CN114738851A - Integrated water-cooled load distribution system and distribution method thereof - Google Patents
Integrated water-cooled load distribution system and distribution method thereof Download PDFInfo
- Publication number
- CN114738851A CN114738851A CN202210354786.1A CN202210354786A CN114738851A CN 114738851 A CN114738851 A CN 114738851A CN 202210354786 A CN202210354786 A CN 202210354786A CN 114738851 A CN114738851 A CN 114738851A
- Authority
- CN
- China
- Prior art keywords
- water
- load
- integrated
- cooling
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 180
- 238000001816 cooling Methods 0.000 claims description 35
- 239000000498 cooling water Substances 0.000 claims description 32
- 238000005057 refrigeration Methods 0.000 claims description 31
- 238000007710 freezing Methods 0.000 claims description 15
- 230000008014 freezing Effects 0.000 claims description 15
- 239000003507 refrigerant Substances 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims 2
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
- F24F3/065—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
技术领域technical field
本发明涉及中央空调技术领域,尤其涉及一种一体水冷式负荷分配系统及其分配方法。The invention relates to the technical field of central air conditioners, in particular to an integrated water-cooled load distribution system and a distribution method thereof.
背景技术Background technique
随着经济的发展和技术的不断更新,现有的空调系统在各个单体部件上已变的非常节能,变频技术的应用使得各种类型的中央空调在部分负荷的情况下实时调节,在保障冷量的前提下实现节能。对于制造工厂来讲,目前主流的中央空调属于分体式空调,制冷机组、冷却塔、水泵的分开设置,单独调节。统一输出冷冻水,节能技术及负荷分配也是通过开启冷却塔数量,水泵及制冷机组等实现负荷及冷量的调节。With the development of the economy and the continuous updating of technology, the existing air-conditioning system has become very energy-saving in each individual component. The application of frequency conversion technology enables various types of central air-conditioning to be adjusted in real time under partial load conditions. Energy saving is achieved under the premise of cooling capacity. For manufacturing plants, the current mainstream central air conditioners are split-type air conditioners. The refrigeration units, cooling towers, and water pumps are set separately and adjusted separately. Unified output of chilled water, energy-saving technology and load distribution are also achieved by opening the number of cooling towers, pumps and refrigeration units to achieve load and cooling capacity adjustment.
近年来,部分厂家设计了一体式中央空调冷水机组,单机的输出负荷范围可以在25%-100%内自由调节,单机对应一个负荷侧在部分负荷情况下造成了功耗的富余及浪费,没有考虑不同空间、不同情况下的负荷调节和负荷负荷的分配问题。In recent years, some manufacturers have designed an integrated central air-conditioning chiller. The output load range of a single unit can be freely adjusted within 25%-100%. The single unit corresponds to one load side, resulting in surplus and waste of power consumption under partial load conditions. Consider the problem of load regulation and load distribution in different spaces and situations.
发明内容SUMMARY OF THE INVENTION
基于以上所述,本发明的目的在于提供一种一体水冷式负荷分配系统及其分配方法,解决了现有的单机与一个负荷侧对应导致的功耗的富余及浪费,在冷冻水总流量变化的前提下,能按照比例分配至至少两台一体式冷水机组,在保证各台一体式冷水机组最优的前期下,提供足够的冷负荷,实现节能。Based on the above, the purpose of the present invention is to provide an integrated water-cooled load distribution system and a distribution method thereof, which can solve the surplus and waste of power consumption caused by the existing single machine corresponding to one load side, and the total flow rate of chilled water changes when the total flow of chilled water changes. Under the premise of the premise, it can be allocated to at least two integrated chillers according to the proportion, and under the premise of ensuring the optimal early stage of each integrated chiller, sufficient cooling load can be provided to achieve energy saving.
为达上述目的,本发明采用以下技术方案:For achieving the above object, the present invention adopts the following technical solutions:
一种一体水冷式负荷分配系统,包括控制模块和至少两台并联的一体式冷水机组,每台所述一体式冷水机组均包括制冷组件、冷冻循环组件及冷却循环组件,所述制冷组件包括压缩机、冷凝器、膨胀阀及蒸发器,所述冷冻循环组件内的冷冻水能够在所述蒸发器内与制冷剂换热,所述冷却循环组件内的冷却水能够在所述冷凝器内与制冷剂换热,与每台所述一体式冷水机组对应的所述冷冻循环组件输出的冷冻水的流量均能够连续变化,所述控制模块能够根据负荷侧所需的实际负荷确定每台所述一体式冷水机组的所述冷冻循环组件输出的冷冻水的流量,所述实际负荷包括理论负荷和热损失负荷。An integrated water-cooled load distribution system, comprising a control module and at least two parallel integrated chillers, each of the integrated chillers includes a refrigeration component, a refrigeration cycle component and a cooling cycle component, and the refrigeration component includes a compression The chilled water in the refrigeration cycle assembly can exchange heat with the refrigerant in the evaporator, and the cooling water in the cooling cycle assembly can exchange heat with the refrigerant in the condenser. Refrigerant heat exchange, the flow rate of chilled water output by the refrigeration cycle component corresponding to each integrated chiller can be continuously changed, and the control module can determine the actual load required by the load side. The flow rate of the chilled water output by the refrigeration cycle component of the integrated chiller, and the actual load includes a theoretical load and a heat loss load.
作为一体水冷式负荷分配系统的优选方案,每个所述冷冻循环组件均包括冷冻水泵和第一比例调节阀,所述冷冻水泵能够将冷冻水抽至所述蒸发器与制冷剂换热,所述第一比例调节阀能够连续调节从所述蒸发器流出的降温后的冷冻水的流量。As a preferred solution of the integrated water-cooled load distribution system, each of the refrigeration cycle components includes a chilled water pump and a first proportional control valve, and the chilled water pump can pump the chilled water to the evaporator to exchange heat with the refrigerant, so The first proportional control valve can continuously adjust the flow rate of the cooled chilled water flowing out of the evaporator.
作为一体水冷式负荷分配系统的优选方案,所述一体水冷式负荷分配系统还包括冷冻循环管和水箱,所述冷冻循环管上设有所述冷冻水泵和所述第一比例调节阀,所述水箱与所述冷冻循环管连通。As a preferred solution of the integrated water-cooled load distribution system, the integrated water-cooled load distribution system further includes a refrigerating cycle pipe and a water tank, and the refrigerating cycle pipe is provided with the refrigerated water pump and the first proportional control valve. The water tank is communicated with the refrigeration cycle pipe.
作为一体水冷式负荷分配系统的优选方案,所述冷冻循环管包括至少一个冷冻回水管,至少一个所述冷冻回水管与所述负荷侧的至少一个负荷端一一对应,每个所述冷冻回水管均与所述负荷端的出口连通,每个所述冷冻回水管上均设有第二比例调节阀,所述第二比例调节阀能够连续调节从所述负荷端流出的吸热后的冷冻水的流量。As a preferred solution of the integrated water-cooled load distribution system, the refrigerated circulation pipe includes at least one refrigerated return pipe, and the at least one refrigerated return pipe is in one-to-one correspondence with at least one load end on the load side. The water pipes are all communicated with the outlet of the load end, and each of the refrigerated return pipes is provided with a second proportional control valve, which can continuously adjust the heat-absorbing chilled water flowing out from the load end. traffic.
作为一体水冷式负荷分配系统的优选方案,所述一体水冷式负荷分配系统还包括循环回水总管,在每个所述负荷端流出的吸热后的冷冻水均流至所述循环回水总管,所述冷冻循环组件还包括回水流量传感器和回水压力传感器,所述回水流量传感器和所述回水压力传感器均设置在所述循环回水总管上。As a preferred solution of the integrated water-cooled load distribution system, the integrated water-cooled load distribution system further includes a circulation return water main pipe, and the heat-absorbing chilled water flowing out from each load end flows to the circulation return water main pipe , the refrigeration cycle assembly further includes a return water flow sensor and a return water pressure sensor, and the return water flow sensor and the return water pressure sensor are both arranged on the circulating return water main pipe.
作为一体水冷式负荷分配系统的优选方案,所述一体水冷式负荷分配系统还包括循环出水总管,在每个所述蒸发器内降温后的冷冻水均流至所述循环出水总管,所述冷冻循环组件还包括出水流量传感器和出水压力传感器,所述出水流量传感器和所述出水压力传感器均设置在所述循环出水总管上。As a preferred solution of the integrated water-cooled load distribution system, the integrated water-cooled load distribution system further includes a circulating water outlet header, and the chilled water cooled in each of the evaporators flows to the circulating water outlet header, and the chilled water outlet The circulation assembly further includes a water outlet flow sensor and a water outlet pressure sensor, and the outlet water flow sensor and the outlet water pressure sensor are both arranged on the circulating water outlet main pipe.
作为一体水冷式负荷分配系统的优选方案,所述一体水冷式负荷分配系统还包括旁通阀,所述旁通阀连通所述循环出水总管和所述循环回水总管,所述旁通阀被配置为所述出水压力传感器检测的出水压力和所述回水压力传感器检测的回水压力的差值大于预设水压时开启。As a preferred solution of the integrated water-cooled load distribution system, the integrated water-cooled load distribution system further includes a bypass valve, the bypass valve is connected to the circulating water outlet main pipe and the circulating water return main pipe, and the bypass valve is connected by It is configured to open when the difference between the outlet water pressure detected by the outlet water pressure sensor and the return water pressure detected by the return water pressure sensor is greater than the preset water pressure.
作为一体水冷式负荷分配系统的优选方案,所述冷却循环组件包括冷却水泵和冷却循环管,所述一体水冷式负荷分配系统还包括冷却水塔,所述冷却水泵设置在所述冷却循环管上且能够将所述冷却循环管内的冷却水抽至所述冷凝器内进行吸热,吸热后的冷却水能够返回所述冷却水塔进行冷却。As a preferred solution of the integrated water-cooled load distribution system, the cooling circulation assembly includes a cooling water pump and a cooling circulation pipe, the integrated water-cooled load distribution system further includes a cooling water tower, and the cooling water pump is arranged on the cooling circulation pipe and The cooling water in the cooling circulation pipe can be pumped into the condenser for heat absorption, and the cooling water after heat absorption can be returned to the cooling water tower for cooling.
作为一体水冷式负荷分配系统的优选方案,所述冷却循环组件还包括第一风扇,所述第一风扇的出风口正对所述冷却水塔设置,以对所述冷却水塔内的冷却水进行降温。As a preferred solution of the integrated water-cooled load distribution system, the cooling cycle assembly further includes a first fan, and the air outlet of the first fan is disposed facing the cooling water tower to cool the cooling water in the cooling water tower. .
一种适用于以上任一方案所述的一体水冷式负荷分配系统的分配方法,包括:A distribution method applicable to the integrated water-cooled load distribution system described in any of the above schemes, comprising:
根据负荷侧的理论负荷,并考虑热损失负荷,计算负荷侧所需的实际负荷;Calculate the actual load required on the load side according to the theoretical load on the load side and considering the heat loss load;
根据每台所述一体式冷水机组的输出负荷,计算至少两台所述一体式冷水机组的总输出负荷;Calculate the total output load of at least two of the integrated chillers according to the output load of each of the integrated chillers;
所述控制模块根据所述总输出负荷确定每台所述一体式冷水机组的所述冷冻循环组件输出的冷冻水的流量。The control module determines the flow rate of chilled water output by the refrigeration cycle assembly of each of the integrated chillers according to the total output load.
本发明的有益效果为:本发明公开的一体水冷式负荷分配系统,与每台一体式冷水机组对应的冷冻循环组件输出的冷冻水的流量均能够连续变化,控制模块能够根据负荷侧的实际负荷确定每台一体式冷水机组的冷冻循环组件输出的冷冻水的流量,其中,实际负荷包括理论负荷和热损失负荷,充分考虑了能耗损失,使得该一体水冷式负荷分配系统能够为负荷侧提供足够的负荷,提高了该一体水冷式负荷分配系统的效率,达到了节能的目的。The beneficial effects of the present invention are: in the integrated water-cooled load distribution system disclosed in the present invention, the flow rate of the chilled water output by the refrigeration cycle components corresponding to each integrated chiller can be continuously changed, and the control module can be based on the actual load on the load side. Determine the flow rate of chilled water output by the refrigeration cycle components of each integrated chiller. The actual load includes the theoretical load and the heat loss load, and the energy loss is fully considered, so that the integrated water-cooled load distribution system can provide the load side. The sufficient load improves the efficiency of the integrated water-cooled load distribution system and achieves the purpose of energy saving.
本发明公开的一体水冷式负荷分配系统的分配方法,在考虑了能耗的前提下,提高了该一体水冷式负荷分配系统的效率,达到了节能的目的。The distribution method of the integrated water-cooled load distribution system disclosed by the invention improves the efficiency of the integrated water-cooled load distribution system under the premise of considering energy consumption, and achieves the purpose of energy saving.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments of the present invention. Obviously, the drawings in the following description are only some embodiments of the present invention. , for those of ordinary skill in the art, other drawings can also be obtained according to the contents of the embodiments of the present invention and these drawings without creative efforts.
图1是本发明具体实施例提供的一体水冷式负荷分配系统的示意图;1 is a schematic diagram of an integrated water-cooled load distribution system provided by a specific embodiment of the present invention;
图2是本发明具体实施例提供的一体水冷式负荷分配系统的制冷组件、冷冻循环组件及冷却循环组件的部分结构的示意图。2 is a schematic diagram of partial structures of a refrigeration assembly, a refrigeration cycle assembly and a cooling cycle assembly of an integrated water-cooled load distribution system provided by a specific embodiment of the present invention.
图中:In the picture:
1、一体式冷水机组;11、压缩机;12、冷凝器;13、膨胀阀;14、蒸发器;15、冷冻水泵;16、第一比例调节阀;17、冷却水泵;18、冷却循环管;1. Integrated chiller; 11. Compressor; 12. Condenser; 13. Expansion valve; 14. Evaporator; 15. Chilled water pump; 16. First proportional control valve; 17. Cooling water pump; 18. Cooling circulation pipe ;
2、水箱;2. Water tank;
31、冷冻回水管;32、第二比例调节阀;31. Freezing return pipe; 32. Second proportional control valve;
41、循环回水总管;42、循环出水总管;41. Main pipe of circulating water; 42. Main pipe of circulating water;
5、冷却水塔;5. Cooling water tower;
100、负荷端。100. Load end.
具体实施方式Detailed ways
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems solved by the present invention, the technical solutions adopted and the technical effects achieved more clearly, the technical solutions of the embodiments of the present invention will be described in further detail below with reference to the accompanying drawings. Obviously, the described embodiments are only the present invention. Some examples, but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention. Furthermore, the terms "first" and "second" are used for descriptive purposes only and should not be construed to indicate or imply relative importance. Therein, the terms "first position" and "second position" are two different positions.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
本实施例提供一种一体水冷式负荷分配系统,如图1和图2所示,包括控制模块和至少两台并联的一体式冷水机组1,每台一体式冷水机组1均包括制冷组件、冷冻循环组件及冷却循环组件,制冷组件包括压缩机11、冷凝器12、膨胀阀13及蒸发器14,该压缩机11为螺杆式压缩机,冷冻循环组件内的冷冻水能够在蒸发器14内与制冷剂换热,冷却循环组件内的冷却水能够在冷凝器12内与制冷剂换热,与每台一体式冷水机组1对应的冷冻循环组件输出的冷冻水的流量均能够连续变化,控制模块能够根据负荷侧所需的实际负荷确定每台一体式冷水机组1的冷冻循环组件输出的冷冻水的流量,实际负荷包括理论负荷和热损失负荷。This embodiment provides an integrated water-cooled load distribution system, as shown in FIG. 1 and FIG. 2 , including a control module and at least two parallel
本实施例提供的一体水冷式负荷分配系统,与每台一体式冷水机组1对应的冷冻循环组件输出的冷冻水的流量均能够连续变化,控制模块能够根据负荷侧的实际负荷确定每台一体式冷水机组1的冷冻循环组件输出的冷冻水的流量,其中,实际负荷包括理论负荷和热损失负荷,充分考虑了能耗损失,使得该一体水冷式负荷分配系统能够为负荷侧提供足够的负荷,提高了该一体水冷式负荷分配系统的效率,达到了节能的目的。In the integrated water-cooled load distribution system provided in this embodiment, the flow rate of the chilled water output by the refrigeration cycle components corresponding to each
具体地,如图1和图2所示,每个冷冻循环组件均包括冷冻水泵15和第一比例调节阀16,冷冻水泵15具有变频功能,冷冻水泵15由一体水冷式负荷分配系统根据外部控制指令给出的变频数据实施变频,控制冷冻水的输出,冷冻水泵15能够将冷冻水抽至蒸发器14与制冷剂换热,使得冷冻水的温度在蒸发器14内降低,第一比例调节阀16能够连续调节从蒸发器14流出的降温后的冷冻水的流量,从而使得每台一体式冷水机组1的负荷能够连续变化。Specifically, as shown in Figures 1 and 2, each refrigeration cycle assembly includes a
如图1所示,本实施例的一体水冷式负荷分配系统还包括冷冻循环管和水箱2,冷冻循环管上设有冷冻水泵15和第一比例调节阀16,水箱2与冷冻循环管连通。在蒸发器14内降温后的冷冻水能够流至负荷侧进行吸热,使得负荷侧的温度维持在指定温度范围内,吸热后的冷冻水则能够流至水箱2进行初步散热,使得冷冻水的温度进行初步降低。增设的水箱2既能够在负荷侧需要较多的冷量时保证冷冻水的流量,还能够在负荷侧需要较少的冷量时储存多余的冷冻水,保证系统的正常运行。具体地,从蒸发器14流出的降温后的冷冻水的温度位于7℃-12℃之间。As shown in FIG. 1 , the integrated water-cooled load distribution system of this embodiment further includes a refrigerating cycle pipe and a
如图1所示,本实施例的冷冻循环管包括至少一个冷冻回水管31,至少一个冷冻回水管31与负荷侧的至少一个负荷端100一一对应,即冷冻水管与负荷端100呈一一对应,每个冷冻回水管31均与负荷端100的出口连通,如图1所示,每个冷冻回水管31上均设有第二比例调节阀32,第二比例调节阀32能够连续调节从负荷端100流出的吸热后的冷冻水的流量。具体地,负荷侧的每个负荷端100均与一个冷冻回水管31连通,使得在负荷端100升温后的冷冻水能够返回一体式冷水机组1的蒸发器14进行再次降温,实现冷冻水的循环流动。需要说明的是,本实施例的一体式冷水机组1的个数与负荷侧的负荷端100的个数并不一定相同,具体根据每台一体式冷水机组1的实际最大负荷量计算得出。As shown in FIG. 1 , the refrigerating cycle pipe of this embodiment includes at least one refrigerated
如图1所示,本实施例的一体水冷式负荷分配系统还包括循环回水总管41和循环出水总管42,在每个负荷端100流出的吸热后的冷冻水均流至循环回水总管41,冷冻循环组件还包括回水流量传感器(图中未示出)和回水压力传感器(图中未示出),回水流量传感器和回水压力传感器均设置在循环回水总管41上,回水流量传感器用于检测循环回水总管41内的冷冻水的流量,回水压力传感器用于检测循环回水总管41内的冷冻水的回水压力,在每个蒸发器14内降温后的冷冻水均流至循环出水总管42,冷冻循环组件还包括出水流量传感器(图中未示出)和出水压力传感器(图中未示出),出水流量传感器和出水压力传感器均设置在循环出水总管42上,出水流量传感器用于检测循环出水总管42内的冷冻水的流量,出水压力传感器用于检测循环出水总管42内的冷冻水的出水压力。需要说明的是,本实施例的图1中的实线代表温度较低的冷冻水从一体式冷水机组1流至负荷端100的管道,图1中的虚线代表吸热后温度较高的冷冻水从负荷端100流回一体式冷水机组1流进行再次降温的管道。As shown in FIG. 1 , the integrated water-cooled load distribution system of this embodiment further includes a circulating water return
具体地,经每台一体式冷水机组1降温后的冷冻水均能够汇总至循环出水总管42内,根据每个负荷端100所需的负荷,调节第二比例阀16的开度,进而调整冷冻水循环出水总管42的总回水量,进而分配至每个负荷端100的冷冻水量也相应变化,其中,当某一台一体式冷水机组1的第一比例调节阀16的开度的变化时,该一体式冷水机组1的冷冻水的流量会发生改变,从而使得流至循环出水总管42内的冷冻水发生改变,在每个负荷端100内升温后的冷冻水能够流回循环回水总管41,从而流回每台一体式冷水机组1,实现冷冻水的循环流动。需要说明的是,若部分一体式冷水机组1开启,经循环回水总管41流出的冷冻水能够返回开启的一体式冷水机组1内,使得冷冻水在蒸发器14内进行降温。Specifically, the chilled water cooled by each
进一步地,本实施例的一体水冷式负荷分配系统还包括旁通阀(图中未示出),旁通阀连通循环出水总管42和循环回水总管41,旁通阀被配置为出水压力传感器检测的出水压力和回水压力传感器检测的回水压力的差值大于预设水压时开启。增设的旁通阀能够使得该一体水冷式负荷分配系统内的冷冻水顺畅流动,保证进入负荷侧的冷冻水和流出负荷侧的冷冻水压差不会过大,从而避免了循环出水总管42和循环回水总管41内的冷冻水因压差较大而导致的爆管现象的发生,保证了该一体水冷式负荷分配系统的安全性。Further, the integrated water-cooled load distribution system of this embodiment further includes a bypass valve (not shown in the figure), the bypass valve communicates with the circulating
如图2所示,本实施例的冷却循环组件包括冷却水泵17和冷却循环管18,冷却水泵17为工频式水泵,一体水冷式负荷分配系统还包括冷却水塔5,冷却水塔5为横流式冷却塔,横流式冷却塔的水流从塔上部垂直落下,空气沿水平方向流动并穿过水流,气流与水流正交,冷却水泵17设置在冷却循环管18上且能够将冷却循环管18内的冷却水抽至冷凝器12内进行吸热,吸热后的冷却水能够返回冷却水塔5进行冷却。本实施例的一体水冷式负荷分配系统还包括第一风扇(图中未示出),第一风扇的出风口正对冷却水塔5设置,以对冷却水塔5内的冷却水进行降温。第一风扇的个数为四个,四个第一风扇能够根据外部信号进行开启或者断开。As shown in FIG. 2 , the cooling circulation assembly of this embodiment includes a cooling
本实施例的一体水冷式负荷分配系统还包括容纳箱和第二风扇(图中未示出),上述制冷组件、冷冻水泵15、冷却水泵17等部件均放置在容纳箱内,容纳箱呈长方形且具有防腐蚀性能,在容纳箱内部具备通风的要求下,容纳箱的内部温度控制在50℃以下,通过第二风扇进行散热。The integrated water-cooled load distribution system of this embodiment further includes an accommodating box and a second fan (not shown in the figure). The above-mentioned components such as the refrigeration assembly, the
例如,负荷侧所需的理论负荷为260KW,考虑2%的热负荷损失,单台一体式冷水机组1的输出负荷为100KW,则计算负荷侧所需的实际负荷为260+260*2%=265.2KW,由此可知需开两台一体式冷水机组1,第三台一体式冷水机组1的第一比例阀的开度为65.2%,对应的第三台一体式冷水机组1的输出负荷为65.2KW。For example, the theoretical load required on the load side is 260KW, considering the heat load loss of 2%, the output load of a single
本实施例的控制模块分别与第一比例调节阀16、一体式冷水机组1、第二比例调节阀32、旁通阀等电连接,优选地,本实施例的控制模可以是集中式或分布式的控制器,比如,控制器可以是一个单独的单片机,也可以是分布的多块单片机构成,单片机中可以运行控制程序,进而控制第一比例调节阀16、一体式冷水机组1、第二比例调节阀32及旁通阀实现其功能。The control modules in this embodiment are respectively electrically connected to the first
本实施例还提供一种适用于以上技术方案所述的一体水冷式负荷分配系统的分配方法,包括:This embodiment also provides a distribution method suitable for the integrated water-cooled load distribution system described in the above technical solution, including:
根据负荷侧的理论负荷,并考虑热损失负荷,计算负荷侧的实际负荷;Calculate the actual load on the load side according to the theoretical load on the load side and considering the heat loss load;
根据每台一体式冷水机组1的输出负荷,计算至少两台一体式冷水机组1的总输出负荷;Calculate the total output load of at least two
控制模块根据总输出负荷确定每台一体式冷水机组1的冷冻循环组件输出的冷冻水的流量。The control module determines the flow rate of chilled water output by the refrigeration cycle components of each
其中,控制模块能够将计算后的负荷分配至每台一体式冷水机组1,在整体COP最优的情况下,满足负荷侧的各个负荷端100的冷量需求。Wherein, the control module can distribute the calculated load to each
本实施例提供的一体水冷式负荷分配系统的分配方法,在考虑了能耗的前提下,提高了该一体水冷式负荷分配系统的效率,达到了节能的目的。The distribution method of the integrated water-cooled load distribution system provided in this embodiment improves the efficiency of the integrated water-cooled load distribution system under the premise of considering energy consumption, and achieves the purpose of energy saving.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210354786.1A CN114738851A (en) | 2022-04-06 | 2022-04-06 | Integrated water-cooled load distribution system and distribution method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210354786.1A CN114738851A (en) | 2022-04-06 | 2022-04-06 | Integrated water-cooled load distribution system and distribution method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114738851A true CN114738851A (en) | 2022-07-12 |
Family
ID=82278326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210354786.1A Pending CN114738851A (en) | 2022-04-06 | 2022-04-06 | Integrated water-cooled load distribution system and distribution method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114738851A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115978911A (en) * | 2023-01-28 | 2023-04-18 | 中科富海(杭州)气体工程科技有限公司 | Precooling system and air separation device |
CN119983628A (en) * | 2025-04-15 | 2025-05-13 | 浙江浙能技术研究院有限公司 | Multi-unit load allocation system and method for water chilling units |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130167560A1 (en) * | 2010-10-13 | 2013-07-04 | Weldtech Technology (Shanghai) Co., Ltd. | Energy-saving optimized control system and method for refrigeration plant room |
CN107202398A (en) * | 2017-05-16 | 2017-09-26 | 珠海格力电器股份有限公司 | Central air-conditioning water system control method and device and storable medium |
CN111854015A (en) * | 2020-08-07 | 2020-10-30 | 广州市设计院 | Air-conditioning refrigeration room system and control method thereof |
-
2022
- 2022-04-06 CN CN202210354786.1A patent/CN114738851A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130167560A1 (en) * | 2010-10-13 | 2013-07-04 | Weldtech Technology (Shanghai) Co., Ltd. | Energy-saving optimized control system and method for refrigeration plant room |
CN107202398A (en) * | 2017-05-16 | 2017-09-26 | 珠海格力电器股份有限公司 | Central air-conditioning water system control method and device and storable medium |
CN111854015A (en) * | 2020-08-07 | 2020-10-30 | 广州市设计院 | Air-conditioning refrigeration room system and control method thereof |
Non-Patent Citations (1)
Title |
---|
陈国邦等: "《最新低温制冷技术》", vol. 1, 30 June 1994, 机械工业出版社, pages: 272 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115978911A (en) * | 2023-01-28 | 2023-04-18 | 中科富海(杭州)气体工程科技有限公司 | Precooling system and air separation device |
CN115978911B (en) * | 2023-01-28 | 2025-01-24 | 中科富海(杭州)气体工程科技有限公司 | Precooling system and air separation unit |
CN119983628A (en) * | 2025-04-15 | 2025-05-13 | 浙江浙能技术研究院有限公司 | Multi-unit load allocation system and method for water chilling units |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111854015B (en) | Air conditioning refrigeration room system and control method thereof | |
CN202216364U (en) | Central air-conditioning intelligent network energy-saving control system | |
CN111442575A (en) | Adjustable refrigerating device and refrigerating adjusting method | |
CN114738851A (en) | Integrated water-cooled load distribution system and distribution method thereof | |
CN207350607U (en) | A kind of ice-storage air-conditioning structure | |
CN212538113U (en) | Water-cooling air conditioner and system and double-cold-source air conditioning system | |
CN219284054U (en) | A phase change cold storage device and air conditioning system | |
CN216773338U (en) | Cooling device of 6kW energy storage battery cluster | |
KR102513802B1 (en) | Refrigeration system | |
CN117366792B (en) | Operation control method and system of cold accumulation air conditioning system | |
JP4917468B2 (en) | Refrigerator system | |
CN214370649U (en) | Ice melting structure, ice cold storage unit and air conditioning system | |
CN112566464B (en) | Air conditioner | |
CN210630102U (en) | Water cooling and dehumidification integrated machine for data center | |
CN108981247A (en) | Natural cooling type communication machine room water cooled chiller | |
CN105402839A (en) | Natural cold source cooling system for various data rooms | |
CN216218477U (en) | Data center heat pipe backplate air conditioning system | |
CN219318754U (en) | Cooling device of refrigeration machine room | |
CN220380009U (en) | Dual cycle air conditioning system | |
CN215892827U (en) | Heat pump set | |
CN219612378U (en) | Indirect evaporative cooling system of machine room cabinet | |
CN221748794U (en) | Server cabinet air conditioning system and server system | |
JP4917467B2 (en) | Refrigerator system | |
CN111235592B (en) | Thermal management system for chlor-alkali equipment | |
CN219577674U (en) | Cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |