CN114736356B - 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 - Google Patents
用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 Download PDFInfo
- Publication number
- CN114736356B CN114736356B CN202210497677.5A CN202210497677A CN114736356B CN 114736356 B CN114736356 B CN 114736356B CN 202210497677 A CN202210497677 A CN 202210497677A CN 114736356 B CN114736356 B CN 114736356B
- Authority
- CN
- China
- Prior art keywords
- dibenzo
- dinaphthyl
- sulfone
- polymer
- polymer photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1088—Non-supported catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
- C08G2261/314—Condensed aromatic systems, e.g. perylene, anthracene or pyrene
- C08G2261/3142—Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一类用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法,该光催化剂采用简单的二元或三元共聚合的Suzuki偶联反应进行制备,其构建单元包括:二苯并稠二萘和二苯并噻吩砜。用于聚合的二苯并稠二萘基单体和二苯并噻吩砜基单体带有相同的或者不同的可聚合官能团,可发生Suzuki偶联反应。本发明聚合物光催化剂具有光催化产氢活性高、表观量子效率高、结构和组成连续可调的特点,且其制备过程简单、产率高、性能稳定,在太阳光下就可以释放氢气,可用于光催化产氢领域。
Description
技术领域
本发明属于光催化分解水制氢材料技术领域,具体涉及一类光催化分解水制氢活性高的二苯并稠二萘基聚合物光催化剂及其制备方法。
背景技术
利用太阳能分解水产氢是一种将太阳能转化为化学能的简单经济且高效的技术手段,一直备受全球科学家的高度关注。近几十年以来,国内外围绕提高半导体光催化剂的光催化效率开展了大量的科学研究,已经开发了上千种半导体光催化剂用于光催化分解水产氢/产氧。
半导体光催化剂是利用太阳能光催化分解水产氢的关键材料,而提高半导体光催化剂的光催化活性主要是通过调控半导体的结构、组成来实现。其中,有机聚合物光催化剂由于合成方法多样、结构易设计及理化性质易调控等优势,在光催化分解水制氢领域具有巨大的发展潜力,近年来受到了广泛的研究关注。其中,D-A型聚合物光催化剂由于受体单元的强拉电子效应,可以有效地促进光生电子的分离效率,进而提高聚合物光催化剂的光催化活性。尤其,在以二苯并噻吩砜为电子受体时,所得D-A型聚合物光催化剂的光催化活性较高。例如,当以二苯并噻吩砜作为电子受体,芘基作为电子供体时,通过改变二苯并噻吩砜与芘单元的连接位点所得的聚合物PySO(Small,2018,14,1801839)、P16PySO(Appl.Surf.Sci.,2019,495,143537)和PyDOBT-1(Macromolecules,2018,51,9502-9508),以TEOA为牺牲剂未负载Pt时,在可见光下分别获得了4.74mmol h-1 g-1、6.38mmol h-1 g-1和5.70mmol h-1 g-1的光催化产氢活性。氟取代的二苯并噻吩砜与芘基通过Suzuki偶联反应所得的聚合物PyDF,以TEOA为牺牲剂未负载Pt时,在可见光下获得了4.09mmol h-1 g-1的光催化产氢速率(J.Mater.Chem.A,2020,8,2404-2411)。当以9,9-螺二芴作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物S-CMP3在以三乙胺(TEA)为牺牲剂未负载Pt时获得了3.11mmol h-1 g-1的可见光催化产氢活性(Chem.Mater.,2019,31,305-313)。苯基与二苯并噻吩砜通过Suzuki偶联反应所得聚合物P7(Angew.Chem.Int.Ed.,2016,55,1792-1796)和DBTD-CMP1(ACS Catal.,2018,8,8590-8596),在可见光下,分别以TEA和TEOA为牺牲剂,未负载Pt时,分别获得了3.68mmol h-1 g-1和2.46mmol h-1 g-1的光催化产氢速率。当以苯并三噻吩作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物BTT-CPP,在以抗坏血酸(AA)作为牺牲剂未负载Pt时,在可见光下获得了12.63mmol h-1 g-1的光催化产氢速率(Macromolecules,2021,54,2661-2666)。
目前所报道的大多数具有高光催化活性的有机聚合物光催化剂都是基于芘作为电子供体,这极大的限制有机聚合物光催化剂的发展,因此需要开发一些新型的电子供体。其次,以上列举的有机聚合物光催化剂都是由两种功能化的单体通过偶联反应聚合得到。研究表明,通过三元或者多元共聚的方式可以调控聚合物的光学性质、电学性质和调控有机聚合物的光催化活性。例如,Cooper等人采用三元共聚的方式得到了一系列有机聚合物光催化剂CP-CMP1-15,通过调节三种单元的投料比实现了对有机聚合物光学带隙、比表面积和光催化性能的调控(J.Am.Chem.Soc.2015,137,3265-3270)。通过调节四苯乙烯基、苯基和9-芴酮的投料比,所得三元共聚物F0.5CMP在以Na2S/Na2SO4为牺牲剂未负载Pt时获得了0.66mmol h-1 g-1的可见光产氢活性(Chem.Eur.J.,2019,25,3867-3874)。当在聚合物骨架中引入苯单元作为桥键连接芘单元和二苯并噻吩砜单元时,通过调节供体单元和受体单元的投料比,所得D-π-A聚合物PyBS-3(Adv.Mater.,2021,2008498)在以TEOA为牺牲剂未负载Pt时,获得了14mmol h-1 g-1的可见光分解水产氢活性。当以AA作为牺牲剂时,获得了36mmol h-1 g-1的可见光分解水产氢活性,相比于PyDOBT-1,性能得到了大幅度提升,这主要是由于苯桥键的引入降低了分子之间的扭曲程度,有利于电子的传输。
发明内容
本发明的目的是提供一类在紫外可见光和可见光照射下具有高光催化分解水制氢活性的二苯并稠二萘基聚合物光催化剂,并为该类聚合物光催化剂提供一种工艺步骤简单、收率高的制备方法。
针对上述目的,本发明所采用的二苯并稠二萘基聚合物光催化剂的结构如式A或式B所示:
式A中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:2,式B中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比=1:3~10。
本发明二苯并稠二萘基聚合物光催化剂的制备方法为:在氮气保护下,将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中或将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-二溴二苯并噻吩砜和3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A(记为DBC-BTDO)或式B(记为DBC-BTDOs)所示的二苯并稠二萘基聚合物光催化剂,反应方程式如下:
上述制备式A方法中,优选2,7,10,15-四溴二苯并稠二萘与3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的摩尔比为1:2,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的2~5倍。
上述制备式B方法中,优选2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜的摩尔比为1:0.5~4,3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的用量为2,7,10,15-四溴二苯并稠二萘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
上述制备方法中,进一步优选加热至回流反应36~48小时。
上述制备方法中,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
本发明的有益效果如下:
1、本发明将二苯并稠二萘单元和二苯并噻吩砜单元直接结合起来,或者在二苯并稠二萘之间和二苯并噻吩砜之间再次引入具有强拉电子能力的二苯并噻吩砜,促进光生电子和空穴的分离,提高聚合物分子链的共平面性,获得了具有高光催化分解水制氢活性的聚合物光催化剂。
2、本发明聚合物光催化剂采用二元或者三元共聚法制备,所得光催化剂重复性好、比表面积大、带隙窄、可见光活性高、光催化产氢稳定性高,在太阳光照射下具有高的光催化产氢活性,光生电子和空穴分离效果好,制备过程简单,成本较低,毒害小,有利于环境保护和大规模应用。与大多数报道的有机聚合物光催化剂相比,本发明所制备的光催化剂用于催化分解水产氢表现出更加优异的光催化性能,处于国内外领先水平。
附图说明
图1是实施例1和2制备的聚合物光催化剂的红外光谱图。
图2是实施例1和2制备的聚合物光催化剂固体核磁共振碳谱图。
图3是实施例1和2制备的聚合物光催化剂的扫描电子显微镜照片。
图4是实施例1和2制备的聚合物光催化剂的XRD图谱。
图5是实施例1和2制备的聚合物光催化剂的紫外可见吸收光谱图。
图6是实施例1和2制备的聚合物光催化剂在波长大于420nm的光照下光催化产氢速率与光照时间的关系图。
图7是实施例1和2制备的聚合物光催化剂在波长大于300nm的光照下光催化产氢速率与光照时间的关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
在氮气保护下,将20mL N,N-二甲基甲酰胺、4mL 2mol/L碳酸钾水溶液加入到装有322.0mg(0.5mmol)2,7,10,15-四溴二苯并稠二萘、468.2mg(1.0mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色固体粉末DBC-BTDO。
实施例2
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有128.8mg(0.2mmol)2,7,10,15-四溴二苯并稠二萘、234.1mg(0.5mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、37.4mg(0.1mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-1,且DBC-BTDOs-1中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:3。
实施例3
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有64.4mg(0.1mmol)2,7,10,15-四溴二苯并稠二萘、187.3mg(0.4mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、74.8mg(0.2mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-2,且DBC-BTDOs-2中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:6。
实施例4
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有64.4mg(0.1mmol)2,7,10,15-四溴二苯并稠二萘、280.9mg(0.6mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、149.6mg(0.4mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-3,且DBC-BTDOs-3中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:10。
采用红外光谱和固体核磁碳谱对实施例1~4制备的聚合物的化学结构进行表征,结果见图1~2。图1中,1608cm-1和1456cm-1处的峰归结为芳香骨架的振动,1305cm-1和1156cm-1处的峰为砜基的振动峰。图2中,110~150ppm为芳香环上碳原子的出峰信号区域,其中,138ppm为与砜基上的硫原子相连接的碳原子的信号峰。由图3可知,实施例1和实施例2制备产物呈纳米颗粒形态,实施例3和实施例4制备产物呈纳米片形态。图4的XRD结果表明实施例1~4产物均为无定型结构,实施例3和实施例4产物的衍射峰归结于π-π堆积效应。由图5可知,实施例1~4制备的聚合物具有非常相近的紫外可见光吸收范围。
为了证明本发明的有益效果,采用实施例1~4制备的聚合物光催化剂分别进行了光催化分解水产氢测试,具体方法如下:
将10mg聚合物光催化剂超声分散在100mL含1mol/L AA的水和DMF体积比为9:1的混合液中,AA作为牺牲剂,DMF作为分散剂,待聚合物催化剂分散后倒入反应器,接入光催化系统,光源为300W氙灯,420nm滤光片用来模拟可见光,在可见光和紫外-可见光下进行光催化分解水产氢测试,采用气相色谱进行光催化分解水产氢在线分析,结果见表1和图6、图7。
表1 光学带隙和产氢速率
由表1可见,本发明聚合物光催化剂在可见光下具有非常高的光催化活性,紫外可见光下产氢速率最高可达214.43mmol h-1 g-1,与文献(Macromolecules 2018,51,9502-9508)中的有机聚合物PyDOBT-1相比,紫外可见光下的光催化产氢速率提高了16~17倍,可见光下的光催化产氢速率提高了16~17倍;与文献(Chem.Mater.;2019,31,305-313)中的有机聚合物S-CMP3相比,紫外可见光下的光催化产氢速率提高了35~36倍,可见光下聚合物的光催化产氢速率提高了29~30倍。
图6和图7表明,实施例1~4的聚合物光催化剂不仅具有非常高的光催化产氢活性,还具有较高的光催化产氢稳定性,且光催化活性可以通过组分调控来进行调节。
Claims (6)
1.一类用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂,其特征在于所述聚合物光催化剂的结构如式A或式B所示:
式A中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:2,式B中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:3~10。
2.一种权利要求1所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:在氮气保护下,将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中或将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-二溴二苯并噻吩砜和3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A或式B所示的二苯并稠二萘基聚合物光催化剂,反应方程式如下:
3.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:制备式A所示的二苯并稠二萘基聚合物光催化剂的方法中,所述2,7,10,15-四溴二苯并稠二萘与3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的摩尔比为1:2,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的2~5倍。
4.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:制备式B所示的二苯并稠二萘基聚合物光催化剂的方法中,所述2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜的摩尔比为1:0.5~4,3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的用量为2,7,10,15-四溴二苯并稠二萘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
5.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:加热至回流反应36~48小时。
6.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210497677.5A CN114736356B (zh) | 2022-05-09 | 2022-05-09 | 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210497677.5A CN114736356B (zh) | 2022-05-09 | 2022-05-09 | 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114736356A CN114736356A (zh) | 2022-07-12 |
CN114736356B true CN114736356B (zh) | 2024-01-30 |
Family
ID=82285355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210497677.5A Active CN114736356B (zh) | 2022-05-09 | 2022-05-09 | 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114736356B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115838471B (zh) * | 2023-01-05 | 2024-11-01 | 福州大学 | 三唑氮基聚合物的制备及其在光催化反应中的应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113578382A (zh) * | 2021-07-29 | 2021-11-02 | 陕西师范大学 | 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4896716B2 (ja) * | 2003-07-16 | 2012-03-14 | 住友化学株式会社 | 芳香族モノマー−及び共役ポリマー−金属錯体 |
CN101282959B (zh) * | 2005-08-18 | 2013-04-17 | 日产化学工业株式会社 | 具有磺酰基的噻吩化合物及其制备方法 |
-
2022
- 2022-05-09 CN CN202210497677.5A patent/CN114736356B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113578382A (zh) * | 2021-07-29 | 2021-11-02 | 陕西师范大学 | 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts;Changzhi Han et al;《Chemical Science》;第12卷;第1796-1802页 * |
光活性联二萘酚及其衍生物的合成(二);刘全忠, 龚流柱, 蒋耀忠;精细与专用化学品(第02期);第4-7页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114736356A (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113578382B (zh) | 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 | |
Zhang et al. | Porous organic polymers for light-driven organic transformations | |
Xu et al. | Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production | |
Cheng et al. | Pyrene-alt-dibenzothiophene-S, S-dioxide copolymers for highly efficient photocatalytic hydrogen production: The role of linking pattern | |
Song et al. | 1, 2, 3-Triazole-based conjugated porous polymers for visible light induced oxidative organic transformations | |
CN112159517B (zh) | 朝格尔碱基共轭微孔聚合物光催化剂及其制备方法和应用 | |
CN112898542B (zh) | 一种d-a型共轭聚合物及其制备方法和应用 | |
CN114736356B (zh) | 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 | |
CN116120505B (zh) | 一类含卤素芘基共价有机框架聚合物光催化剂及其制备方法和应用 | |
Xu et al. | Conjugated porous polymers regulated by thiophene and polycyclic aromatic hydrocarbons for photocatalytic water splitting toward hydrogen production | |
Nie et al. | Enhanced Photocatalytic Activity of Hyper‐Cross‐Linked Polymers Toward Amines Oxidation Coupled with H2O2 Generation through Extending Monomer's Conjugation Degree | |
Wang et al. | Triazine‐Carbazole‐Based Covalent Organic Frameworks as Efficient Heterogeneous Photocatalysts for the Oxidation of N‐aryltetrahydroisoquinolines | |
Fan et al. | Enhancing photocatalytic hydrogen evolution performance for D-π-A conjugated polymers based on the perylene diimide | |
Jin et al. | Furan-based conjugated polymer photocatalysts for highly active photocatalytic hydrogen evolution under visible light | |
Wang et al. | Donor–π–acceptor conjugated microporous polymers for photocatalytic organic conversion with photogenerated carrier separation ability by an embedded electric field along the molecular chain | |
CN115340663A (zh) | 一种多孔性可控的超交联聚合物及其制备方法和应用 | |
CN108906125B (zh) | 一种三碟烯聚合物DTP/硫化锌镉Cd0.5Zn0.5S复合光催化剂的制备方法 | |
CN102827368A (zh) | 一种生物质基有机聚合物多孔材料及其合成方法 | |
CN102558555B (zh) | 一种含芴聚三唑耐高温紫外吸收剂及其制备方法 | |
Liu et al. | Extending 2D covalent organic frameworks by inserting anthracene for promoted white-light-mediated photocatalysis | |
Xu et al. | Rational design of novel D–A1–A2 conjugated microporous polymers for boosting spatial charge separation with enhanced photocatalytic hydrogen evolution | |
CN117089050A (zh) | 一种卟啉基柔性共轭微孔聚合物及其制备方法和应用 | |
CN113416299B (zh) | 侧链悬挂生物碱基的有机共轭聚合物光催化剂 | |
CN114405544B (zh) | 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用 | |
CN115521441B (zh) | 一种共轭微孔聚合物及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |