CN114739869B - Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum - Google Patents
Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum Download PDFInfo
- Publication number
- CN114739869B CN114739869B CN202210380051.6A CN202210380051A CN114739869B CN 114739869 B CN114739869 B CN 114739869B CN 202210380051 A CN202210380051 A CN 202210380051A CN 114739869 B CN114739869 B CN 114739869B
- Authority
- CN
- China
- Prior art keywords
- calcium sulfate
- content
- gypsum
- sulfate hemihydrate
- setting time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010440 gypsum Substances 0.000 title claims abstract description 74
- 229910052602 gypsum Inorganic materials 0.000 title claims abstract description 74
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 title claims abstract description 61
- 239000006227 byproduct Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims description 11
- 229940057306 hemihydrate calcium sulfate Drugs 0.000 claims description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000004568 cement Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000002715 modification method Methods 0.000 claims description 2
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 claims description 2
- 235000013923 monosodium glutamate Nutrition 0.000 claims description 2
- 239000004223 monosodium glutamate Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims 1
- 239000010436 fluorite Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 3
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 239000012086 standard solution Substances 0.000 abstract description 3
- 238000007711 solidification Methods 0.000 abstract 1
- 230000008023 solidification Effects 0.000 abstract 1
- 238000004448 titration Methods 0.000 description 5
- 239000004566 building material Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000000705 flame atomic absorption spectrometry Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940095672 calcium sulfate Drugs 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/10—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
- G01N11/12—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring rising or falling speed of the body; by measuring penetration of wedged gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Optimization (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及建筑材料技术领域,特别的涉及一种快速检测改性工业副产石膏中半水硫酸钙含量的方法。The invention relates to the technical field of building materials, in particular to a method for quickly detecting the content of calcium sulfate hemihydrate in modified industrial by-product gypsum.
背景技术Background technique
石膏是一种“绿色”的材料,在建筑业和其他工业中有着广泛的应用。石膏在生产过程中能耗低、环境污染少,可以回收处理循环使用,因而,石膏产业有着良好的发展前景。尤其是当前电力、化工等工业生产过程排放大量的副产石膏即工业副产石膏,是一些工业生产过程的副产物,工业副产石膏种类繁多,例如燃煤电厂烟气脱硫产生的脱硫石膏,磷肥产生的副产物磷石膏,陶瓷厂产生的副产物陶模石膏,以及其它化工厂产生的钛石膏,柠檬石膏等等。目前我国工业副产石膏累积堆存量已超过3亿吨。工业副产石膏资源化利用量很低,大多处于就地堆存,既占用土地,又浪费资源,含有的酸性及其它有害物质容易对周边环境造成污染,带来严重的安全和生态环境污染问题,已经成为制约我国磷化工行业可持续发展的重要因素。因此,亟需大力推动工业固体废弃物综合利用,提升工业副产石膏开发利用水平,到2020年,工业副产石膏综合利用量提高到50%。可见,工业副产石膏综合利用任务十分艰巨,加强关键共性技术研发,建成一批大规模、高附加值利用的产业化示范项目成为今后工业副产石膏综合利用的重点任务。Gypsum is a "green" material that is widely used in the construction industry and other industries. Gypsum has low energy consumption and little environmental pollution during the production process, and can be recycled and reused. Therefore, the gypsum industry has a good development prospect. In particular, the current industrial production processes such as power and chemical industries emit a large amount of by-product gypsum, namely industrial by-product gypsum, which is a by-product of some industrial production processes. There are many types of industrial by-product gypsum, such as desulfurization gypsum produced by flue gas desulfurization in coal-fired power plants, phosphogypsum produced as a by-product of phosphate fertilizers, ceramic mold gypsum produced by ceramic factories, and titanium gypsum and lemon gypsum produced by other chemical plants. At present, the accumulated stockpile of industrial by-product gypsum in my country has exceeded 300 million tons. The resource utilization of industrial by-product gypsum is very low, and most of it is stored on site, which not only occupies land, but also wastes resources. The acid and other harmful substances contained in it are easy to pollute the surrounding environment, bringing serious safety and ecological environmental pollution problems, which has become an important factor restricting the sustainable development of my country's phosphorus chemical industry. Therefore, it is urgent to vigorously promote the comprehensive utilization of industrial solid waste and improve the level of development and utilization of industrial by-product gypsum. By 2020, the comprehensive utilization of industrial by-product gypsum will be increased to 50%. It can be seen that the task of comprehensive utilization of industrial by-product gypsum is very arduous. Strengthening the research and development of key common technologies and building a number of large-scale, high-value-added industrial demonstration projects will become the key tasks of comprehensive utilization of industrial by-product gypsum in the future.
磷石膏、钛石膏等工业副产石膏是一种气硬性胶凝材料,很难直接利用,因此在综合利用前,必须对其进行预处理。当前的处理方式主要包括高温煅烧改性与真空高压改性,将其改性为半水石膏(其中的硫酸钙为β-CaSO4·1/2H2O),利用半水石膏的水硬性胶凝特性,再资源化利用制备各种建材制品,因而广泛用于建筑建材工业。而衡量改性后的工业副产石膏(半水石膏)质量好坏的关键性指标就是β半水硫酸钙含量,半水石膏中β半水硫酸钙的含量一般在60%以上,其中β半水硫酸钙的含量越高,半水石膏的性能越好。所以,半水石膏生产厂商及产品入厂前对其β半水硫酸钙含量的检测是必检项目,但当前半水硫酸钙含量的常规检测方法为:EDTA化学滴定法与火焰原子吸收光谱法,上述方法都需要配置标准溶液以及相关化学试剂前处理等繁杂流程,并且火焰原子吸收光谱法测试费用较贵,因此当前很多改性石膏企业很难去实时监控所产改性后的工业副产石膏中β半水硫酸钙含量的高低。Industrial by-product gypsum such as phosphogypsum and titanium gypsum is an air-hardening gelling material, which is difficult to use directly. Therefore, it must be pretreated before comprehensive utilization. The current treatment methods mainly include high-temperature calcination modification and vacuum high-pressure modification, which modify it into hemihydrate gypsum (wherein the calcium sulfate is β-CaSO 4 ·1/2H 2 O), and utilize the hydraulic gelling properties of hemihydrate gypsum to prepare various building materials and products. Therefore, it is widely used in the construction and building materials industry. The key indicator to measure the quality of the modified industrial by-product gypsum (hemihydrate gypsum) is the content of β-calcium sulfate hemihydrate. The content of β-calcium sulfate hemihydrate in hemihydrate gypsum is generally above 60%. The higher the content of β-calcium sulfate hemihydrate, the better the performance of the hemihydrate gypsum. Therefore, it is a must-test item for hemihydrate gypsum manufacturers and products to test the β-calcium sulfate hemihydrate content before entering the factory. However, the current conventional detection methods for hemihydrate calcium sulfate content are: EDTA chemical titration method and flame atomic absorption spectrometry. The above methods require complicated processes such as configuring standard solutions and related chemical reagent pretreatment, and the flame atomic absorption spectrometry test is expensive. Therefore, it is difficult for many modified gypsum companies to monitor the β-calcium sulfate hemihydrate content in the modified industrial by-product gypsum in real time.
发明内容Summary of the invention
针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种快速检测改性工业副产石膏中半水硫酸钙含量的方法,解决现有半水硫酸钙的检测方法存在操作繁琐、成本高、检测时间长和无法实现实时监测等问题。In view of the above-mentioned deficiencies in the prior art, the technical problem to be solved by the present invention is: how to provide a method for quickly detecting the content of calcium sulfate hemihydrate in modified industrial by-product gypsum, so as to solve the problems of the existing detection methods of calcium sulfate hemihydrate, such as complicated operation, high cost, long detection time and inability to achieve real-time monitoring.
为了解决上述技术问题,本发明采用了如下的技术方案:一种快速检测改性工业副产石膏中半水硫酸钙含量的方法,包括以下步骤:In order to solve the above technical problems, the present invention adopts the following technical solution: a method for quickly detecting the content of calcium sulfate hemihydrate in modified industrial by-product gypsum, comprising the following steps:
S1:分别将不同的改性工业副产石膏标准样品与水置于水泥净浆搅拌机中,搅拌均匀后,将其移入凝结时间模具中并抹平得到水平表面,然后将维卡仪试针置于所述水平表面,检测并记录所述维卡仪试针在水平表面垂直落入距离模具底板5mm左右时的时间,即所述改性工业副产石膏的初凝时间;所述改性工业副产石膏标准样品中含有梯度含量的半水硫酸钙;S1: Different modified industrial by-product gypsum standard samples and water are placed in a cement slurry mixer respectively, and after being stirred evenly, they are moved into a setting time mold and smoothed to obtain a horizontal surface, and then a Vicat test needle is placed on the horizontal surface, and the time when the Vicat test needle falls vertically on the horizontal surface to a distance of about 5 mm from the bottom plate of the mold is detected and recorded, i.e., the initial setting time of the modified industrial by-product gypsum; the modified industrial by-product gypsum standard sample contains a gradient content of hemihydrate calcium sulfate;
S2:将步骤S1得到的初凝时间与对应的改性工业副产石膏中半水硫酸钙含量同时导入数据分析软件中作图,建立初凝时间T与半水硫酸钙的(质量百分)含量V的相关关系的标准曲线方程;所述T的单位为min,所述V的单位为%;S2: The initial setting time obtained in step S1 and the corresponding content of hemihydrate calcium sulfate in the modified industrial by-product gypsum are simultaneously introduced into the data analysis software for plotting, and a standard curve equation for the correlation between the initial setting time T and the (mass percentage) content V of hemihydrate calcium sulfate is established; the unit of T is min, and the unit of V is %;
S3:按照步骤S1的方法检测待测的改性工业副产石膏样品的初凝时间,然后将所述初凝时间带入步骤S2得到的标准曲线方程中,由此计算得出该待检测样本中半水硫酸钙的含量;所述半水硫酸钙为β半水硫酸钙(β-CaSO4·1/2H2O)。S3: Detect the initial setting time of the modified industrial by-product gypsum sample to be tested according to the method of step S1, and then substitute the initial setting time into the standard curve equation obtained in step S2, thereby calculating the content of calcium sulfate hemihydrate in the sample to be tested; the calcium sulfate hemihydrate is β calcium sulfate hemihydrate (β-CaSO 4 ·1/2H 2 O).
作为优选的,所述改性工业副产石膏与水的质量比为9~12:8~11。Preferably, the mass ratio of the modified industrial by-product gypsum to water is 9-12:8-11.
作为优选的,所述所述工业副产石膏为脱硫石膏、磷石膏、柠檬酸石膏、氟石膏、盐石膏、味精石膏、铜石膏和钛石膏中的一种或多种。Preferably, the industrial by-product gypsum is one or more of desulfurized gypsum, phosphogypsum, citric acid gypsum, fluorinated gypsum, salt gypsum, monosodium glutamate gypsum, copper gypsum and titanium gypsum.
作为优选的,所述所述改性方法为煅烧、真空高压和化学法中的一种或几种。Preferably, the modification method is one or more of calcination, vacuum high pressure and chemical method.
作为优选的,所述搅拌时间为3~5s,搅拌速度为60~180r/min。Preferably, the stirring time is 3 to 5 seconds, and the stirring speed is 60 to 180 r/min.
作为优选的,所述改性工业副产石膏中半水硫酸钙的含量大于70%。Preferably, the content of calcium sulfate hemihydrate in the modified industrial by-product gypsum is greater than 70%.
作为优选的,所述数据分析软件为Excel、Matlab或Origin中的一种或多种。Preferably, the data analysis software is one or more of Excel, Matlab or Origin.
作为优选的,当初凝时间T大于7min时,所述标准曲线方程为V=0.06T2-1.72T+91.43;当初凝时间小于/等于7min时,所述标准曲线方程为V=-1.15T+91.03,所述T为初凝时间、单位为min,所述V为半水硫酸钙含量、单位为%。Preferably, when the initial setting time T is greater than 7 min, the standard curve equation is V=0.06T 2 -1.72T+91.43; when the initial setting time is less than/equal to 7 min, the standard curve equation is V=-1.15T+91.03, wherein T is the initial setting time, in min, and V is the calcium sulfate hemihydrate content, in %.
相比现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明利用改性工业副产石膏中半水硫酸钙含量与初凝时间之间的密切关系,通过数据拟合得出初凝时间与半水硫酸钙含量间的关系式,再通过检测待测样品的初凝时间即可快速得出半水硫酸钙含量。本发明无需样品前处理和配置标准溶液以及相关化学试剂,仅对样品进行简单的加水凝固分析初凝时间。本发明有效解决了当前改性工业副产石膏中半水硫酸钙含量实时监测其质量控制的难题,大大缩短企业对工业副产石膏中半水硫酸钙含量的测定程序与时间,具有良好的应用前景。1. The present invention utilizes the close relationship between the content of calcium sulfate hemihydrate and the initial setting time in modified industrial by-product gypsum, obtains the relationship between the initial setting time and the content of calcium sulfate hemihydrate by data fitting, and then quickly obtains the content of calcium sulfate hemihydrate by detecting the initial setting time of the sample to be tested. The present invention does not require sample pretreatment and the preparation of standard solutions and related chemical reagents, and only performs a simple water-adding coagulation analysis on the sample to determine the initial setting time. The present invention effectively solves the current problem of real-time monitoring of the content of calcium sulfate hemihydrate in modified industrial by-product gypsum and its quality control, greatly shortens the enterprise's determination procedure and time for the content of calcium sulfate hemihydrate in industrial by-product gypsum, and has good application prospects.
2、采用本方法进行改性工业副产石膏中半水硫酸钙含量的测定,不仅可以简化测试分析流程,投入成本低,而且还大大缩短了测试时间,使检测结果可以即时给出,而且用本发明的方法和传统的化学滴定法对比,相对误差均值不超过0.37%,相对误差方差最大为4.92%,所以结果客观准确,具有有效性和可行性,能够快速测定改性工业副产石膏中半水硫酸钙的含量,推广应用价值大。2. The method is used to determine the content of calcium sulfate hemihydrate in modified industrial by-product gypsum, which not only simplifies the test analysis process and has low investment cost, but also greatly shortens the test time, so that the test results can be given immediately. Moreover, compared with the traditional chemical titration method, the relative error mean does not exceed 0.37%, and the maximum relative error variance is 4.92%. Therefore, the result is objective and accurate, effective and feasible, and can quickly determine the content of calcium sulfate hemihydrate in modified industrial by-product gypsum, which has great value for promotion and application.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为初凝时间大于7min时拟合的一次标准曲线图。Figure 1 is a standard curve fitted when the initial setting time is greater than 7 minutes.
图2为初凝时间大于7min时拟合的二次标准曲线图。Figure 2 is a quadratic standard curve fitted when the initial setting time is greater than 7 minutes.
图3为初凝时间小于/等于7min时拟合的一次标准曲线图Figure 3 is a standard curve fitted when the initial setting time is less than/equal to 7 minutes
图4为初凝时间小于/等于7min时拟合的二次标准曲线图。FIG4 is a quadratic standard curve fitted when the initial setting time is less than/equal to 7 min.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步的详细说明。以下实施例中所述的半水硫酸钙均指β半水硫酸钙。The present invention is further described in detail below in conjunction with the examples. The calcium sulfate hemihydrate described in the following examples all refers to beta calcium sulfate hemihydrate.
一种快速检测改性工业副产石膏中半水硫酸钙含量的方法A method for rapidly detecting the content of calcium sulfate hemihydrate in modified industrial by-product gypsum
1)分别将550g不同的改性工业副产石膏标准样品与450g水置于水泥净浆搅拌机中,以80r/min的速度搅拌3s后,将其移入凝结时间模具中并抹平使其得到水平表面,然后将维卡仪试针置于所述水平表面上,检测并记录所述维卡仪试针在水平表面垂直落入距离模具底板5mm左右时的时间,即所述改性工业副产石膏的初凝时间;为了提高拟合数据的准确性,并结合实际生产经验,分别将初凝时间大于7min和小于/等于7min进行了分别的统计,其中改性工业副产石膏标准样品中半水硫酸钙的含量与对应的初凝时间,具体如表1和表2所示。1) 550g of different modified industrial by-product gypsum standard samples and 450g of water were placed in a cement slurry mixer, stirred at a speed of 80r/min for 3s, moved into a setting time mold and smoothed to obtain a horizontal surface, and then a Vicat test needle was placed on the horizontal surface to detect and record the time when the Vicat test needle fell vertically on the horizontal surface to a distance of about 5mm from the bottom plate of the mold, i.e., the initial setting time of the modified industrial by-product gypsum; in order to improve the accuracy of the fitting data and in combination with actual production experience, the initial setting time greater than 7min and less than/equal to 7min were separately counted, wherein the content of calcium sulfate hemihydrate in the modified industrial by-product gypsum standard sample and the corresponding initial setting time are specifically shown in Tables 1 and 2.
表1Table 1
表2Table 2
2)将步骤1)中得到的改性工业副产石膏中半水硫酸钙含量与对应的初凝时间同时导入数据分析软件Excel、Origin和Matlab中作图,建立初凝时间T与半水硫酸钙含量V的相关关系的校准曲线,一般采用一次曲线或者二次曲线进行拟合;所述T的单位为min,所述V的单位为%;在坐标系中以初凝时间为横坐标,半水硫酸钙的含量为纵坐标进行拟合。2) The calcium sulfate hemihydrate content in the modified industrial by-product gypsum obtained in step 1) and the corresponding initial setting time are simultaneously imported into data analysis software Excel, Origin and Matlab for plotting, and a calibration curve of the correlation between the initial setting time T and the calcium sulfate hemihydrate content V is established, generally using a linear curve or a quadratic curve for fitting; the unit of T is min, and the unit of V is %; in the coordinate system, the initial setting time is used as the horizontal coordinate, and the content of calcium sulfate hemihydrate is used as the vertical coordinate for fitting.
一次曲线方程为V=a1T+b1(1),根据各标准样品中半水硫酸钙的含量和初凝时间,计算得到方程中的一次项系数a1和常数项系数b1;The linear curve equation is V=a 1 T+b 1 (1). According to the content of calcium sulfate hemihydrate and the initial setting time in each standard sample, the linear term coefficient a 1 and the constant term coefficient b 1 in the equation are calculated;
二次曲线方程为V=a2T2+b2x+c(2),根据各标准样品中半水硫酸钙的含量和初凝时间,计算得到方程中的二次项系数a2,一次项系数b2和常数项系数c。The quadratic curve equation is V=a 2 T 2 +b 2 x+c (2). According to the content of calcium sulfate hemihydrate and the initial setting time in each standard sample, the quadratic term coefficient a 2 , the linear term coefficient b 2 and the constant term coefficient c in the equation are calculated.
将表1中的数据分别导入式(1)和式(2)中,得到一次曲线方程为V=-0.43T+85.00Import the data in Table 1 into equation (1) and equation (2) respectively, and the equation of the first-order curve is V = -0.43T + 85.00
(3);二次曲线方程为V=0.06T2-1.72T+91.43(4)。(3); The quadratic curve equation is V = 0.06T 2 -1.72T + 91.43 (4).
将表2中的数据分别导入式(1)和式(2)中,一次曲线方程为V=-1.15T+91.03(5);二次曲线方程为V=-0.11T2+0.06T+87.98(6)。The data in Table 2 are introduced into equation (1) and equation (2) respectively. The equation of the linear curve is V = -1.15T + 91.03 (5); the equation of the quadratic curve is V = -0.11T 2 + 0.06T + 87.98 (6).
3)取若干个改性工业副产石膏作为待测样品,按照步骤1)测得初凝时间T(凝结时间均大于7min),再将初凝时间T带入式(3)和式(4)中,测定待测样品中β半水硫酸钙的含量V,并与常规半水硫酸钙的测定方法-EDTA化学滴定法的结果进行了比较,结果分别如表3和表4所示。3) Take several modified industrial by-product gypsums as samples to be tested, and measure the initial setting time T (the setting time is greater than 7 min) according to step 1), and then substitute the initial setting time T into formula (3) and formula (4), and determine the content V of β calcium sulfate hemihydrate in the samples to be tested, and compare the results with those of the conventional determination method of calcium sulfate hemihydrate - EDTA chemical titration method. The results are shown in Table 3 and Table 4, respectively.
表3table 3
表4Table 4
取若干个改性工业副产石膏作为待测样品,按照步骤1)测得初凝时间T(凝结时间均不大于7min),再将初凝时间T带入式(5)和式(6)中,测定待测样品中β半水硫酸钙的含量V,并与常规半水硫酸钙的测定方法-EDTA化学滴定法的结果进行了比较,结果分别如表5和表6所示。Several modified industrial by-product gypsums were taken as samples to be tested, and the initial setting time T (the setting time was no more than 7 min) was measured according to step 1), and then the initial setting time T was substituted into formula (5) and formula (6) to determine the content V of β calcium sulfate hemihydrate in the samples to be tested, and the results were compared with those of the conventional determination method of calcium sulfate hemihydrate - EDTA chemical titration method. The results are shown in Table 5 and Table 6, respectively.
表5table 5
表6Table 6
由以上结果可以得出,当初凝时间T大于7min时,所述标准曲线方程采用V=-0.43T+85.00的方程,相对误差均值为0.358,方差为10.03%;所述标准曲线方程采用V=0.06T2-1.72T+91.43的方程,相对误差为0.305,方差为3.15%。当初凝时间小于/等于7min时,所述标准曲线方程采用V=-1.15T+91.03的方程,相对误差为0.370,方差为4.92%;所述标准曲线方程采用V=-0.11T2+0.06T+87.98的方程,相对误差为0.665,方差为17.63%。由两种不同的拟合方程所得结果可以确定:当初凝时间T大于7min时,所述标准曲线方程为V=0.06T2-1.72T+91.43;当初凝时间小于/等于7min时,所述标准曲线方程为V=-1.15T+91.03。采用这两种方程所得相对均值误差较小,并且相对误差方差较小,即方程拟合值与化学滴定法所测得的结果间差值非常小,拟合精确,这样测定的结果是准确可靠的。From the above results, it can be concluded that when the initial setting time T is greater than 7min, the standard curve equation adopts the equation V=-0.43T+85.00, the relative error mean is 0.358, and the variance is 10.03%; the standard curve equation adopts the equation V=0.06T 2 -1.72T+91.43, the relative error is 0.305, and the variance is 3.15%. When the initial setting time is less than/equal to 7min, the standard curve equation adopts the equation V=-1.15T+91.03, the relative error is 0.370, and the variance is 4.92%; the standard curve equation adopts the equation V=-0.11T 2 +0.06T+87.98, the relative error is 0.665, and the variance is 17.63%. The results obtained from two different fitting equations can be determined: when the initial setting time T is greater than 7 minutes, the standard curve equation is V=0.06T 2 -1.72T+91.43; when the initial setting time is less than/equal to 7 minutes, the standard curve equation is V=-1.15T+91.03. The relative mean error obtained by using these two equations is small, and the relative error variance is small, that is, the difference between the equation fitting value and the result measured by the chemical titration method is very small, the fitting is accurate, and the measurement result is accurate and reliable.
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210380051.6A CN114739869B (en) | 2022-04-06 | 2022-04-06 | Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210380051.6A CN114739869B (en) | 2022-04-06 | 2022-04-06 | Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114739869A CN114739869A (en) | 2022-07-12 |
CN114739869B true CN114739869B (en) | 2024-05-31 |
Family
ID=82280737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210380051.6A Active CN114739869B (en) | 2022-04-06 | 2022-04-06 | Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114739869B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2076869A1 (en) * | 1990-12-28 | 1992-06-29 | Wolfgang Schwarz | Process for producing a hydraulic binder (i) |
US6379458B1 (en) * | 2000-02-11 | 2002-04-30 | United States Gypsum Company | Efficient set accelerator for plaster |
CN102992684A (en) * | 2011-09-09 | 2013-03-27 | 北京亿维德曼科技发展有限公司 | Bayer red mud cement accelerator and production method |
CN208476724U (en) * | 2018-05-24 | 2019-02-05 | 云南省医疗器械检验研究院 | A kind of Vickers penetrometer for the test of oral cavity material performance detection |
CN109761524A (en) * | 2019-03-15 | 2019-05-17 | 生态环境部南京环境科学研究所 | A kind of method that utilizes titanium gypsum to prepare building gypsum |
CN110204237A (en) * | 2019-06-28 | 2019-09-06 | 贵州川恒化工股份有限公司 | The production method of cement retarder |
CN112360029A (en) * | 2020-11-11 | 2021-02-12 | 重庆交通大学 | Environment-friendly cavity mold box with large-volume industrial solid waste and preparation method thereof |
CN113024136A (en) * | 2021-04-06 | 2021-06-25 | 钱江翼 | Hydraulic gelling composition and process for producing hydraulic gelling agent |
CN115094113A (en) * | 2022-08-03 | 2022-09-23 | 重庆交通大学 | Method for determining ecological safety of heavy metal chromium (VI) in solid waste cement-based material |
-
2022
- 2022-04-06 CN CN202210380051.6A patent/CN114739869B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2076869A1 (en) * | 1990-12-28 | 1992-06-29 | Wolfgang Schwarz | Process for producing a hydraulic binder (i) |
US6379458B1 (en) * | 2000-02-11 | 2002-04-30 | United States Gypsum Company | Efficient set accelerator for plaster |
CN102992684A (en) * | 2011-09-09 | 2013-03-27 | 北京亿维德曼科技发展有限公司 | Bayer red mud cement accelerator and production method |
CN208476724U (en) * | 2018-05-24 | 2019-02-05 | 云南省医疗器械检验研究院 | A kind of Vickers penetrometer for the test of oral cavity material performance detection |
CN109761524A (en) * | 2019-03-15 | 2019-05-17 | 生态环境部南京环境科学研究所 | A kind of method that utilizes titanium gypsum to prepare building gypsum |
CN110204237A (en) * | 2019-06-28 | 2019-09-06 | 贵州川恒化工股份有限公司 | The production method of cement retarder |
CN112360029A (en) * | 2020-11-11 | 2021-02-12 | 重庆交通大学 | Environment-friendly cavity mold box with large-volume industrial solid waste and preparation method thereof |
CN113024136A (en) * | 2021-04-06 | 2021-06-25 | 钱江翼 | Hydraulic gelling composition and process for producing hydraulic gelling agent |
CN115094113A (en) * | 2022-08-03 | 2022-09-23 | 重庆交通大学 | Method for determining ecological safety of heavy metal chromium (VI) in solid waste cement-based material |
Non-Patent Citations (6)
Title |
---|
"Influence of Calcium Sulfate Varieties on Properties of Calcium Aluminate Cement-Based Self-Leveling Mortars";Hao Dai 等;《Key Engineering Materials》;20160215;第680卷;第455-461页 * |
"Utilization of waste concrete powder with different particle size as absorbents for SO2 reduction";Dongsheng Liu 等;《Construction and Building Materials》;20201001;第266卷;第121005页 * |
"煤矸石和硅藻土对熔模石膏型性能的影响";翟欣姣 等;《特种铸造及有色合金》;20200220;第40卷(第2期);第183-187页 * |
"磷石膏在建筑工程中的应用";王朝强 等;《工程建设》;20210115;第53卷(第1期);第69-73页 * |
高琼英 主编.《建筑材料(第二版)》.武汉工业大学出版社,1992,(第2版),第24-28页. * |
黄志安 主编.《胶凝材料标准速查与选用指南》.中国建材工业出版社,2011,(第1版),第68-69页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114739869A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110057983A (en) | A kind of ozone origin analysis method based on observation data and chemical mechanism | |
CN105628596A (en) | Corrosion testing apparatus and implementing method thereof | |
Sacher et al. | PAT implementation for advanced process control in solid dosage manufacturing–a practical guide | |
CN105675838B (en) | A based on data-driven2/ O flow water outlet total phosphorus intelligent detecting methods | |
CN101078682A (en) | Minim chlorine ion test method for furnace water | |
CN114739869B (en) | Method for rapidly detecting content of calcium sulfate hemihydrate in modified industrial byproduct gypsum | |
CN111257247A (en) | Method for measuring iron content in marine sediments | |
CN116959612A (en) | A method for detecting sludge dehydration performance based on neural network | |
CN116298075A (en) | A test method for alkali slag dosage and lime dosage in alkali slag lime soil | |
CN112485315A (en) | High-hardness wastewater scaling ion online monitoring system and method | |
Ekama et al. | Integration of complete elemental mass-balanced stoichiometry and aqueous-phase chemistry for bioprocess modelling of liquid and solid waste treatment systems− Part 3: Measuring the organics composition | |
CN118258951A (en) | A method for testing the dosage of alkali slag, lime and cement in alkali slag lime cement soil | |
CN114609338B (en) | Method for detecting activity of red mud | |
CN115936927A (en) | Water plant carbon neutralization emission estimation method | |
CN106124356A (en) | Dioxide-containing silica abbreviated analysis method in limestone | |
CN101995446A (en) | Method for analyzing components of coal ash and cement in concrete mixture | |
CN116702621A (en) | For CO 2 Method, server and medium for calculating carbon fixation amount in mineralization process | |
TWI752711B (en) | Monitoring method for alkalinity of bicarbonate ions in waste water from steelmaking process | |
CN1220878C (en) | Automatic Correction Method of δ15N and δ13C Values in Biological and Soil Samples | |
CN111413421A (en) | Method for testing content of chloride ions in dust after sludge combustion and control method | |
CN104677848B (en) | A kind of method for determining alkali metal sulphuric acid salt content in portland cement and clinker | |
CN113376360B (en) | Method for testing expansion rate of gypsum powder and application thereof | |
CN110333235B (en) | Method for detecting hardening of iron-carbon micro-electrolysis filler | |
CN103105484A (en) | Hardened ordinary cement paste elastic modulus multiscale predication method | |
CN118702447A (en) | Self-flowing high-strength early-strength self-compacting self-repairing material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |