[go: up one dir, main page]

CN114743976A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
CN114743976A
CN114743976A CN202210507404.4A CN202210507404A CN114743976A CN 114743976 A CN114743976 A CN 114743976A CN 202210507404 A CN202210507404 A CN 202210507404A CN 114743976 A CN114743976 A CN 114743976A
Authority
CN
China
Prior art keywords
gate
region
substrate
layer
select gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210507404.4A
Other languages
Chinese (zh)
Inventor
王春明
王绍迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Witinmem Technology Co ltd
Original Assignee
Beijing Witinmem Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Witinmem Technology Co ltd filed Critical Beijing Witinmem Technology Co ltd
Priority to CN202210507404.4A priority Critical patent/CN114743976A/en
Priority to PCT/CN2022/099910 priority patent/WO2023216368A1/en
Publication of CN114743976A publication Critical patent/CN114743976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device and a method of manufacturing the same are provided. The manufacturing method comprises the following steps: sequentially forming an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask layer on a substrate; etching the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer to form a gate stack; removing portions of the oxide layer over the first and second regions of the substrate; forming a first selective gate oxide structure and a second selective gate oxide structure on a first region and a second region of a substrate, respectively, and forming a tunneling oxide structure on both sides of a gate stack, respectively; forming a selection grid on one side of the tunneling oxide structure opposite to the grid stacked body; etching the gate stack to form a first opening; forming a source region in a portion of the substrate located below the first opening; and forming a drain region in the substrate on a side of the select gate opposite the first opening.

Description

半导体器件及其制造方法Semiconductor device and method of manufacturing the same

技术领域technical field

本公开涉及半导体技术领域,特别是涉及一种半导体器件及其制造方法。The present disclosure relates to the field of semiconductor technology, and in particular, to a semiconductor device and a manufacturing method thereof.

背景技术Background technique

在电子设备中,需要借助存储器来进行数据的读取和存储。因此,随着对电子设备的需求不断增长,对存储器技术的要求也越来越高。In electronic devices, data is read and stored by means of a memory. Therefore, as the demand for electronic devices continues to grow, so does the demand for memory technology.

闪存是一种可电擦除和重新编程的电非易失性计算机存储介质,即使在供电电源关闭后,仍能保持片内信息。闪存使用方便,既具有读写灵活性和较快的访问速度,又具有在断电后可不丢失信息的特点,因而,闪存技术发展非常迅猛。Flash memory is an electrically erasable and reprogrammable electrical non-volatile computer storage medium that retains on-chip information even after power is turned off. Flash memory is easy to use, not only has the flexibility of reading and writing, fast access speed, but also has the characteristics of not losing information after power failure. Therefore, flash memory technology has developed very rapidly.

闪存包括可寻址的存储器单元阵列,其中,每个存储器单元包括用于存储对应信息的浮置栅极晶体管。因此,期望改善制造闪存(尤其是闪存中的存储器单元)的方法。Flash memory includes an addressable array of memory cells, where each memory cell includes a floating gate transistor for storing corresponding information. Accordingly, it is desirable to improve methods of manufacturing flash memory, especially memory cells in flash memory.

发明内容SUMMARY OF THE INVENTION

根据本公开的一些实施例,提供了一种半导体器件的制造方法,包括:在衬底上依次形成氧化物层、浮置栅极层、电介质层、控制栅极层和硬掩模层;蚀刻硬掩模层、控制栅极层、电介质层和浮置栅极层,以形成由硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分构成的栅极堆叠体;移除氧化物层的在衬底的第一区域和第二区域上的部分,其中,第一区域和第二区域位于栅极堆叠体两侧;在衬底的第一区域和第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构;在第一隧穿氧化物结构的与栅极堆叠体相对的一侧形成第一选择栅极,并且,在第二隧穿氧化物结构的与栅极堆叠体相对的一侧形成第二选择栅极;蚀刻栅极堆叠体,以形成穿过硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分的第一开口;在衬底的位于第一开口下方的部分中形成源极区域;以及在第一选择栅极的与第一开口相对的一侧的衬底中形成第一漏极区域,并且,在第二选择栅极的与第一开口相对的一侧的衬底中形成第二漏极区域。According to some embodiments of the present disclosure, there is provided a method of fabricating a semiconductor device, comprising: sequentially forming an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask layer on a substrate; etching a hard mask layer, a control gate layer, a dielectric layer, and a floating gate layer to form a gate stack consisting of the hard mask layer, the control gate layer, the dielectric layer, and the remainder of the floating gate layer; removing portions of the oxide layer on the first and second regions of the substrate, wherein the first and second regions flank the gate stack; on the first and second regions of the substrate forming a first select gate oxide structure and a second select gate oxide structure respectively, and forming a first tunnel oxide structure and a second tunnel oxide structure on both sides of the gate stack, respectively; forming a first select gate on the opposite side of the tunnel oxide structure from the gate stack, and forming a second select gate on the opposite side of the second tunnel oxide structure from the gate stack; etching a gate stack to form a first opening through the hard mask layer, the control gate layer, the dielectric layer, and the remainder of the floating gate layer; forming a source region in the portion of the substrate below the first opening ; and forming a first drain region in the substrate on the side of the first select gate opposite the first opening, and forming a first drain region in the substrate on the side of the second select gate opposite the first opening the second drain region.

根据本公开的一些实施例,提供了一种半导体器件,该半导体器件由如本公开所述的方法制造。According to some embodiments of the present disclosure, there is provided a semiconductor device fabricated by a method as described in the present disclosure.

根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。These and other aspects of the present disclosure will be apparent from and elucidated with reference to the embodiments described hereinafter.

附图说明Description of drawings

在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:Further details, features and advantages of the present disclosure are disclosed in the following description of exemplary embodiments in conjunction with the accompanying drawings, in which:

图1是根据本公开的一些实施例的半导体器件的制作方法的示意性流程图;1 is a schematic flowchart of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图2A-2H是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图;2A-2H are schematic cross-sectional views of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图3A-3O是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图;3A-3O are schematic cross-sectional views of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图4A-4B是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图;4A-4B are schematic cross-sectional views of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图5是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图;5 is a schematic cross-sectional view of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图6是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图;6 is a schematic cross-sectional view of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure;

图7是根据本公开的一些实施例的半导体器件的剖面结构示意图;7 is a schematic cross-sectional structure diagram of a semiconductor device according to some embodiments of the present disclosure;

图8是根据本公开的一些实施例的存储器单元阵列的电路示意图;8 is a schematic circuit diagram of a memory cell array according to some embodiments of the present disclosure;

图9A-9B是根据本公开的一些实施例的存储器单元阵列的俯视平面图。9A-9B are top plan views of memory cell arrays in accordance with some embodiments of the present disclosure.

具体实施方式Detailed ways

将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or Sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.

诸如“在…下面”、“在…之下”、“较下”、“在…下方”、“在…之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在…之下”和“在…下方”可以涵盖在…之上和在…之下的取向两者。诸如“在…之前”或“在…前”和“在…之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。Spatially relative terms such as "below", "below", "lower", "below", "above", "above", etc. may be used herein for convenience Description is used to describe the relationship of one element or feature to another element or feature as illustrated in the figures. It will be understood that these spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" or "beneath" other elements or features would then be oriented "under the other elements or features" above the characteristics". Thus, the exemplary terms "under" and "under" can encompass both an orientation of above and below. Terms such as "before" or "before" and "after" or "followed by" may similarly be used, for example, to indicate the order in which light travels through elements. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. In addition, it will also be understood that when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.

本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合,并且短语“A和B中的至少一个”是指仅A、仅B、或A和B两者。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present disclosure. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that the terms "comprising" and/or "comprising" when used in this specification designate the presence of stated features, integers, steps, operations, elements and/or parts, but do not exclude one or more The presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof, of other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items, and the phrase "at least one of A and B" means A only, B only, or both A and B.

将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在…上”或“直接在…上”都不应当被解释为要求一个层完全覆盖下面的层。It will be understood that when an element or layer is referred to as being "on," "connected to," "coupled to," or "adjacent to another element or layer" When present, it may be directly on, directly connected to, directly coupled to, or directly adjacent to another element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly connected to," "directly coupled to," "directly adjacent to" another element or layer , with no intervening elements or layers present. However, in no case should "on" or "directly on" be interpreted as requiring a layer to completely cover the layer below.

本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。Embodiments of the disclosure are described herein with reference to schematic illustrations (and intermediate structures) of idealized embodiments of the disclosure. As such, variations to the shapes of the illustrations are to be expected, eg, as a result of manufacturing techniques and/or tolerances. Accordingly, embodiments of the present disclosure should not be construed as limited to the particular shapes of the regions illustrated herein, but are to include deviations in shapes due, for example, to manufacturing. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present disclosure.

除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be construed to have meanings consistent with their meanings in the relevant art and/or the context of this specification, and will not be idealized or overly interpreted in a formal sense, unless expressly defined as such herein.

如本文使用的,术语“衬底”可以表示经切割的晶圆的衬底,或者可以指示未经切割的晶圆的衬底。类似地,术语芯片和裸片可以互换使用,除非这种互换会引起冲突。As used herein, the term "substrate" may refer to the substrate of a diced wafer, or may refer to the substrate of an un-diced wafer. Similarly, the terms chip and die are used interchangeably, unless such interchange would create a conflict.

在现有技术中,闪存单元的常见类型包括叠栅存储器单元和分离栅存储器单元。相对于叠栅存储器单元,分离栅存储器单元具有功耗较低、注入效率较高等技术优势。对于具有分离栅存储器单元的闪存,本公开提供了一种半导体器件的制造方法,包括:在衬底上依次形成氧化物层、浮置栅极层、电介质层、控制栅极层和硬掩模层;蚀刻硬掩模层、控制栅极层、电介质层和浮置栅极层,以形成由硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分构成的栅极堆叠体;移除氧化物层的在衬底的第一区域和第二区域上的部分,其中,第一区域和第二区域位于栅极堆叠体两侧;在衬底的第一区域和第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构;在第一隧穿氧化物结构的与栅极堆叠体相对的一侧形成第一选择栅极,并且,在第二隧穿氧化物结构的与栅极堆叠体相对的一侧形成第二选择栅极;蚀刻栅极堆叠体,以形成穿过硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分的第一开口;在衬底的位于第一开口下方的部分中形成源极区域;以及在第一选择栅极的与第一开口相对的一侧的衬底中形成第一漏极区域,并且,在第二选择栅极的与第一开口相对的一侧的衬底中形成第二漏极区域。In the prior art, common types of flash memory cells include stacked gate memory cells and split gate memory cells. Compared with stacked gate memory cells, split gate memory cells have technical advantages such as lower power consumption and higher injection efficiency. For a flash memory having a split gate memory cell, the present disclosure provides a method of fabricating a semiconductor device, comprising: sequentially forming an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask on a substrate layer; etching the hardmask layer, control gate layer, dielectric layer, and floating gate layer to form a gate consisting of the hardmask layer, control gate layer, dielectric layer, and the remainder of the floating gate layer stack; removing portions of the oxide layer on first and second regions of the substrate, wherein the first and second regions are on either side of the gate stack; on the first and second regions of the substrate A first selection gate oxide structure and a second selection gate oxide structure are respectively formed on the two regions, and a first tunneling oxide structure and a second tunneling oxide structure are respectively formed on both sides of the gate stack; A first select gate is formed on the opposite side of the first tunnel oxide structure from the gate stack, and a second select gate is formed on the opposite side of the second tunnel oxide structure from the gate stack electrode; etching the gate stack to form a first opening through the hard mask layer, the control gate layer, the dielectric layer and the remainder of the floating gate layer; forming in the portion of the substrate below the first opening a source region; and forming a first drain region in the substrate on the side of the first select gate opposite the first opening, and forming a liner on the side of the second select gate opposite the first opening A second drain region is formed in the bottom.

图1是根据本公开的一些实施例的半导体器件的制作方法100的示意性流程图。FIG. 1 is a schematic flowchart of a method 100 of fabricating a semiconductor device according to some embodiments of the present disclosure.

在步骤S101处,在衬底上依次形成氧化物层、浮置栅极层、电介质层、控制栅极层和硬掩模层。At step S101, an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask layer are sequentially formed on the substrate.

根据一些实施例,制造方法100还包括:在衬底上形成氧化物层之前,预先在衬底中形成浅沟槽隔离。根据一些实施例,制造方法100还包括:在衬底上形成氧化物层之前,预先在衬底中植入存储器单元井(memory cell well)。According to some embodiments, the manufacturing method 100 further includes forming shallow trench isolations in the substrate in advance before forming the oxide layer on the substrate. According to some embodiments, the manufacturing method 100 further includes: pre-implanting memory cell wells in the substrate before forming the oxide layer on the substrate.

根据一些实施例,形成浅沟槽隔离的工艺可以包括但不限于以下步骤:形成衬垫氧化物、沉积氮化硅、有源区域曝光、浅绝缘沟槽蚀刻、浅绝缘沟槽填充、浅绝缘沟槽平坦化、以及移除氮化硅。According to some embodiments, the process of forming shallow trench isolation may include, but is not limited to, the following steps: forming pad oxide, depositing silicon nitride, exposing active area, shallow insulating trench etching, shallow insulating trench filling, shallow insulating Trench planarization, and removal of silicon nitride.

根据一些实施例,步骤S101包括:在衬底上形成氧化物层;在氧化物层上形成浮置栅极层;在浮置栅极层上形成电介质层;在电介质层上形成控制栅极层;在控制栅极层上形成硬掩膜层。According to some embodiments, step S101 includes: forming an oxide layer on a substrate; forming a floating gate layer on the oxide layer; forming a dielectric layer on the floating gate layer; forming a control gate layer on the dielectric layer ; Form a hard mask layer on the control gate layer.

根据一些实施例,在衬底的上表面上生长氧化物层;在氧化物层的上表面上沉积浮置栅极多晶硅,并且,对浮置栅极多晶硅进行平坦化,以形成浮置栅极层;在浮置栅极多晶硅的上表面上沉积电介质材料(例如,ONO(氧-氮-氧)材料),以形成电介质层;在电介质层的上表面上沉积控制栅极多晶硅,以形成控制栅极层;在控制栅极层上沉积硬掩模材料(例如,氮化硅材料),以形成硬掩膜层。According to some embodiments, an oxide layer is grown on the upper surface of the substrate; floating gate polysilicon is deposited on the upper surface of the oxide layer, and the floating gate polysilicon is planarized to form a floating gate layer; depositing a dielectric material (eg, ONO (oxygen-nitrogen-oxygen) material) on the top surface of the floating gate polysilicon to form a dielectric layer; depositing control gate polysilicon on the top surface of the dielectric layer to form a control gate layer; depositing a hard mask material (eg, silicon nitride material) on the control gate layer to form a hard mask layer.

图2A示出了经步骤S101后所形成的示例性结构的剖面图。如图2A所示,半导体结构200从下至上依次包括:衬底210、氧化物层220、浮置栅极层230、电介质层240、控制栅极层250和硬掩模层260。FIG. 2A shows a cross-sectional view of an exemplary structure formed after step S101. As shown in FIG. 2A , the semiconductor structure 200 includes, from bottom to top, a substrate 210 , an oxide layer 220 , a floating gate layer 230 , a dielectric layer 240 , a control gate layer 250 and a hard mask layer 260 .

在步骤S102处,蚀刻硬掩模层、控制栅极层、电介质层和浮置栅极层,以形成由硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分构成的栅极堆叠体。At step S102, the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer are etched to form the remainder of the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer the gate stack.

根据一些实施例,首先,在硬掩模层的上表面执行光刻处理,以形成光刻胶图案;接着,以形成的光刻胶图案作为掩模,蚀刻硬掩模层、控制栅极层和电介质层;接着,继续蚀刻浮置栅极层。According to some embodiments, first, a photolithography process is performed on the upper surface of the hard mask layer to form a photoresist pattern; then, using the formed photoresist pattern as a mask, the hard mask layer and the control gate layer are etched and dielectric layer; then, continue to etch the floating gate layer.

根据一些实施例,在蚀刻硬掩模层、控制栅极层和电介质层之后,在硬掩模层、控制栅极层和电介质层的剩余部分的两侧形成控制栅极间隔体,例如,在硬掩模层、控制栅极层和电介质层的剩余部分的两侧沉积控制栅极氧化物(例如,氧化硅),并且,蚀刻所沉积的控制栅极氧化物,以形成控制栅极间隔体。According to some embodiments, after etching the hard mask layer, the control gate layer, and the dielectric layer, control gate spacers are formed on both sides of the hard mask layer, the control gate layer, and the remainder of the dielectric layer, eg, at A control gate oxide (eg, silicon oxide) is deposited on both sides of the hardmask layer, the control gate layer, and the remainder of the dielectric layer, and the deposited control gate oxide is etched to form control gate spacers .

图2B示出了经步骤S101~S102后所形成的示例性结构的剖面图。如图2B所示,半导体结构200从下至上依次包括:衬底210、氧化物层220和栅极堆叠体270,其中,栅极堆叠体270从下至上依次包括浮置栅极层230、电介质层240、控制栅极层250和硬掩模层260的剩余部分。FIG. 2B shows a cross-sectional view of an exemplary structure formed after steps S101 to S102. As shown in FIG. 2B , the semiconductor structure 200 includes, from bottom to top, a substrate 210 , an oxide layer 220 and a gate stack 270 , wherein the gate stack 270 includes a floating gate layer 230 , a dielectric layer from bottom to top layer 240 , control gate layer 250 and the remainder of hard mask layer 260 .

在步骤S103处,移除氧化物层的在衬底的第一区域和第二区域上的部分,其中,第一区域和第二区域位于栅极堆叠体两侧。At step S103, portions of the oxide layer on the first and second regions of the substrate are removed, wherein the first and second regions are on either side of the gate stack.

根据一些实施例,通过清洗、光刻和蚀刻等步骤,移除氧化物层的在衬底的第一区域和第二区域上的部分,并且,形成位于栅极堆叠体的衬底氧化物结构。According to some embodiments, through the steps of cleaning, photolithography, and etching, portions of the oxide layer on the first and second regions of the substrate are removed, and a substrate oxide structure on the gate stack is formed .

图2C示出了经步骤S101~S103后所形成的示例性结构的剖面图。如图2C所示,半导体结构200从下至上依次包括:衬底210、衬底氧化物结构221和栅极堆叠体270,其中,栅极堆叠体270从下至上依次包括浮置栅极层230、电介质层240、控制栅极层250和硬掩模层260的剩余部分。FIG. 2C shows a cross-sectional view of an exemplary structure formed after steps S101 to S103. As shown in FIG. 2C , the semiconductor structure 200 includes, from bottom to top, a substrate 210 , a substrate oxide structure 221 and a gate stack 270 , wherein the gate stack 270 includes a floating gate layer 230 from bottom to top. , the remainder of the dielectric layer 240 , the control gate layer 250 and the hard mask layer 260 .

在步骤S104处,在衬底的第一区域和第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构。At step S104, a first select gate oxide structure and a second select gate oxide structure are formed on the first region and the second region of the substrate, respectively, and a first select gate oxide structure is respectively formed on both sides of the gate stack. A tunneling oxide structure and a second tunneling oxide structure.

根据一些实施例,在衬底的第一区域和第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构包括:在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜,以形成第一选择栅极氧化物结构和第二选择栅极氧化物结构;以及移除第一栅极氧化膜和第二栅极氧化膜的在栅极堆叠体的上表面上的部分,以形成第一隧穿氧化物结构和第二隧穿氧化物结构。According to some embodiments, a first select gate oxide structure and a second select gate oxide structure are formed on the first region and the second region of the substrate, respectively, and the first select gate oxide structure is respectively formed on both sides of the gate stack. The tunneling oxide structure and the second tunneling oxide structure include: depositing a second gate oxide film on the first region and the second region of the substrate, and on the side surface and the upper surface of the gate stack to form a first gate oxide film. a select gate oxide structure and a second select gate oxide structure; and removing portions of the first gate oxide film and the second gate oxide film on the upper surface of the gate stack to form a first gate oxide film A tunneling oxide structure and a second tunneling oxide structure.

根据一些实施例,如本公开所述的半导体器件的制作方法还包括在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:在衬底的第一区域、第二区域和高压管区域上、以及栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及移除第一栅极氧化膜的在衬底的第一区域、第二区域、栅极堆叠体的上表面和侧面上的部分,并且,并且在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜包括:在衬底的第一区域、第二区域和高压管区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜。在如本公开所述的实施例中,通过两次氧化膜沉积以及在两次沉积期间移除多余的氧化物,在高压管区域上形成与选择栅极氧化物结构厚度不同的高压管氧化物结构,以便于后续在高压管区域上形成相应的高压逻辑器件(例如,11V供电的高压器件)。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes before depositing a second gate oxide film on the first region and the second region of the substrate and on the side and upper surface of the gate stack : depositing a first gate oxide film on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack; and removing the first gate oxide film on the substrate the first region, the second region, portions on the top and side surfaces of the gate stack, and, and on the first and second regions of the substrate, and on the side and top surfaces of the gate stack The second gate oxide film includes depositing a second gate oxide film on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack. In an embodiment as described in this disclosure, a high voltage tube oxide of a different thickness than the select gate oxide structure is formed on the high voltage tube region by two oxide film depositions and removal of excess oxide during the two depositions structure, so that the corresponding high-voltage logic device (for example, a high-voltage device powered by 11V) is subsequently formed on the high-voltage tube region.

根据一些实施例,如本公开所述的半导体器件的制作方法还包括在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及移除第一栅极氧化膜的在衬底的第一区域和第二区域、栅极堆叠体的上表面上的部分,并且,移除在栅极堆叠体的侧面上的第一栅极氧化膜的一部分。根据一些实施例,通过蚀刻(例如,干式蚀刻和湿式蚀刻)第一栅极氧化膜,保留栅极堆叠体的侧壁上的第一栅极氧化膜的一部分。根据一些实施例,在蚀刻第一栅极氧化膜之后,进行高温快速热处理,以加强侧壁上的氧化物的质量。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes before depositing a second gate oxide film on the first region and the second region of the substrate and on the side and upper surface of the gate stack : depositing a first gate oxide film on the first and second regions of the substrate and on the side and upper surfaces of the gate stack; and removing the first gate oxide film on the first region of the substrate and a second region, a portion on the upper surface of the gate stack, and a portion of the first gate oxide film on the side surface of the gate stack is removed. According to some embodiments, a portion of the first gate oxide film on the sidewalls of the gate stack is retained by etching (eg, dry etching and wet etching) the first gate oxide film. According to some embodiments, after etching the first gate oxide film, a high temperature rapid thermal treatment is performed to enhance the quality of the oxide on the sidewalls.

根据一些实施例,如本公开所述的半导体器件的制作方法还包括在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;移除第一栅极氧化膜的在衬底的第一区域和第二区域、栅极堆叠体的上表面和侧面上的部分;以及在栅极堆叠体的侧面上形成侧壁氧化物结构。根据一些实施例,通过多晶硅氧化的方式在栅极堆叠体的侧面上形成侧壁氧化物结构。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes before depositing a second gate oxide film on the first region and the second region of the substrate and on the side and upper surface of the gate stack : depositing a first gate oxide film on the first and second regions of the substrate and on the side and upper surfaces of the gate stack; removing the first gate oxide film on the first and second regions of the substrate second regions, portions on the upper surface and side surfaces of the gate stack; and forming sidewall oxide structures on the side surfaces of the gate stack. According to some embodiments, sidewall oxide structures are formed on the sides of the gate stack by means of polysilicon oxidation.

根据如上所述的实施例,通过在衬底的第一区域和第二区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前,在栅极堆叠体的侧面上保留或额外形成氧化物结构,可以使得选择栅极氧化物结构与隧穿氧化物结构厚度不同,例如,较厚的隧穿氧化物结构有利于浮栅数据储存,较薄的选择栅极氧化物结构有利于提高存储器件性能(例如,提供较大的读电流)。According to the embodiments described above, by depositing the second gate oxide film on the first and second regions of the substrate, and on the side and upper surfaces of the gate stack, on the sides of the gate stack Retaining or additionally forming the oxide structure can make the select gate oxide structure different from the tunnel oxide structure thickness, for example, thicker tunnel oxide structure is beneficial for floating gate data storage, thinner select gate oxide structure The structure is beneficial for improving memory device performance (eg, providing greater read current).

根据一些实施例,如本公开所述的半导体器件的制作方法还包括在移除第一栅极氧化膜的在衬底的第一区域和第二区域上、以及栅极堆叠体的上表面上的部分之前:在衬底的第一区域和第二区域中执行选择栅极沟道离子(例如,硼或BF2)注入。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes removing the first gate oxide film on the first region and the second region of the substrate and on the upper surface of the gate stack Before the portion of : performing select gate channel ion (eg, boron or BF2) implants in the first and second regions of the substrate.

根据一些实施例,在衬底的第一区域和第二区域中执行选择栅极沟道离子注入包括:进行选择栅极沟道光刻,以形成光刻胶图案,从而保护无需执行离子注入的区域;以所形成的光刻胶图案作为掩模,执行选择栅极沟道离子注入。According to some embodiments, performing selective gate channel ion implantation in the first region and the second region of the substrate includes performing selective gate channel lithography to form a photoresist pattern to protect the ion implantation without performing the ion implantation. region; using the formed photoresist pattern as a mask, select gate channel ion implantation is performed.

根据一些实施例,如本公开所述的半导体器件的制作方法还包括在衬底的第一区域、第二区域和高压管区域上、以及栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之后:在衬底中进行逻辑井注入;在衬底上形成逻辑IO栅极氧化物结构;以及在衬底上形成逻辑核心栅极氧化物结构。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes depositing a second gate on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surface of the gate stack After the oxide film: a logic well implant in the substrate; forming a logic IO gate oxide structure on the substrate; and forming a logic core gate oxide structure on the substrate.

图2D示出了经步骤S101~S104后所形成的示例性结构的剖面图。如图2D所示,半导体结构200除了包括衬底210、衬底氧化物结构221和栅极堆叠体270,还包括位于栅极堆叠体270左侧的第一区域上的第一选择栅极氧化物结构222a、位于栅极堆叠体270左侧的第一隧穿氧化物结构271a、位于栅极堆叠体270右侧的第二区域上的第二选择栅极氧化物结构222b、以及位于栅极堆叠体270右侧的第二隧穿氧化物结构271b。应当理解,虽然第一选择栅极氧化物结构222a和第一隧穿氧化物结构271a被示出为两个独立的部分,且第二选择栅极氧化物结构222b和第二隧穿氧化物结构271b被示出为两个独立的部分,但是,第一选择栅极氧化物结构222a和第一隧穿氧化物结构271a实际上可以是连续但具有不同厚度的氧化物,第二选择栅极氧化物结构222b和第二隧穿氧化物结构271b实际上可以是连续但具有不同厚度的氧化物,例如,通过上述两次氧化膜沉积步骤所形成的。FIG. 2D shows a cross-sectional view of an exemplary structure formed after steps S101 to S104. As shown in FIG. 2D , in addition to the substrate 210 , the substrate oxide structure 221 and the gate stack 270 , the semiconductor structure 200 further includes a first select gate oxide located on the first region on the left side of the gate stack 270 . material structure 222a, a first tunnel oxide structure 271a on the left side of the gate stack 270, a second select gate oxide structure 222b on the second region on the right side of the gate stack 270, and a gate The second tunnel oxide structure 271b on the right side of the stack 270 . It should be understood that while the first select gate oxide structure 222a and the first tunnel oxide structure 271a are shown as two separate parts, and the second select gate oxide structure 222b and the second tunnel oxide structure 271b is shown as two separate parts, however, the first select gate oxide structure 222a and the first tunnel oxide structure 271a may actually be continuous but different thicknesses of oxide, the second select gate oxide The oxide structure 222b and the second tunnel oxide structure 271b may actually be continuous oxides with different thicknesses, for example, formed by the above-mentioned two oxide film deposition steps.

在步骤S105处,在第一隧穿氧化物结构的与栅极堆叠体相对的一侧形成第一选择栅极,并且,在第二隧穿氧化物结构的与栅极堆叠体相对的一侧形成第二选择栅极。At step S105, a first select gate is formed on a side of the first tunnel oxide structure opposite to the gate stack, and a side of the second tunnel oxide structure opposite to the gate stack is formed A second select gate is formed.

根据一些实施例,在第一隧穿氧化物结构的与栅极堆叠体相对的一侧形成第一选择栅极,并且,在第二隧穿氧化物结构的与栅极堆叠体相对的一侧形成第二选择栅极包括:在第一选择栅极氧化物结构和第二选择栅极氧化物结构上、以及栅极堆叠体上沉积选择栅极多晶硅;以及移除所沉积的选择栅极多晶硅的部分,以形成第一选择栅极和第二选择栅极。According to some embodiments, the first select gate is formed on the side of the first tunnel oxide structure opposite the gate stack, and the second tunnel oxide structure is formed on the side opposite the gate stack Forming the second select gate includes: depositing select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack; and removing the deposited select gate polysilicon part to form the first select gate and the second select gate.

根据一些实施例,所沉积的选择栅极多晶硅在第一选择栅极氧化物结构和第二选择栅极氧化物结构、以及栅极堆叠体的表面具有相同的覆盖率,使得所沉积的选择栅极多晶硅呈现“凸”字形。例如,如下文参考图3I所详细描述的。According to some embodiments, the deposited select gate polysilicon has the same coverage on the surfaces of the first select gate oxide structure and the second select gate oxide structure, and the gate stack, such that the deposited select gate polysilicon Very polysilicon exhibits a "convex" shape. For example, as described in detail below with reference to FIG. 3I.

根据一些实施例,移除所沉积的选择栅极多晶硅的部分,以形成第一选择栅极和第二选择栅极包括:对所沉积的选择栅极多晶硅进行平坦化处理;蚀刻经过平坦化处理的选择栅极多晶硅,以形成分别位于衬底的第一区域和第二区域上的第一多晶硅结构和第二多晶硅结构;以及蚀刻第一多晶硅结构和第二多晶硅结构,以分别形成第一选择栅极和第二选择栅极。According to some embodiments, removing the portion of the deposited select gate polysilicon to form the first select gate and the second select gate includes: planarizing the deposited select gate polysilicon; etching the planarized process select gate polysilicon to form a first polysilicon structure and a second polysilicon structure on the first and second regions of the substrate, respectively; and etching the first polysilicon structure and the second polysilicon structure to form a first select gate and a second select gate, respectively.

根据一些实施例,对所沉积的选择栅极多晶硅进行平坦化处理,以移除沉积在栅极堆叠体上方的选择栅极多晶硅。根据一些实施例,在对所沉积的选择栅极多晶硅进行平坦化处理的过程中,还可以移除在先前的步骤中沉积在栅极堆叠体上方的氧化物。According to some embodiments, the deposited select gate polysilicon is subjected to a planarization process to remove select gate polysilicon deposited over the gate stack. According to some embodiments, during the planarization process of the deposited select gate polysilicon, oxide deposited over the gate stack in previous steps may also be removed.

根据一些实施例,蚀刻经过平坦化处理的选择栅极多晶硅,以形成分别位于衬底的第一区域和第二区域上的第一多晶硅结构和第二多晶硅结构包括:蚀刻栅极堆叠体两侧的呈“L”型的选择栅极多晶硅的肩部,以形成分别位于衬底的第一区域和第二区域上的呈矩形的第一多晶硅结构和第二多晶硅结构,以便于后续使用光刻胶或硬掩模间隔体作为掩模进行蚀刻,以形成第一选择栅极和第二选择栅极。例如,如下文参考图3J所详细描述的。According to some embodiments, etching the planarized select gate polysilicon to form first and second polysilicon structures on the first and second regions of the substrate, respectively, includes etching the gate shoulders of "L" shaped select gate poly on both sides of the stack to form rectangular first and second poly structures on first and second regions of the substrate, respectively structure so as to facilitate subsequent etching using photoresist or hard mask spacers as a mask to form the first select gate and the second select gate. For example, as described in detail below with reference to Figure 3J.

根据一些实施例,蚀刻第一多晶硅结构和第二多晶硅结构,以分别形成第一选择栅极和第二选择栅极包括:对第一多晶硅结构和第二多晶硅结构进行第一光刻处理;以第一光刻处理所形成的光刻胶图案作为掩模,蚀刻第一多晶硅结构和第二多晶硅结构,以分别形成第一选择栅极和第二选择栅极;以及移除第一光刻处理所形成的光刻胶图案。例如,如下文参考图3K-3L所详细描述的。According to some embodiments, etching the first polysilicon structure and the second polysilicon structure to form the first select gate and the second select gate, respectively, includes: aligning the first polysilicon structure and the second polysilicon structure performing a first photolithography process; using the photoresist pattern formed by the first photolithography process as a mask, etching the first polysilicon structure and the second polysilicon structure to form the first selection gate and the second respectively selecting a gate; and removing the photoresist pattern formed by the first photolithography process. For example, as described in detail below with reference to Figures 3K-3L.

根据一些实施例,蚀刻第一多晶硅结构和第二多晶硅结构,以分别形成第一选择栅极和第二选择栅极包括:在栅极堆叠体的两侧分别形成第一硬掩模间隔体和第二硬掩模间隔体,其中,第一硬掩模间隔体位于第一多晶硅结构上,且第二硬掩模间隔体位于第二多晶硅结构上;以及以第一硬掩模间隔体和第二硬掩模间隔体作为掩模,蚀刻第一多晶硅结构和第二多晶硅结构,以分别形成第一选择栅极和第二选择栅极。例如,如下文参考图4A-4B所详细描述的。According to some embodiments, etching the first polysilicon structure and the second polysilicon structure to form the first select gate and the second select gate, respectively, includes forming a first hard mask on both sides of the gate stack, respectively. a mold spacer and a second hard mask spacer, wherein the first hard mask spacer is on the first polysilicon structure, and the second hard mask spacer is on the second polysilicon structure; and A hard mask spacer and a second hard mask spacer are used as masks to etch the first polysilicon structure and the second polysilicon structure to form a first select gate and a second select gate, respectively. For example, as described in detail below with reference to Figures 4A-4B.

根据一些实施例,移除所沉积的选择栅极多晶硅的部分,以形成第一选择栅极和第二选择栅极包括:自对准蚀刻所沉积的选择栅极多晶硅,以分别形成第一选择栅极和第二选择栅极。例如,如下文参考图5所详细描述的。According to some embodiments, removing portions of the deposited select gate polysilicon to form the first select gate and the second select gate includes self-aligning etching the deposited select gate polysilicon to form the first select gates, respectively gate and second select gate. For example, as described in detail below with reference to FIG. 5 .

根据一些实施例,如本公开所述的半导体器件的制作方法还包括:在第一选择栅极氧化物结构和第二选择栅极氧化物结构上、以及栅极堆叠体上沉积选择栅极多晶硅的同时,在衬底的逻辑栅极区域上沉积逻辑栅极多晶硅;以及在移除所沉积的选择栅极多晶硅的部分,以形成第一选择栅极和第二选择栅极的同时,移除逻辑栅极多晶硅的部分,以形成逻辑栅极。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes: depositing select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack simultaneously depositing logic gate polysilicon on the logic gate region of the substrate; and removing portions of the deposited select gate polysilicon to form the first select gate and the second select gate, removing portion of the logic gate polysilicon to form the logic gate.

根据另一些实施例,在第一选择栅极氧化物结构和第二选择栅极氧化物结构上、以及栅极堆叠体上沉积选择栅极多晶硅的同时,在衬底的逻辑栅极区域上沉积逻辑栅极多晶硅;并且,在与移除所沉积的选择栅极多晶硅的部分不同的处理步骤中,移除逻辑栅极多晶硅的部分,以形成逻辑栅极。According to further embodiments, depositing select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack, is concurrently deposited on the logic gate region of the substrate logic gate polysilicon; and, in a different processing step than removing the portion of the deposited select gate polysilicon, removing the portion of the logic gate polysilicon to form the logic gate.

图2E示出了经步骤S101~S105后所形成的示例性结构的剖面图。如图2E所示,半导体结构200除了包括衬底210、衬底氧化物结构221、栅极堆叠体270、第一选择栅极氧化物结构222a、第一隧穿氧化物结构271a、第二选择栅极氧化物结构222b和第二隧穿氧化物结构271b,还包括在第一隧穿氧化物结构271a的与栅极堆叠体270相对的一侧的第一选择栅极280a,并且,在第二隧穿氧化物结构271b的与栅极堆叠体270相对的一侧形成第二选择栅极280b。FIG. 2E shows a cross-sectional view of an exemplary structure formed after steps S101 to S105. As shown in FIG. 2E , the semiconductor structure 200 includes a substrate 210 , a substrate oxide structure 221 , a gate stack 270 , a first selection gate oxide structure 222 a , a first tunneling oxide structure 271 a , a second selection gate oxide structure 222 a The gate oxide structure 222b and the second tunnel oxide structure 271b further include a first select gate 280a on the opposite side of the first tunnel oxide structure 271a from the gate stack 270, and, on the first The opposite side of the two tunnel oxide structures 271b from the gate stack 270 forms a second select gate 280b.

在步骤S106处,蚀刻栅极堆叠体,以形成穿过硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分的第一开口。At step S106, the gate stack is etched to form a first opening through the hard mask layer, the control gate layer, the dielectric layer and the remainder of the floating gate layer.

根据一些实施例,蚀刻栅极堆叠体,以形成穿过硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分的第一开口包括:进行源极光刻,以形成光刻胶图案;以所形成的光刻胶图案作为掩模,蚀刻栅极堆叠体,以形成第一开口。According to some embodiments, etching the gate stack to form the first opening through the hard mask layer, the control gate layer, the dielectric layer, and the remainder of the floating gate layer includes performing source lithography to form a lithography A glue pattern; using the formed photoresist pattern as a mask, the gate stack is etched to form a first opening.

图2F示出了经步骤S101~S106后所形成的示例性结构的剖面图。如图2F所示,与图2E相比,第一开口272穿过硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分,其中,硬掩模层、控制栅极层、电介质层和浮置栅极层的剩余部分包括分别属于两侧的存储器单元的栅极结构,即,位于左侧的由第一浮置栅极230a、第一电介质结构240a、第一控制栅极250a和第一硬掩模260a构成的栅极结构和位于右侧的由第二浮置栅极230b、第二电介质结构240b、第二控制栅极250b和第二硬掩模260b构成的栅极结构。FIG. 2F shows a cross-sectional view of an exemplary structure formed after steps S101 to S106. As shown in FIG. 2F, compared to FIG. 2E, the first opening 272 penetrates the hard mask layer, the control gate layer, the dielectric layer, and the remainder of the floating gate layer, wherein the hard mask layer, the control gate layer , the rest of the dielectric layer and the floating gate layer comprise the gate structures belonging to the memory cells on both sides respectively, ie the left side consists of the first floating gate 230a, the first dielectric structure 240a, the first control gate The gate structure formed by the electrode 250a and the first hard mask 260a and the gate formed by the second floating gate 230b, the second dielectric structure 240b, the second control gate 250b and the second hard mask 260b on the right side polar structure.

在步骤S107处,在衬底的位于第一开口下方的部分中形成源极区域。At step S107, a source region is formed in a portion of the substrate below the first opening.

根据一些实施例,通过源极离子注入(例如,砷和磷)形成源极区域,从而形成衬底中的缓变结,即,在源极区域中,在从衬底氧化物结构到衬底的方向上,源极离子掺杂浓度逐渐降低,以提高半导体器件的承压能力。在如本公开所述的实施例中,由于先形成两侧的存储器单元的栅极结构和氧化物结构,后进行源极区域注入,避免了因形成栅极结构和氧化物结构的热沉积步骤而影响源极区域的性能。According to some embodiments, the source region is formed by source ion implantation (eg, arsenic and phosphorous), thereby forming a graded junction in the substrate, ie, in the source region, from the substrate oxide structure to the substrate In the direction of , the source ion doping concentration is gradually reduced to improve the pressure-bearing capability of the semiconductor device. In the embodiments described in the present disclosure, since the gate structures and oxide structures of the memory cells on both sides are formed first, and then the source region implantation is performed, the thermal deposition step for forming the gate structures and the oxide structures is avoided. and affect the performance of the source region.

图2G示出了经步骤S101~S107后所形成的示例性结构的剖面图。如图2G所示,与图2F相比,半导体器件200包括在衬底210中的位于第一开口272下方的源极区域212。FIG. 2G shows a cross-sectional view of an exemplary structure formed after steps S101 to S107. As shown in FIG. 2G , in contrast to FIG. 2F , the semiconductor device 200 includes a source region 212 in the substrate 210 below the first opening 272 .

在步骤S108处,在第一选择栅极的与第一开口相对的一侧的衬底中形成第一漏极区域,并且,在第二选择栅极的与第一开口相对的一侧的衬底中形成第二漏极区域。At step S108, a first drain region is formed in the substrate on the side of the first select gate opposite to the first opening, and a substrate on the side of the second select gate opposite to the first opening is formed A second drain region is formed in the bottom.

根据一些实施例,在第一选择栅极的与第一开口相对的一侧的衬底中形成第一漏极区域,并且,在第二选择栅极的与第一开口相对的一侧的衬底中形成第二漏极区域包括:在第一选择栅极的与第一开口相对的一侧的衬底中和第二选择栅极的与第一开口相对的一侧的衬底中执行轻掺杂漏极注入,以形成位于第一选择栅极的一侧的第一轻掺杂漏极区域和位于第二选择栅极的一侧的第二轻掺杂漏极区域;在第一选择栅极的与第一开口相对的一侧形成第一漏极间隔体,并且,在第二选择栅极的与第一开口相对的一侧形成第二漏极间隔体;在第一选择栅极的面对第一开口的一侧形成第一源极间隔体,并且,在第二选择栅极的面对第一开口的一侧形成第二源极间隔体;以及在第一漏极间隔体的与第一开口相对的一侧的衬底中和第二漏极间隔体的与第一开口相对的一侧的衬底中执行重掺杂漏极注入,以形成位于第一漏极间隔体的一侧的第一重掺杂漏极区域和位于第二漏极间隔体的一侧的第二重掺杂漏极区域。According to some embodiments, the first drain region is formed in the substrate on the side of the first select gate opposite the first opening, and the substrate on the side of the second select gate opposite the first opening The forming of the second drain region in the bottom includes performing a lightening process in the substrate on the side of the first select gate opposite to the first opening and in the substrate on the side of the second select gate opposite the first opening doped drain implantation to form a first lightly doped drain region on one side of the first select gate and a second lightly doped drain region on one side of the second select gate; A first drain spacer is formed on a side of the gate opposite to the first opening, and a second drain spacer is formed on a side of the second select gate opposite to the first opening; on the first select gate A first source spacer is formed on the side of the second select gate facing the first opening, and a second source spacer is formed on the side of the second select gate facing the first opening; and the first drain spacer is formed A heavily doped drain implant is performed in the substrate on the side opposite the first opening and in the substrate on the side opposite the first opening of the second drain spacer to form the first drain spacer A first heavily doped drain region on one side of the second drain spacer and a second heavily doped drain region on one side of the second drain spacer.

图2H示出了经步骤S101~S108后所形成的示例性结构的剖面图。如图2H所示,与图2G相比,半导体器件200包括在第一选择栅极280a的与第一开口272相对的一侧的衬底210中形成的第一漏极区域211a和在第二选择栅极280b的与第一开口272相对的一侧的衬底210中形成的第二漏极区域211b。FIG. 2H shows a cross-sectional view of an exemplary structure formed after steps S101 to S108. As shown in FIG. 2H , compared to FIG. 2G , the semiconductor device 200 includes a first drain region 211 a formed in the substrate 210 on the side of the first select gate 280 a opposite to the first opening 272 and a second drain region 211 a A second drain region 211b formed in the substrate 210 on the side of the gate 280b opposite to the first opening 272 is selected.

根据一些实施例,如本公开所述的半导体器件的制作方法还包括:在第一选择栅极、第一漏极区域、源极区域、第二选择栅极和第二漏极区域上形成硅化物结构。According to some embodiments, the method of fabricating a semiconductor device according to the present disclosure further includes: forming silicide on the first select gate, the first drain region, the source region, the second select gate and the second drain region matter structure.

在现有的半导体器件的制造方法中,先形成位于两个相邻存储器单元之间的开口及开口下方的源极区域,再形成位于每个存储器单元的一侧的选择栅极,将会在沉积选择栅极材料以形成选择栅极时,在两个相邻存储器单元之间的开口中沉积多余的选择栅极材料。在如本公开所述的半导体器件的制作方法中,由于先形成栅极堆叠体两侧的选择栅极,再形成穿过栅极堆叠体的开口和位于开口下方的源极区域,将不会如上面参考现有的制造方法所描述的在开口中沉积多余的选择栅极材料,因此,减少用于移除多余的选择栅极材料的步骤,降低生产成本;并且,避免在更多沟槽区域沉积导电多晶硅并使用例如干蚀刻的方式移除所沉积的多晶硅,减少蚀刻过程中增加的工艺风险和蚀刻后晶圆表面产生缺陷的几率,提高芯片良率。In the existing method of manufacturing a semiconductor device, an opening between two adjacent memory cells and a source region under the opening are first formed, and then a select gate located on one side of each memory cell is formed, which will When depositing the select gate material to form the select gate, excess select gate material is deposited in the opening between two adjacent memory cells. In the method for fabricating a semiconductor device according to the present disclosure, since the select gates on both sides of the gate stack are formed first, and then the opening through the gate stack and the source region under the opening are formed, there will be no Depositing excess select gate material in the openings as described above with reference to existing fabrication methods, thus reducing steps for removing excess select gate material, reducing production costs; and avoiding more trenches The conductive polysilicon is deposited in the area and the deposited polysilicon is removed by means of dry etching, for example, which reduces the process risk increased during the etching process and the probability of defects on the wafer surface after etching, and improves the chip yield.

另外,在现有的半导体器件的制造方法中,由于先形成位于两个相邻存储器单元之间的开口下方的源极区域,再进行沉积以形成存储器单元的剩余结构,在形成源极区域之后进行的沉积处理将会影响源极区域的性能(例如,使得源极区域进一步扩大),从而对形成源极区域的工艺要求较高(即,在后续经受后续多次工艺步骤(例如,沉积)的热处理后仍能保持期望的性能)。在如本公开所述的半导体器件的制作方法中,由于在形成源极区域之前进行各沉积处理,避免所形成的源极区域受到后续的沉积处理的影响,从而降低了对源极区域的工艺要求。In addition, in the existing manufacturing method of the semiconductor device, since the source region located under the opening between two adjacent memory cells is formed first, and then the deposition is performed to form the remaining structure of the memory cell, after the source region is formed The deposition process performed will affect the performance of the source region (eg, cause the source region to expand further), thereby making the process of forming the source region more demanding (ie, subject to subsequent multiple subsequent process steps (eg, deposition) maintains the desired properties after heat treatment). In the method for fabricating a semiconductor device according to the present disclosure, since each deposition process is performed before the source region is formed, the formed source region is prevented from being affected by the subsequent deposition process, thereby reducing the process for the source region Require.

图3A-3O是根据本公开的一些实施例的半导体器件300的制作方法的步骤的示意剖面图。3A-3O are schematic cross-sectional views of steps of a method of fabricating a semiconductor device 300 in accordance with some embodiments of the present disclosure.

根据一些实施例,如图3A所示,和参考图2A描述的类似,半导体结构300从下至上依次包括:衬底210、氧化物层220、浮置栅极层230、电介质层240、控制栅极层250和硬掩模层260。According to some embodiments, as shown in FIG. 3A , and similar to that described with reference to FIG. 2A , the semiconductor structure 300 includes, from bottom to top, a substrate 210 , an oxide layer 220 , a floating gate layer 230 , a dielectric layer 240 , a control gate Pole layer 250 and hard mask layer 260 .

根据一些实施例,如图3B所示,在硬掩膜层260的上表面涂覆光刻胶,进行光刻处理,以形成光刻胶图案290,并且,以光刻胶图案290作为掩模,蚀刻硬掩模层260、控制栅极层250和电介质层240。According to some embodiments, as shown in FIG. 3B , a photoresist is coated on the upper surface of the hard mask layer 260 , and a photolithography process is performed to form a photoresist pattern 290 , and the photoresist pattern 290 is used as a mask , the hard mask layer 260 , the control gate layer 250 and the dielectric layer 240 are etched.

根据一些实施例,如图3C所示,移除如图3B所示的光刻胶图案,在硬掩模层260、控制栅极层250和电介质层240的剩余部分的两侧形成第一控制栅极间隔体273a和第二控制栅极间隔体273b,例如,沉积控制栅极氧化物,并且,蚀刻所沉积的控制栅极氧化物,以形成控制栅极间隔体。According to some embodiments, as shown in FIG. 3C , the photoresist pattern shown in FIG. 3B is removed to form a first control on both sides of the hard mask layer 260 , the control gate layer 250 and the remaining portion of the dielectric layer 240 . The gate spacer 273a and the second control gate spacer 273b, eg, deposit a control gate oxide, and the deposited control gate oxide is etched to form the control gate spacer.

根据一些实施例,如图3D所示,蚀刻浮置栅极层230,以形成包括浮置栅极层230、电介质层240、控制栅极层250和硬掩模层260的栅极堆叠体。According to some embodiments, as shown in FIG. 3D , the floating gate layer 230 is etched to form a gate stack including the floating gate layer 230 , the dielectric layer 240 , the control gate layer 250 and the hard mask layer 260 .

根据一些实施例,如图3E所示,移除(例如,通过清洗、光刻和蚀刻等处理)氧化物层的在衬底210的第一区域和第二区域(即,将要在其上形成选择栅极的区域)、以及高压管区域的部分,以形成衬底氧化物结构221。According to some embodiments, as shown in FIG. 3E, first and second regions of the substrate 210 (ie, to be formed thereon) of the oxide layer are removed (eg, by cleaning, photolithography, etching, etc.) regions of the select gate), and portions of the high voltage transistor regions to form substrate oxide structures 221.

根据一些实施例,如图3F所示,在衬底210的第一区域和第二区域、以及高压管区域上和硬掩模层280的上表面上,形成覆盖半导体器件300的第一栅极氧化膜291。According to some embodiments, as shown in FIG. 3F , a first gate covering the semiconductor device 300 is formed on the first and second regions of the substrate 210 , and on the high voltage tube region and on the upper surface of the hard mask layer 280 . oxide film 291.

根据一些实施例,如图3G所示,在衬底210的第一区域和第二区域中执行选择栅极沟道离子注入包括:进行选择栅极沟道光刻,以形成光刻胶图案,从而保护无需执行离子注入的区域;以所形成的光刻胶图案作为掩模,执行选择栅极沟道离子注入;接着,移除第一栅极氧化膜291的位于第一区域和第二区域、以及栅极堆叠体的侧壁和上表面上的部分。应当理解,虽然未示出,但是第一栅极氧化膜291的在衬底210的高压管区域上的部分被保留,以用于后续形成高压管区域对应的氧化物结构。According to some embodiments, as shown in FIG. 3G, performing the selective gate channel ion implantation in the first region and the second region of the substrate 210 includes: performing selective gate channel lithography to form a photoresist pattern, Thereby protecting the area where ion implantation is not required; using the formed photoresist pattern as a mask, perform selective gate channel ion implantation; then, remove the first gate oxide film 291 located in the first area and the second area , and portions on the sidewalls and upper surface of the gate stack. It should be understood that, although not shown, the portion of the first gate oxide film 291 on the high voltage tube region of the substrate 210 is reserved for subsequent formation of an oxide structure corresponding to the high voltage tube region.

根据一些实施例,如图3H所示,在衬底210的第一区域和第二区域、以及高压管区域上和硬掩模层280的上表面上,形成覆盖半导体器件300的第二栅极氧化膜292。根据一些实施例,虽然图3H未示出,但是可以在衬底210中进行逻辑井植入,在衬底210上形成逻辑IO栅极氧化物结构,以及在衬底210上形成逻辑核心栅极氧化物结构。According to some embodiments, as shown in FIG. 3H , a second gate covering the semiconductor device 300 is formed on the first and second regions of the substrate 210 , and on the high voltage tube region and on the upper surface of the hard mask layer 280 . oxide film 292. According to some embodiments, although not shown in FIG. 3H, a logic well implant may be performed in substrate 210, a logic IO gate oxide structure may be formed on substrate 210, and a logic core gate may be formed on substrate 210 oxide structure.

根据一些实施例,如图3I所示,在第二栅极氧化膜292上沉积选择栅极硅化物280,其中,选择栅极硅化物280具有基本一致的覆盖率。根据一些实施例,可以与图3I中的选择栅极硅化物280一起,沉积用于后续形成逻辑栅极的逻辑栅极多晶硅。According to some embodiments, as shown in FIG. 3I, a select gate suicide 280 is deposited on the second gate oxide film 292, wherein the select gate suicide 280 has substantially uniform coverage. According to some embodiments, logic gate polysilicon for subsequent formation of logic gates may be deposited along with select gate suicide 280 in FIG. 3I.

根据一些实施例,如图3J所示,对半导体结构300进行平坦化和多晶硅蚀刻,以移除选择栅极硅化物280的部分,以形成位于第一区域上的第一多晶硅结构281a和位于第二区域上的第二多晶硅结构281b,并且移除第一栅极氧化膜291和第二栅极氧化膜292的位于硬掩模层260上的部分。According to some embodiments, as shown in FIG. 3J, semiconductor structure 300 is planarized and poly-etched to remove portions of select gate suicide 280 to form first poly-structure 281a on the first region and The second polysilicon structure 281b on the second region, and the portions of the first gate oxide film 291 and the second gate oxide film 292 on the hard mask layer 260 are removed.

根据一些实施例,如图3K所示,对第一多晶硅结构281a和第二多晶硅结构281b进行光刻处理;以光刻处理所形成的光刻胶图案293作为掩模,蚀刻第一多晶硅结构281a和第二多晶硅结构281b,以分别形成第一选择栅极280a和第二选择栅极280b。根据一些实施例,可以与图3K所示出的步骤一起,形成逻辑栅极。According to some embodiments, as shown in FIG. 3K, a photolithography process is performed on the first polysilicon structure 281a and the second polysilicon structure 281b; the photoresist pattern 293 formed by the photolithography process is used as a mask to etch the A polysilicon structure 281a and a second polysilicon structure 281b to form a first select gate 280a and a second select gate 280b, respectively. According to some embodiments, logic gates may be formed in conjunction with the steps shown in FIG. 3K.

根据一些实施例,如图3L所示,进行源极区域的光刻处理(例如,对应于如图3L所示出的光刻胶图案294a和294b)和相应的蚀刻,以形成第一开口272,并且,在第一开口272下方的衬底210的部分中执行源极离子注入,以形成源极区域212。根据一些实施例,源极离子注入可以为N型离子注入。根据另一些实施例,除了N型离子注入,源极离子注入还可以包括适当增加的P型离子注入,以调节浮栅沟道阈值电压。According to some embodiments, as shown in FIG. 3L, photolithographic processing of the source region (eg, corresponding to the photoresist patterns 294a and 294b shown in FIG. 3L) and corresponding etching are performed to form the first opening 272 And, source ion implantation is performed in the portion of the substrate 210 under the first opening 272 to form the source region 212 . According to some embodiments, the source ion implantation may be an N-type ion implantation. According to other embodiments, in addition to N-type ion implantation, source ion implantation may also include appropriately increased P-type ion implantation to adjust the floating gate channel threshold voltage.

根据一些实施例,如图3M所示,进行轻掺杂漏极(lightly doped drain,LDD)注入光刻(例如,对应于图3M所示出的光刻胶图案295),并且,在第一选择栅极280a的与第一开口272相对的一侧的衬底210中和第二选择栅极280b的与第一开口272相对的一侧的衬底210中执行轻掺杂漏极注入(例如,砷),以形成位于第一选择栅极280a的一侧的第一轻掺杂漏极区域2111a和位于第二选择栅极280b的一侧的第二轻掺杂漏极区域2111b。根据一些实施例,在执行轻掺杂漏极注入之后,可以进行形成逻辑IO/核心器件的相关工艺。根据一些实施例,在执行轻掺杂漏极注入之后,可以移除光刻胶图案295。According to some embodiments, as shown in FIG. 3M, lightly doped drain (LDD) implant lithography (eg, corresponding to the photoresist pattern 295 shown in FIG. 3M) is performed, and in the first A lightly doped drain implant (eg , arsenic) to form a first lightly doped drain region 2111a on one side of the first select gate 280a and a second lightly doped drain region 2111b on one side of the second select gate 280b. According to some embodiments, after performing the lightly doped drain implant, related processes of forming the logic IO/core device may be performed. According to some embodiments, after performing the lightly doped drain implant, the photoresist pattern 295 may be removed.

根据一些实施例,如图3N所示,首先,在第一选择栅极280a的与第一开口272相对的一侧形成第一漏极间隔体273a,并且,在第二选择栅极280b的与第一开口272相对的一侧形成第二漏极间隔体273b,在第一选择栅极280a的面对第一开口272的一侧形成第一源极间隔体274a,并且,在第二选择栅极280b的面对第一开口272的一侧形成第二源极间隔体274b;接着,进行重掺杂漏极注入光刻(例如,对应于图3N所示出的光刻胶图案296),并且在在第一漏极间隔体273a的与第一开口272相对的一侧的衬底210中和第二漏极间隔体273b的与第一开口272相对的一侧的衬底210中执行重掺杂漏极注入,以形成位于第一漏极间隔体273a的一侧的第一重掺杂漏极区域2112a和位于第二漏极间隔体273b的一侧的第二重掺杂漏极区域2112b。根据一些实施例,可以在执行重掺杂漏极注入之后,进行基线逻辑工艺(baseline logic process)。According to some embodiments, as shown in FIG. 3N, first, a first drain spacer 273a is formed on a side of the first select gate 280a opposite to the first opening 272, and a first drain spacer 273a is formed on the side of the second select gate 280b opposite to the first opening 272. A second drain spacer 273b is formed on the side opposite to the first opening 272, a first source spacer 274a is formed on the side of the first select gate 280a facing the first opening 272, and a second select gate 274a is formed A second source spacer 274b is formed on the side of the electrode 280b facing the first opening 272; then, heavily doped drain implant photolithography is performed (for example, corresponding to the photoresist pattern 296 shown in FIG. 3N ), And in the substrate 210 on the side opposite to the first opening 272 of the first drain spacer 273a and in the substrate 210 on the side opposite to the first opening 272 of the second drain spacer 273b Doped drain implantation to form a first heavily doped drain region 2112a on one side of the first drain spacer 273a and a second heavily doped drain region on one side of the second drain spacer 273b 2112b. According to some embodiments, a baseline logic process may be performed after performing the heavily doped drain implant.

根据一些实施例,在第一选择栅极、第一漏极区域、源极区域、第二选择栅极和第二漏极区域上形成硅化物结构。如图3O所示,在第一选择栅极280a、第一重掺杂漏极区域2112a、源极区域223c、第二选择栅极280b和第二重掺杂漏极区域2112b上形成硅化物结构223a-223e。根据一些实施例,如图3O所示,移除第一源极间隔体274a和第二源极间隔体274b之间、以及第一轻掺杂漏极区域2111a、第一重掺杂漏极区域2112a、第二轻掺杂漏极区域2111b以及第二重掺杂漏极区域2112b上的氧化物层220的部分,并在移除氧化物层220所暴露出的衬底210上形成硅化物结构223c。According to some embodiments, a suicide structure is formed on the first select gate, the first drain region, the source region, the second select gate and the second drain region. As shown in FIG. 30, a silicide structure is formed on the first select gate 280a, the first heavily doped drain region 2112a, the source region 223c, the second select gate 280b and the second heavily doped drain region 2112b 223a-223e. According to some embodiments, as shown in FIG. 3O, between the first source spacer 274a and the second source spacer 274b, and the first lightly doped drain region 2111a and the first heavily doped drain region are removed 2112a, the second lightly doped drain region 2111b, and the portion of the oxide layer 220 on the second heavily doped drain region 2112b, and a silicide structure is formed on the substrate 210 exposed by the removal of the oxide layer 220 223c.

根据一些实施例,在如图3O所示出的半导体结构中,由于栅极堆叠体在源极一侧单独蚀刻,可以仅在控制栅极的一侧形成不对称的控制栅极间隔体(即,无需源极侧形成控制栅极间隔体),增加了控制栅极对浮置栅极的耦合电容比率,从而增加了写入操作时电子注入的效率,或者在保持同样效率时减小控制栅极的电压值,以降低对高压管的要求。According to some embodiments, in the semiconductor structure shown in FIG. 3O, since the gate stack is etched separately on the source side, asymmetric control gate spacers (ie, control gate spacers) may be formed only on one side of the control gate. , without the need to form a control gate spacer on the source side), increasing the coupling capacitance ratio of the control gate to the floating gate, thereby increasing the efficiency of electron injection during write operations, or reducing the control gate while maintaining the same efficiency Extreme voltage value to reduce the requirements for high-voltage tubes.

图4A-4B是根据本公开的一些实施例的半导体器件400的制作方法的步骤的示意剖面图。4A-4B are schematic cross-sectional views of the steps of a method of fabricating a semiconductor device 400 in accordance with some embodiments of the present disclosure.

根据一些实施例,在如图3J所示的形成位于第一区域上的第一多晶硅结构281a和位于第二区域上的第二多晶硅结构281b之后,如图4A所示,在半导体器件200两侧分别形成第一硬掩模间隔体282a和第二硬掩模间隔体282b,其中,第一硬掩模间隔体282a位于第一多晶硅结构281a上,且第二硬掩模间隔体282b位于第二多晶硅结构281b上,例如,通过沉积硬掩模材料,并蚀刻硬掩模材料,以形成第一硬掩模间隔体282a和第二硬掩模间隔体282b。According to some embodiments, after forming the first polysilicon structure 281a on the first region and the second polysilicon structure 281b on the second region as shown in FIG. 3J , as shown in FIG. 4A , in the semiconductor A first hard mask spacer 282a and a second hard mask spacer 282b are respectively formed on both sides of the device 200, wherein the first hard mask spacer 282a is located on the first polysilicon structure 281a, and the second hard mask spacer 282a is located on the first polysilicon structure 281a. Spacers 282b are located on the second polysilicon structures 281b, eg, by depositing a hardmask material, and etching the hardmask material to form first hardmask spacers 282a and second hardmask spacers 282b.

根据一些实施例,如图4B所示,以第一硬掩模间隔体282a和第二硬掩模间隔体282b作为掩模,蚀刻第一多晶硅结构281a和第二多晶硅结构281b,以分别形成第一选择栅极280a和第二选择栅极280b。According to some embodiments, as shown in FIG. 4B, the first polysilicon structure 281a and the second polysilicon structure 281b are etched using the first hardmask spacer 282a and the second hardmask spacer 282b as masks, to form the first selection gate 280a and the second selection gate 280b, respectively.

根据一些实施例,在形成如图4B所示的半导体结构400以后,可以执行如上面参考图3L-3O所描述的工艺步骤,以形成闪存半导体器件。According to some embodiments, after forming the semiconductor structure 400 as shown in FIG. 4B, the process steps as described above with reference to FIGS. 3L-3O may be performed to form a flash memory semiconductor device.

图5是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图。5 is a schematic cross-sectional view of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure.

根据一些实施例,在如图3I所示的形成位于第一区域上的第一多晶硅结构281a和位于第二区域上的第二多晶硅结构281b之后,如图5所示,自对准蚀刻所沉积的选择栅极多晶硅,以分别形成第一选择栅极280a和第二选择栅极280b。According to some embodiments, after forming the first polysilicon structure 281a on the first region and the second polysilicon structure 281b on the second region as shown in FIG. 3I, as shown in FIG. The deposited select gate polysilicon is quasi-etched to form a first select gate 280a and a second select gate 280b, respectively.

根据一些实施例,在形成如图5所示的半导体结构500以后,可以执行如上面参考图3L-3O所描述的工艺步骤,以形成闪存半导体器件。According to some embodiments, after forming the semiconductor structure 500 as shown in FIG. 5, the process steps as described above with reference to FIGS. 3L-3O may be performed to form a flash memory semiconductor device.

图6是根据本公开的一些实施例的半导体器件的制作方法的步骤的示意剖面图。6 is a schematic cross-sectional view of steps of a method of fabricating a semiconductor device according to some embodiments of the present disclosure.

根据一些实施例,在如图3F所示的形成覆盖半导体器件300的第一栅极氧化膜291之后,如图6所示,在衬底210的第一区域和第二区域中执行选择栅极沟道离子注入,包括:进行选择栅极沟道光刻,以形成光刻胶图案,从而保护无需执行离子注入的区域;以所形成的光刻胶图案作为掩模,执行选择栅极沟道离子注入;接着,移除第一栅极氧化膜291的位于第一区域和第二区域、以及栅极堆叠体的上表面上的部分,并且,移除在栅极堆叠体的侧面上的第一栅极氧化膜291的一部分,以形成栅极间隔体两侧的侧壁氧化物结构291a和291b。根据一些实施例,通过蚀刻(例如,干式蚀刻和湿式蚀刻)第一栅极氧化膜291,保留栅极堆叠体的侧壁上的第一栅极氧化膜291的一部分。根据另一些实施例,代替部分移除在栅极堆叠体的侧面上的第一栅极氧化膜291,先完全移除在栅极堆叠体的侧面上的第一栅极氧化膜291,再通过例如多晶硅氧化的方式在浮栅侧壁形成一定厚度的氧化物。According to some embodiments, after forming the first gate oxide film 291 covering the semiconductor device 300 as shown in FIG. 3F , as shown in FIG. 6 , select gates are performed in the first and second regions of the substrate 210 Channel ion implantation, including: performing selective gate channel lithography to form a photoresist pattern, so as to protect areas where ion implantation is not required; and using the formed photoresist pattern as a mask to perform selective gate channel lithography ion implantation; then, portions of the first gate oxide film 291 on the first and second regions and the upper surface of the gate stack are removed, and the first gate oxide film 291 on the side surfaces of the gate stack is removed A portion of the gate oxide film 291 to form sidewall oxide structures 291a and 291b on both sides of the gate spacer. According to some embodiments, by etching (eg, dry etching and wet etching) the first gate oxide film 291, a portion of the first gate oxide film 291 on the sidewalls of the gate stack remains. According to other embodiments, instead of partially removing the first gate oxide film 291 on the side of the gate stack, the first gate oxide film 291 on the side of the gate stack is completely removed, and then For example, a certain thickness of oxide is formed on the sidewall of the floating gate by means of polysilicon oxidation.

根据一些实施例,在形成如图6所示的半导体结构600以后,可以执行如上面参考图3H-3O所描述的工艺步骤,以形成闪存半导体器件。According to some embodiments, after forming the semiconductor structure 600 as shown in FIG. 6, the process steps as described above with reference to FIGS. 3H-3O may be performed to form a flash memory semiconductor device.

如本公开的实施例,还提供了一种半导体器件,由如本公开所述的半导体器件的制造方法而制造。As an embodiment of the present disclosure, there is also provided a semiconductor device manufactured by the method for manufacturing a semiconductor device as described in the present disclosure.

图7是根据本公开的一些实施例的半导体器件700的剖面结构示意图。FIG. 7 is a schematic cross-sectional structure diagram of a semiconductor device 700 according to some embodiments of the present disclosure.

根据一些实施例,半导体器件700包括衬底210、形成在衬底210上方的衬底氧化物结构221、位于衬底氧化物结构221上的栅极堆叠体270a和270b、第一选择栅极280a、第二选择栅极280b、位于衬底210之中的第一漏极区域211a、第二漏极区域211b和源极区域212,其中,第一栅极堆叠体270a包括第一浮置栅极230a、第一电介质结构240a、第一控制栅极250a和第一硬掩模260a,第二栅极堆叠体270b包括第二浮置栅极230b、第二电介质结构240b、第二控制栅极250b和第二硬掩模260b。According to some embodiments, semiconductor device 700 includes substrate 210, substrate oxide structure 221 formed over substrate 210, gate stacks 270a and 270b on substrate oxide structure 221, first select gate 280a , a second select gate 280b, a first drain region 211a, a second drain region 211b, and a source region 212 in the substrate 210, wherein the first gate stack 270a includes a first floating gate 230a, first dielectric structure 240a, first control gate 250a and first hard mask 260a, second gate stack 270b including second floating gate 230b, second dielectric structure 240b, second control gate 250b and the second hard mask 260b.

根据一些实施例,半导体器件700还包括位于第一栅极堆叠体270a和第二栅极堆叠体270b下方的衬底栅极氧化物结构221、位于第一选择栅极280a和第一栅极堆叠体270a之间的第一隧穿氧化物结构271a、位于第二选择栅极280b和第二栅极堆叠体270b之间的第二隧穿氧化物结构271b、位于第一选择栅极280a下方的第一选择栅极氧化物结构222a、以及位于第二选择栅极280b下方的第二选择栅极氧化物结构222b。According to some embodiments, the semiconductor device 700 further includes the substrate gate oxide structure 221 under the first gate stack 270a and the second gate stack 270b, the first select gate 280a and the first gate stack first tunnel oxide structure 271a between the bodies 270a, second tunnel oxide structure 271b between the second select gate 280b and the second gate stack 270b, under the first select gate 280a The first select gate oxide structure 222a, and the second select gate oxide structure 222b under the second select gate 280b.

根据一些实施例,半导体器件700包括共享源极区域212的两个存储器单元。根据一些实施例,半导体器件700包括对应于左侧的存储器单元的第一编程通道213a、第二编程通道213b、第一擦除通道214a和对应于右侧的存储器单元的第二编程通道213c、第二编程通道213d、第二擦除通道214b。根据一些实施例,第一编程通道213a从第一漏极区域211a延伸到第一浮置栅极230a的面对第一选择栅极280a的边缘部位,第二编程通道213b从第一漏极区域211a延伸到源极区域212,第一擦除通道214a从第一浮置栅极230a延伸到第一选择栅极280a,第三编程通道213b从第二漏极区域211b延伸到第二浮置栅极230b的面对第二选择栅极280b的边缘部位,第四编程通道213b从第二漏极区域211b延伸到源极区域212,第二擦除通道214b从第二浮置栅极230b延伸到第二选择栅极280b。其中,对左侧的存储器单元和右侧的存储器单元进行编程操作、擦除操作和读取操作的过程类似。以下以左侧的存储器单元为例,分别说明编程操作、擦除操作和读取操作。According to some embodiments, semiconductor device 700 includes two memory cells that share source region 212 . According to some embodiments, the semiconductor device 700 includes a first programming channel 213a, a second programming channel 213b, a first erasing channel 214a corresponding to the memory cells on the left, and a second programming channel 213c corresponding to the memory cells on the right, The second programming channel 213d and the second erasing channel 214b. According to some embodiments, the first programming channel 213a extends from the first drain region 211a to an edge portion of the first floating gate 230a facing the first select gate 280a, and the second programming channel 213b extends from the first drain region 211a extends to the source region 212, a first erase channel 214a extends from the first floating gate 230a to the first select gate 280a, and a third programming channel 213b extends from the second drain region 211b to the second floating gate The edge portion of the electrode 230b facing the second select gate 280b, the fourth programming channel 213b extends from the second drain region 211b to the source region 212, and the second erase channel 214b extends from the second floating gate 230b to The second select gate 280b. Wherein, the processes of performing programming, erasing and reading operations on the memory cells on the left and the memory cells on the right are similar. The following takes the memory cell on the left as an example to illustrate the programming operation, the erasing operation and the reading operation, respectively.

根据一些实施例,当进行编程操作时,在第一选择栅极280a上施加一个比阈值电压高的正电压(例如,1.0~1.6V),而在源端(即,源极区域212)施加正电压(例如,4.5~7V)提供横向的强电场,在第一漏极区域211a灌入负电流(例如,1μA),此时,由于电子源测注入效应,一部分热电子通过第一编程通道211a注入第一浮置栅极230a中,而一部分热电子通过第二编程通道211b迁移到源端。According to some embodiments, when a programming operation is performed, a positive voltage (eg, 1.0-1.6V) higher than the threshold voltage is applied on the first select gate 280a, while the source terminal (ie, the source region 212 ) is applied A positive voltage (for example, 4.5-7V) provides a strong lateral electric field, and a negative current (for example, 1 μA) is injected into the first drain region 211a. At this time, due to the electron source injection effect, a part of hot electrons pass through the first programming channel 211a is injected into the first floating gate 230a, and a portion of the hot electrons migrate to the source through the second programming channel 211b.

根据一些实施例,当进行擦除操作时,在第一选择栅极280a上施加一个较高的正电压(例如,7~11V),在第一控制栅极250a上施加一个较高的负电压(例如,-7V~11V),以形成第一选择栅极280a与第一浮置栅极230a之间的电压差,而将第一漏极区域211a和源极区域212均设置为0V,此时,由于FN(Fowler-Nordheim)隧穿效应,在第一选择栅极280a和第一浮置栅极230a之间的电压差的作用下,电子被拉离第一浮置栅极230a。According to some embodiments, when an erase operation is performed, a relatively high positive voltage (eg, 7-11V) is applied to the first select gate 280a, and a relatively high negative voltage is applied to the first control gate 250a (eg, -7V to 11V) to form a voltage difference between the first select gate 280a and the first floating gate 230a, and both the first drain region 211a and the source region 212 are set to 0V, this At the time, due to the FN (Fowler-Nordheim) tunneling effect, the electrons are pulled away from the first floating gate 230a under the action of the voltage difference between the first select gate 280a and the first floating gate 230a.

根据一些实施例,当进行读取操作时,通过在第一选择栅极280a上施加一个正电压(例如,1.8V),在第一控制栅极250a上施加一个正电压(例如,1.8V),在第一漏极区域211a上施加较低的正电压(例如,0.6V),而将源极区域212设置为0V,此时,通过源端与漏端之间的电流值大小,来判断存储器单元所处的状态。According to some embodiments, when performing a read operation, a positive voltage (eg, 1.8V) is applied to the first control gate 250a by applying a positive voltage (eg, 1.8V) to the first select gate 280a , a lower positive voltage (for example, 0.6V) is applied to the first drain region 211a, and the source region 212 is set to 0V. At this time, the current value between the source terminal and the drain terminal is used to determine The state the memory cell is in.

图8是根据本公开的一些实施例的存储器单元阵列800的电路示意图。应当理解,图8中的存储器单元、字线、位线、源线和擦除线的数量仅为示意性的,并且,可以根据实际应用需求调整上述数量中的任一者,以实现更大或更小规模的存储器单元阵列。8 is a circuit schematic diagram of a memory cell array 800 in accordance with some embodiments of the present disclosure. It should be understood that the numbers of memory cells, word lines, bit lines, source lines and erase lines in FIG. 8 are only illustrative, and any of the above numbers can be adjusted according to actual application requirements to achieve larger or smaller arrays of memory cells.

如图8所示,存储器单元阵列800包括多个存储器单元(例如,图8所示的存储器单元810)。根据一些实施例,每个存储器单元包括串联连接的选择晶体管和浮置晶体管,例如,图8中的存储器单元810包括选择晶体管811和浮栅晶体管812,其中,通过选择晶体管811可以选择固定地址的存储器单元进行操作,而浮栅晶体管812可以存储信息。As shown in FIG. 8, memory cell array 800 includes a plurality of memory cells (eg, memory cell 810 shown in FIG. 8). According to some embodiments, each memory cell includes a selection transistor and a floating transistor connected in series, for example, memory cell 810 in FIG. 8 includes a selection transistor 811 and a floating gate transistor 812, wherein the The memory cell operates, and the floating gate transistor 812 can store information.

根据一些实施例,每一行的存储器单元对应于一条字线,例如,在图8中,上面一行的存储器单元对应于字线WLn-1,下面一行的存储器单元对应于字线WLn,而每条字线连接到对应的存储器单元中的选择晶体管的栅极。根据一些实施例,每一列的存储器单元对应于一条位线,例如,在图8中,左边一列的存储器单元对应于位线BLn-1,中间一列的存储器单元对应于位线BLn,右边一列的存储器单元对应于位线BLn+1,而每条位线连接到对应的存储器单元中的选择晶体管的漏极。根据一些实施例,相邻两行的存储器单元对应于一条源线,例如,在图8中,上下两行的存储器单元均对应于源线SL,而每条源线连接到对应的存储器单元中的浮栅晶体管的源极。根据一些实施例,存储器中的每个扇区中的全部存储器单元的源线电连接在一起。根据一些实施例,在存储器单元阵列800中,每一行的存储器单元对应于一条控制线,例如,在图8中,上面一行的存储器单元对应于控制线CGn-1,下面一行的存储器单元对应于控制线CGn,而每条控制线连接到对应的存储器单元中的浮置晶体管的控制栅极;According to some embodiments, the memory cells of each row correspond to a word line, for example, in FIG. 8, the memory cells of the upper row correspond to word line WLn-1, the memory cells of the lower row correspond to word line WLn, and each The word lines are connected to the gates of the select transistors in the corresponding memory cells. According to some embodiments, each column of memory cells corresponds to a bit line. For example, in FIG. 8, the memory cells in the left column correspond to bit line BLn-1, the memory cells in the middle column correspond to bit line BLn, and the memory cells in the right column correspond to bit line BLn. The memory cells correspond to bit lines BLn+1, and each bit line is connected to the drain of a select transistor in the corresponding memory cell. According to some embodiments, memory cells in two adjacent rows correspond to one source line. For example, in FIG. 8 , memory cells in the upper and lower rows both correspond to source lines SL, and each source line is connected to a corresponding memory cell. the source of the floating gate transistor. According to some embodiments, the source lines of all memory cells in each sector in the memory are electrically connected together. According to some embodiments, in the memory cell array 800, the memory cells of each row correspond to a control line, eg, in FIG. 8, the memory cells of the upper row correspond to the control line CGn-1, and the memory cells of the lower row correspond to the control line CGn-1. control lines CGn, and each control line is connected to the control gate of the floating transistor in the corresponding memory cell;

根据一些实施例,存储器单元中的选择晶体管的漏极对应于例如图7所示的半导体器件700中的第一漏极区域211a,存储器单元中的选择晶体管的栅极对应于例如图7所示的半导体器件700中的第一选择栅极280a,存储器单元中的浮置晶体管的浮置栅极对应于图7所示的半导体器件700中的第一浮置栅极230a,存储器单元中的浮置晶体管的控制栅极对应于图7所示的半导体器件700中的第一控制栅极230a,存储器单元中的浮置晶体管的源极对应于图7所示的半导体器件700中的源极区域212。According to some embodiments, the drain of the select transistor in the memory cell corresponds to, for example, the first drain region 211a in the semiconductor device 700 shown in FIG. 7 , and the gate of the select transistor in the memory cell corresponds, for example, to that shown in FIG. The first select gate 280a in the semiconductor device 700, the floating gate of the floating transistor in the memory cell corresponds to the first floating gate 230a in the semiconductor device 700 shown in FIG. 7, the floating gate in the memory cell The control gate of the floating transistor corresponds to the first control gate 230a in the semiconductor device 700 shown in FIG. 7, and the source of the floating transistor in the memory cell corresponds to the source region in the semiconductor device 700 shown in FIG. 7 212.

图9A-9B是根据本公开的一些实施例的存储器单元阵列的俯视平面图。如图9A所示,存储器单元阵列900包括多条位线BLn-1、BLn和BLn+1、多条字线WLn-1和WLn、多个浮置栅极FG1-FG6和源线SL。9A-9B are top plan views of memory cell arrays in accordance with some embodiments of the present disclosure. As shown in FIG. 9A, the memory cell array 900 includes a plurality of bit lines BLn-1, BLn and BLn+1, a plurality of word lines WLn-1 and WLn, a plurality of floating gates FG1-FG6 and a source line SL.

根据一些实施例,每一列的存储器单元对应于同一位线,例如,如图9A所示,左边一列的两个存储器单元均对应于位线BLn-1。应当理解,虽然未示出,但是同一列的存储器单元的位线结构电连接。According to some embodiments, the memory cells of each column correspond to the same bit line, eg, as shown in FIG. 9A, the two memory cells of the left column both correspond to the bit line BLn-1. It should be understood that, although not shown, the bit line structures of memory cells of the same column are electrically connected.

根据一些实施例,每一行的存储器单元对应于同一字线,例如,如图9A所示,上面一行的三个存储器单元均对应于字线WLn-1。根据一些实施例,如图9A所示,每条字线延伸穿过同一行中的多个存储器单元。According to some embodiments, the memory cells of each row correspond to the same word line, eg, as shown in FIG. 9A, the three memory cells of the upper row all correspond to word line WLn-1. According to some embodiments, as shown in Figure 9A, each word line extends through multiple memory cells in the same row.

根据一些实施例,每一行的存储器单元对应于一条控制线,例如,在图9A中,上面一行的存储器单元对应于控制线CGn-1,下面一行的存储器单元对应于控制线CGn,而每条控制线连接到对应的存储器单元中的浮置栅极。According to some embodiments, each row of memory cells corresponds to a control line, for example, in FIG. 9A , the upper row of memory cells corresponds to control line CGn-1, the lower row of memory cells corresponds to control line CGn, and each The control lines are connected to the floating gates in the corresponding memory cells.

根据一些实施例,相邻行的存储器单元对应于同一源线,例如,如图9A所示,上下两行中的六个存储器单元均对应于源线SL。根据一些实施例,如图9A所示,源线SL在衬底中延伸穿过相邻行的存储器单元,其中,源线连通多个位线中源极区域。According to some embodiments, the memory cells of adjacent rows correspond to the same source line, eg, as shown in FIG. 9A , the six memory cells in the upper and lower rows all correspond to the source line SL. According to some embodiments, as shown in FIG. 9A, source lines SL extend in the substrate through adjacent rows of memory cells, wherein the source lines communicate with source regions in a plurality of bit lines.

如9B图9B所示的存储器单元阵列900与图9A所示的存储器单元阵列900的区别在于:代替在衬底中延伸穿过多个位线的源线SL,在每个位线上设置对应的钨栓塞(例如,位线BLn-1的对应钨栓塞Wn-1),并且通过金属线连接各个钨栓塞,以连通多个位线中的源极区域。The memory cell array 900 shown in FIG. 9B and FIG. 9B is different from the memory cell array 900 shown in FIG. 9A in that instead of source lines SL extending through a plurality of bit lines in the substrate, a corresponding tungsten plugs (eg, the corresponding tungsten plugs Wn-1 of the bit line BLn- 1 ), and the respective tungsten plugs are connected by metal lines to communicate the source regions in the plurality of bit lines.

以下描述本公开的一些示例性方面。Some exemplary aspects of the present disclosure are described below.

方面1.一种半导体器件的制造方法,包括:Aspect 1. A method of manufacturing a semiconductor device, comprising:

在衬底上依次形成氧化物层、浮置栅极层、电介质层、控制栅极层和硬掩模层;forming an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask layer in sequence on the substrate;

蚀刻所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层,以形成由所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层的剩余部分构成的栅极堆叠体;etching the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer to form the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer a gate stack formed by the remaining portion of the floating gate layer;

移除所述氧化物层的在所述衬底的第一区域和第二区域上的部分,其中,所述第一区域和所述第二区域位于所述栅极堆叠体两侧;removing portions of the oxide layer on first and second regions of the substrate, wherein the first and second regions flank the gate stack;

在所述衬底的所述第一区域和所述第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在所述栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构;A first select gate oxide structure and a second select gate oxide structure are formed on the first region and the second region of the substrate, respectively, and on both sides of the gate stack, respectively forming a first tunneling oxide structure and a second tunneling oxide structure;

在所述第一隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第一选择栅极,并且,在所述第二隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第二选择栅极;A first select gate is formed on the side of the first tunnel oxide structure opposite the gate stack, and on the side of the second tunnel oxide structure opposite the gate stack One side of the second select gate is formed;

蚀刻所述栅极堆叠体,以形成穿过所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层的剩余部分的第一开口;etching the gate stack to form a first opening through the hard mask layer, the control gate layer, the dielectric layer and the remainder of the floating gate layer;

在所述衬底的位于所述第一开口下方的部分中形成源极区域;以及forming a source region in a portion of the substrate below the first opening; and

在所述第一选择栅极的与所述第一开口相对的一侧的衬底中形成第一漏极区域,并且,在所述第二选择栅极的与所述第一开口相对的一侧的衬底中形成第二漏极区域。A first drain region is formed in the substrate on the side of the first select gate opposite the first opening, and a first drain region is formed on the side of the second select gate opposite the first opening A second drain region is formed in the substrate on the side.

方面2.根据方面1所述的方法,其中,所述在所述衬底的所述第一区域和所述第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在所述栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构包括:Aspect 2. The method of aspect 1, wherein the forming a first select gate oxide structure and a second select gate oxide on the first region and the second region, respectively, of the substrate and forming a first tunneling oxide structure and a second tunneling oxide structure on both sides of the gate stack respectively includes:

在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜,以形成所述第一选择栅极氧化物结构和所述第二选择栅极氧化物结构;以及A second gate oxide film is deposited on the first region and the second region of the substrate, and on the side and upper surface of the gate stack to form the first select gate oxide an oxide structure and the second select gate oxide structure; and

移除所述第一栅极氧化膜和第二栅极氧化膜的在所述栅极堆叠体的上表面上的部分,以形成所述第一隧穿氧化物结构和所述第二隧穿氧化物结构。removing portions of the first and second gate oxide films on the upper surface of the gate stack to form the first and second tunneling oxide structures oxide structure.

方面3.根据方面2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:Aspect 3. The method of aspect 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film:

在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及depositing a first gate oxide film on the first and second regions of the substrate, and on the side and upper surfaces of the gate stack; and

移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域、所述栅极堆叠体的上表面上的部分,并且,移除在所述栅极堆叠体的侧面上的所述第一栅极氧化膜的一部分。removing portions of the first gate oxide film on the first and second regions of the substrate, the upper surface of the gate stack, and removing the gate A portion of the first gate oxide film on the side surface of the electrode stack.

方面4.根据方面2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:Aspect 4. The method of aspect 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film:

在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;depositing a first gate oxide film on the first region and the second region of the substrate, and on the side and upper surfaces of the gate stack;

移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域、所述栅极堆叠体的上表面和侧面上的部分;以及removing portions of the first gate oxide film on the first and second regions of the substrate, an upper surface and side surfaces of the gate stack; and

在所述栅极堆叠体的侧面上形成侧壁氧化物结构。Sidewall oxide structures are formed on sides of the gate stack.

方面5.根据方面2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:Aspect 5. The method of aspect 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film:

在所述衬底的所述第一区域、所述第二区域和高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及depositing a first gate oxide film on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack; and

移除所述第一栅极氧化膜的在所述衬底的所述第一区域、所述第二区域、所述栅极堆叠体的上表面和侧面上的部分,并且所述在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜包括:removing portions of the first gate oxide film on the first region of the substrate, the second region, the upper surface and side surfaces of the gate stack, and the Deposition of a second gate oxide film on the first region and the second region of the substrate and on the side and upper surfaces of the gate stack includes:

在所述衬底的所述第一区域、所述第二区域和所述高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜。A second gate oxide film is deposited on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack.

方面6.根据方面5所述的方法,还包括在所述移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的上表面上的部分之前:Aspect 6. The method of aspect 5, further comprising removing the first gate oxide film on the first region and the second region of the substrate, and the gate Before the section on the upper surface of the pole stack:

在所述衬底的所述第一区域和所述第二区域中执行选择栅极沟道离子注入。Select gate channel ion implantation is performed in the first region and the second region of the substrate.

方面7.根据方面5所述的方法,还包括在所述衬底的所述第一区域、所述第二区域和所述高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之后:Aspect 7. The method of aspect 5, further comprising on the first region, the second region, and the high voltage tube region of the substrate, and side and upper surfaces of the gate stack After depositing the second gate oxide film on:

在所述衬底中进行逻辑井植入;performing logic well implantation in the substrate;

在所述衬底上形成逻辑IO栅极氧化物结构;以及forming a logic IO gate oxide structure on the substrate; and

在所述衬底上形成逻辑核心栅极氧化物结构。A logic core gate oxide structure is formed on the substrate.

方面8.根据方面1-7中的任一项所述的方法,其中,所述在所述第一隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第一选择栅极,并且,在所述第二隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第二选择栅极包括:Aspect 8. The method of any of aspects 1-7, wherein the forming a first select gate on an opposite side of the first tunnel oxide structure from the gate stack , and forming a second select gate on a side of the second tunnel oxide structure opposite to the gate stack includes:

在所述第一选择栅极氧化物结构和所述第二选择栅极氧化物结构上、以及所述栅极堆叠体上沉积选择栅极多晶硅;以及depositing select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack; and

移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极。The portion of the deposited select gate polysilicon is removed to form the first select gate and the second select gate.

方面9.根据方面8所述的方法,其中,所述移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极包括:Aspect 9. The method of aspect 8, wherein the removing the deposited portion of the select gate polysilicon to form the first select gate and the second select gate comprises:

对所述所沉积的所述选择栅极多晶硅进行平坦化处理;planarizing the deposited select gate polysilicon;

蚀刻经过所述平坦化处理的所述选择栅极多晶硅,以形成分别位于所述衬底的第一区域和第二区域上的第一多晶硅结构和第二多晶硅结构;以及etching the select gate polysilicon subjected to the planarization process to form a first polysilicon structure and a second polysilicon structure on first and second regions of the substrate, respectively; and

蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极。The first and second polysilicon structures are etched to form the first and second select gates, respectively.

方面10.根据方面9所述的方法,其中,所述蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极包括:Aspect 10. The method of aspect 9, wherein the etching the first and second polysilicon structures to form the first and second select gates, respectively include:

对所述第一多晶硅结构和所述第二多晶硅结构进行第一光刻处理;performing a first photolithography process on the first polysilicon structure and the second polysilicon structure;

以所述第一光刻处理所形成的光刻胶图案作为掩模,蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极;以及Using the photoresist pattern formed by the first photolithography process as a mask, the first polysilicon structure and the second polysilicon structure are etched to form the first selection gate and the first selection gate, respectively. two select gates; and

移除所述第一光刻处理所形成的光刻胶图案。The photoresist pattern formed by the first photolithography process is removed.

方面11.根据方面9所述的方法,其中,所述蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极包括:Aspect 11. The method of aspect 9, wherein the etching the first and second polysilicon structures to form the first and second select gates, respectively include:

在所述栅极堆叠体的两侧分别形成第一硬掩模间隔体和第二硬掩模间隔体,其中,所述第一硬掩模间隔体位于所述第一多晶硅结构上,且所述第二硬掩模间隔体位于所述第二多晶硅结构上;以及A first hard mask spacer and a second hard mask spacer are respectively formed on both sides of the gate stack, wherein the first hard mask spacer is located on the first polysilicon structure, and the second hardmask spacers are on the second polysilicon structure; and

以所述第一硬掩模间隔体和所述第二硬掩模间隔体作为掩模,蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极。etching the first polysilicon structure and the second polysilicon structure using the first hard mask spacers and the second hard mask spacers as masks to form the first select gates, respectively pole and the second select gate.

方面12.根据方面8所述的方法,其中,所述移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极包括:Aspect 12. The method of aspect 8, wherein the removing the deposited portion of the select gate polysilicon to form the first select gate and the second select gate comprises:

自对准蚀刻所述所沉积的选择栅极多晶硅,以分别形成所述第一选择栅极和所述第二选择栅极。The deposited select gate polysilicon is self-aligned to form the first select gate and the second select gate, respectively.

方面13.根据方面8所述的方法,还包括:Aspect 13. The method of aspect 8, further comprising:

在所述第一选择栅极氧化物结构和所述第二选择栅极氧化物结构上、以及所述栅极堆叠体上沉积所述选择栅极多晶硅的同时,在所述衬底的逻辑栅极区域上沉积逻辑栅极多晶硅;以及While depositing the select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack, a logic gate of the substrate is depositing logic gate polysilicon on the pole regions; and

在所述移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极的同时,移除所述逻辑栅极多晶硅的部分,以形成所述逻辑栅极。At the same time as the removing the deposited portion of the select gate polysilicon to form the first select gate and the second select gate, removing the portion of the logic gate polysilicon to form the logic gate.

方面14.根据方面1-7中的任一项所述的方法,其中,所述在所述第一选择栅极的与所述第一开口相对的一侧的衬底中形成第一漏极区域,并且,在所述第二选择栅极的与所述第一开口相对的一侧的衬底中形成第二漏极区域包括:Aspect 14. The method of any of aspects 1-7, wherein the forming a first drain in the substrate on a side of the first select gate opposite the first opening region, and forming a second drain region in the substrate on the opposite side of the second select gate from the first opening includes:

在所述第一选择栅极的与所述第一开口相对的一侧的衬底中和所述第二选择栅极的与所述第一开口相对的一侧的衬底中执行轻掺杂漏极注入,以形成位于所述第一选择栅极的一侧的第一轻掺杂漏极区域和位于所述第二选择栅极的一侧的第二轻掺杂漏极区域;Light doping is performed in the substrate on the side of the first select gate opposite the first opening and in the substrate on the side of the second select gate opposite the first opening Drain implantation to form a first lightly doped drain region on one side of the first select gate and a second lightly doped drain region on one side of the second select gate;

在所述第一选择栅极的与所述第一开口相对的一侧形成第一漏极间隔体,并且,在所述第二选择栅极的与所述第一开口相对的一侧形成第二漏极间隔体;A first drain spacer is formed on the opposite side of the first select gate from the first opening, and a first drain spacer is formed on the opposite side of the second select gate from the first opening. Two drain spacers;

在所述第一选择栅极的面对所述第一开口的一侧形成第一源极间隔体,并且,在所述第二选择栅极的面对所述第一开口的一侧形成第二源极间隔体;以及A first source spacer is formed on a side of the first select gate facing the first opening, and a first source spacer is formed on a side of the second select gate facing the first opening two source spacers; and

在所述第一漏极间隔体的与所述第一开口相对的一侧的衬底中和所述第二漏极间隔体的与所述第一开口相对的一侧的衬底中执行重掺杂漏极注入,以形成位于所述第一漏极间隔体的一侧的第一重掺杂漏极区域和位于所述第二漏极间隔体的一侧的第二重掺杂漏极区域。Reproducing is performed in the substrate on the side of the first drain spacer opposite the first opening and in the substrate on the side of the second drain spacer opposite the first opening a doped drain implant to form a first heavily doped drain region on one side of the first drain spacer and a second heavily doped drain on one side of the second drain spacer area.

方面15.根据方面1-7中的任一项所述的方法,还包括:Aspect 15. The method of any of aspects 1-7, further comprising:

在所述第一选择栅极、所述第一漏极区域、所述源极区域、所述第二选择栅极和所述第二漏极区域上形成硅化物结构。A suicide structure is formed on the first select gate, the first drain region, the source region, the second select gate and the second drain region.

方面16.一种半导体器件,由根据方面1-15中的任一项的方法制造。Aspect 16. A semiconductor device fabricated by the method of any of aspects 1-15.

虽然在附图和和前面的描述中已经详细地说明和描述了本公开,但是这样的说明和描述应当被认为是说明性的和示意性的,而非限制性的;本公开不限于所公开的实施例。通过研究附图、公开内容和所附的权利要求书,本领域技术人员在实践所要求保护的主题时,能够理解和实现对于所公开的实施例的变型。在权利要求书中,词语“包括”不排除未列出的其他元件或步骤,不定冠词“一”或“一个”不排除多个,并且术语“多个”是指两个或两个以上。在相互不同的从属权利要求中记载了某些措施的仅有事实并不表明这些措施的组合不能用来获益。While the present disclosure has been illustrated and described in detail in the accompanying drawings and the foregoing description, such illustration and description are to be considered illustrative and schematic and not restrictive; example. Variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed subject matter, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps not listed, the indefinite article "a" or "an" does not exclude a plurality, and the term "a plurality" means two or more . The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims (10)

1.一种半导体器件的制造方法,包括:1. A method of manufacturing a semiconductor device, comprising: 在衬底上依次形成氧化物层、浮置栅极层、电介质层、控制栅极层和硬掩模层;forming an oxide layer, a floating gate layer, a dielectric layer, a control gate layer and a hard mask layer in sequence on the substrate; 蚀刻所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层,以形成由所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层的剩余部分构成的栅极堆叠体;etching the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer to form the hard mask layer, the control gate layer, the dielectric layer and the floating gate layer a gate stack formed by the remaining portion of the floating gate layer; 移除所述氧化物层的在所述衬底的第一区域和第二区域上的部分,其中,所述第一区域和所述第二区域位于所述栅极堆叠体两侧;removing portions of the oxide layer on first and second regions of the substrate, wherein the first and second regions flank the gate stack; 在所述衬底的所述第一区域和所述第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在所述栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构;A first select gate oxide structure and a second select gate oxide structure are formed on the first region and the second region of the substrate, respectively, and on both sides of the gate stack, respectively forming a first tunneling oxide structure and a second tunneling oxide structure; 在所述第一隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第一选择栅极,并且,在所述第二隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第二选择栅极;A first select gate is formed on the side of the first tunnel oxide structure opposite the gate stack, and on the side of the second tunnel oxide structure opposite the gate stack One side of the second select gate is formed; 蚀刻所述栅极堆叠体,以形成穿过所述硬掩模层、所述控制栅极层、所述电介质层和所述浮置栅极层的剩余部分的第一开口;etching the gate stack to form a first opening through the hard mask layer, the control gate layer, the dielectric layer and the remainder of the floating gate layer; 在所述衬底的位于所述第一开口下方的部分中形成源极区域;以及forming a source region in a portion of the substrate below the first opening; and 在所述第一选择栅极的与所述第一开口相对的一侧的衬底中形成第一漏极区域,并且,在所述第二选择栅极的与所述第一开口相对的一侧的衬底中形成第二漏极区域。A first drain region is formed in the substrate on the side of the first select gate opposite the first opening, and a first drain region is formed on the side of the second select gate opposite the first opening A second drain region is formed in the substrate on the side. 2.根据权利要求1所述的方法,其中,所述在所述衬底的所述第一区域和所述第二区域上分别形成第一选择栅极氧化物结构和第二选择栅极氧化物结构,并且,在所述栅极堆叠体两侧分别形成第一隧穿氧化物结构和第二隧穿氧化物结构包括:2. The method of claim 1, wherein the forming a first select gate oxide structure and a second select gate oxide on the first region and the second region of the substrate, respectively and forming a first tunneling oxide structure and a second tunneling oxide structure on both sides of the gate stack respectively includes: 在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜,以形成所述第一选择栅极氧化物结构和所述第二选择栅极氧化物结构;以及A second gate oxide film is deposited on the first region and the second region of the substrate, and on the side and upper surface of the gate stack to form the first select gate oxide an oxide structure and the second select gate oxide structure; and 移除所述第一栅极氧化膜和第二栅极氧化膜的在所述栅极堆叠体的上表面上的部分,以形成所述第一隧穿氧化物结构和所述第二隧穿氧化物结构。removing portions of the first and second gate oxide films on the upper surface of the gate stack to form the first and second tunneling oxide structures oxide structure. 3.根据权利要求2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:3. The method of claim 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film: 在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及depositing a first gate oxide film on the first and second regions of the substrate, and on the side and upper surfaces of the gate stack; and 移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域、所述栅极堆叠体的上表面上的部分,并且,移除在所述栅极堆叠体的侧面上的所述第一栅极氧化膜的一部分。removing portions of the first gate oxide film on the first and second regions of the substrate, the upper surface of the gate stack, and removing the gate A portion of the first gate oxide film on the side surface of the electrode stack. 4.根据权利要求2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:4. The method of claim 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film: 在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;depositing a first gate oxide film on the first region and the second region of the substrate, and on the side and upper surfaces of the gate stack; 移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域、所述栅极堆叠体的上表面和侧面上的部分;以及removing portions of the first gate oxide film on the first and second regions of the substrate, an upper surface and side surfaces of the gate stack; and 在所述栅极堆叠体的侧面上形成侧壁氧化物结构。Sidewall oxide structures are formed on sides of the gate stack. 5.根据权利要求2所述的方法,还包括在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之前:5. The method of claim 2, further comprising depositing a second gate on the first region and the second region of the substrate, and on side and upper surfaces of the gate stack Before oxide film: 在所述衬底的所述第一区域、所述第二区域和高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第一栅极氧化膜;以及depositing a first gate oxide film on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack; and 移除所述第一栅极氧化膜的在所述衬底的所述第一区域、所述第二区域、所述栅极堆叠体的上表面和侧面上的部分,并且所述在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜包括:removing portions of the first gate oxide film on the first region of the substrate, the second region, the upper surface and side surfaces of the gate stack, and the Deposition of a second gate oxide film on the first region and the second region of the substrate and on the side and upper surfaces of the gate stack includes: 在所述衬底的所述第一区域、所述第二区域和所述高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜。A second gate oxide film is deposited on the first region, the second region and the high voltage tube region of the substrate, and on the side and upper surfaces of the gate stack. 6.根据权利要求5所述的方法,还包括在所述移除所述第一栅极氧化膜的在所述衬底的所述第一区域和所述第二区域上、以及所述栅极堆叠体的上表面上的部分之前:6. The method of claim 5, further comprising removing the first gate oxide film on the first region and the second region of the substrate, and the gate Before the section on the upper surface of the pole stack: 在所述衬底的所述第一区域和所述第二区域中执行选择栅极沟道离子注入。Select gate channel ion implantation is performed in the first region and the second region of the substrate. 7.根据权利要求5所述的方法,还包括在所述衬底的所述第一区域、所述第二区域和所述高压管区域上、以及所述栅极堆叠体的侧面和上表面上沉积第二栅极氧化膜之后:7. The method of claim 5, further comprising on the first region, the second region, and the high voltage tube region of the substrate, and side and upper surfaces of the gate stack After depositing the second gate oxide film on: 在所述衬底中进行逻辑井植入;performing logic well implantation in the substrate; 在所述衬底上形成逻辑IO栅极氧化物结构;以及forming a logic IO gate oxide structure on the substrate; and 在所述衬底上形成逻辑核心栅极氧化物结构。A logic core gate oxide structure is formed on the substrate. 8.根据权利要求1-7中的任一项所述的方法,其中,所述在所述第一隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第一选择栅极,并且,在所述第二隧穿氧化物结构的与所述栅极堆叠体相对的一侧形成第二选择栅极包括:8. The method of any one of claims 1-7, wherein the forming a first select gate on an opposite side of the first tunnel oxide structure from the gate stack , and forming a second select gate on a side of the second tunnel oxide structure opposite to the gate stack includes: 在所述第一选择栅极氧化物结构和所述第二选择栅极氧化物结构上、以及所述栅极堆叠体上沉积选择栅极多晶硅;以及depositing select gate polysilicon on the first select gate oxide structure and the second select gate oxide structure, and on the gate stack; and 移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极。The portion of the deposited select gate polysilicon is removed to form the first select gate and the second select gate. 9.根据权利要求8所述的方法,其中,所述移除所沉积的所述选择栅极多晶硅的部分,以形成所述第一选择栅极和所述第二选择栅极包括:9. The method of claim 8, wherein the removing the deposited portion of the select gate polysilicon to form the first select gate and the second select gate comprises: 对所述所沉积的所述选择栅极多晶硅进行平坦化处理;planarizing the deposited select gate polysilicon; 蚀刻经过所述平坦化处理的所述选择栅极多晶硅,以形成分别位于所述衬底的第一区域和第二区域上的第一多晶硅结构和第二多晶硅结构;以及etching the select gate polysilicon subjected to the planarization process to form a first polysilicon structure and a second polysilicon structure on first and second regions of the substrate, respectively; and 蚀刻所述第一多晶硅结构和第二多晶硅结构,以分别形成所述第一选择栅极和所述第二选择栅极。The first and second polysilicon structures are etched to form the first and second select gates, respectively. 10.一种半导体器件,由根据权利要求1-9中的任一项的方法制造。10. A semiconductor device manufactured by the method according to any of claims 1-9.
CN202210507404.4A 2022-05-10 2022-05-10 Semiconductor device and method for manufacturing the same Pending CN114743976A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210507404.4A CN114743976A (en) 2022-05-10 2022-05-10 Semiconductor device and method for manufacturing the same
PCT/CN2022/099910 WO2023216368A1 (en) 2022-05-10 2022-06-20 Semiconductor device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210507404.4A CN114743976A (en) 2022-05-10 2022-05-10 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
CN114743976A true CN114743976A (en) 2022-07-12

Family

ID=82285347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210507404.4A Pending CN114743976A (en) 2022-05-10 2022-05-10 Semiconductor device and method for manufacturing the same

Country Status (2)

Country Link
CN (1) CN114743976A (en)
WO (1) WO2023216368A1 (en)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331046A (en) * 1996-06-13 1997-12-22 Ricoh Co Ltd Method of manufacturing semiconductor memory
US6043530A (en) * 1998-04-15 2000-03-28 Chang; Ming-Bing Flash EEPROM device employing polysilicon sidewall spacer as an erase gate
US6091104A (en) * 1999-03-24 2000-07-18 Chen; Chiou-Feng Flash memory cell with self-aligned gates and fabrication process
KR100356471B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM cell
JP2003209192A (en) * 2002-01-15 2003-07-25 Matsushita Electric Ind Co Ltd Semiconductor storage device and method for manufacturing the same
US20050184332A1 (en) * 2004-02-20 2005-08-25 Matsushita Electric Industrial Co., Ltd. Nonvolatile semiconductor memory device, method for driving the same, and method for fabricating the same
CN1841785A (en) * 2005-03-14 2006-10-04 三星电子株式会社 Split gate memory cell and method of manufacturing split gate memory cell array
CN1282249C (en) * 2003-04-01 2006-10-25 力晶半导体股份有限公司 Flash memory unit, method of manufacturing flash memory unit and method of operating the same
CN100421253C (en) * 2002-10-07 2008-09-24 西利康存储技术股份有限公司 Flash memory cell and method of manufacturing the same
CN100468747C (en) * 2006-06-22 2009-03-11 力晶半导体股份有限公司 Operation method of non-volatile memory
US20090085092A1 (en) * 2007-09-28 2009-04-02 Nec Electronics Corporation Non-volatile semiconductor memory device having an erasing gate
CN100481463C (en) * 2004-03-17 2009-04-22 西利康存储技术股份有限公司 Flash memory with enhanced program and erase coupling and process of fabricating the same
US7547941B2 (en) * 2006-05-04 2009-06-16 Elite Semiconductor Memory Technology, Inc. NAND non-volatile two-bit memory and fabrication method
US7611941B1 (en) * 2008-06-18 2009-11-03 Infineon Technologies Ag Method for manufacturing a memory cell arrangement
CN101783351A (en) * 2008-12-31 2010-07-21 东部高科股份有限公司 Flash memory device and manufacturing method the same
US8575683B1 (en) * 2012-05-16 2013-11-05 United Microelectronics Corp. Semiconductor device and method of fabricating the same
CN103811496A (en) * 2012-11-01 2014-05-21 台湾积体电路制造股份有限公司 Method and apparatus for non-volatile memory cells with increased programming efficiency
US8884352B2 (en) * 2012-10-08 2014-11-11 Infineon Technologies Ag Method for manufacturing a memory cell, a method for manufacturing a memory cell arrangement, and a memory cell
CN105206612A (en) * 2014-06-27 2015-12-30 台湾积体电路制造股份有限公司 Split Gate Flash Memory Structure with a Damage Free Select Gate and a Method of Making the Split Gate Flash Memory Structure
US9484352B2 (en) * 2014-12-17 2016-11-01 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a split-gate flash memory cell device with a low power logic device
CN106158875A (en) * 2015-05-15 2016-11-23 台湾积体电路制造股份有限公司 There is the memory unit improving erasing speed
CN106575656A (en) * 2014-08-08 2017-04-19 硅存储技术公司 Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling
CN107210303A (en) * 2015-01-05 2017-09-26 硅存储技术公司 Strengthen the split-gate nonvolatile flash memory cell and its manufacture method of grid with metal
CN107342288A (en) * 2016-04-29 2017-11-10 硅存储技术公司 Divide grid-type dual bit nonvolatile memory unit
US20200381541A1 (en) * 2019-05-30 2020-12-03 Texas Instruments Incorporated Split gate memory cell fabrication and system
CN112585680A (en) * 2018-08-23 2021-03-30 硅存储技术股份有限公司 Method of programming split gate flash memory cells with erase gates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605840B1 (en) * 2002-02-07 2003-08-12 Ching-Yuan Wu Scalable multi-bit flash memory cell and its memory array
US8951864B2 (en) * 2012-02-13 2015-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Split-gate device and method of fabricating the same
US10825914B2 (en) * 2017-11-13 2020-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacturing method of semiconductor device

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331046A (en) * 1996-06-13 1997-12-22 Ricoh Co Ltd Method of manufacturing semiconductor memory
US6043530A (en) * 1998-04-15 2000-03-28 Chang; Ming-Bing Flash EEPROM device employing polysilicon sidewall spacer as an erase gate
US6091104A (en) * 1999-03-24 2000-07-18 Chen; Chiou-Feng Flash memory cell with self-aligned gates and fabrication process
KR100356471B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM cell
JP2003209192A (en) * 2002-01-15 2003-07-25 Matsushita Electric Ind Co Ltd Semiconductor storage device and method for manufacturing the same
CN100421253C (en) * 2002-10-07 2008-09-24 西利康存储技术股份有限公司 Flash memory cell and method of manufacturing the same
CN1282249C (en) * 2003-04-01 2006-10-25 力晶半导体股份有限公司 Flash memory unit, method of manufacturing flash memory unit and method of operating the same
US20050184332A1 (en) * 2004-02-20 2005-08-25 Matsushita Electric Industrial Co., Ltd. Nonvolatile semiconductor memory device, method for driving the same, and method for fabricating the same
CN100481463C (en) * 2004-03-17 2009-04-22 西利康存储技术股份有限公司 Flash memory with enhanced program and erase coupling and process of fabricating the same
CN100576568C (en) * 2005-03-14 2009-12-30 三星电子株式会社 Split gate memory cell and method of manufacturing split gate memory cell array
CN1841785A (en) * 2005-03-14 2006-10-04 三星电子株式会社 Split gate memory cell and method of manufacturing split gate memory cell array
US7547941B2 (en) * 2006-05-04 2009-06-16 Elite Semiconductor Memory Technology, Inc. NAND non-volatile two-bit memory and fabrication method
CN100468747C (en) * 2006-06-22 2009-03-11 力晶半导体股份有限公司 Operation method of non-volatile memory
US20090085092A1 (en) * 2007-09-28 2009-04-02 Nec Electronics Corporation Non-volatile semiconductor memory device having an erasing gate
US7611941B1 (en) * 2008-06-18 2009-11-03 Infineon Technologies Ag Method for manufacturing a memory cell arrangement
CN101783351A (en) * 2008-12-31 2010-07-21 东部高科股份有限公司 Flash memory device and manufacturing method the same
US8575683B1 (en) * 2012-05-16 2013-11-05 United Microelectronics Corp. Semiconductor device and method of fabricating the same
US8884352B2 (en) * 2012-10-08 2014-11-11 Infineon Technologies Ag Method for manufacturing a memory cell, a method for manufacturing a memory cell arrangement, and a memory cell
CN103811496A (en) * 2012-11-01 2014-05-21 台湾积体电路制造股份有限公司 Method and apparatus for non-volatile memory cells with increased programming efficiency
CN105206612B (en) * 2014-06-27 2018-05-25 台湾积体电路制造股份有限公司 With separate gate flash memory structure and its manufacturing method without damage selection gate
CN105206612A (en) * 2014-06-27 2015-12-30 台湾积体电路制造股份有限公司 Split Gate Flash Memory Structure with a Damage Free Select Gate and a Method of Making the Split Gate Flash Memory Structure
CN106575656A (en) * 2014-08-08 2017-04-19 硅存储技术公司 Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling
US9484352B2 (en) * 2014-12-17 2016-11-01 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a split-gate flash memory cell device with a low power logic device
CN107210303A (en) * 2015-01-05 2017-09-26 硅存储技术公司 Strengthen the split-gate nonvolatile flash memory cell and its manufacture method of grid with metal
CN106158875A (en) * 2015-05-15 2016-11-23 台湾积体电路制造股份有限公司 There is the memory unit improving erasing speed
CN106158875B (en) * 2015-05-15 2019-05-24 台湾积体电路制造股份有限公司 With the memory unit for improving erasing speed
CN107342288A (en) * 2016-04-29 2017-11-10 硅存储技术公司 Divide grid-type dual bit nonvolatile memory unit
CN112585680A (en) * 2018-08-23 2021-03-30 硅存储技术股份有限公司 Method of programming split gate flash memory cells with erase gates
CN112585680B (en) * 2018-08-23 2021-12-14 硅存储技术股份有限公司 Method of programming split gate flash memory cells with erase gates
US20200381541A1 (en) * 2019-05-30 2020-12-03 Texas Instruments Incorporated Split gate memory cell fabrication and system

Also Published As

Publication number Publication date
WO2023216368A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TW565947B (en) Non-volatile memory cells with selectively formed floating gate
KR930007527B1 (en) Nonvolatile semiconductor memory device having a storage cell array and circumference circuit and method for fabricating thereof
US20090191681A1 (en) Nor-type flash memory device with twin bit cell structure and method of fabricating the same
US7960266B2 (en) Spacer patterns using assist layer for high density semiconductor devices
US20060084219A1 (en) Advanced NROM structure and method of fabrication
US10923601B2 (en) Charge trapping split gate device and method of fabricating same
JPH0642552B2 (en) High density split gate non-volatile memory cell manufacturing method
US7592225B2 (en) Methods of forming spacer patterns using assist layer for high density semiconductor devices
KR0155859B1 (en) Flash memory device and manufacturing method thereof
US20040152260A1 (en) Non-volatile memory cell with non-uniform surface floating gate and control gate
TW456039B (en) Triple polysilicon embedded NVRAM cell and method thereof
JP2910673B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
CN101533776B (en) Method for manufacturing semiconductor memory device
CN108109656B (en) Flash memory array and manufacturing method thereof
US20070200165A1 (en) Floating gate, a nonvolatile memory device including the floating gate and method of fabricating the same
CN114937669A (en) Semiconductor device and method for manufacturing the same
JP2002141425A (en) Sidewall process to improve flash memory cell performance
KR100673205B1 (en) Manufacturing Method of Flash Memory Device
CN114743976A (en) Semiconductor device and method for manufacturing the same
KR100673226B1 (en) Manufacturing method of nonvolatile memory device
JP2007013082A (en) Flash memory device and manufacturing method thereof
KR20080037229A (en) Nonvolatile Memory with Three States and Manufacturing Method Thereof
CN115249713B (en) Semiconductor structure and method for forming the same, and memory
CN114899189A (en) Semiconductor device and method of manufacturing the same
CN115000073A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: Room 213-175, 2nd Floor, Building 1, No. 180 Kecheng Street, Qiaosi Street, Linping District, Hangzhou City, Zhejiang Province, 311100

Applicant after: Hangzhou Zhicun Computing Technology Co.,Ltd.

Address before: 1707 shining building, 35 Xueyuan Road, Haidian District, Beijing 100083

Applicant before: BEIJING WITINMEM TECHNOLOGY Co.,Ltd.

Country or region before: China

CB02 Change of applicant information