombination of micro-LEDs according to the present invention. Please refer to FIG. 1 , the
在本发明一实施例中,传送腔体41包括至少一传送装置411,例如传送装置411可为机械手臂,其中传送装置411用以承载及传送至少一蚀刻后的发光二极体磊晶片200。在实际应用时,可将复数个蚀刻后的发光二极体磊晶片200放置在一承载盘42上,并通过输送装置411承载及输送承载盘42与蚀刻后的发光二极体磊晶片200。输送装置411可相对于第一原子层沉积腔体43及第二原子层沉积腔体45伸缩,并将蚀刻后的发光二极体磊晶片200输送至第一原子层沉积腔体43及第二原子层沉积腔体45,或者是将蚀刻后的发光二极体磊晶片200由第一原子层沉积腔体43及第二原子层沉积腔体45取出。In an embodiment of the present invention, the
传送装置411先将蚀刻后的发光二极体磊晶片200输送至第一原子层沉积腔体43内,并在第一原子层沉积腔体43以一第一温度区间对蚀刻后的发光二极体磊晶片200进行第一原子层沉积。在第一原子层沉积腔体43内进行第一原子层沉积时,前驱物气体可用以修补平台构造24的蚀刻侧墙241上的悬浮键及缺陷,初步避免蚀刻侧墙241发生非辐射复合。The
而后传送装置411将经过第一原子层沉积的蚀刻后的发光二极体磊晶片200由第一原子层沉积腔体43取出,并传送至第二原子层沉积腔体45。第二原子层沉积腔体45以一第二温度区间对蚀刻后的发光二极体磊晶片200进行第二原子层沉积,以在蚀刻后的发光二极体磊晶片200的蚀刻侧墙241上形成一钝化层29,其中钝化层29包覆平台构造24的蚀刻侧墙241上的第一型半导体层23、活性层25及第二型半导体层27,以防止在平台构造24的蚀刻侧墙241发生非辐射复合。Then, the
在本发明实施例中,第一温度区间与第二温度区间不同。当第一温度区间小于第二温度区间时,可延长第一原子层沉积的时间,并增加修补蚀刻侧墙241上的悬浮键及缺陷的时间。当第一温度区间大于第二温度区间时,可增加第一原子层沉积时前驱物气体的活性,同样有利于修补蚀刻侧墙241的悬浮键及缺陷。In the embodiment of the present invention, the first temperature interval is different from the second temperature interval. When the first temperature range is smaller than the second temperature range, the time for the deposition of the first atomic layer can be prolonged, and the time for repairing the dangling bonds and defects on the etched
在本发明另一实施例中,上述的第一原子层沉积腔体43可为一反应腔体430,而第二原子层沉积腔体45可为原子层沉积腔体450。反应腔体430及原子层沉积腔体450连接传送腔体41,并通过传送腔体41的传送装置411在反应腔体430及原子层沉积腔体450之间传送蚀刻后的发光二极体磊晶片200。In another embodiment of the present invention, the above-mentioned first atomic
传送装置411先将蚀刻后的发光二极体磊晶片200输送至反应腔体43,并将一修补气体输送至反应腔体430内。在本发明一实施例中,微发光二极体的制作机台40可包括一交流线圈,其中交流线圈与反应腔体43相邻,并用以在反应腔体430内形成一磁场,使得反应腔体430内的修补气体成为电浆。电浆化的修补气体会与蚀刻后的发光二极体磊晶片200的反应,并修补蚀刻后的发光二极体磊晶片200,例如修补平台构造24的蚀刻侧墙241上的第一型半导体层23、活性层25及第二型半导体层27的悬浮键及缺陷。在实际应用时可依据第一型半导体层23、活性层25及第二型半导体层27的材料选择修补气体,其中修补气体包括氧气、氮气及臭氧等。The conveying
此外当修补气体而臭氧时,则不需要提供交流电压给交流线圈。只要在反应腔体内提供一定浓度的臭氧,便可使得臭氧与蚀刻后的发光二极体磊晶片200反应。In addition, when the repair gas is ozone, there is no need to supply AC voltage to the AC coil. As long as a certain concentration of ozone is provided in the reaction chamber, the ozone can react with the etched
传送装置411将反应腔体430内经过修复的蚀刻后的发光二极体磊晶片200取出,并传送到原子层沉积腔体450内。原子层沉积腔体450对经过蚀刻后的发光二极体磊晶片200进行一原子层沉积,以在平台构造24的蚀刻侧墙241上形成钝化层29,例如以钝化层29覆盖蚀刻侧墙241上的第一型半导体层23、活性层25及第二型半导体层27,以防止在平台构造24的蚀刻侧墙241发生非辐射复合。The
本发明优点:Advantages of the present invention:
可有效修补微发光二极体及平台构造的蚀刻侧墙上的缺陷及悬空键,并在微发光二极体及平台构造上形成钝化层,以减少在微发光二极体的蚀刻侧墙上产生非辐射复合。。It can effectively repair defects and dangling bonds on the etched sidewalls of the micro-LED and platform structures, and form a passivation layer on the micro-LEDs and platform structures to reduce the etched sidewalls of the micro-LEDs produce non-radiative recombination. .
以上所述,仅为本发明的一较佳实施例而已,并非用来限定本发明实施的范围,即凡依本发明申请专利范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的申请专利范围内。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Modifications should be included in the scope of the patent application of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110021882.XA CN114744092B (en) | 2021-01-08 | 2021-01-08 | Method and machine for manufacturing micro-light-emitting diodes capable of reducing non-radiative recombination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110021882.XA CN114744092B (en) | 2021-01-08 | 2021-01-08 | Method and machine for manufacturing micro-light-emitting diodes capable of reducing non-radiative recombination |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114744092A true CN114744092A (en) | 2022-07-12 |
CN114744092B CN114744092B (en) | 2025-04-18 |
Family
ID=82273823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110021882.XA Active CN114744092B (en) | 2021-01-08 | 2021-01-08 | Method and machine for manufacturing micro-light-emitting diodes capable of reducing non-radiative recombination |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114744092B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078038A (en) * | 2011-10-26 | 2013-05-01 | 索尼公司 | Light emitting element, method of manufacturing the same, and light emitting device |
CN103668120A (en) * | 2013-12-02 | 2014-03-26 | 华中科技大学 | Multi-substance atomic layer deposition film making method and apparatus thereof |
CN104299911A (en) * | 2013-07-16 | 2015-01-21 | 格罗方德半导体公司 | Gate encapsulation achieved by single-step deposition |
CN107408603A (en) * | 2015-01-06 | 2017-11-28 | 苹果公司 | LED structures for reducing non-radiative sidewall recombination |
CN107785247A (en) * | 2016-08-24 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | The manufacture method of metal gates and semiconductor devices |
CN108878291A (en) * | 2017-05-08 | 2018-11-23 | 台湾积体电路制造股份有限公司 | The method for forming low K spacer |
CN214226935U (en) * | 2021-01-08 | 2021-09-17 | 鑫天虹(厦门)科技有限公司 | Micro LED manufacturing machine for reducing non-radiative recombination |
-
2021
- 2021-01-08 CN CN202110021882.XA patent/CN114744092B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078038A (en) * | 2011-10-26 | 2013-05-01 | 索尼公司 | Light emitting element, method of manufacturing the same, and light emitting device |
CN104299911A (en) * | 2013-07-16 | 2015-01-21 | 格罗方德半导体公司 | Gate encapsulation achieved by single-step deposition |
CN103668120A (en) * | 2013-12-02 | 2014-03-26 | 华中科技大学 | Multi-substance atomic layer deposition film making method and apparatus thereof |
CN107408603A (en) * | 2015-01-06 | 2017-11-28 | 苹果公司 | LED structures for reducing non-radiative sidewall recombination |
CN107785247A (en) * | 2016-08-24 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | The manufacture method of metal gates and semiconductor devices |
CN108878291A (en) * | 2017-05-08 | 2018-11-23 | 台湾积体电路制造股份有限公司 | The method for forming low K spacer |
CN214226935U (en) * | 2021-01-08 | 2021-09-17 | 鑫天虹(厦门)科技有限公司 | Micro LED manufacturing machine for reducing non-radiative recombination |
Non-Patent Citations (1)
Title |
---|
XINGJUAN SONGA, JINGPING XUA, LU LIUA, *, PUI-TO LAIB, *: "Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors", APPLIED SURFACE SCIENCE, 12 October 2020 (2020-10-12), pages 1 - 6 * |
Also Published As
Publication number | Publication date |
---|---|
CN114744092B (en) | 2025-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9093596B2 (en) | Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same | |
CN101728472A (en) | Multilayer LED chip structure and preparation method thereof | |
CN104952986B (en) | A kind of preparation method of GaN base white light LEDs epitaxial structure | |
CN102916099A (en) | Light emitting diode and manufacturing method thereof | |
CN101887938B (en) | LED chip and manufacturing method thereof | |
US20130075755A1 (en) | Light emitting device and manufacturing method thereof | |
CN109037291B (en) | Full-color Micro-LED device and preparation method thereof | |
CN107394018A (en) | A kind of LED epitaxial growth methods | |
CN102208507A (en) | Light-emitting diode (LED) and manufacturing method thereof | |
Oh et al. | Self-assembled size-tunable microlight-emitting diodes using multiple sapphire nanomembranes | |
US11532665B2 (en) | Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro LED | |
CN214226935U (en) | Micro LED manufacturing machine for reducing non-radiative recombination | |
CN101026215B (en) | Light emitting device having vertical structure and method for manufacturing the same | |
CN114744092B (en) | Method and machine for manufacturing micro-light-emitting diodes capable of reducing non-radiative recombination | |
TWI749955B (en) | Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led | |
CN108493321A (en) | A kind of light-emitting diode chip for backlight unit and preparation method thereof | |
US20120208308A1 (en) | Method manufacturing semiconductor light emitting device | |
CN104752568B (en) | A kind of preparation method for the GaN base LED epitaxial structure improving crystal quality | |
TWM611412U (en) | Micro light emitting diode manufacturing machine for reducing non-radiation recovery | |
US20070243660A1 (en) | Method for fabricating white-light-emitting flip-chip diode having silicon quantum dots | |
WO2023226303A1 (en) | Light emitting chip epitaxial structure and manufacturing method therefor, light emitting chip and display panel | |
CN109473520A (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN114582911A (en) | Photoelectric integrated device and preparation method thereof | |
CN115548195A (en) | Display device and manufacturing method thereof | |
CN112786762B (en) | Light emitting diode epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |