CN114728026A - 包含细菌物种的组合物及与其相关的方法 - Google Patents
包含细菌物种的组合物及与其相关的方法 Download PDFInfo
- Publication number
- CN114728026A CN114728026A CN202080073508.8A CN202080073508A CN114728026A CN 114728026 A CN114728026 A CN 114728026A CN 202080073508 A CN202080073508 A CN 202080073508A CN 114728026 A CN114728026 A CN 114728026A
- Authority
- CN
- China
- Prior art keywords
- composition
- species
- bacterial strain
- strain
- klebsiella
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/16—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
- A23K10/18—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/135—Bacteria or derivatives thereof, e.g. probiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/742—Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/19—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K2035/11—Medicinal preparations comprising living procariotic cells
- A61K2035/115—Probiotics
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Polymers & Plastics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Dermatology (AREA)
- Animal Husbandry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Transplantation (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
本公开一般涉及克里斯滕森氏菌属的细菌菌株,例如克里斯滕森氏菌种P152‑H6d细菌菌株,以及包含此类细菌菌株的组合物。本公开另外还涉及使用此类细菌菌株和组合物来预防或治疗病症(例如炎性疾病、胃肠病症、代谢紊乱和/或生态失调)的方法。
Description
相关申请的交叉引用
本申请要求于2019年8月28日提交的美国临时专利申请序列号62/893,142的权益和优先权,其全部内容在此通过引用并入本公开。
序列表
本申请包含以ASCII格式电子提交的序列表,该序列表整体在此通过引用并入本公开。所述ASCII副本创建于2020年8月28日,文件名为ASP-058WO_SL.txt,大小为3693554字节。
背景技术
胃肠道(GI)以及其它器官系统是一种包含许多不同生物体的群落的复杂的生物系统,生物体包含各种的细菌菌株。数百种不同的物种可能在健康人的胃肠道和其它器官中形成共生群落。此外,肠道中存在的微生物不仅对消化健康起着至关重要的作用,而且还会影响免疫系统。生物系统(例如胃肠道)中的紊乱或失衡可能包含肠道中细菌的类型和数量的变化,这可能导致不健康状态和/或疾病的发展或者可能是不健康状态和/或疾病的指标。
克里斯滕森氏菌科的成员的特征是作为与若干有益健康方面相关的高度可遗传的肠道共生细菌。例如,Goodrich等人报道了一项对来自416对双胞胎的超过1000个粪便样本的微生物群研究,其中观察到克里斯滕森氏菌科是最高度可遗传的分类单元,并且与肥胖体重指数(BMI)(>30)的人相比,在瘦BMI(<25)的受试者中显著富集(Goodrich etal.,Cell 159:789-799(2014))。Goodrich等人进一步证实了,克里斯滕森氏菌与在接受了瘦和肥胖人类粪便样本的无菌小鼠的体重增加的减少相关,并且在供体粪便中添加克里斯滕森氏菌科成员小克里斯滕森氏菌(Christensenella minuta)可减少受体小鼠的肥胖增加,这表明克里斯滕森氏菌促进瘦宿主表型。Goodrich等人(2014年)、Zhou等人证实了,粪便微生物群移植(FMT)可有效减轻高脂饮食(HFD)诱导的小鼠脂肪性肝炎,并且这种减轻与克里斯滕森氏菌的丰度升高有关(Zhou et al.,Sci Rep.7(1):1529(2017))。在健康与儿童和年轻成人炎性肠病(IBD)患者的粪便样本中也观察到了克里斯滕森氏菌成员的富集(Papa et al.,PLoS ONE 7,e39242(2012))。
Morotomi等人首次报道了克里斯滕森氏菌科作为梭菌目的一个独特分支,并且还报道了其第一个克里斯滕森氏菌属以及其第一个分离的小克里斯滕森氏菌种(Morotomiet al.,Int J Syst Evol Microbiol.62(Pt 1):144-149(2012))。其它报道的分离出的克里斯滕森氏菌成员包含马赛类克里斯滕森氏菌(C.massiliensis)(Ndongo et al.,NewMicrobes New Infect.12:69-70(2016))和提蒙类克里斯滕森氏菌(C.timonensis)(Ndongo et al.,New Microbes New Infect.13:32-33(2016))
鉴于越来越多的证据表明克里斯滕森氏菌在维持有益健康状态(例如瘦体重、低炎症和平衡的微生物群)中的作用,因此需要鉴定克里斯滕森氏菌科和克里斯滕森氏菌属的其它成员,特别是那些显示出潜在的有益抗炎特性(例如短链脂肪酸生成和/或抗炎细胞因子生成)并具有治疗诸如炎性疾病(例如,IBD)和代谢紊乱(例如,肥胖、非酒精性脂肪肝病(NAFLD)和非酒精性脂肪性肝炎(NASH))的病症的潜力。
发明内容
本公开提供了组合物,例如药物组合物,其包含克里斯滕森氏菌属的菌种或菌株,例如,本文称为克里斯滕森氏菌种P152-H6d的菌种或菌株。术语克里斯滕森氏菌种P152-H6d、克里斯滕森氏菌P152-H6d、P152-H6d、克里斯滕森氏菌ASMB、克里斯滕森氏菌ASMBP152-H6d在本文中可互换使用。应当理解,除非另有说明,否则这些术语可以指物种以及该物种的菌株。例如,克里斯滕森氏菌种P152-H6d可以指克里斯滕森氏菌种P152-H6d的菌种以及克里斯滕森氏菌种P152-H6d的菌株(例如保藏号为DSM33237的菌株),这是该物种的典型菌株。克里斯滕森氏菌种P152-H6d的菌种可以替换地称为Christensenla californii。
在一个方面,本公开提供了一种组合物,其包含克里斯滕森氏菌属的细菌菌株,其中,该细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98%的序列同一性的16srRNA基因序列。在一些实施方案中,该组合物还包含赋形剂、稀释剂和/或载体。在一些实施方案中,该组合物或该组合物中的细菌菌株是冻干的、升华干燥的或喷雾干燥的。
在一些实施方案中,克里斯滕森氏细菌菌株能够增加人细胞(例如,THP-1巨噬细胞、单核细胞源性的树突细胞(moDC)或外周血单核细胞(PBMC))体外分泌CCL-18和/或IL-10,例如,当该菌株与人THP-1巨噬细胞共培养时,克里斯滕森氏细菌菌株增加人THP-1巨噬细胞分泌CCL-18。在一些实施方案中,克里斯滕森氏细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98.5%、98.65%、99%或99.5%的序列同一性的16s rRNA基因序列。在一些实施方案中,克里斯滕森氏细菌菌株包含SEQ ID NO:1的16s rRNA基因序列。在一些实施方案中,克里斯滕森氏细菌菌株与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d共享至少70%的DNA-DNA杂交。在一些实施方案中,克里斯滕森氏细菌菌株包含与SEQ ID NO:2至SEQ ID NO:28中任一个具有至少约70%的同一性的核苷酸序列。在一些实施方案中,克里斯滕森氏细菌菌株包含与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d的基因组具有至少95%的平均核苷酸同一性(ANI)的基因组。在一些实施方案中,克里斯滕森氏细菌菌株包含与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d的基因组具有至少96.5%的平均核苷酸同一性(ANI)和至少60%的比对分数(AF)的基因组。在一些实施方案中,克里斯滕森氏细菌菌株是保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d。
在一些实施方案中,克里斯滕森氏细菌菌株是非孢子形成的。在一些实施方案中,组合物的克里斯滕森氏细菌菌株是活的。在一些实施方案中,细菌菌株能够至少部分定植人类受试者的肠道。在一些实施方案中,该组合物适合口服递送于受试者。在一些实施方案中,包含克里斯滕森氏细菌菌株的组合物被配制成肠溶制剂。在一些实施方案中,肠溶制剂被配制成胶囊、片剂、囊片、丸剂、锭剂、锭剂、散剂或颗粒剂。在一些实施方案中,组合物被配制成栓剂、混悬剂、乳剂或凝胶剂。在一些实施方案中,组合物包含至少1x103CFU的所述细菌菌株。在一些实施方案中,组合物包含治疗有效量的细菌菌株,当施用于有需要的受试者时足以预防或治疗病症。在一些实施方案中,病症选自由炎性疾病、胃肠道疾病、炎性肠病、癌症、非酒精性脂肪肝病(NAFLD)、非酒精性脂肪肝炎(NASH)、代谢综合征、胰岛素缺乏、胰岛素抗性相关疾病、胰岛素敏感性、葡萄糖耐受不良、前期糖尿病、糖尿病、高体重指数(BMI)、过度肥胖、肥胖症、超重、心血管疾病、动脉粥样硬化、高脂血症、高血糖、脂质代谢异常和高血压组成的组。在一些实施方案中,胃肠道疾病选自由溃疡性结肠炎、克罗恩病和肠易激综合症组成的组。
在一些实施方案中,组合物包含选自由填充剂、粘合剂、崩解剂及其任何组合组成的组的赋形剂。在一些实施方案中,赋形剂选自由纤维素、聚乙烯吡咯烷酮、二氧化硅、硬脂富马酸酸或其药学上可接受的盐、以及它们的任何组合组成的组。在一些实施方案中,组合物还包含冷冻保护剂。在一些实施方案中,冷冻保护剂选自由低聚果糖、海藻糖及其组合组成的组。在一些实施方案中,低聚果糖是(源自菊粉的低聚果糖)。在一些实施方案中,该组合物适用于推注施用或推注释放。在一些实施方案中,组合物包含克里斯滕森氏细菌菌株和至少一种或多种其它细菌菌株。
在另一方面,本公开提供了一种克里斯滕森氏菌属的细菌菌株,其中,细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98%的序列同一性的16s rRNA基因序列。
在一些实施方案中,克里斯滕森氏细菌菌株能够增加人细胞(例如,THP-1巨噬细胞、单核细胞源性的树突细胞(moDC)或外周血单核细胞(PBMC))体外分泌CCL-18和/或IL-10,例如,当该菌株与人THP-1巨噬细胞共培养时,克里斯滕森氏细菌菌株增加人THP-1巨噬细胞分泌CCL-18。在一些实施方案中,克里斯滕森氏细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98.5%、98.65%、99%或99.5%的序列同一性的16s rRNA基因序列。在一些实施方案中,克里斯滕森氏细菌菌株包含SEQ ID NO:1的16s rRNA基因序列。在一些实施方案中,克里斯滕森氏细菌菌株与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d共享至少70%的DNA-DNA杂交。在一些实施方案中,克里斯滕森氏细菌菌株包含与SEQ ID NO:2至SEQ ID NO:28中任一个具有至少约70%同一性的核苷酸序列。在一些实施方案中,克里斯滕森氏细菌菌株包含与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d的基因组具有至少95%的平均核苷酸同一性(ANI)的基因组。在一些实施方案中,克里斯滕森氏细菌菌株包含与保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d的基因组具有至少96.5%的平均核苷酸同一性(ANI)和至少60%的比对分数(AF)的基因组。在一些实施方案中,克里斯滕森氏细菌菌株是保藏号为DSM 33237的克里斯滕森氏菌种P152-H6d。在一些实施方案中,克里斯滕森氏细菌菌株是活的。在一些实施方案中,细菌菌株能够至少部分定植人类受试者的肠。
在另一方面,本公开提供了包含本公开所述的克里斯滕森氏细菌菌株的食品。
在另一方面,本公开提供了预防或治疗有需要的受试者的病症(例如,炎性疾病、胃肠道疾病、炎性肠病、癌症、非酒精性脂肪肝病(NAFLD)、非酒精性脂肪肝炎(NASH)、代谢综合征、胰岛素缺乏、胰岛素抗性相关疾病、胰岛素敏感性、葡萄糖耐受不良、前期糖尿病、糖尿病、高体重指数(BMI)、过度肥胖、肥胖症、超重、心血管疾病、动脉粥样硬化、高脂血症、高血糖、脂质代谢异常和高血压)的方法,该方法包含:向该受试者施用治疗有效量的所述克里斯滕森氏细菌菌株或包含所述克里斯滕森氏细菌菌株的组合物。在一些实施方案中,胃肠道疾病是溃疡性结肠炎、克罗恩病或肠易激综合症。还提供了一种治疗有需要的受试者的生态失调的方法,该方法包含:向该受试者施用治疗有效量的所述克里斯滕森氏细菌菌株或包含所述克里斯滕森氏细菌菌株的组合物。还提供了一种改变受试者(例如,有需要的受试者)的肠道菌群的方法,该方法包含:向该受试者施用治疗有效量的所述克里斯滕森氏细菌菌株或包含所述克里斯滕森氏细菌菌株的组合物。还提供了一种治疗有需要的受试者的皮肤病的方法,该方法包含:向该受试者施用治疗有效量的所述克里斯滕森氏细菌菌株或包含所述克里斯滕森氏细菌菌株的组合物。在一些实施方案中,皮肤病选自由银屑病、湿疹、皮炎(例如,湿疹性皮炎、局部和脂溢性皮炎、过敏性或刺激性接触性皮炎、裂纹样湿疹、光过敏性皮炎、光毒性皮炎、植物日光性皮炎、放射性皮炎和瘀滞性皮炎)以及痤疮组成的组。在本公开提供的方法的一些实施方案中,该方法还包含:向受试者施用益生元。在一些实施方案中,受试者选自由人、同伴动物和家畜动物组成的组。
附图说明
参考以下附图可以更完整地理解本公开。
图1描绘了:(A)用克里斯滕森氏菌种P152-H6d(P152-H6d)的最近邻和其它属的16S rDNA序列构建的最大似然(ML)树,表明克里斯滕森氏菌属是一个成员菌种间有明确的分类划分的单系属,并且每个单独的克里斯滕森氏菌种明显聚集在单个进化枝上。(B)克里斯滕森氏菌P152-H6d(C.sp.P152-H6d)16S rRNA基因序列(SEQ ID NO:1)的BLASTn搜索结果。1442bps的完整P152-H6d16S rRNA序列长度上最接近的匹配是物种提蒙类克里斯滕森氏菌(Christensenella timonensis),序列同一性为97.85%。
图2描绘了以表征克里斯滕森氏菌种P152-H6d、其它克里斯滕森氏菌种以及其它属的基于ANI的系统发育树。使用FastANI计算所描绘菌株的基因组中的成对ANI值。成对ANI值用于生成phylip格式的距离矩阵。使用R包BionNJ利用邻接方法(neighbor-joiningapproach)推断这些基因组之间的系统发育关系。分支长度与ANI距离成正比。
图3描绘了克里斯滕森氏菌种P152-H6d细菌细胞的扫描电子显微照片(18.64k x放大倍数)。
图4描绘了培养72小时的克里斯滕森氏菌种P152-H6d(克里斯滕森氏菌ASMBP152-H6d)的短链脂肪酸(SCFA)产生曲线。采用HPLC(ABPDU Berkeley CA)分析分批培养上清液中的丁酸、丙酸和乙酸的含量。未接种的YCFAC培养基用作阴性对照。
图5描绘了克里斯滕森氏菌种P152-H6d对人THP-1巨噬细胞中的CCL-18产生的影响。(A)THP-1巨噬细胞分别与仅PBS、PBS加大肠杆菌LPS、克里斯滕森氏菌种P152-H6d和免疫调节细菌菌株对照(已知可诱导促炎细胞因子)共培养,收集上清液并测定CCL-18的产生。每个测试物进行4次重复评估,并且结果代表至少两个独立实验。p值≤0.05(单因素方差分析)。(B)THP-1巨噬细胞中CCL-18的产生以与克里斯滕森氏菌种P152-H6d剂量相关的方式增加。*p值≤0.05(个体学生t检验)。
图6描绘了克里斯滕森氏菌种P152-H6d对(A)IL12-p40的作用以及对人THP-1巨噬细胞中的(B)TNF-α产生的作用。THP-1巨噬细胞分别与仅PBS、PBS加大肠杆菌LPS、克里斯滕森氏菌种P152-H6d和免疫调节细菌菌株对照(已知可诱导促炎细胞因子)共培养,收集上清液并测定IL12-p40和TNF-α的产生。每个测试物进行4次重复评估,并且结果代表至少两个独立实验。p值≤0.05(单因素方差分析)。
图7描绘了克里斯滕森氏菌种P152-H6d对(A)&(C)IL10的作用;对(B)IL-1RA的作用;以及对(A)&(B)人单核细胞源性的树突状细胞(MoDC)和(C)&(D)人外周血单核细胞(PBMC)中的(D)MCP1产生的作用。人细胞分别与仅PBS和克里斯滕森氏菌种P152-H6d共培养,收集上清液并测定细胞因子的产生。每个测试物进行4次重复评估,并且结果代表至少两个独立实验。
图8描绘了在克罗恩病(CD)粪便微生物群存在条件下的人THP-1巨噬细胞体外细胞因子测定中克里斯滕森氏菌种P152-H6d(C.P152-H6d)的作用。在测定结束时收集THP-1巨噬细胞上清液,并为PBS对照、CD粪便微生物群、单独的克里斯滕森氏菌种P152-H6d以及添加了指示为v/v量的克里斯滕森氏菌种P152-H6d的CD粪便微生物群绘制培养上清液中的IL-12p40浓度。每个测试物进行4次重复评估,并且结果代表至少两个独立实验。
图9描绘了克里斯滕森氏菌种P152-H6d对咪喹莫特-(IMQ)诱导的银屑病样皮肤炎症小鼠模型中背部皮肤厚度的作用。在具有Dunettspost-hoc分析的双因素方差分析中*<0.05。
图10描绘了克里斯滕森氏菌种P152-H6d对恶唑酮诱导的特应性皮炎小鼠模型中的皮肤发红(红斑)的作用。提供了以下红斑临床评分:(A)随时间的推移;和(B)作为AUC。在具有Dunetts post-hoc分析的双因素方差分析中**<0.005,****<0.0001。
图11描绘了克里斯滕森氏菌种P152-H6d对恶唑酮诱导的特应性皮炎小鼠模型中背部皮肤脱屑的影响。提供的背部皮肤脱屑临床评分:(A)随时间的推移;和(B)作为AUC。在具有Dunetts post-hoc分析的双因素方差分析中****<0.0001。
图12描绘了克里斯滕森氏菌种P152-H6d对DSS诱导的结肠炎小鼠模型中体重的作用。
图13描绘了,在DSS诱导的结肠炎小鼠模型中,分别施用克里斯滕森氏菌种P152-H6d(C.P152-H6d)和抗IL12p40抗体(抗IL12-p40)对以下结肠细胞因子的产生的作用:(A)IL-1β;(B)IL-17a;和(C)TNF-α。右图描绘了所产生的结肠细胞因子的水平与施用DSS诱导的体重减轻%之间的相关性。
图14描绘了克里斯滕森氏菌种P152-H6d对DSS诱导的结肠炎小鼠模型中体重的作用。在具有多重比较的双因素方差分析中*p<.05,Benjamini、Krieger和Yekutieli的用于控制错误发现率的方法,通过GraphPad Prism进行分析。
图15描绘了在分别施用载体、克里斯滕森氏菌种P152-H6d(C.P152-H6d)和抗-IL12-p40抗体之后,在DSS诱导的结肠炎的第14天血浆中IBD疾病活性生物标志物的水平。通过ELISA进行评估(A)粒细胞集落刺激因子(G-CSF)、(B)脂质运载蛋白-2/NGAL、和(C)血清淀粉样蛋白A(SAA),并将水平标准化为分析的ml血浆。(D)在分别施用载体、克里斯滕森氏菌种P152-H6d和抗-IL12-p40抗体之后,后远端结肠的组织学评分。在亚急性炎症、结肠腺损伤/丧失、糜烂、增生和粘膜下水肿类别中,对每个样品给予1-5的评分。此处绘制的组织学评分是每只小鼠所有5个类别的评分总和。(A)-(C):*p<.05,具有多重比较的单因素方差分析,Beniamini、Krieger和Yekutieli的用于控制错误发现率的方法,由GraphPadPrism分析。(D):*p<.05,具有多重比较的Kruskal-Wallis检验,Beniamini、Krieger和Yekutieli的用于控制错误发现率的方法,由GraphPad Prism分析。
图16描绘了克里斯滕森氏菌种P152-H6d对鼠类柠檬酸杆菌诱导的结肠炎小鼠模型中体重的影响。提供了体重变化%:(A)随着时间的推移;(B)作为AUC。
图17描绘了克里斯滕森氏菌种P152-H6d对鼠类柠檬酸杆菌诱导的结肠炎小鼠模型中(A)结肠长度和(B)结肠重量的影响。(C)结肠重量/长度的比率。LLOD=检测下限。
图18描绘了克里斯滕森氏菌种P152-H6d对鼠类柠檬酸杆菌诱导的结肠炎小鼠模型中的结肠组织中的(A)IFN-γ;(B)IL-1β;(C)IL-21;和(D)TNF-α的影响。LLOD=检测下限。
图19描绘了在施用载体、克里斯滕森氏菌种P152-H6d和对照细菌菌株(细菌Y)之后,柠檬酸杆菌诱导的结肠炎第14天血浆中脂质运载蛋白-2/NGAL的水平。这些水平通过ELISA评估并标准化为分析的ml血浆。
图20描绘了克里斯滕森氏菌种P152-H6d、粪厌氧棒杆菌(Anaerostipes caccae)、以及克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合对TNBS诱导的结肠炎小鼠模型中(A)体重和(B)远端结肠的组织学评分的影响。在亚急性炎症、结肠腺损伤/丧失、糜烂、增生和粘膜下水肿类别中,对每个样本给予1-5的评分。此处绘制的组织学评分是每只小鼠所有5个类别的评分总和。*p<.05,具有多重比较的Kruskal-Wallis检验,Benjamini、Krieger和Yekutieli的用于控制错误发现率的方法,由GraphPad Prism分析。
图21描绘了克里斯滕森氏菌种P152-H6d(C.P152-H6d)、粪厌氧棒杆菌(A.caccae)、以及克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合对人THP-1巨噬细胞中的(A)IL-1β;(B)IL-12p40;和(C)TNF-α的产生的影响。在测定结束时收集THP-1巨噬细胞上清液,并通过ELISA评估培养上清液中的细胞因子浓度。每个测试物进行4次重复评估,并且结果代表至少两个独立实验。
图22描绘了用于来自健康人类粪便样本的克里斯滕森氏菌种P152-H6d的其它菌株的基于PCR的筛选的PCR扩增子。(A)从克里斯滕森氏菌种P152-H6d-特异性引物(Ch_relA_AA_2)和跨越克里斯滕森氏菌属(Ch_Fred)的三个不同成员的同源区域的引物所产生的扩增子。Ch=克里斯滕森氏菌种P152-H6d,Cmi=小克里斯滕森氏菌(C.minuta),Cma=马赛类克里斯滕森氏菌(C.massiliensis)并且Ct=提蒙类克里斯滕森氏菌(C.timonensis)。(B)确认分离出另外四个克里斯滕森氏菌种P152-H6d的菌株(菌株P235-A1a(泳道A1);菌株P235-A3a(泳道A3);菌株P237-A7a(泳道A7);菌株P237-B12a(泳道B12)的PCR扩增子。ChA=克里斯滕森氏菌种P152-H6d。
具体实施方式
I.细菌菌株
在一方面,本公开提供了克里斯滕森氏菌属的物种或菌株(在本公开中称为克里斯滕森氏菌种P152-H6d)和包含克里斯滕森氏菌种P152-H6d的组合物(例如药物组合物)。术语克里斯滕森氏菌种P152-H6d、克里斯滕森氏菌P152-H6d、P152-H6d、克里斯滕森氏菌ASMB、克里斯滕森氏菌ASMB P152-H6d在本文中可互换使用。应当理解,除非另有说明,否则这些术语可以指菌种以及该菌种的菌株。例如,克里斯滕森氏菌种P152-H6d可能是指物种克里斯滕森氏菌种P152-H6d,以及菌株克里斯滕森氏菌种P152-H6d(例如,保藏号为DSM33237的菌株),这是该物种的典型菌株。物种克里斯滕森氏菌种P152-H6d也可以称为Christensenalla californii。
如本文所用,术语“物种”是指如通常由基因组序列和表型特征定义的分类实体。“株”是已根据常规微生物技术分离和纯化的物种的特定实例。本文所述的细菌物种和/或菌株包含活的和/或有活力的那些。在一些实施方案中,本文所述的细菌物种和/或菌株包含细菌的营养生殖形式和非孢子形成形式。本领域技术人员将认识到克里斯滕森氏菌属可进行分类重组。因此,预期所考虑的克里斯滕森氏菌种包含已被重新命名和/或重新分类的克里斯滕森氏菌种,以及可能随后被重新命名和/或重新分类的克里斯滕森氏菌种。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株包含与参考序列具有特定百分比的同一性的16S rRNA基因序列。rRNA、16S rDNA、16S rRNA、16S、18S、18S rRNA和18S rDNA是指作为核糖体的组分或编码核糖体的组分的核酸。核糖体中有两个亚基,称为小亚基(SSU)和大亚基(LSU)。核糖体RNA基因(rDNA)及其互补RNA序列由于是可变的而被广泛用于确定生物体之间的进化关系,但又足够保守以允许跨生物体分子比较。在实施方案中,30S SSU的16S rDNA序列可用于原核生物的基于分子的分类学分配。例如,16S序列可用于系统发育重建,因为它们通常高度保守但包含特定的高变区域,这些区域具有足够的核苷酸多样性以区分大多数细菌的属和种。尽管16S rDNA序列数据已被用于提供分类学分类,但在同一属和种内分类的密切相关的细菌菌株可能表现出不同的生物学表型。
相应地,本公开提供的物种克里斯滕森氏菌种P152-H6d的细菌菌株包含与SEQ IDNO:1具有特定百分比的同一性的16s rRNA基因序列。在一些实施方案中,细菌菌株是包含与SEQ ID NO:1的多核苷酸序列具有至少97.90%的序列同一性的16s rRNA基因序列的克里斯滕森氏菌属的菌株。在一些实施方案中,细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约97.95%、约98.00%、约98.05%、约98.1%、约98.15%、约98.2%、约98.25%、约98.3%、约98.35%、约98.4%、约98.45%、约98.5%、约98.55%、约98.6%、约98.65%、约98.7%、约98.75%、约98.80%、约98.85%、约99%、约99.1%、约99.2%、约99.3%、约99.4%、约99.5%、约99.6%、约99.7%、约99.8%或约99.9%的同一性的16s rRNA基因序列。在特别的实施方案中,细菌菌株包含与SEQ ID NO:1相同的16s rRNA基因序列。在一些实施方案中,上述序列同一性是指跨越至少约70%的SEQ ID NO:1。在一些实施方案中,上述序列同一性是指跨越至少约70%的SEQ ID NO:1。在一些实施方案中,上述序列同一性是指跨越至少约71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的SEQ ID NO:1。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株包含与SEQ ID NO:2至SEQ ID NO:28中的一个或多个具有一定百分比的同一性的基因组序列(例如,全基因组序列,或其片段或重叠群)。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含SEQID NO:2至SEQ ID NO:28中任一个的多核苷酸序列,或者包含与SEQ ID NO:2至SEQ ID NO:28中任一个的多核苷酸序列具有至少约70%、约75%、约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%的同一性的核苷酸序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株基因组可包含SEQ ID NO:2至SEQ IDNO:28中的每一个的多核苷酸序列,或包含与SEQ ID NO:2至SEQ ID NO:28中每一个的多核苷酸序列具有至少约65%、约70%、约75%、约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%的同一性的每一个多核苷酸序列。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株包含全基因组序列,该全基因组序列在其基因组的至少70%上与由SEQ ID NO:2至SEQ ID NO:28表示的所有基因组重叠群的总和具有至少约70%的同一性。在一些实施方案中,全基因组序列与由SEQID NO:2至SEQ ID NO:28表示的所有基因组重叠群的总和具有至少约75%、80%、85%、90%、95%或大于95%的同一性。在一些实施方案中,上述序列同一性跨越细菌菌株的全基因组序列的至少75%、80%、85%、90%、95%或大于95%。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株包含全基因组序列,该全基因组序列包含编码区,编码区在其基因组中的总编码区的至少70%上与在由SEQ ID NO:2至SEQ ID NO:28表示的所有基因组重叠群的总和内的编码区具有至少约70%的同一性。在一些实施方案中,全基因组序列中的编码区与在由SEQ ID NO:2至SEQ ID NO:28表示的所有基因组重叠群的总和内的编码区具有至少约75%、80%、85%、90%、95%或大于95%的同一性。在一些实施方案中,上述序列同一性跨越细菌菌株的全基因组序列内至少75%、80%、85%、90%、95%或大于95%的编码区。
在一些实施方案中,本公开提供的物种克里斯滕森氏菌种P152-H6d的细菌菌株包含与SEQ ID NO:33具有一定百分比的同一性的relA基因序列。在一些实施方案中,细菌菌株是包含与SEQ ID NO:33的多核苷酸序列具有至少约85%的序列同一性的relA基因序列的克里斯滕森氏菌属的菌株。在一些实施方案中,细菌菌株包含与SEQ ID NO:33的多核苷酸序列具有至少约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%、约99.1%、约99.2%、约99.3%、约99.4%、约99.5%、约99.6%、约99.7%、约99.8%或约99.9%的同一性的relA基因序列。在特别的实施方案中,细菌菌株包含与SEQ ID NO:33相同的relA基因序列。在一些实施方案中,上述序列同一性跨越SEQ ID NO:33的至少约70%。在其它实施方案中,上述序列同一性跨越SEQID NO:33的至少约71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。
使用本领域已知的任何测序方法(例如包含桑格测序(Sanger)),通过例如对细菌菌株的16s rRNA基因序列或基因组序列(例如,全基因组序列,或其片段或重叠群)进行序列分析,可以确定物种克里斯滕森氏菌种P152-H6d的细菌菌株的同一性。可用于鉴定克里斯滕森氏菌种P152-H6d的菌株的测序技术的一个示例是Illumina平台。Illumina平台是基于使用折叠式PCR和锚定引物(例如,捕获寡核苷酸)在固体表面(例如,流动池)上扩增DNA。为了使用Illumina平台进行测序,细菌DNA被片段化,并且将接头添加到片段的末端。DNA片段通过捕获能够与片段的接头末端杂交的寡核苷酸而附着于流动池通道的表面。然后将DNA片段延伸并桥接扩增。在多轮固相扩增和变性之后,产生数百万个空间固定的核酸簇或单链核酸集落的阵列。每个簇可能包含相同模板的单链DNA分子的大约数百到一千个拷贝。Illumina平台使用边合成边测序方法,其中,包含可检测标记(例如荧光团)的测序核苷酸被连续添加到游离的3′羟基上。在核苷酸掺入之后,可以使用具有特定于标记的核苷酸特的波长的激光来激发标签。捕获图像并记录核苷酸碱基的同一性。可以重复这些步骤以对其余的碱基进行测序。例如在美国专利申请公开号2011/0009278、2007/0014362、2006/0024681、2006/0292611以及美国专利号7,960,120、7,835,871、7,232,656和7,115,200中描述了按照这种技术的测序。另一个用于鉴定克里斯滕森氏菌种P152-H6d的菌株的测序技术示例是来自Life Technologies Corporation(Carlsbad,CA)的Applied Biosystems的SOLiD技术。在SOLiD测序中,细菌DNA可以被剪切成片段,并且接头可以连接到片段的末端以生成文库。可以在包含模板、PCR反应组分、磁珠和引物的微反应器中制备克隆珠群。在进行PCR后,模板可以变性,并且可以进行磁珠富集以分离带有延伸引物的分离磁珠。所选磁珠上的模板经过3′改性,从而可以共价连接到载玻片上。该序列可以通过与几个引物的顺序杂交和连接来确定。一组四个荧光标记的双碱基探针竞争与测序引物的连接。进行多轮连接、检测和切割循环,循环次数决定了最终读取(read)长度。另一个用于鉴定克里斯滕森氏菌种P152-H6d的菌株的测序技术示例是Ion Torrent测序。在这项技术中,细菌DNA被剪切成片段,然后将寡核苷酸接头连接到片段的末端。然后将这些片段附着在表面上,片段中的每个碱基都可以通过测量碱基结合过程中释放的H+离子来解析。这项技术例如在美国专利申请公开号2009/0026082、2009/0127589、2010/0035252、2010/0137143和2010/0188073中描述。
在获得细菌菌株的多核苷酸序列(例如,16s rRNA基因序列或基因组序列)后,与克里斯滕森氏菌种P152-H6d的多核苷酸序列的序列同一性可以以本领域技术范围内的各种方式确定,例如,使用诸如BLAST、BLAST-2、BLAT(BLAST类比对工具)、ALIGN或Megalign(DNASTAR)软件的公开可用的计算机软件。使用程序blastp、blastn、blastx、tblastn和tblastx(Karlin et al.,PROC.NATL.ACAD.SI.USA 87:2264-2268(1990);Altschul,J.MOL.EVOL.36,290-300(1993);Altschul et al.,NUCLEIC ACIDS RES.25:3389-3402(1997),通过引用并入)的BLAST(Basic Local Alignment Search Tool,即基于局部比对算法的搜索工具)分析专用于序列相似性搜索。关于搜索序列数据库中的基本问题的讨论可参见Altschul et al.,NATURE GENETICS 6:119-129(1994),其通过引用完全并入。本领域技术人员可以确定用于测量比对的适当参数,包含在被比对的序列的全长上实现最大比对所需的任何算法。直方图、描述、比对、期望值(即,报告与数据库序列匹配的统计显著性阈值)、截距、矩阵和过滤器的搜索参数为默认设置。blastp、blastx、tblastn和tblastx使用的默认评分矩阵是BLOSUM62矩阵(Henikoff et al.,(1992)PROC.NATL.ACAD.SCI.USA89:10915-10919,通过引用完全并入)。四个blastn参数可以以如下方式调整:Q=10(空位创建罚分);R=i0(空位扩展罚分);wink=1(在查询中的每第wink个位置处生成单词hits);和gapw=16(设置生成空位比对的窗口宽度)。等效的Blastp参数设置可能是Q=9;R=2;wink=1;和gapw=32。也可以使用NCBI(国家生物技术信息中心)BLAST高级选项参数进行搜索(例如:-G,打开空位的成本[整数]:默认值=5(针对核苷酸)/11(针对蛋白质);-E,扩展空位的成本[整数]:默认值=2(针对核苷酸)/1(针对蛋白质);-q,对核苷酸失配的罚分[整数]:默认值=-3;-r,对核苷酸匹配的奖励[整数]:默认值=1;-e,期望值[真实]:默认值=10;-W,字大小[整数]:默认值=11(针对核苷酸)/28(针对megablast)/3(针对蛋白质);-y,blast延伸的Dropoff(X),以bit为单位:默认值=20(针对blastn)/7(针对其它);-X,有空位比对的X dropoff值(以bit为单位):默认值=15(针对所有程序,不适用于blastn);以及-Z,有空位比对的最终X dropoff值(以bit为单位):50(针对blastn),25(针对其它))。GCG软件包版本10.0中可用的序列间的最适合比较使用DNA参数GAP=50(空位创建罚分)和LEN=3(空位扩展罚分),蛋白质比较中的等效设置为GAP=8和LEN=2。
在特别的实施方案中,本文提供的克里斯滕森氏菌种P152-H6d的细菌菌株是克里斯滕森氏菌种P152-H6d的菌株P152-H6d。克里斯滕森氏菌种P152-H6d的菌株P152-H6d是在2019年8月12日根据国际承认用于专利程序的微生物保藏的布达佩斯条约(the BudapestTreaty on the International Recognition of the Deposit of Microorganisms forthe Purposes of Patent Procedure)向DSMZ(Deutsche Sammlung von Mikroorganismenand Zellkulturen GmbH,Inhoffenstraβe 7B,38124,不伦瑞克,德国)进行的保藏。保藏号为DSM 33237。克里斯滕森氏菌种P152-H6d的菌株P152-H6d的16s rRNA基因序列在本公开中提供为SEQ ID NO:1,并且克里斯滕森氏菌种P152-H6d菌株P152-H6d的基因组序列在本公开中提供为SEQ ID NO:2至SEQ ID NO:28。在其它特定实施方案中,本公开提供的克里斯滕森氏菌种P152-H6d的细菌菌株是选自由P235-A1a、P235-A3a、P237-A7a和P237-B12a组成的组的克里斯滕森氏菌种的菌株。这些特定菌株的分离在下面的实施例7中进行描述。
本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有大于或等于约70%的DNA-DNA杂交(DDH)值的克里斯滕森氏菌株。在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株是一种与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有大于约70%、约75%、约80%、约85%、约90%、约95%、约98%或约99%或者在任意上述数值之间的范围内的百分比的DNA-DNA杂交的菌株。本领域已知的用于确定DNA-DNA杂交值的任何方法都可用于评估DNA-DNA杂交程度,包含但不限于De Ley et al.(J Biochem 12 133-142(1970),slightly modified inhybridization temperature(Gavini et al.,Ecology in Health and Disease 1240-45(2001))描述的用于确定复性率的分光光度法;以及Grimont et al.,Curr Microbiol 4,325-330(1980)和Rossello-Mora,Molecular Identiffcation,Systematics andPopulation Structure of Prokaryotes pp.23-50(2006)所描述的这些。在一些实施方案中,DNA-DNA杂交程度通过数字DNA-DNA杂交(dDDH)分析来确定,例如,使用基因组到基因组距离计算器在线工具(Genome-to-Genome Distance Calculator online tool)(参见Meier-Kolthoff et al.,BMC Bioinformatics 14:60(2013))。在特定的实施方案中,克里斯滕森氏菌种P152-H6d菌株是一种与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有大于或等于约70%的DDH或dDDH值的菌株。在一些实施方案中,与克里斯滕森氏菌种P152-H6d的菌株P152-H6d的DDH或dDDH值为大于约75%、约80%、约85%、约90%、约95%、约98%或约99%,或者上述任意数值之间的任何范围。
本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有大于或等于95%的平均核苷酸同一性(ANI)的克里斯滕森氏菌株。在一些实施方案中,与克里斯滕森氏菌种P152-H6d的菌株P152-H6d的ANI为大于或等于约95%、约95.5%、约96%、约96.5%、约97%、约97.5%、约98%、约98.5%、约99%、约99.5%或100%,或者在任意上述数值之间的范围内。两个菌株之间共享基因的平均核苷酸同一性(ANI)已知是比较菌株之间遗传相关性的可靠手段,并且~95%的ANI值对应于定义一个物种的70%的DNA-DNA杂交标准。例如参见,Konstantinidis和Tiedje,ProcNatl Acad Sci U S A,102(7):2567-72(2005);Goris et al.,Int J Syst EvolMicrobiol.57(Pt 1):81-91(2007)以及Jain et al.,Nat Commun.9(1):5114(2018)。在一些实施方案中,两个细菌基因组之间的ANI是通过对任何两个菌株之间所有共享序列的成对比较来计算的,并且例如可以使用若干公开可用的ANI工具中的任何一个而确定,所述工具包括但不限于OrthoANI with usearch(Yoon et al.Antonie van Leeuwenhoek 110:1281-1286(2017);ANI Calculator,JSpecies(Richter and Rossello-Mora,Proc NatlAcad Sci USA 106:19126-19131(2009));以及JSpeciesWS(Richter et al.,Bioinformatics 32:929-931(2016))。用于确定两个基因组的ANI的其它方法是本领域已知的。例如参见,Konstantinidis,K.T.和Tiedie,J.M.,Proc.Natl.Acad.Sci.U.S.A.,102:2567-2572(2005);Varghese et al.,Nucleic Acids Research,43(14):6761-6771(2015);以及Jain et al.,Nat Commun.9(1):5114(2018)。在特别的实施方案中,两个细菌基因组之间的ANI可以使用基于比对的方法来确定,例如,通过对被鉴定为双向最佳命中(bidirectional best hits,BBH)的直系同源基因的核苷酸同一性进行求平均。第一基因组(基因组A)和第二基因组(基因组B)的蛋白质编码基因在核苷酸水平上使用相似性搜索工具进行比较,例如NSimScan(Novichkov et al.,Bioinformatics 32(15):2380-23811(2016))。然后过滤结果以仅保留在每个BBH对中的较短序列的至少70%的长度上显示70%序列同一性的BBH。基因组A到基因组B的ANI定义为所有BBH的同一性百分比乘以比对长度之和除以BBH基因的长度之和。在另一个特定实施方案中,两个细菌基因组之间的ANI可以使用无比对方法来确定,例如FastANI,其使用无比对近似序列制图来评估基因组相关性。参见Jain et al.,Nat Commun.9(1):5114(2018)。FastANI已被证实可以揭示物种之间清晰的遗传不连续性,在被分析的总计80亿个基因组对中,有99.8%符合>95%的种内ANI值以及<83%的种间ANI值。因此,在一些实施方案中,与克里斯滕森氏菌种P152-H6d的基因组具有大于或等于95%的平均核苷酸同一性(ANI)的细菌菌株被鉴定为物种克里斯滕森氏菌种P152-H6d的细菌菌株。
本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有大于或等于60%的比对分数(AF)的克里斯滕森氏菌株。在一些实施方案中,与克里斯滕森氏菌种P152-H6d的菌株P152-H6d的AF为大于或等于约65%、约70%、约75%、约80%、约85%、约90%、约95%或100%,或者在任意上述数值之间的范围内。在一些实施方案中,AF的计算方法是将所有BBH基因的长度之和除以基因组A中所有基因的长度之和。该计算在两个方向上分开执行:从基因组A到基因组B和从基因组B到基因组A。
在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d的基因组具有大于或等于约95%的ANI和大于或等于60%的AF的基因组。在另一个特定的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d的基因组具有大于或等于约96.5%的ANI和大于或等于60%的AF的基因组.
本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包含与克里斯滕森氏菌种P152-H6d的菌株P152-H6d具有相同或大致相同的基因组特征的克里斯滕森氏菌株。这种基因组特征可以包括,例如,基因组大小、G+C含量、编码序列数量、tRNA数量。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含大小为约2.75至约2.85兆碱基(Mb)的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含大小为约2.80至约2.85Mb的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含大小为约2.75、2.76、2.77、2.78、2.79、2.80、2.81、2.82、2.83、2.84或者约2.85Mb的基因组。在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含大小为约2.82Mb的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含具有约48%至约50%的G+C含量的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含具有约48.5%至约49.5%的G+C含量的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株所包含具有约48.6%、48.7%、48.8%、48.9%、49.0%、49.1%、49.2%、49.3%、49.4%或约49.5%的G+C含量的基因组。在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含具有约48.91%的G+C含量的基因组。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含约2600至2800个编码序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含约2650至2750个编码序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含约2650、2655、2660、2665、2670、2675、2680、2685、2690、2695、2700、2705、2710、2715、2720、2725、2730、2735、2740、2745或约2750个编码序列。在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含约2671个编码序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含35至50个tRNA序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含37至45个tRNA序列。在一些实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含约37、38、39、40、41、42、43、44或45个tRNA序列。在特别的实施方案中,克里斯滕森氏菌种P152-H6d菌株包含基因组,该基因组包含42个tRNA序列。
在例如通过DNA指纹技术进行分析时,本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包括提供与克里斯滕森氏菌种P152-H6d的菌株P152-H6d相同或近似相同的模式的克里斯滕森氏菌株。本领域已知的任何DNA指纹技术均可用于鉴定克里斯滕森氏菌种P152-H6d的菌株,包括但不限于:脉冲场凝胶电泳(PFGE)、核糖分型、随机扩增多态DNA(RAPD)、扩增片段长度多态性(AFLP)、扩增核糖体DNA酶切分析(ARDRA)、包括重复基因外回文PCR(REP-PCR)的rep-PCR(重复序列引物PCR,针对天然存在的、高度保守的、重复的DNA序列,存在于基因组中的多个拷贝中)、肠杆菌重复基因间共有序列-PCR(ERIC-PCR)、BOX-PCR(来源于boxA序列)、(GTG)5-PCR、三重任意引物PCR(Triplicate ArbitraryPrimed PCR,TAP-PCR)、多位点序列分析(MLSA)、多位点序列分型(MLST)、多位点可变数目串联重复序列分析(MLVA)和基于DNA微阵列的基因分型技术。
本公开提供的物种克里斯滕森氏菌种P152-H6d的其它细菌菌株包括与克里斯滕森氏菌种P152-H6d的菌株P152-H6d显示出表型相似性的克里斯滕森氏菌株。表型相似性可以基于例如细胞形状和大小、菌落形态(例如,平板菌落的大小、颜色和气味)、革兰氏染色、生化测试、最佳pH和温度、糖发酵、代谢能力(例如,过氧化氢酶和/或氧化酶状态)、化学分类分析(例如,极性脂质和脂醌组合物;参见Tindall et al.,Int J Syst Evol Microbiol58,1737-1745(2008))和/或脂肪酸甲基酯(FAME)分析。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株是过氧化氢酶阳性的。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株是氧化酶阴性的。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株是过氧化氢酶阳性的并且氧化酶阴性的。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株能够发酵至少一种碳源,该碳源选自由以下组成的组:葡萄糖(例如,α-D-葡萄糖)、阿拉伯糖(例如,L-阿拉伯糖)、核糖(例如,D-核糖)和环糊精(例如,α-环糊精)。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株能够发酵葡萄糖(例如,α-D-葡萄糖)、阿拉伯糖(例如,L-阿拉伯糖)、核糖(例如D-核糖)和环糊精(例如,α-环糊精)中的每一种。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株不能发酵或基本上不能发酵选自由以下组成的组中的至少一种碳源:果糖(例如,D-果糖)、葡糖胺(例如,N-乙酰基-D-葡糖胺、D-葡糖胺)、半乳糖(例如,D-半乳糖)、甘露糖(例如,D-甘露糖)、果胶、鼠李糖(例如,D-鼠李糖)、海藻糖(例如,D-海藻糖)、山梨糖醇(例如,D-山梨糖醇)、阿洛酮糖(例如,D-阿洛酮糖)、半乳糖醇、麦芽糖醇、帕拉金糖、山梨糖(例如,L-山梨糖)、塔格糖(例如,D-塔格糖)、松二糖、葡糖胺醇(例如,N-乙酰基-D-葡糖胺醇)、丁酸(例如,β-羟基丁酸)、麦芽糖、乳糖(例如,α-D-乳糖)、蔗糖和纤维二糖(例如,D-纤维二糖)。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株不能发酵或基本上不能发酵果糖(例如D-果糖)、葡糖胺(例如,N-乙酰基-D-葡糖胺、D-葡糖胺)、半乳糖(例如D-半乳糖)、甘露糖(例如,D-甘露糖)、果胶、鼠李糖(例如,D-鼠李糖)、海藻糖(例如,D-海藻糖)、山梨糖醇(例如,D-山梨糖醇)、阿洛酮糖(例如,D-阿洛酮糖)、半乳糖醇、麦芽糖醇、帕拉金糖、山梨糖(例如,L-山梨糖)、塔格糖(例如,D-塔格糖)、松二糖,葡糖胺醇(例如,N-乙酰基-D-葡糖胺醇)、丁酸(例如,β-羟基丁酸)、麦芽糖、乳糖(例如,α-D-乳糖)、蔗糖和纤维二糖(例如,D-纤维二糖)中的每一种。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株增加或能够增加一种或多种短链脂肪酸(SCFA)的产生。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株产生或能够产生一种或多种短链脂肪酸(SCFA)。在一些实施方案中,SCFA是丁酸。在一些实施方案中,SCFA是乙酸。在特定的实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株同时产生丁酸和乙酸。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株增加或能够增加细胞、组织或受试者中的至少一个抗炎基因(例如,抗炎细胞因子或趋化因子)的产生。示例性的抗炎基因产物包括CCL-18、IL-1Ra、IL-4、IL-6、IL-10、IL-11、IL-13、MCP-1和TGF-β。例如,在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株增加或能够增加细胞、组织或受试者中的IL-10和/或CCL-18的产生。在一些实施方案中,增加的抗炎基因产物(例如,IL-10和/或CCL-18)的产生发生在人体细胞中,例如,THP-1巨噬细胞或单核细胞或PBMC。例如,用克里斯滕森氏菌种P152-H6d接触人体细胞(例如,THP-1巨噬细胞或PBMC),例如,通过将人体细胞与克里斯滕森氏菌种P152-H6d进行共培养,使得细胞中的IL-10和/或CCL-18的产生相对于未接触的(例如未与克里斯滕森氏菌种P152-H6d进行共培养的)细胞(例如,相同细胞类型的细胞)增加了至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约75%、至少约100%、至少约200%、至少约300%、至少约400%、至少约500%、至少约750%、至少约1000%、从约10%至约20%、从约10%至约50%、从约10%至约100%、从约10%至约200%、从约10%至约500%、从约10%至约1000%、从约20%至约50%、从约20%至约100%、从约20%至约200%、从约20%至约500%、从约20%至约1000%、从约50%至约100%、从约50%至约200%、从约50%至约500%、从约50%至约1000%、从约100%至约200%、从约100%至约500%、从约100%至约1000%、从约200%至约500%、从约200%至约1000%或从约500%至约1000%。在一些实施方案中,人体细胞与克里斯滕森氏菌种P152-H6d的接触在体外发生。在其它实施方案中,人体细胞与克里斯滕森氏菌种P152-H6d的接触发生在体内。
在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株减少或减弱或者能够减少或减弱细胞、组织或受试者中的至少一种促炎基因(例如,促炎细胞因子或趋化因子)的产生。在一些实施方案中,细菌菌株减少或减弱或者能够减少或减弱细胞、组织或受试者中的至少一种促炎基因(例如,促炎细胞因子或趋化因子)的产生,例如,在存在促炎刺激的情况下。示例性的促炎基因产物包括IL-1-β、IL-4、IL-5、IL-6、IL-8、IL-12、IL-13、IL-17、IL-21、IL-22、IL-23、IL-27、IFN、CCL-2、CCL-3、CCL-5、CCL-20、CXCL-5、CXCL-10、CXCL-12、CXCL-13、IFN-γ和TNF-α。例如,在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株减少或减弱或者能够减少或减弱细胞、组织或受试者中的IL-12(例如,IL-12亚基p40)的产生。在一些实施方案中,克里斯滕森氏菌种P152-H6d的细菌菌株减少或减弱或者能够减少或减弱细胞、组织或受试者中的TNF-α的产生。在一些实施方案中,减少或减弱的抗炎基因产物(例如,IL-12和/或TNF-α)的产生发生在人体细胞中,例如,THP-1巨噬细胞或单核细胞、moDC或PBMC。例如,用克里斯滕森氏菌种P152-H6d接触人体细胞(例如,THP-1巨噬细胞或PBMC),例如,通过将人体细胞与克里斯滕森氏菌种P152-H6d进行共培养,使得细胞中的IL-12的产生相对于未接触的(例如,未与克里斯滕森氏菌种P152-H6d进行共培养的)细胞(例如,相同细胞类型的细胞)减少或减弱了至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约75%、从约10%至约20%、从约10%至约50%、从约10%至约100%、从约20%至约50%、从约20%至约100%或从约50%至约100%。在一些实施方案中,用克里斯滕森氏菌种P152-H6d接触人体细胞(例如,THP-1巨噬细胞或PBMC),例如,通过将人体细胞与克里斯滕森氏菌种P152-H6d进行共培养,使得细胞中的TNF-α的产生相对于未接触的(例如,未与克里斯滕森氏菌种P152-H6d进行共培养的)细胞(例如,相同细胞类型的细胞)减少或减弱了至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约75%、从约10%至约20%、从约10%至约50%、从约10%至约100%、从约20%至约50%、从约20%至约100%或从约50%至约100%。在一些实施方案中,人体细胞与克里斯滕森氏菌种P152-H6d的接触在体外发生。在其它实施方案中,人体细胞与克里斯滕森氏菌种P152-H6d的接触发生在体内。
所考虑的细菌菌株或细菌菌株混合物可以减少或减弱或者能够减少或减弱细胞、组织或受试者中的炎症状况(例如炎性肠病(IBD))的一种或多种生物标志物(例如,血清或粪便生物标志物)的产生。例如,脂质运载蛋白-2(LCN2),也称为中性粒细胞明胶酶相关脂质运载蛋白(NGAL)或噬铁蛋白,是一种储存在中性白细胞颗粒中并在炎症部位释放的有效的抑菌蛋白。肠道上皮细胞的高LCN2表达已在IBD患者的发炎区域的结肠活检中得到证实(Nielsen et al.,Gut,38:414-420(1996)),并且据报道,LCN2是活动期溃疡性结肠炎和克罗恩病中的10个最上调基因中的一个(Ostvik et al.,Clin Exp Immunol.173:502-511(2013))。Ostvik报道称,尽管在上皮细胞和浸润的中性白细胞中都发现了LCN2蛋白,但LCN2 mRNA合成仅发生在上皮细胞中,这表明IBD中LCN2的过度从头合成位于结肠上皮中。LCN2的血清水平已被证明是UC疾病活动的可靠生物标志物,其使活动期疾病与缓解期疾病得到区分,并具有比CRP或白细胞计数更高的敏感性(Stallhofer et al.,Inflamm BowelDis 21(10):2327-2340(2015))。可以通过现有技术中已知的方法(包括qPCR、ELISA、免疫组织化学等)测量样品(例如血浆、血清、粪便和/或组织(例如结肠组织))中LCN2/NGAL基因产物的表达和/或浓度,来评估与所考虑的细菌菌株或细菌菌株混合物接触的细胞、组织或受试者中LCN2/NGAL的水平。可被本文所述的细菌菌株降低或减弱的其它IBD生物标志物包括血清淀粉样蛋白A蛋白(SAA)。SAA的表达与IBD患者的结肠发炎有关,血清中的全身性SAA促进致病性Th17细胞的分化(Lee et al.,Cell 180,79-91(2020))。可被本文所述的细菌菌株减少或减弱的其它IBD生物标志物包括粒细胞集落刺激因子(G-CSF)。Margarita等人评估了包括具有不同内镜活动的IBD患者的血清细胞因子、趋化因子和生长因子等的27种蛋白质生物标志物,并且发现内镜活动期疾病患者的血清G-CSF水平较高(P=0.04)(Medicine.(2019)98:e17208)。
本发明提供的克里斯滕森氏菌种P152-H6d的细菌菌株的特点在于对人类细胞(例如THP-1单核细胞或巨噬细胞或PBMC)中的基因产物的产生(例如IL-12或CCL-18产生)的影响,并且表达的基因产物可同时具有促炎和/或抗炎的活性。例如,THP-1巨噬细胞中的基因产物产生(例如IL-12或CCL-18产生)可以以如下方式测定。THP-1人巨噬细胞是通过将THP-1人单核细胞系与12-豆蔻酸-13-乙酸佛波醇(PMA)培养24小时,然后用IL-4和IL-13培养来制备的(Genin et al.,BMC Cancer 15:577(2015))。在存在脂多糖(LPS)的情况下,将细菌菌株与THP-1巨噬细胞培养24小时。通过ELISA测量细胞培养上清液中的基因产物(例如IL-12或CCL-18)的浓度来评估基因产物的产生。还可以如Sudhakaran et al.,Genes Nutr.,8(6):637-48中所述测定基因产物的产生。例如,PBMC中的基因产物产生(例如IL-10、IL-12或CCL-18产生)可以如下测定。使用percoll梯度从供体的血液样本中分离出原代PBMC(Simet al.,J.Vis.Exp.(112),e54128(2016))。细菌菌株与PBMC培养24小时。通过ELISA测量细胞培养上清液中的基因产物(例如IL-10、IL-12或CCL-18)的浓度来评估基因产物的产生。
本发明还提供了分离和/或纯化本文所述的克里斯滕森氏菌种(克里斯滕森氏菌种P152-H6d,即,Christensenella californii)的细菌菌株的方法。在一些实施方案中,本文所述的克里斯滕森氏菌种的菌株是从哺乳动物供体的生物样品中分离和/或纯化的。在一些实施方案中,哺乳动物供体是人类,例如健康人类供体。在其它实施方案中,哺乳动物供体是非人类动物。在一些实施方案中,生物样品是本领域已知的含有活微生物的任何生物样本,例如粪便、唾液、血液、皮肤、肠道、鼻子等。在特定实施方案中,本文所述的克里斯滕森氏菌种的菌株是从健康人类供体的粪便或肠道中分离和/或纯化的。在一些实施方案中,用于分离和/或纯化本文所述的克里斯滕森氏菌种的菌株的方法包括以下步骤:从供体的生物材料(例如,肠道或粪便)中离体分离和/或纯化一种或多种微生物;以及使用本领域已知的和/或本文所述的任何用于此类鉴定的方法确认一种或多种微生物的同一性是克里斯滕森氏菌种P152-H6d的菌株。在一些实施方案中,通过遗传或基因组手段确认一种或多种微生物的同一性为克里斯滕森氏菌种P152-H6d的菌株。例如,可利用PCR扩增与克里斯滕森氏菌种P152-H6d的基因或基因片段(例如,选自SEQ ID NO:2至SEQ ID NO:28中任一个中的核苷酸序列)具有高度同源性的细菌菌株基因组的区域,如以下实施例7中所示。在一些实施方案中,该基因是克里斯滕森氏菌种P152-H6d的16S rRNA基因(SEQ ID NO:1)。在一些实施方案中,该基因是克里斯滕森氏菌种P152-H6d的relA基因(SEQ ID NO:33)。在其它实施方案中,可使用基因组序列(例如,部分或全基因组序列)来确认所述一种或多种微生物的同一性为克里斯滕森氏菌种P152-H6d的菌株,例如,通过平均核苷酸同一性(ANI),使用>95%ANI的阈值。在一些实施方案中,该方法包括从供体材料中纯化菌株的步骤。在一些实施方案中,所述方法还包括在单一培养物(monoculture)中培养菌株的步骤。
还提供了还提供了粪厌氧棒杆菌物种的菌株,例如本文称为粪厌氧棒杆菌菌株P127-A10a的菌株,以及包含此类菌株的组合物,例如药物组合物。
本文提供的粪厌氧棒杆菌物种的细菌菌株包含与SEQ ID NO:45具有特定百分比的同一性的16s rRNA基因序列。在一些实施方案中,该细菌菌株包含与SEQ ID NO:45的多核苷酸序列具有至少约98.00%、约98.05%、约98.1%、约98.15%、约98.2%、约98.25%、约98.3%、约98.35%、约98.4%、约98.45%、约98.5%、约98.55%、约98.6%、约98.65%、约98.7%、约98.75%、约98.80%、约98.85%、约99%、约99.1%、约99.2%、约99.3%、约99.4%、约99.5%、约99.6%、约99.7%、约99.8%或约99.9%的同一性的16s rRNA基因序列。在特别的实施方案中,该细菌菌株包含与SEQ ID NO:45相同的16s rRNA基因序列。在一些实施方案中,上述序列同一性跨越SEQ ID NO:45的至少约70%。在一些实施方案中,上述序列同一性跨越SEQ ID NO:45的至少约71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。
在特别的实施方案中,本文提供的粪厌氧棒杆菌的细菌菌株是粪厌氧棒杆菌菌株P127-A10a。粪厌氧棒杆菌P127-A10a是在2020年3月6日根据国际承认用于专利程序的微生物保藏的布达佩斯条约向DSMZ(Deutsche Sammlung von Mikroorganismen andZellkulturen GmbH,Inhoffenstraβe 7B,38124,不伦瑞克,德国)进行的保藏。该保藏的登录号为DSM 33531。粪厌氧棒杆菌P127-A10a的16S rDNA序列如SEQ ID NO:45所示。
本文提供的粪厌氧棒杆菌物种的其它细菌菌株包含与粪厌氧棒杆菌菌株P127-A10a具有大于或等于约70%的DNA-DNA杂交(DDH)值的粪厌氧棒杆菌菌株。在特定实施方案中,粪厌氧棒杆菌菌株是与粪厌氧棒杆菌菌株P127-A10a具有大于约70%、约75%、约80%、约85%、约90%、约95%、约98%或约99%或者任意上述数值之间的范围的DNA-DNA杂交的菌株。在特定实施方案中,粪厌氧棒杆菌菌株是与粪厌氧棒杆菌菌株P127-A10a具有大于或等于约70%的DDH或dDDH值的菌株。在一些实施方案中,与粪厌氧棒杆菌菌株P127-A10a的DDH或dDDH值大于约75%、约80%、约85%、约90%、约95%、约98%或约99%,或者任意上述数值之间的范围。
本文提供的粪厌氧棒杆菌物种的其它细菌菌株包含与粪厌氧棒杆菌菌株P127-A10a具有大于或等于95%的平均核苷酸同一性(ANI)的粪厌氧棒杆菌菌株。在一些实施方案中,与粪厌氧棒杆菌菌株P127-A10a的ANI为大于或等于约95%、约95.5%、约96%、约96.5%、约97%、约97.5%、约98%、约98.5%、约99%、约99.5%或100%,或者任意上述数值之间的范围。
本文提供的粪厌氧棒杆菌物种的其它细菌菌株包含与粪厌氧棒杆菌菌株P127-A10a具有大于或等于60%的比对分数(AF)的粪厌氧棒杆菌菌株。在一些实施方案中,与粪厌氧棒杆菌菌株P127-A10a的AF为大于或等于约65%、约70%、约75%、约80%、约85%、约90%、约95%或100%,或者任意上述数值之间的范围。在一些实施方案中,AF的计算方法是将所有BBH基因的长度之和除以基因组A中所有基因的长度之和。该计算在两个方向上分开执行:从基因组A到基因组B和从基因组B到基因组A。
在特别的实施方案中,粪厌氧棒杆菌菌株包含与粪厌氧棒杆菌菌株P127-A10a的基因组具有大于或等于约95%的ANI和大于或等于60%的AF的基因组。在另一特定实施方案中,粪厌氧棒杆菌菌株包含与粪厌氧棒杆菌菌株P127-A10a的基因组具有大于或等于约96.5%的ANI和大于或等于60%的AF的基因组。
本公开包括所公开的细菌菌株的衍生物。术语“衍生物”包括,在不会对菌株的生物活性产生负面影响的情况下,子菌株(后代)或从原始菌株培养的(亚克隆)但以某种方式(包括在遗传水平)进行修饰的菌株。
II.包含克里斯滕森氏菌种P152-H6d的组合物
在另一方面,本文还提供了包含克里斯滕森氏菌种P152-H6d的细菌菌株的组合物,例如药物组合物。在一些实施方案中,组合物包含一种或多种细菌菌株,包括克里斯滕森氏菌种P152-H6d的一个或多个细菌菌株。在一些实施方案中,本文提供的组合物包含克里斯滕森氏菌种P152-H6d的细菌菌株并且不包含任何其它菌株或菌种。在其它实施方案中,组合物包含克里斯滕森氏菌种P152-H6d的细菌菌株以及至少一种或多种其它菌株或菌种。在一些实施方案中,组合物中的至少一种其它菌株或菌种是克里斯滕森氏菌属的细菌菌株。例如,组合物可包含克里斯滕森氏菌种P152-H6d的其它菌株和/或除克里斯滕森氏菌种P152-H6d以外的克里斯滕森氏菌种的一种或多种菌株。示例性的其它克里斯滕森氏菌种包括C.minuta(Morotomi et al.,International Journal of Systematic andEvolutionary Microbiology 62:144-14(2012)、C.massiliensis(Ndongo et al.NewMicrobe and New Infect.12:69-70(2016)、和C.timonensis(Ndongo et al.New Microbeand New Infect.13:32-33(2016))。在其它实施方案中,组合物可包含克里斯滕森氏菌种P152-H6d和一种或多种非克里斯滕森氏菌细菌物种。
在一些实施方案中,一种或多种非克里斯滕森氏菌细菌物种包括厌氧菌属(genusAnaerostipes)的成员,例如,粪厌氧棒杆菌。可用于在本文提供的组合物中与克里斯滕森氏菌种P152-H6d组合的粪厌氧棒杆菌的示例性菌株为粪厌氧棒杆菌菌株P127-A10a,保藏号为DSM 33531。粪厌氧棒杆菌P127-A10a的16S rDNA序列如SEQ ID NO:45所示。可用于在本文提供的组合物中与克里斯滕森氏菌种P152-H6d组合的粪厌氧棒杆菌的其它菌株包括包含与SEQ ID NO:45具有至少98%的同一性的16S rDNA序列的菌株。额外地,其它可用的菌株包括粪厌氧棒杆菌菌株DSM 14662、粪厌氧棒杆菌菌株3_2_56FAA以及粪厌氧棒杆菌分离株MGYG-HGUT-00080。
在一些实施方案中,本文提供的组合物包含至少2种细菌菌株,例如,2种或3种细菌菌株。在一些实施方案中,组合物包含至少2种、3种、4种、5种、6种、7种、8种、9种、10种或者多于10种细菌菌株。例如,在一些实施方案中,组合物包含2至10种、2至9种、2至8种、2至7种、2至6种或2至5种细菌菌株,例如,营养细菌菌株;或者,组合物例如包含3至10种、3至9种、3至8种、3至7种或3至6种细菌菌株,例如,营养细菌菌株;或者组合物例如包含4至10种、4至9种、4至8种、4至7种或4至6种细菌菌株,例如,营养细菌菌株;或者组合物例如包含5至10种、5至9种、5至8种、6至9种、6至8、7至10种、7至9种或7至8种细菌菌株,例如,营养细菌菌株;或者组合物例如包含8至10种细菌菌株,例如,营养细菌菌株。在一些实施方案中,组合物包含2种或3种细菌菌株,例如,营养细菌菌株。
本文提供的组合物(例如,药物组合物)可包括以任何适当比率(通过细菌的总质量或通过细菌的菌落形成单位而测量)的每种细菌菌株。例如,公开的药物组合物或单元包括以0.1∶1、0.2∶1、0.25∶1、0.5∶1、0.75∶1、1∶1、2∶1、3∶1、4∶1、5∶1或10∶1的比率(以细菌的总质量或细菌的菌落形成单位计)的两种菌株。例如,公开的药物组合物或单元可包括以1∶1∶1、1∶1∶2、1∶1∶4、1∶2∶1、1∶2∶2、1∶2∶4、1∶4∶1、1∶4∶2、1∶4∶4、2∶1∶1、2∶1∶2、2∶1∶4、2:2∶1、2∶4∶1、4∶1∶1、4∶1∶2、4∶1∶4、4∶2∶1、4∶4∶1的比率(以细菌的总质量或细菌的菌落形成单位计)的三个菌株。
在一些实施方案中,组合物包含克里斯滕森氏菌种P152-H6d的细菌菌株,以及可选地的一种或多种其它菌株或菌种,其中,组合物:(i)增加人体细胞(例如THP-1巨噬细胞或单核细胞、moDC或PBMC)中一种或多种抗炎基因产物的产生,例如CCL-18、IL-1Ra、IL-4、IL-6、IL-10、IL-11、IL-13、MCP-1和TGF-β;和/或(ii)减少或减弱人体细胞(例如THP-1巨噬细胞、单核细胞或PBMC)中一种或多种促炎基因产物的产生,例如IL-1-β、IL-4、IL-5、IL-6、IL-8、IL-12、IL-13、IL-17、IL-21、IL-22、IL-23、IL-27、IFN(例如,IFN-γ)、CCL-2、CCL-3、CCL-5、CCL-20、CXCL-5、CXCL-10、CXCL-12、CXCL-13和TNF-α。在一些实施方案中,组合物中的一种或多种其它细菌菌株各自(即,单独地)能够:(i)增加人体细胞(例如THP-1巨噬细胞、单核细胞或PBMC)中一种或多种抗炎基因产物的产生,例如CCL-18、IL-1Ra、IL-4、IL-6、IL-10、IL-11、IL-13和TGF-β;和/或(ii)减少或减弱人体细胞(例如THP-1巨噬细胞、单核细胞或PBMC)中一种或多种促炎基因产物的产生,例如IL-1-β、IL-4、IL-5、IL-6、IL-8、IL-12、IL-13、IL-17、IL-21、IL-22、IL-23、IL-27、IFN、CCL-2、CCL-3、CCL-5、CCL-20、CXCL-5、CXCL-10、CXCL-12、CXCL-13和TNF-α。
赋形剂
本公开的克里斯滕森氏菌种P152-H6d的细菌菌株可以与药学上可接受的赋形剂组合形成药物组合物,该药物组合物可以通过本领域已知的任何方式施用于患者。如本文所用,术语“药学上可接受的赋形剂”被理解为是指,与合理的收益/风险比相称,在没有过度的毒性、刺激性、过敏反应或其它问题或并发症的情况下,适于施用于受试者(例如人类受试者)的缓冲剂、载体或赋形剂中的一种或多种。赋形剂在与制剂的其它成分相容且对接受者无害的意义上应该是“可接受的”。
药学上可接受的赋形剂包括与药物施用相容的缓冲剂、溶剂、分散介质、包衣、等渗剂和吸收延迟剂等。药学上可接受的赋形剂还包括填充剂、粘合剂、崩解剂、助流剂、润滑剂及其任何组合。例如,所考虑的组合物可以包含药物赋形剂,其选自由纤维素、聚乙烯吡咯烷酮、二氧化硅、硬脂富马酸或其药学上可接受的盐、乳糖、淀粉、葡萄糖、甲基纤维素、乙基纤维素、羟丙基甲基纤维素、硬脂酸镁、甘露醇、山梨糖醇及其任何组合组成的组。赋形剂、载体、稳定剂和佐剂的其他实例参见例如Handbook of Pharmaceutical Excipients,第8版,P.J.Sheskey、W.G.Cook和C.G.Cable编辑,Pharmaceutical Press,英国伦敦[2017]。此类介质和试剂用于药物活性物质的用途在本领域中是已知的。
稳定的细菌组合物
在一些实施方案中,本公开的克里斯滕森氏菌种P152-H6d的细菌菌株可以以稳定形式用于任何组合物中,稳定形式例如包括冻干的(1yophilized)状态(具有可选的一种或多种合适的冷冻保护剂)、冷冻的(例如,在标准或过冷冷冻机中)、喷雾干燥的和/或升华干燥的(freeze dried)。在一些实施方案中,稳定的细菌(例如,通过冻干、冷冻、喷雾干燥或升华干燥)以及特别是稳定的厌氧菌在施用(特别施用本公开提供的药物组合物)方面可以具有优于培养中的细菌的有利特性。例如,冻干细菌涉及从细菌细胞中去除水分的升华干燥过程。在一些实施方案中,所得到的冻干的细菌与细菌培养物相比可以具有增强的稳定性,因此可以储存更长的时间(即,延长保质期)。此外,在一些实施方案中,在稳定形式中,脱水的细菌细胞不生长或繁殖,但保持活力并且在再次水化时可以生长和繁殖。在一些实施方案中,稳定的厌氧克里斯滕森氏菌种P152-H6d细菌即使在暴露于氧气时也能维持生存力,从而便于它们的配制(例如,配制成口服剂型)并用作保持生物活性的活生物治疗产品。因此,在特定实施方案中,本公开的克里斯滕森氏菌种P152-H6d的细菌菌株是稳定的(例如,通过冻干、冷冻、升华干燥或喷雾干燥)并且是活的且有活力的,而且在储存时它们的一些、大部分或全部化学稳定性和/或生物活性得以保留。可以在选定的时间段内在选定的温度和湿度条件下测量稳定性。趋势分析可用于在材料实际存储经过该时间段之前估计所期望的保质期。例如,对于活细菌,稳定性可以被定义为:在预定的温度、湿度和时间段条件下失去1log cfu/g干制剂所需的时间。
在一些实施方案中,在4℃或-20℃下储存经过1个月、2个月、3个月、4个月、5个月、6个月、7个月、8个月、9个月、10个月、11个月、12个月、1年、1.5年、2年、2.5年、3年、3.5年、4年、4.5年或5年后,包含克里斯滕森氏菌种P152-H6d的药物组合物或药物单元损失该药物组合物或药物单元中的每个细菌菌株的至多0.5log cfu、1log cfu、1.5log cfu、2logcfu、2.5log cfu、3log cfu、3.5log cfu、4log cfu、4.5log cfu、5log cfu、5.5log cfu、6log cfu、6.5log cfu、7log cfu、7.5log cfu、8log cfu、8.5log cfu、9log cfu、9.5logcfu或10log。例如,在4℃下储存经过6个月、1年或2年后,药物组合物或药物单元损失该药物组合物或药物单元中的每个细菌菌株的至多3log cfu。
本公开提供的克里斯滕森氏菌种P152-H6d细菌可以与一种或多种冷冻保护剂结合使用。示例性的冷冻保护剂包括低聚果糖(例如,(源自菊粉的低聚果糖))、海藻糖、麦芽糖糊精、海藻酸钠、脯氨酸、谷氨酸、甘氨酸(例如,甘氨酸甜菜碱)、单糖、二糖或多糖(例如葡萄糖、蔗糖、麦芽糖、乳糖)、多元醇(例如甘露糖醇、山梨糖醇或甘油)、葡聚糖、DMSO、甲基纤维素、丙二醇、聚乙烯吡咯烷酮、非离子表面活性剂例如吐温80,以及它们的任何组合。
在一些实施方案中,冷冻保护剂包括麦芽糖糊精、藻酸盐、海藻糖和蔗糖或它们的任何组合。在一些实施方案中,包含克里斯滕森氏菌种P152-H6d的细菌菌株的药物组合物还包含蔗糖作为冷冻保护剂。在一些实施方案中包含克里斯滕森氏菌种P152-H6d的细菌菌株的药物组合物还包含麦芽糖糊精、藻酸盐、海藻糖和蔗糖作为冷冻保护剂。在一些实施方案中,包含克里斯滕森氏菌种P152-H6d的细菌菌株的药物组合物还包含麦芽糖糊精、藻酸盐和海藻糖作为冷冻保护剂。
在一些实施方案中,本公开所考虑的细菌菌株的冻干粉形式包含约10%至约80%(按重量计)的一种或多种细菌菌株(例如,一种细菌菌株)和约20%至约90%(按重量计)的冷冻保护剂和/或赋形剂,例如,选自由麦芽糖糊精、海藻酸钠、海藻糖、蔗糖、水及其任何组合组成的组的冷冻保护剂和/或赋形剂。例如,5mg所考虑的冻干粉形式细菌菌株可包含约0.5mg至约1.5mg的细菌菌株、约1.5mg至约2.5mg的细菌菌株、约2.5mg至约3.5mg的细菌菌株或者约3.5mg至约4.5mg的细菌菌株。可以理解的是,可以形成所公开的组合物的组分的每种冻干粉形式细菌菌株可以分别具有不同的赋形剂和/或不同量的赋形剂,以及离散的细菌菌株。
药物组合物应配制成与其期望的施用途径相容。本公开的细菌组合物可以通过任何合适的方法制备,并且可以配制成多种形式并通过多种不同方式施用。组合物可以根据需要以含有常规可接受的载体、佐剂和赋形剂的制剂形式口服、直肠或肠内施用。如本文所用,“直肠施用”应理解为包括通过灌肠、塞药(suppository)或结肠镜施用。所公开的药物组合物可以例如适合于推注施用或推注释放。在一个示例性实施方案中,所公开的细菌组合物是口服施用的。
用于口服施用的固体剂型包括胶囊、片剂、囊片、丸剂、锭剂、锭剂、散剂和颗粒剂。胶囊通常包括:包含细菌组合物的囊心材料和封装囊心材料的壳壁。在一些实施方案中,囊心材料包括固体、液体和乳液中的至少一种。在一些实施方案中,壳壁材料包括软明胶、硬明胶和聚合物中的至少一种。合适的聚合物包括但不限于:纤维素聚合物,例如羟丙基纤维素、羟乙基纤维素、羟丙基甲基纤维素(HPMC)、甲基纤维素、乙基纤维素、醋酸纤维素、醋酸邻苯二甲酸纤维素、醋酸偏苯三酸纤维素、邻苯二甲酸羟丙基甲基纤维素、羟丙基甲基纤维素琥珀酸盐和羧甲基纤维素钠;丙烯酸聚合物和共聚物,例如由丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸铵、丙烯酸乙酯、甲基丙烯酸甲酯和/或甲基丙烯酸乙酯形成的那些(例如,以商品名出售的这些共聚物);乙烯基聚合物和共聚物,例如聚乙烯吡咯烷酮、聚醋酸乙烯酯、聚醋酸乙烯邻苯二甲酸酯、醋酸乙烯酯巴豆酸共聚物和乙烯-醋酸乙烯酯共聚物;和虫胶(纯化的虫胶)。在一些实施方案中,至少一种聚合物用作掩味剂。
片剂、丸剂等可以被压缩、多次压缩、多重层叠和/或包衣。所考虑的包衣可以是单个或多个。在一个实施方案中,所考虑的包衣材料包含从植物、真菌和微生物中的至少一种提取的糖、多糖和糖蛋白中的至少一种。非限制性实例包括玉米淀粉、小麦淀粉、马铃薯淀粉、木薯淀粉、纤维素、半纤维素、葡聚糖、麦芽糖糊精、环糊精、菊粉、果胶、甘露聚糖、阿拉伯胶、刺槐豆胶、牧豆树胶、瓜尔胶、刺梧桐树胶、茄替胶、黄蓍胶、海藻胶funori、角叉菜胶、琼脂、藻酸盐、壳聚糖或结冷胶。在一些实施方案中,所考虑的包衣材料包含蛋白质。在一些实施方案中,所考虑的包衣材料包括脂肪和油中的至少一种。在一些实施方案中,脂肪和油中的至少一种是高温熔化的。在一些实施方案中,脂肪和油中的至少一种是氢化或部分氢化的。在一些实施方案中,脂肪和油中的至少一种源自植物。在一些实施方案中,脂肪和油中的至少一种包括甘油酯、游离脂肪酸和脂肪酸酯中的至少一种。在一些实施方案中,所考虑的包衣材料包含至少一种食用蜡。所考虑的食用蜡可以来源于动物、昆虫或植物。非限制性实例包括蜂蜡、羊毛脂、杨梅蜡、巴西棕榈蜡和米糠蜡。片剂和丸剂可以另外制备肠溶或反肠溶包衣。
替代地,可以将体现本文公开的细菌组合物的散剂或颗粒掺入食品中。在一些实施方案中,所考虑的食品是用于口服施用的饮料。合适的饮料的非限制性实例包括水、果汁、果汁饮料、人工调味饮料、人工增甜饮料、碳酸饮料、运动饮料、液体乳制产品、奶昔、酒精饮料、含咖啡因的饮料、婴儿配方奶粉等。其他合适的口服施用方式包括水性和非水性的溶液、乳剂、混悬剂和溶液和/或由非泡腾颗粒重构的混悬剂,其包含适宜的溶剂、防腐剂、乳化剂、助悬剂、稀释剂、甜味剂、着色剂和调味剂中的至少一种。
在一些实施方案中,本文提供的药物组合物包含:(a)克里斯滕森氏菌种P152-H6d菌株;和(b)填充剂(例如,微晶纤维素、乳糖、蔗糖、甘露醇或二水磷酸二钙)、崩解剂(例如,聚乙烯吡咯烷酮、羟基乙酸淀粉钠、淀粉或羧甲基纤维素)、流动助剂/助流剂(例如,滑石或二氧化硅衍生物(例如,诸如Cab-O-Sil或Aerosil的胶体二氧化硅))和润滑剂(例如,硬脂富马酸钠、硬脂酸镁、硬脂酸钙、硬脂酸、硬脂酸盐、滑石、液体石蜡、丙二醇(PG)、PEG 6000或月桂基硫酸镁/钠)。
在一些实施方案中,所考虑的药物组合物包含:(a)克里斯滕森氏菌种P152-H6d菌株;和(b)填充剂(微晶纤维素)、崩解剂(聚乙烯吡咯烷酮)、流动助剂/助流剂(二氧化硅)和润滑剂(硬脂富马酸钠)。
在一些实施方案中,所考虑的药物组合物被配制成胶囊。在一些实施方案中,胶囊是羟丙基甲基纤维素(HPMC)胶囊。在一些实施方案中,胶囊包含封装聚合物(bandingpolymer)(例如,羟丙基甲基纤维素(HPMC))和封装溶剂(banding solvent)(例如,水或乙醇)。在一些实施方案中,胶囊包括两种封装溶剂,水和乙醇。在一些实施方案中,胶囊用反向肠溶(reverse enteric)包衣聚合物(例如,氨基甲基丙烯酸酯共聚物)包被,并且包含表面活性剂(例如,十二烷基硫酸钠)、流动助剂/助流剂(例如,二氧化硅)、润滑剂(例如,硬脂酸)、抗粘剂(例如,滑石粉)和包衣溶剂(例如,水)。在一些实施方案中,胶囊用肠溶包衣聚合物(例如,聚(甲基丙烯酸-共-甲基丙烯酸甲酯))包被,并且还包含增塑剂(例如,柠檬酸三乙酯)、抗粘剂(例如,滑石粉)、pH调节剂(例如,氨溶液)和包衣溶剂(例如纯净水和异丙醇)。
在一些实施方案中,所考虑的胶囊是胶囊中胶囊剂型(capsule-in-capsuledosage form),其含内胶囊和外胶囊。在一些实施方案中,内胶囊包含一种或多种冻干的细菌菌株、填充剂(例如,微晶纤维素、乳糖、蔗糖、甘露醇、二水磷酸二钙或淀粉)、崩解剂(例如,聚乙烯吡咯烷酮、羟基乙酸淀粉钠或羧甲基纤维素)、流动助剂/助流剂(例如二氧化硅、滑石粉或胶态二氧化硅)和润滑剂(例如硬脂富马酸钠、硬脂酸镁、硬脂酸钙、硬脂酸、硬脂酸盐、滑石粉、液体石蜡、丙二醇(PG)、PEG6000或月桂基硫酸镁/钠)。在一些实施方案中,外胶囊包含一种或多种冻干的细菌菌株、填充剂(例如,微晶纤维素、乳糖、蔗糖、甘露醇、二水磷酸二钙或淀粉)、崩解剂(例如聚乙烯吡咯烷酮、羟基乙酸淀粉钠或羧甲基纤维素)、流动助剂/助流剂(例如二氧化硅、滑石粉或胶态二氧化硅)和润滑剂(例如硬脂富马酸钠、硬脂酸镁、硬脂酸钙、硬脂酸、硬脂酸盐、滑石液体石蜡、丙二醇(PG)、PEG 6000或月桂基硫酸镁/钠)。
在一些实施方案中,所考虑的胶囊是胶囊中胶囊剂型,其含内胶囊和外胶囊。在一些实施方案中,内胶囊包含一种或多种冻干的细菌菌株、填充剂(微晶纤维素)、崩解剂(聚乙烯吡咯烷酮)、流动助剂/助流剂(二氧化硅)和润滑剂(硬脂富马酸钠)。在一些实施方案中,外胶囊包含一种或多种冻干的细菌菌株、填充剂(微晶纤维素)、崩解剂(聚乙烯吡咯烷酮)、流动助剂/流剂(二氧化硅)和润滑剂(硬脂富马酸钠)。
在一些实施方案中,所公开的药物单元包括双组分胶囊。例如,双组分胶囊可包括:具有反向肠溶聚合物包衣的内胶囊;和包封内胶囊的外胶囊,其中,外胶囊具有肠溶聚合物包衣。所考虑的内胶囊和/或外胶囊可包含细菌菌株或细菌菌株混合物。例如,双组分胶囊可包含:具有内组合物的内胶囊,该内组合物包含细菌菌株或细菌菌株混合物和一种或多种药物赋形剂,其中,内胶囊具有反向肠溶聚合物包衣;和封装内胶囊以及外组合物的外胶囊,该外组合物包含细菌菌株或细菌菌株混合物和一种或多种药物赋形剂,其中,外胶囊具有肠溶聚合物包衣。所考虑的内组合物和/或外组合物可以例如包含克里斯滕森氏菌种P152-H6d菌株,并且可选地包含一种或多种其它菌株。内组合物和外组合物可以相同或不同。
所考虑的双组分胶囊可包括总计约5mg至约60mg的内组合物和外组合物,例如,总计约5mg至约50mg的内组合物和外组合物、总计约5mg至约15mg的内组合物和外组合物、总计约5mg至约25mg的内组合物和外组合物或总计约25mg至约50mg的内组合物和外组合物。所考虑的双组分胶囊可包括总计约50mg至约120mg的内组合物和外组合物,例如总计约50mg至约75mg的内组合物和外组合物、总计约60mg至约85mg的内组合物和外组合物、总计约50mg至约95mg的内组合物和外组合物或总计约25mg至约110mg的内组合物和外组合物。
在一些实施方案中,所公开的双组分胶囊包括:具有反向肠溶聚合物包衣的内胶囊和具有肠溶聚合物包衣的外胶囊。例如,各个包衣都允许胶囊内容物(包括细菌菌株)沿着胃肠道在特定部位双相释放。例如,已经确定胃肠道有几个区域由1至8.2范围内的局部pH值而严格区分。胃肠道的常规pH曲线在胃和结肠之间上升和下降,其中,胃的pH范围为1至4,十二指肠为5.5至6.4,回肠为6.8至8.2,结肠为5.5至6.5。例如,虽然远端回肠包含一个通常pH值介于6.8和8.2之间的区域,但在通过回盲瓣进入盲肠和升结肠后,pH值会从8.2急剧下降到5.5。在从近端结肠到远端结肠的进程中,pH值再次逐渐升高至8.0。因此,在一些实施方案中,外胶囊的肠溶聚合物包衣在约7至8的pH下溶解,从而允许在回肠中释放,并且内胶囊的反向肠溶聚合物包衣在约6.2至6.5的pH下溶解,从而允许之后在结肠中释放。在一些实施方案中,外胶囊在pH 1.2和37℃下保持完整性(例如,不出现裂开、裂纹或胶囊壳破裂)持续约2小时。在一些实施方案中,外胶囊在pH 5.5和37℃下保持完整性(例如,不出现裂开、裂纹或胶囊壳破裂)持续约2小时。在一些实施方案中,外胶囊在pH 7.4和37□下在约1小时内崩解。在一些实施方案中,内胶囊在pH 7.4和37℃下保持完整性(例如,不出现裂开、裂纹或胶囊壳破裂)持续至多1小时。在一些实施方案中,内胶囊在pH 6.5和37℃下在2小时内崩解。
在一些实施方案中,内胶囊和/或外胶囊包衣由聚(dl-丙交酯-co-乙交酯)、用PVA(聚乙烯醇)稳定的壳聚糖(Chi)、脂质、藻酸盐、羧甲基乙基纤维素(CMEC)、醋酸偏苯三酸纤维素(CAT)、羟丙基甲基纤维素邻苯二甲酸酯(HPMCP)、羟丙基甲基纤维素、乙基纤维素、食品釉料、羟丙基甲基纤维素和乙基纤维素的混合物、聚醋酸乙烯邻苯二甲酸酯(PVAP)、醋酸邻苯二甲酸纤维素(CAP)、虫胶、甲基丙烯酸和丙烯酸乙酯的共聚物或甲基丙烯酸和丙烯酸乙酯的共聚物组成,其中,在聚合过程中加入了丙烯酸甲酯的单体。甲基丙烯酸甲酯或者甲基丙烯酸与甲基丙烯酸甲酯的共聚物可作为聚合物(Evonik Industries,Darmstadt,Germany)获得。例如,可以单独或组合使用L100和S100(基于甲基丙烯酸和甲基丙烯酸甲酯的阴离子共聚物)。L100在约pH值为6或更高时溶解并且每克干物质包含46.0%至50.6%的甲基丙烯酸单元;S100在大约pH 7或更高时溶解并且每克干物质包含27.6%至30.7%的甲基丙烯酸单元。包封聚合物的另一组示例是聚丙烯酸L和S,它们可选地与RL或RS(丙烯酸乙酯、甲基丙烯酸甲酯和低含量的具有季铵基团的甲基丙烯酸酯的共聚物)组合。这些改性的丙烯酸是能够使用的,因为它们可以在6至7.5的pH值下溶解,这取决于所选的特定Eudragit以及配方中使用的S与L、RS和RL的比例。在一些实施方案中,所考虑的内胶囊包衣由EudragitReadyMix组成。在一些实施方案中,所考虑的外胶囊包衣由L100(甲基丙烯酸-甲基丙烯酸甲酯共聚物(1∶1))和S100(甲基丙烯酸-甲基丙烯酸甲酯共聚物(1∶2))组成。在一些实施方案中,所考虑的胶囊适用于缓释或定时释放。在一些实施方案中,所考虑的内胶囊和/或外胶囊包衣还包含绑扎带/密封,例如羟丙甲纤维素、遮光剂(例如,二氧化钛)、增塑剂(例如柠檬酸三乙酯(TEC))或抗粘剂(例如,滑石粉)。
在美国专利号9,907,755中描述了另外的示例性胶囊中胶囊制剂。
单位剂型
包含本公开的克里斯滕森氏菌种P152-H6d的药物组合物可以以单位剂型存在,即,药物单元。组合物(例如,本公开提供的药物单元)可以包括任何合适量的一种或多种细菌菌株(通过细菌的总质量或通过细菌的菌落形成单位测量)。
例如,所公开的药物组合物或药物单元可包含的每种细菌菌株为约103cfu至约1012cfu、约106cfu至约1012cfu、约107cfu至约1012cfu、约108cfu至约1012cfu、约109cfu至约1012cfu、约1010cfu至约1012cfu、约1011cfu至约1012cfu、约103cfu至约1011cfu、约106cfu至约1011cfu、约107cfu至约1011cfu、约108cfu至约1011cfu、约109cfu至约1011cfu、约1010cfu至约1011cfu、约103cfu至约1010cfu、约106cfu至约1010cfu、约107cfu至约1010cfu、约108cfu至约1010cfu、约109cfu至约1010cfu、约103cfu至约109cfu、约106cfu至约109cfu、约107cfu至约109cfu、约108cfu至约109cfu、约103cfu至约108cfu、约106cfu至约108cfu、约107cfu至约108cfu、约103cfu至约107cfu、约106cfu至约107cfu、或约103cfu至约106cfu;或者所公开的药物组合物或药物单元可包含的细菌菌株或组合物中的每种细菌菌株为约103cfu、约106cfu、约107cfu、约108cfu、约109cfu、约1010cfu、约1011cfu或约1012cfu。
例如,所公开的药物组合物或药物单元可包含的每种细菌菌株为约103cfu至约1012cfu、约106cfu至约1012cfu、约107cfu至约1012cfu、约108cfu至约1012cfu、约109cfu至约1012cfu、约1010cfu至约1012cfu、约1011cfu至约1012cfu、约103cfu至约1011cfu、约106cfu至约1011cfu、约107cfu至约1011cfu、约108cfu至约1011cfu、约109cfu至约1011cfu、约1010cfu至约1011cfu、约103cfu至约1010cfu、约106cfu至约1010cfu、约107cfu至约1010cfu、约108cfu至约1010cfu、约109cfu至约1010cfu、约103cfu至约109cfu、约106cfu至约109cfu、约107cfu至约109cfu、约108cfu至约109cfu、约103cfu至约108cfu、约106cfu至约108cfu、约107cfu至约108cfu、约103cfu至约107cfu、约106cfu至约107cfu、或103cfu至约106cfu;或者所公开的药物组合物或药物单元可包含的组合物中的细菌菌株为约103cfu、约106cfu、约107cfu、约108cfu、约109cfu、约1010cfu、约1011cfu或约1012cfu。
在一些实施方案中,所提供的药物单元包含至少1x103个菌落形成单位的每种细菌菌株(例如,营养细菌菌株)、或至少1x104个菌落形成单位的细菌菌株(例如,营养细菌菌株)、或至少1x105个菌落形成单位的细菌菌株(例如,营养细菌菌株)、或至少1x106个菌落形成单位每种细菌菌株(例如,营养细菌菌株)、或至少1x107个菌落形成单位的每种细菌菌株(例如,营养细菌菌株)、或至少1x108个菌落形成单位的每种细菌菌株(例如,营养细菌菌株)、或至少1x109个菌落形成单位的每种细菌菌株(例如,营养细菌菌株)。
例如,所公开的组合物(例如,诸如胶囊的药物单元)可包含约1mg至约5mg(例如,2mg至约4mg)的细菌菌株,该细菌菌株各自存在于单元中,例如,在约5mg至约50mg的冻干粉形式的细菌菌株中。例如,药物单元可包含总量为约30mg至约70mg、约30mg至约60mg、约30mg至约50mg、约30mg至约40mg、约40mg至约70mg、约40mg至约60mg、约40mg至约50mg、约50mg至约70mg、约50mg至约60mg、约80mg至约100mg、约90mg至约110mg、约100mg至约120mg或约110mg至约150mg的冻干粉形式的细菌菌株。在一些实施方案中,药物单元包含总量为约30mg、40mg、50mg、60mg、70mg、100mg、120mg、130mg、140mg或150mg的冻干粉形式的细菌菌株。
在一些实施方案中,所公开的组合物(例如所公开的药物单元)可包含约5至约50mg的每种冻干粉形式的细菌菌株,例如,约5至约45mg、约5至约40mg、约5至约35mg、约5至约30mg、约5至约25mg、约5至约15mg、约5至约10mg、约10至约50mg、约10至约35mg的每种冻干粉形式的细菌菌株(例如,营养细菌菌株),约10至约20mg、约10至约15mg或约15至约45mg的每种冻干粉形式的细菌菌株(例如,营养细菌菌株)。在一些实施方案中,所公开的药物单元包含约5mg、约10mg、约15mg、约20mg、约25或约30mg的每种冻干粉形式的细菌菌株(例如,营养细菌菌株)。在一些实施方案中,所公开的药物单元包含约25至约50mg的冻干粉形式的一种细菌菌株(例如,营养细菌菌株)以及约5mg至约10mg的其余冻干粉形式的细菌菌株(例如,营养细菌菌株);或者约5至约15mg的冻干粉形式的一种细菌菌株(例如,营养细菌菌株)以及约5mg至约10mg的其余冻干粉形式的细菌菌株(例如,营养细菌菌株),例如,约15mg的一种冻干粉形式的细菌菌株(例如,营养细菌菌株)以及约5mg的其余冻干粉形式的细菌菌株(例如,营养细菌菌株);或者分别为约15mg至约25mg的两种冻干粉形式的细菌菌株(例如,营养细菌菌株)以及约5mg至约10mg的其余冻干粉形式的细菌菌株(例如,营养细菌菌株)。
在一些实施方案中,药物组合物或药物单元可以包括益生元或者可以与益生元组合施用,益生元是指改变肠道微生物菌群的生长、维持、活性和/或平衡(例如,可以允许微生物组的组成和/或活性发生特定变化)的化合物或组合物。示例性的益生元包括复合碳水化合物、复合糖、抗性糊精、抗性淀粉、氨基酸、肽、营养化合物、生物素、聚葡萄糖、低聚果糖(FOS)、低聚半乳糖(GOS)、菊粉、木质素、欧车前、甲壳素、壳聚糖、壳寡糖、乳糖醇、树胶(例如,瓜尔胶)、高直链玉米淀粉(HAS)、纤维素、β-葡聚糖、半纤维素、乳果糖、甘露寡糖、甘露寡糖(MOS)、富含低聚果糖的菊粉、低聚果糖、低聚葡萄糖、塔格糖、反式低聚半乳糖、果胶、抗性淀粉、异麦芽低聚糖和低聚木糖(XOS)。益生元可以在食物中发现(例如,金合欢胶、瓜尔豆、糙米、米糠、大麦壳、菊苣根、菊芋、蒲公英嫩叶、大蒜、韭菜、洋葱、芦笋、小麦麸、燕麦麸、烤豆、全麦面粉和香蕉)和母乳。益生元也可以以其他形式施用(例如,胶囊或膳食补充剂)。
III治疗用途
本公开的组合物和方法可用于治疗受试者中各种形式的胃肠道疾病、炎性疾病、皮肤病和/或生态失调。本公开提供了一种治疗受试者中的胃肠道疾病、炎性疾病、皮肤病和/或生态失调的方法。所考虑的方法包括将有效量的药物组合物和/或药物单元单独或与另一种治疗剂组合施用给受试者,以治疗受试者的胃肠道疾病、炎性疾病和/或生态失调,所述药物组合物和/或药物单元包含本公开的克里斯滕森氏菌种P152-H6d细菌菌株(以及可选的一种或多种其它菌株)。
如本文所用,“治疗”是指治疗受试者(例如人)的疾病。这包括:(a)抑制疾病,即,阻止其发展;(b)缓解疾病,即,导致疾病状态的消退。如本文所用,术语“受试者”和“患者”是指将通过本文所述的方法和组合物治疗的生物体。此类生物体优选包括,但不限于,哺乳动物,例如人类、伴侣动物(例如狗、猫或兔子)或家畜动物(例如牛、绵羊、猪、山羊、马、驴以及骡子、水牛、公牛或骆驼)。
应当理解,药物单元、药物组合物或细菌菌株的确切剂量由各个医生基于待治疗的患者来选择,通常,对剂量和施用进行调整以为正在接受治疗的患者提供有效量的细菌药。如本文所用,“有效量”是指引发有益或期望的生物反应所必需的量。有效量可以在一次或多次施用、施用或剂量中而施用,并且不旨在限于特定的制剂或施用途径。如本领域普通技术人员将理解的,药物单元、药物组合物或细菌菌株的有效量可以根据诸如期望的生物学终点、待递送的药物、靶组织、施用途径等因素而变化。被纳入考虑的其他因素包括疾病状态的严重程度;正在接受治疗的患者的年龄、体重和性别;饮食、施用的时间和频率;药物组合;反应敏感性;和以及对治疗的耐受性/反应。
应当理解,所公开的细菌菌株或细菌菌株混合物可能不需要在受试者的肠道(例如小肠)中定植和/或在受试者中的持久性以引发有益的或期望的生物反应。例如,在一些实施方案中,细菌菌株或细菌菌株混合物定植于受试者的肠道(例如小肠)和/或在施用后持续存在于受试者体内。在一些实施方案中,细菌菌株或细菌菌株混合物不会在受试者的肠道中定植和/或在施用后不会持续存在于受试者体内。
胃肠道疾病包括例如炎性肠病(IBD)、克罗恩病(CD)、溃疡性结肠炎(UC)、溃疡性直肠炎、显微镜结肠炎、肠易激综合征(IBS;例如,IBS-c,IBS-m或IBS-d)、功能性腹泻、功能性便秘、乳糜泻、放射性肠炎、艰难梭菌(C.difficile)感染(CDI)、复发性艰难梭菌感染(rCDI)、艰难梭菌相关性腹泻病(CDAD)、结肠炎(例如,感染性、缺血性、不确定性或放射性的结肠炎)、溃疡(包括胃溃疡、消化性溃疡和十二指肠溃疡)、胃食管反流病(GERD)、贮袋炎、肠胃炎、胰腺炎、粘膜炎(例如,口腔粘膜炎、胃肠道粘膜炎、鼻黏膜炎和直肠炎)、坏死性小肠结肠炎、食道炎、非溃疡性消化不良、慢性肠假性梗阻、功能性消化不良、结肠假性梗阻、十二指肠胃反流、肠梗阻炎症、术后肠梗阻、胃灼热(胃肠道中的高酸度)、便秘(例如,与使用阿片类药物、骨关节炎药物、骨质疏松症药物等药物相关的便秘,手术后便秘或与神经病相关的便秘)、痔疮、憩室病、慢性胰腺炎、盲袢综合征、胃轻瘫(包括糖尿病和/或特发性)、腹泻、吞咽困难、大便失禁、短肠综合征(SBS)、肠缺血、婴儿反流、婴儿反刍综合征、周期性呕吐综合征、癔球症、肠扭转、胃肠道癌症和胃肠道过敏。可以考虑本文公的组合物和方法可用于治疗任何功能性胃肠道疾病,包括例如由脑-肠互动介导或以其他方式与脑-肠互动相关的病症。
炎性肠病或IBD在本文中可互换使用,是指引起炎症和/或溃疡的肠道疾病,包括但不限于克罗恩病和溃疡性结肠炎。克罗恩病(CD)和溃疡性结肠炎(UC)是病因不明的慢性炎性肠病。
溃疡性结肠炎(UC)折磨大肠。病程可以是连续的或复发的,轻微的或严重的。最早的病变是炎性浸润,在肠隐窝(crypts of Lieberkuhn)底部形成脓肿。这些膨胀和破裂的隐窝的聚结趋于将上覆的粘膜与其血液供应分开,从而导致溃疡。这种疾病的症状包括痉挛、下腹痛、直肠出血和频繁的松散分泌物(主要由血液、脓液和粘液组成),并伴有少量粪便颗粒。急性、严重或慢性、持续性的溃疡性结肠炎可能需要进行全结肠切除术。
与溃疡性结肠炎不同,克罗恩病可以影响肠道的任何部分。克罗恩病最突出的特征是肠壁呈颗粒状、红紫色水肿性增厚。随着炎症的发展,这些肉芽肿通常会失去其界限并与周围组织融合。腹泻和肠梗阻是主要的临床特征。与溃疡性结肠炎一样,克罗恩病的病程可能是持续的或复发的、轻度或重度,但与溃疡性结肠炎不同的是,克罗恩病不能通过切除涉及的肠段来治愈。大多数克罗恩病患者在某些时候需要手术,但随后的复发很常见,并且通常需要持续的药物治疗。
炎性疾病可以例如基于受影响的原发组织、该疾病的作用机制或免疫系统的失调或过度活跃的部分而表征。炎性疾病的实例包括肺、关节、结缔组织、眼睛、鼻子、肠、肾、肝、皮肤、中枢神经系统、血管系统、心脏或脂肪组织的炎症。在一些实施方案中,可以治疗的炎性疾病包括由于白细胞或其他免疫效应细胞或其介体浸润到受影响的组织中而引起的炎症。在一些实施方案中,可以治疗的炎性疾病包括由IgA和/或IgE抗体介导的炎症。可通过本公开治疗的炎性疾病的其他相关实例包括由感染原引起的炎症,包括但不限于:病毒、细菌、真菌和寄生虫。在一些实施方案中,所治疗的炎性疾病是过敏反应。在一些实施方案中,炎性疾病是自身免疫性疾病。
炎性肺病包括哮喘、成人呼吸窘迫综合征、支气管炎、肺部炎症、肺纤维化和囊性纤维化(其可以额外地或替代地涉及胃肠道或其他组织)。免疫介导的炎性疾病包括系统性红斑狼疮、系统性血管炎、干燥综合征、斑秃和系统性硬化症。炎性关节病症包括类风湿性关节炎、血清阴性脊柱关节病包括强直性脊柱炎、幼年类风湿性关节炎、骨关节炎、痛风性关节炎和其他关节炎病症。炎性眼病包括葡萄膜炎(包括虹膜炎)、结膜炎、巩膜外层炎、巩膜炎和干燥性角膜结膜炎。炎性肠病包括克罗恩病、溃疡性结肠炎、炎性肠病和远端直肠炎。炎性皮肤病包括与细胞增殖相关的病症,例如银屑病、湿疹、皮炎(例如湿疹性皮炎、局部和脂溢性皮炎、过敏性或刺激性接触性皮炎、裂纹样湿疹、光过敏性皮炎、光毒性皮炎、植物日光性皮炎、放射性皮炎和淤滞性皮炎)和痤疮。内分泌系统的炎性疾病包括但不限于自身免疫性内分泌病、自身免疫性甲状腺炎(桥本氏病)、I型糖尿病、与II型糖尿病相关的肝脏和脂肪组织炎症以及肾上腺皮质的急性和慢性炎症。心血管系统的炎性疾病包括但不限于冠状动脉梗塞损伤、外周血管疾病、心肌炎、血管炎、狭窄的血管重建、动脉粥样硬化和与II型糖尿病相关的血管疾病。肾脏的炎性疾病包括但不限于肾小球肾炎、间质性肾炎、狼疮性肾炎、继发于韦格纳病(Wegener’s disease)的肾炎、继发于急性肾炎的急性肾功能衰竭、古德帕斯彻氏综合征(Goodpasture′s syndrome)、梗阻后综合征和肾小管缺血。肝脏的炎性疾病包括但不限于肝炎(由病毒感染、自身免疫反应、药物治疗、毒素、环境因素引起或者作为原发性疾病的继发性后果)、胆道闭锁、原发性胆汁性肝硬化和原发性硬化性胆管炎。具有炎性病因的代谢疾病包括胰岛素抵抗、代谢综合征、肥胖、非酒精性脂肪肝病(NAFLD)和非酒精性脂肪性肝炎(NASH)。在一些实施方案中,炎性疾病是自身免疫性疾病,例如类风湿性关节炎、狼疮、脱发、自身免疫性胰腺炎、乳糜泻、白塞氏病、库欣综合征(Cushing syndrome)和格雷夫病(Grave’s disease)。在一些实施方案中,炎性疾病是类风湿病症,例如类风湿性关节炎、幼年关节炎、滑液囊炎、脊柱炎、痛风、硬皮病、斯蒂尔病(Still′s disease)和血管炎。其它示例性炎性疾病包括嗜酸性食管炎和嗜酸性胃肠炎。
示例性皮肤病包括银屑病、湿疹、皮炎(例如,湿疹性皮炎、局部和脂溢性皮炎、过敏性或刺激性接触性皮炎、裂纹样湿疹、光过敏性皮炎、光毒性皮炎、植物日光性皮炎、放射性皮炎和瘀滞性皮炎)以及痤疮。
通常,生态失调是指肠道或其他身体区域的微生物区系或微生物群的状态,包括例如粘膜或皮肤表面(或任何其他微生物区系生态位),其中,生态网络的正常多样性和/或功能被破坏。微生物区系的典型(例如,理想)状态的任何破坏都可以被认为是生态失调,即使这种生态失调不会导致可检测到的健康下降。这种生态失调状态可能是不健康的(例如,导致疾病状态),或者其可能仅在某些条件下是不健康的,或者其可能阻止受试者变得更健康。生态失调可能是由于微生物区系菌群的多样性的减少、一种或多种病原体(例如,病原菌群)或病原菌群的过度生长、仅当患者存在某些遗传和/或环境条件才能够引起疾病的共生生物的存在和/或过度生长,或转向不再为宿主提供有益功能并因此不再促进健康的生态网络。远端生态失调包括但不限于胃肠道管腔外的生态失调。
可以想到的是,生态失调可包括感染某一属的病原菌,所述属选自由耶尔森氏菌属、弧菌属、密螺旋体属、链球菌属、葡萄球菌属、志贺氏菌属、沙门氏菌属、立克次氏体属、东方氏菌属、假单胞菌属、奈瑟氏菌属、支原体属、分枝杆菌属、李斯特菌属、钩端螺旋体属、军团菌属、克雷伯氏菌属、螺杆菌属、嗜血杆菌属、弗朗西斯菌属、埃希氏菌属、埃里希氏菌属、肠球菌属、柯克氏菌属、棒状杆菌属、梭菌属、衣原体属、嗜衣原体属、弯曲杆菌属、伯克霍尔德菌属、布鲁氏菌属、疏螺旋体属、博德特氏菌属、双歧杆菌属和芽孢杆菌属。病原菌的其它实例包括嗜水气单胞菌、胎儿弯曲杆菌、类志贺邻单胞菌、蜡样芽孢杆菌、空肠弯曲杆菌、肉毒杆菌、艰难梭菌、产气荚膜梭菌、肠聚集性大肠杆菌、肠出血性大肠杆菌、肠侵袭性大肠杆菌、产肠毒性大肠杆菌(LT或ST)、大肠杆菌0157:H7、幽门螺杆菌、单核细胞增生李斯特菌、类志贺邻单胞菌、伤寒沙门氏菌、金黄色葡萄球菌、霍乱弧菌、副溶血性弧菌、创伤弧菌、小肠结肠炎耶尔森菌、耐碳青霉烯类肠杆菌科(CRE)、广谱耐β-内酰胺肠球菌(ESBL)、耐万古霉素肠球菌(VRE)和多重耐药菌。
还可以想到的是,本公开的组合物和方法可用于治疗肝脏、胰腺或胆囊疾病。
在特定实施方案中,本公开的组合物和方法可用于为有需要的受试者预防或抑制体重增加、促进体重减轻和/或减少过度肥胖。在一些实施方案中,有需要的受试者具有等于或大于24(即,24kg/m2)的体重指数(BMI)。在一些实施方案中,有需要的受试者的BMI等于或大于24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40或大于40。在一些实施方案中,有需要的受试者是肥胖的,如通过例如BMI≥25、腰围、腰臀比、皮褶厚度、生物电阻抗、水下称重(密度测定)、空气置换体积描记法、稀释法(液体比重测量法)、双能X射线吸收测定法(DEXA)、计算机断层扫描(CT)、磁共振成像(MRI)或它们的任何组合所确定的。
在其他实施方案中,当作为疫苗组合物施用时,本公开的组合物和方法还可用于预防一种或多种上述疾病或病症。在一些实施方案中,本文提供的细菌菌株是有活力的。在一些实施方案中,细菌菌株能够至少部分或完全定植于胃肠道,例如小肠。在一些实施方案中,本发明的细菌菌株是有活力的并且能够至少部分或完全定植于胃肠道,例如小肠。在其他实施方案中,本发明的细菌菌株可以被杀死、灭活或减弱。在一些实施方案中,组合物可以包含疫苗佐剂。在一些实施方案中,组合物用于通过注射施用,例如通过皮下注射。
IV联合治疗
本文所述的方法和组合物可以单独使用或与其他治疗剂和/或形式联合使用。如本文所用,术语“联合”施用应理解为表示在受试者患有疾病的病程中向受试者递送两种(或更多种)不同的治疗,从而使这些治疗对患者的影响在某个时间点重叠。在一些实施方案中,一种治疗的递送在第二种治疗开始递送时仍在进行,因此在施用方面存在重叠。这有时在本文中被称为“同时”或“同时递送”。在其他实施方案中,一种治疗的递送在另一种治疗的递送开始之前结束。在任意一种情况的一些实施方案中,治疗由于联合施用而更加有效。例如,第二治疗是更有效的,例如,使用更少的第二治疗可以看到等效的效果,或者与如果不使用第一治疗的情况下施用第二治疗所能看到的情况相比,第二治疗在更大程度上减轻了症状,或施用第一治疗能看到类似的情况。在一些实施方案中,递送使得与病症相关的症状或其他参数的减少大于在不存在另一种治疗的情况下递送的一种治疗所观察到的。两种治疗的效果可以是部分加成、完全加成的或更大加成的。递送可以使得递送的第一治疗的效果在递送第二治疗时仍然可检测到。在一些实施方案中,第一和/或第二治疗的副作用由于联合施用而降低。
在一些实施方案中,本文所述的方法或组合物与一种或多种其它治疗联合施用。在一些实施方案中,所考虑的其它治疗可包括氨基水杨酸盐、皮质类固醇、肿瘤坏死因子(TNF)拮抗剂、利那洛肽、抗生素或免疫抑制剂(例如,硫唑嘌呤、6-巯基嘌呤、环孢素、甲氨蝶呤或他克莫司(Prograf))。在一些实施方案中,所考虑的其它治疗可以包括生物药(例如,英夫利昔单抗(类克)、阿达木单抗(修美乐)、赛妥珠单抗(Cimzia)、戈利木单抗(Simponi)或依那西普(Enbrel))。可以想到的是,用所公开的方法或组合物治疗的受试者可能对先前施用的治疗具有不充分的反应,例如先前施用氨基水杨酸盐、皮质类固醇或生物药。
适用于与本文描述的药物组合物或单元进行联合治疗的其它治疗剂包括质子泵抑制剂(例如,泮托拉唑(Protonix)、兰索拉唑(Prevacid)、埃索美拉唑(Nexium)、奥美拉唑(Prilosec)和雷贝拉唑)、H2受体阻滞剂(如西咪替丁(Tagamet)、雷尼替丁(Zantac)、法莫替丁(Pepcid)和尼扎替丁(Axid))、前列腺素(如米索前列醇(Cytotec))、硫糖铝和抗酸剂。
在一些实施方案中,药物组合物或药物单元可包括皮质类固醇或与皮质类固醇联合施用。皮质类固醇是一类化学物质,包括在脊椎动物肾上腺皮质中自然产生的类固醇激素和在实验室合成的这些激素的类似物。皮质类固醇参与了广泛的生理过程,包括应激反应、免疫反应和炎症调节、碳水化合物代谢、蛋白质分解代谢、血液电解质水平以及行为表现。示例性的皮质类固醇包括倍他米松、布地奈德、可的松、地塞米松、氢化可的松、甲基强的松龙、强的松龙、强的松或地夫可特。可以想到的是,所公开的方法或组合物治疗的受试者可能对先前施用的皮质类固醇具有不充分的反应。
在一些实施方案中,药物组合物或药物单元可以包括氨基水杨酸或与氨基水杨酸联合施用。示例性的氨基水杨酸包括4-氨基水杨酸、巴柳氮、奥沙拉嗪、柳氮磺吡啶和美沙拉嗪(5-氨基水杨酸)。可以想到的是,所公开的方法或组合物治疗的受试者可能对先前施用的美沙拉嗪具有不充分的反应,例如,先前口服施用≥2.4g/天的美沙拉嗪经过至少8周。
在一些实施方案中,药物组合物或药物单元可以包括肿瘤坏死因子(TNF)拮抗剂或与肿瘤坏死因子(TNF)拮抗剂联合施用。示例性的TNF拮抗剂包括英夫利昔单抗(Remicade)、阿达木单抗(Humira)、赛妥珠单抗(Cimzia)、戈利木单抗(Simponi)、依那西普(Enbrel)、沙利度胺(Immunoprin)、来那度胺(Revlimid)、泊马度胺(Pomalyst,Imnovid)、黄嘌呤衍生物(例如,己酮可可碱)和安非他酮。可以想到的是,所公开的方法或组合物治疗的受试者可能对先前施用的TNF拮抗剂具有不充分的反应。
在一些实施方案中,药物组合物或药物单元可以包含整联蛋白α4β7拮抗剂(例如维多珠单抗),或与其联合施用。可以想到的是,所公开的方法或组合物治疗的受试者可能对先前施用的整联蛋白α4β7拮抗剂具有不充分的反应。
在一些实施方案中,药物组合物或药物单元可以包含抗菌剂(例如抗生素)或与其联合施用。所公开的方法可以包括用抗生素进行预治疗,例如,在施用所公开的药物组合物或单元之前向受试者施用抗生素。用于联合治疗的示例性的抗生素包括万古霉素、甲硝唑、庆大霉素、粘菌素、非达霉素、特拉万星、奥利万星、达巴万星、达托霉素、头孢氨苄、头孢呋辛、头孢羟氨苄、头孢唑啉、头孢噻吩、头孢克洛、头孢孟多、头孢西丁、头孢丙烯、头孢吡普、环丙沙星、左氟沙星、氧氟沙星、加替沙星(tequin)、莫西沙星(avelox)、诺氟沙星、四环素、米诺环素、氧四环素、强力霉素、阿莫西林、氨苄青霉素、青霉素V、双氯西林、羧苄青霉素、甲氧西林、厄他培南、多利培南、亚胺培南/西司他丁、美罗培南、阿米卡星、卡那霉素、新霉素、奈替米星、妥布霉素、巴龙霉素、头孢克肟、头孢地尼、头孢托仑、头孢哌酮、头孢噻肟、头孢他啶、头孢布烯、头孢唑肟、头孢曲松、头孢西丁和/或链霉素。
在一些实施方案中,药物组合物或药物单元可以包含抗真菌剂或抗病毒剂或者与抗真菌剂或抗病毒剂联合施用。示例性的抗病毒剂包括阿巴卡韦、阿昔洛韦、阿德福韦、安普那韦、阿扎那韦、西多福韦、地瑞那韦、地拉韦定、去羟肌苷、二十二烷醇、依非韦仑、埃替拉韦、恩曲他滨、恩夫韦肽、依曲韦林、泛昔洛韦、膦甲酸、福米韦森、更昔洛韦、茚地那韦、碘甙、拉米夫定、洛匹那韦、马拉维若、MK-2048、奈非那韦、奈韦拉平、喷昔洛韦、拉替拉韦、利匹韦林、利托那韦、沙奎那韦、司他夫定、替诺福韦三氟胸苷、万乃洛韦、缬更昔洛韦、阿糖腺苷、伊巴他滨、金刚烷胺、奥司他韦、金刚烷乙胺、替拉那韦、扎西他滨、扎那米韦和齐多夫定。示例性的抗真菌剂包括纳他霉素、裂霉素、菲律宾菌素(filipin)、制霉菌素、两性霉素B、坎底辛(candicin)和哈霉素、咪康唑、酮康唑、克霉唑、益康唑、奥莫康唑、联苯苄唑、布康唑、芬替康唑、异康唑、奥昔康唑、舍他康唑、硫康唑、噻康唑、氟康唑、伊曲康唑、艾沙康唑、雷夫康唑、泊沙康唑、伏立康唑、特康唑和阿巴康唑、阿巴芬净、特比萘芬、萘替芬、布替萘芬、阿尼芬净、卡泊芬净、米卡芬净、蓼二醛(polygodial)、苯甲酸、环吡酮、托萘酯、十一碳烯酸、氟胞嘧啶或5-氟胞嘧啶、灰黄霉素和碘炔三氯酚。
在一些实施方案中,药物组合物或药物单元可以包含其它细菌菌株或与其它细菌菌株联合施用。示例性的细菌菌株包括克里斯滕森氏菌种P152-H6d菌株和除克里斯滕森氏菌种P152-H6d(例如,C.minuta,C.massiliensis和C.timonensis)以外的克里斯滕森氏菌种的菌株。其它示例性的细菌菌株包括厌氧菌属(genus Anaerostipes)的菌株,例如,粪厌氧棒杆菌菌株。粪厌氧棒杆菌的示例性的菌株是指粪厌氧棒杆菌P127-A10a菌株,保藏号为DSM 33531。其它可用的菌株包括粪厌氧棒杆菌菌株DSM 14662、粪厌氧棒杆菌菌株3_2_56FAA以及粪厌氧棒杆菌分离株MGYG-HGUT-00080。
在整个说明书中,当组合物被描述为具有、包括或包含特定组分或者当过程和方法被描述为具有、包括或包含特定步骤,可以想到的是,额外地,存在基本上由所述组分组成或由所述组分组成的本公开的化合物或者基本上由所述处理步骤组成或由所述处理步骤组成的根据本公开的过程和方法。
在本申请中,当元件或成分被认为包括在列举的元素或成分的列表中和/或从列表中选择时,应该理解该元件或成分可以是列举的元素或成分中的任何一个,或者元素或成分可以选自由两个或更多个所列举的元素或成分组成的组。
此外,应当理解,本文所述的组合物或方法的元素和/或特征可以在不背离本公开的精神和范围的情况下以多种方式组合,无论是在本文中明确的还是暗示的。例如,当提及特定化合物时,该化合物可用于本公开的组合物的各种实施方案和/或本公开的方法中,除非从上下文另有理解。换言之,在本申请中,已经以使得能够书写和绘制清晰和简明的申请的方式描述和描绘了实施方式,但是旨在并且将理解的是,实施方式可以在不脱离目前的教导和本公开的情况下以各种方式组合或分离。例如,应当理解的是,本文描述和描绘的所有特征可以适用于本文描述和描绘的本公开的所有方面。
应当理解,除非从上下文和使用中另外理解,否则表述“至少一个”包括在该表述之后列举的对象中单独的每一个以及列举的对象中的两个或更多个的各种组合。除非从上下文中另外理解,否则与三个或更多个所列举的对象结合的表述“和/或”应被理解为具有相同的含义。
除非另有具体说明或从上下文中理解,术语“包括”、“包含”、“具有”或“含有”包括其语法等价物的使用,应将其一般理解为开放式和非限制性的,例如,不排除其它未列举的元素或步骤。
当在定量值之前使用术语“约”时,本公开还包括具体的定量值本身,除非另有明确说明。如本文所用,除非另有说明或推断,否则术语“约”是指与标称值相差±10%的变化。
应当理解,步骤的顺序或执行某些动作的顺序是无关紧要的,只要本公开保持可操作。此外,可以同时进行两个或更多个步骤或动作。
在此使用任何和所有示例或示例性语言,例如,“诸如”、“例如”或“包括”仅旨在更好地说明本公开并且不对本公开的范围构成限制,除非明确说明。说明书中的任何语言都不应被解释为指示任何未要求保护的元素对于本公开的实践是必不可少的。
实施例
以下实施例仅是说明性的并且不旨在以任何方式限制本公开的范围或内容。
实施例1-克里斯滕森氏菌种P152-H6d的分离和纯化
1.1来源:从健康人类供体的粪便样本中分离出分离株P152-H6d。供体接受了全面的临床和实验室测试,以确认健康状况,包括筛查传染性病原体,以最大限度地降低传染性感染的风险。血清学筛查包括HIV-1/HIV-2(IgG和EIA)、HTLV-I和HTLV-II(Ab)、甲型肝炎病毒(IgM)、乙型肝炎病毒(HBSAg、抗HBc IgG和IgM)、丙型肝炎病毒(抗HCV IgG)、梅毒螺旋体(EIA或RPR(如果EIA为阳性))、粪类圆线虫Ab(Strongyloides stercoralis Ab)、CMV病毒载量和EBV病毒载量。粪便筛查包括艰难梭菌毒素A/B(PCR)、肠道病原体常规细菌培养(富集),包括幽门螺杆菌EIA、沙门氏菌、志贺氏菌、耶尔森氏菌、弯曲杆菌和弧菌、大肠杆菌O157(执行大肠杆菌0157培养,如果stx1/2EIA+ve)、志贺样毒素stx1/2(志贺氏菌)EIA、万古霉素耐药肠球菌(VRE)的基于培养的检测、广谱β-内酰胺酶(ESBL)生产者、耐碳青霉烯肠杆菌(CRE)和耐甲氧西林金黄色葡萄球菌(MRSA)、贾第虫抗原(EIA)、隐孢子虫抗原(EIA)、环孢子虫、等孢子球虫和微孢子虫(用抗酸染色显微镜观察)、卵和寄生虫(显微镜观察)、轮状病毒(EIA)、诺如病毒GI/GII(RT-PCR)和腺病毒40,41EIA。
1.2分离和纯化:将供体样本的稀释液铺在分离培养基上。从分离培养基琼脂板(YCFAC、补充有维生素K和血红素的BHI、补充有5%羊血的TSA、BUA OxyPras)中挑取菌落到含有200μl的BHI+血红素+维生素K的96孔微量滴定板中。一旦在96孔微量滴定板中肉眼观察到生长,则从96孔微量滴定板的每个孔中取20μl的培养物转移到含有1ml BHI+血红素+维生素K的96孔深孔板中,然后在37℃培养。在肉眼观察到生长后,向每个孔中加入1ml的50%甘油,并将600ul的混合物转移到Thermo Fisher Matrix管板中。随后将各个单个培养物铺板在分离培养基上,以确保菌落形态均匀性的构象。在37℃下孵育2周后观察到菌落,菌落呈透明状,直径约为0.1mm。挑选单个菌落通过16S测序进行鉴定,并重新铺到BUAOxyPras板上。在菌落可见并观察到单一形态后,将单个菌落接种到6ml的YCFAC培养基中。一旦液体培养物变得混浊,通过向液体培养物中加入6ml的50%甘油并在每个matrix管中等分120μl来制备matrix板。通过将其中一个制备好的matrix小瓶铺板到BUA OxyPras板上并通过16S测序测试单个菌落来确认纯度。
实施例2-分离株P152-H6d的分类学特征
2.116S测序和系统发育分析
使用全长16S rRNA基因测序数据对纯化的分离株P152-H6d进行分类学表征。针对国家生物技术信息中心(NCBI)分类数据库和SILVA核糖体RNA数据库(Max PlanckInstitute for Marine Microbiology and Jacobs University,德国不来梅)中现有的公开可用菌株进行同源性搜索。
2.1.1 16S rRNA基因测序:将50μl的分离株P152-H6d的液体培养物在95℃下变性经过10分钟。通过使用16S rRNA引物27F(SEQ ID NO:29)和1492R(SEQ ID NO:30),变性后的样本用作模板,以PCR扩增16S基因。使用一组4种引物(27F、1492R、515F(SEQ ID NO:31)和907R(SEQ ID NO:32))进行Sanger测序(Elim Biopharm,Hayward,CA),以恢复接近全长的16S rRNA基因片段(SEQ ID NO:1)。使用DNAbaser(Heracle BioSoft S.R.L.,Arges,Romania)将四个扩增子组装成单个连续序列,然后使用BLASTn对NCBI数据库进行搜索。
2.1.2系统发育分析:选择跨越整个P152-H6d重叠群的数据库匹配,并选择分离株的远亲作为系统发育树上的外群。接下来使用比对(SINA v1.2.11)、分类和树服务针对ARBSILVA数据库搜索来自包括外群的NCBI 16S数据库的P152-H6d重叠群及其近亲。针对搜索和分类,使用具有至少92%的同一性的序列(总共15个序列)对P152-H6d进行分类。RaxML(Randomized Axelerated Maximum Likelihood)用于执行最大似然搜索以构建系统发育树(General Time Reversible(GTR+γ)模型,γ作为似然率模型)。
针对NCBI上的16S rRNA基因数据库的BLASTn搜索在100%的1442bp序列长度(SEQID NO:1)上产生了97.85%的最接近匹配。该匹配来自提蒙类克里斯滕森氏菌物种,下一个最接近的匹配来自马赛类克里斯滕森氏菌(Christensenella massiliensis)(图1和表1),在整个长度上有96.6%的同一性。嗜热芸苔杆菌(Brassicibacter thermophilus)(96%的同一性)被用作生根系统发育树的外群。
表1.BLASTn检索结果汇总
对照ARB SILVA数据库搜索来自NCBI数据库的三个选定序列以及P152-H6d 16S重叠群。发现最接近的匹配是来自提蒙类克里斯滕森氏菌物种,有97.98%的同一性。参考16SrRNA基因长度为1515bp(ARB ID:FLKP01000001)。在SEED比对中,同一性下降到94.72%。
使用P152-H6d分离株的最近邻构建的最大似然(ML)树如图1所示,这表明克里斯滕森氏菌是一个单系属,在成员物种之间具有明确的分类学划分,并且每个单独的克里斯滕森氏菌物种都清楚地聚集在单个进化枝上。基于这个16S rRNA基因片段分析,分离株P152-H6d是克里斯滕森氏菌属的成员。由于在16s rRNA基因的整个/部分长度上的97.89%的同一性不足以建立物种同一性(>98.5%),因此P152-H6d是新的克里斯滕森氏菌种的成员,其下一个最接近的已知亲属是提蒙类克里斯滕森氏菌。
2.2全基因组测序和系统发育基因组学分析
2.2.1测序:DNA提取、测序、质量过滤、组装和注释由Corebiome,Inc.(Minneapolis,MN)执行。使用MO Bio PowerFecal(Qiagen)在QiaCube(Qiagen)上实现高通量自动化,并在0.1mm玻璃珠板上进行珠磨破碎,以从分离株P152-H6d中提取DNA。用Qiant-iT Picogreen dsDNA测定(Invitrogen)对样品进行定量。使用适用于Nextera LibraryPrep试剂盒(Illumina)的专有程序制备文库,并使用NextSeq500/550High Output v2试剂盒(Illumina)在Illumina NextSeq上使用单端1x150reads进行测序。过滤低质量(Q-Score<20)和长度(<50)的DNA序列,并使用cutadapt v.1.15修剪接头序列(Martin,EMBnetJournal,[S.l.],v.17,n.1,p.pp.10-12,(2011))。
2.2.2装配和注释:使用SPAdes v3.11.0组装序列(Bankevich et al.,J ComputBiol.19(5):455-477(2012))。使用Prokka v 1.12(Seemann,Bioinformatics 30(14):2068-2069(2014))对长度超过1000个碱基的重叠群进行蛋白质注释。
2.2.3质量评估:通过检查FASTQC生成的质量分数来确定测序质量,低于20的分数表示低质量的碱基。组装质量指标由QUAST v.4.5生成(Gurevich et al.,Bioinformatics29(8):1072-1075(2013))。
2.2.4分类:使用平均核苷酸同一性和比对分数评分的适当评分截断来进行分类鉴定。这些评分是使用联合基因组研究所的微生物物种标识符(Joint Genome Institute’s Microbial Species Identifier)(Varghese et al.,Nucleic Acids Research 43(14):6761-6771(2015))和内部参考基因组数据库计算的。
2.2.5基因组特征:将分离株P152-H6d基因组组装的内在特性与最接近的克里斯滕森氏菌参考提蒙类克里斯滕森氏菌(登记号NZ_FLKP00000000)进行比较,并总结在下表2中。
表2.最接近的克里斯滕森氏菌参考P152-H6d PI组装的特征
PI=初级分离株;Mb=兆碱基对;CDS=编码序列,tRNA=转移核糖核酸
2.2.6.P152-H6d和克里斯滕森氏菌其他成员之间的全基因组相似性:将PI基因组与克里斯滕森氏菌属的每个成员物种进行比较,以测量基因组相似性的程度,特别是平均核苷酸同一性(ANI)和比对分数(AF)。结果总结在下表3中。
表3.P152-H6d与其它克里斯滕森氏菌种的平均核苷酸同一性(ANI)和比对分数(AF)
2.2.7系统发育基因组学分析
P152-H6d和Refseq/NCBI上的所有克里斯滕森氏菌基因组之间的成对ANI值、所有具有ANI>74.18的NCBI基因组(P152-H6d和最不相似的克里斯滕森氏菌基因组、克里斯滕森氏菌种Marseille-P3954之间的ANI值)以及包含克里斯滕森氏菌的生命分支网(Web ofLife)中的所有基因组(可在万维网biocore.github.io/wol/上获得)可以使用FastANI计算(Jain et al.,Nat Commun.9(1):5114(2018))并且用于生成以phylip格式的距离矩阵。这些基因组之间的系统发育关系是使用R语言包BionNJ(R package BionNJ)的邻接方法推断的,如图2所示。分支长度与ANI距离成正比。这些结果证实了基于16S rRNA的系统发育分析,其表明P152-H6d分离株代表一种新的克里斯滕森菌种。
实施例3-分离株P152-H6d的表型表征
P152-H6d的生理和代谢特征的总结在下表4中提供。
表4.P152-H6d的表型特征
耐氧性 | 使用的碳源<sup>1</sup> | 使用的氮源<sup>2</sup> | pH范围(最优) |
专性厌氧菌 | 4 | 3 | 5-8(7) |
1测试了190个独特的碳源
2测试了95个独特的氮源
152-H6d细胞是:非运动的和专性厌氧菌;氧化酶阴性的;和过氧化氢酶阳性的。过氧化氢酶活性在炎症性肠病的背景下是显著的,因为诸如过氧化氢(H2O2)的活性氧(ROS)会导致IBD中的上皮损伤和离子转运功能障碍(炎症性腹泻的关键事件)。然而,即使在未解决的组织炎症情况下,过氧化氢酶也可以部分预防和挽救DSS结肠炎中离子转运特性的丧失。参见Barrett和McCole,Clin Exp Pharmacol Physiol.43(11):1097-1106(Nov.2016)。
使用表型微阵列(Biolog,Hayward,CA)评估P152-H6d利用190种不同碳源和95种氮源的能力及其在宽pH范围内生长的能力。如表4所示,P152-H6d可利用4种碳源和3种氮源。碳源包括葡萄糖、阿拉伯糖、核糖和α-环糊精。P152-H6d能够利用半胱氨酸作为氮源,在腺嘌呤和仲班酸作为氮源存在下表现出较弱的生长。P152-H6d能够在5到8的pH范围内生长,但在pH 7时观察到最佳生长。
制备P152-H6d细胞用于通过电子显微镜成像。将细胞在PBS中洗涤两次并在室温下在4%多聚甲醛中固定30分钟。固定细胞在PBS中洗涤两次,然后重悬于无菌水中。将25微升样品涂覆于ITO涂层盖玻片,22x22mm厚度#1,30-60欧姆电阻率(SPI Supplies,目录号06471-AB1),并使其风干。使用Sigma 500VP FESEM电子显微镜观察细胞。图3提供了P152-H6d的代表性显微照片。细胞显示为直的短棒。
还评估了P152-H6d形成孢子的能力。使用两种不同的孢子诱导方法(即,热激和化学激),发现P152-H6d是非孢子形成的(表5)。丁酸梭菌(ATCC 19398)用作阳性对照。
表5.孢子形成的评估。
菌株 | 热激法产孢(%) | 乙醇激法产孢(%) |
丁酸梭菌ATCC 19398 | 31.75 | 24.29 |
P152-H6d | 0.0 | 0.0 |
还评估了P152-H6d的短链脂肪酸(SCFA)产生。人类肠道微生物产生的SCFA包括丁酸、乙酸和丙酸,所有这三种物质都被发现通过多种机制有助于维持肠道稳态(Lee andHase,Nat Chem Biol 10(6):416-424(2014);Hoeppli et al.,Front Immunol 6:61(2015);Koh et al.,Cell 165(6):1332-1345(2016))。在YCFAC培养基中分批培养生长72小时后,评估P152 H6d的SCFA产生曲线。未接种的YCFAC培养基用作阴性对照。如图4所示,P152-H6d产生丁酸和乙酸。
实施例4-P152-H6d的体外功能活性
本实施例描述了P152-H6d在体外人巨噬细胞、单核细胞和树突细胞模型中的活性的研究。
4.1制备用于细胞培养测定的新鲜培养的P152-H6d。在厌氧条件下制备来自P152-H6d过夜培养物的新鲜培养的细菌。将细菌以4300xg离心4分钟。用预还原的厌氧PBS(Gibco)洗涤细菌一次。通过用厌氧PBS将洗涤过的细菌重新悬浮至总表面积约为1x10^10μm2来制备工作储备溶液。总表面积=粒子数乘以粒子计数器(贝克曼库尔特计数器)测量的平均表面积(μm2)。使用厌氧PBS进行10倍系列稀释,用于特定测定。
4.2人巨噬细胞和单核细胞体外细胞因子和趋化因子测定。使用含有2.05mM的L-谷氨酰胺(Corning)和10%热灭活FBS(Corning)、100I.U./mL青霉素、100μg/mL链霉素和0.292mg/mL的L-谷氨酰胺(Corning)的RPMI1 640在37℃和5%CO2中培养THP-1人单核细胞系(ATCC cat#TIB-202)。通道数限制为8个通道。THP-1人单核细胞系生长至70-80%汇合。对细胞进行计数并重悬于培养基中。以每孔100000个细胞铺板到96孔板上。THP-1人巨噬细胞的制备是通过用10ng/mL12-豆蔻酸-13-乙酸佛波醇(PMA)(InvivoGen)培养THP-1人单核细胞经24小时,然后用20ng/mL IL-4(R&D Systems)和20ng/mL IL-13(R&D Systems)在37℃和5%CO2下培养48小时(Genin et al.,BMC Cancer 15:577(2015))。实验前一天,洗涤细胞并重悬于含有20ng/mL的IL-4和20ng/mL的IL-13的不含抗生素的RPMI培养基中。
为新鲜培养的P152-H6d细菌、厌氧PBS、500ng/ml的LPS和阳性对照菌株(已知诱导促炎细胞因子)中的每一个制备工作储备液,并将每一种添加到10%v/v的THP-1巨噬细胞并以515x g的速度离心到THP-1细胞上4分钟。测试物或对照和THP-1巨噬细胞在37℃和5%CO2中共同培养3小时。共培养基被补充有抗生素的新鲜RPMI培养基代替,以限制过量的细菌生长。更换培养基后,THP-1细胞在37℃和5%CO2中培养15小时。收集THP-1细胞上清液并通过ELISA分析。使用来自Biolegend或R&D Systems的商用酶联免疫吸附测定(ELISA)试剂盒,根据制造商的规格进行TMB检测,对培养上清液中CCL-18、IL12-p40和TNFα的水平进行定量。
分别评估了大肠杆菌LPS、P152-H6d和对照菌株在THP-1巨噬细胞中诱导CCL-18(一种M2-巨噬细胞相关趋化因子)的能力。据报道,M2巨噬细胞的诱导和极化是预防炎症性肠病和结肠炎症的关键机制(Seo et al.,Sci.Rep 7(1):851(2017);Steinbach et al.,Inflamm Bowel Dis.20(1):166-175(2014))。CCL-18是M2巨噬细胞的经过验证的标志物(Genin et al.,BMC Cancer 15:577(2015))。图5A显示,与PBS、大肠杆菌LPS和免疫刺激菌株对照相比,当P152-H6d与THP-1巨噬细胞共培养时,CCL-18的产生显著增加。图5B显示了CCL-18生产中对增加量的P152-H6d的剂量依赖性反应。相比之下,THP-1巨噬细胞与P152-H6d的共培养没有显著诱导促炎细胞因子IL12-p40(图6A)和TNF-α(图6B)。这些数据表明,P152-H6d可以增加来自人类巨噬细胞的抗炎细胞因子CCL-18而不是促炎细胞因子的产生,这表明抗炎M2巨噬细胞的诱导和极化。
4.3人单核细胞衍生的树突状细胞(moDC)体外细胞因子测定
将冷冻保存的PBMC在37℃水浴中解冻,在补充有10%热灭活FBS和L-谷氨酰胺的温热RPMI 1640中稀释,并离心(515xg;4分钟)。将细胞重新悬浮在含有0.5%牛血清白蛋白(BSA)和2mM EDTA的PBS缓冲液中,并根据制造商的说明使用Miltenyi CD14微珠选择分离CD14+单核细胞。在补充有10%热灭活FBS、L-谷氨酰胺、青霉素/链霉素抗生素、50ng/mL重组人IL-4(R&D Systems)和100ng/mL重组人GM-CSF(Biolegend)的RPMI 1640中培养分离的CD14+单核细胞。在第3天和第6天补充培养基。在分离后的第7天,将细胞在含有L-谷氨酰胺(Corning)并添加有10%热灭活的FBS(Tissue Culture Biologicals)和0.292mg/mL的L-谷氨酰胺(Corning)的RPMI 1640中稀释至5x105个细胞/mL。将5x105个细胞/mL细胞悬浮液的100μL等分试样添加到平孔96孔板中的每个孔中,并在添加测试物之前在37℃和5%CO2下培养24小时。
将细菌测试物(P152-H6d)制备成总表面积分别为1x10^8μm2和1x10^7μm2。在37℃和5%CO2下将测试物、载体(PBS)对照和moDC共同培养3小时。然后将板离心(515x g;4分钟),除去培养基,并用补充有10%热灭活FBS、L-谷氨酰胺和青霉素/链霉素抗生素的RPMI1640代替。然后将培养板在37℃和5%CO2下再培养15小时。将板离心(515x g;4分钟),根据制造商的说明,通过来自Meso Scale Discovery的定制U-plex多重试剂盒收集和分析上清液。结果取自4名人类供体的平均值,每个供体有两次实验重复。
如图7所示,与载体(PBS)诱导的这些抗炎细胞因子的产生相比,克里斯滕森氏菌种P152-H6d诱导人单核细胞源性的树突状细胞(moDC)的以下物质产生的显著、剂量依赖性增加:(A)IL-10和(B)IL-1RA。
4.4人PBMC体外细胞因子测定
Trima残留血液制品含有浓缩的血液单核细胞,通过太平洋血液中心(BloodCenters of the Pacific,San Francisco,CA)从匿名献血者获得,并在采集后24小时内进行处理。血液样本的HIV、HBV、HCV、HTLV、梅毒、西尼罗河病毒和寨卡病毒检测均为阴性。如前所述,使用ficoll梯度分离PBMC(Sim et al.,J.Vis.Exp.(112),e541282016)。简而言之,将50mL的Trima残留物用50mL的无菌PBS(Gibco)稀释,然后将25mL覆盖在50mL锥形管中的15mL Ficoll-Paque Plus(GE Healthcare)上。将样品在室温下以450x g离心30分钟,然后在没有减速的情况下停止。收集PBMC间期,用PBS洗涤并重悬于含有2.05mM的L-谷氨酰胺(Corning)并添加有10%热灭活FBS(Tissue Culture Biologicals)和0.292mg/mL的L-谷氨酰胺(Corning)的RPMI 1640中。通过在37℃和5%CO2下培养来维持细胞,并在24小时内用于测定评估或冷冻以备后用。将细胞冷冻保存在补充有50%FBS和10%DMSO(SigmaAldrich)的RPMI 1640中,浓度为5x107个细胞/mL,并储存在液氮中备用。
在分离后立即使用或从冷冻储存中解冻的人PBMC在含有L-谷氨酰胺(Corning)并添加10%热灭活的FBS(组织培养生物制品)和0.292mg/mL的L-谷氨酰胺(Coming)的RPMI1640中稀释至5x106个细胞/mL。将5x106个细胞/mL的细胞悬液的100μL等分试样添加到圆底96孔板中的每个孔中,并在添加测试物之前在37℃和5%CO2下培养24小时。
如上文针对moDC测定所述,制备测试物并将其添加到PBMC中。在37℃和5%CO2下培养3小时后,将含有共培养物的板离心(515x g;4分钟),除去培养基,换成添加有10%热灭活FBS、L-谷氨酰胺和青霉素/链霉素抗生素的RPMI 1640。然后将培养板在37℃和5%CO2下再培养15小时。将板离心(515x g;4分钟),并根据制造商的说明通过来自Meso ScaleDiscovery的定制U-plex多重试剂盒收集和分析上清液。结果取自4名人类供体的平均值,每个供体有两次实验重复。
如图7所示,与载体(PBS)诱导的这些抗炎细胞因子的产生相比,克里斯滕森氏菌种P152-H6d诱导人PBMC的以下物质产生的显著增加:(C)IL-10和(D)MCP1。
4.5人THP-1巨噬细胞体外细胞因子测定中的克罗恩病(CD)粪便微生物群落
测试了克里斯滕森氏菌种P152-H6d在来自患有克罗恩病的人类受试者的粪便微生物群存在下调节THP-1巨噬细胞中炎性细胞因子IL-12p40产生的能力。制备了包括50%甘油:50%CD粪便样品的甘油储备液等分试样。通过在厌氧条件下在实验当天将甘油原液解冻,然后用预还原的厌氧PBS洗涤并重悬至OD600=0.3的光密度来制备工作储备液。将此CD微生物群的工作储备液添加到THP-1巨噬细胞(2x CD粪便或1xCD粪便,v/v)中,加入或不加新鲜培养的P152-H6d工作储备液(1xP152-H6d或者0.1x P152-H6d,v/v)或厌氧PBS对照。在37℃和5%CO2下共培养4小时后,用补充有Pen/Strep的RPMI培养基洗涤并重悬THP-1巨噬细胞以去除多余的细菌。THP-1巨噬细胞在37℃和5%CO2中培养24小时。收集THP-1细胞上清液并使用ELISA分析IL-12p40。
图8示出了,CD粪便微生物群独自可以显著诱导来自THP-1巨噬细胞的IL-12p40,但添加克里斯滕森氏菌种P152-H6d减弱IL-12p40的产生,IL-12p40产生是剂量依赖性的。这表明克里斯滕森氏菌种P152-H6d在存在CD微生物群的情况下可以减少或减弱人巨噬细胞中IL-12p40的诱导。
实施例5-P152-H6d的体内功能活性
测试了克里斯滕森氏菌种P152-H6d在五种不同的经过充分验证的炎症性疾病小鼠模型中的疗效:(1)咪喹莫特(IMQ)诱导的银屑病;(2)恶唑酮引起的特应性皮炎;(3)DSS诱导的结肠炎;(4)鼠柠檬酸杆菌引起的结肠炎;和(5)TNBS诱导的结肠炎。
5.1咪喹莫特(IMQ)诱导的银屑病
银屑病是一种免疫介导的慢性炎症性皮肤病,其特征在于鳞状、发红的皮肤损伤和受影响皮肤的增厚以及表皮和/或真皮细胞和组织病理学变化。已知Toll样受体7/8激活剂咪喹莫特(IMQ)的局部应用会在人类和小鼠中引起银屑病样皮肤炎症。参见例如van derFits L.et al.Imiquimod-induced psoriasis-like skin inflammation in mice ismediated via IL23/IL17 axis;J Immunology,2009,182:5836-5845。
在该研究中,BALB/c小鼠在背部皮肤(~面积:4cm x 2cm)上连续6天接受每日局部应用5%IMQ乳膏(47mg/天)。测试物从第-7天到终止每天一次施用,包括:大约在IMQ应用后1到2小时,每天一次通过口服强饲纯化的单个细菌菌株或载体(细菌冷冻培养基)。接受阳性对照的动物在应用IMQ约1小时后局部施用0.05%氯倍他索乳膏(62.5mg/天)。从第2天开始每天进行皮肤评估,包括使用工程千分尺评估背部皮肤厚度。
如图9所示,与载体对照相比,施用克里斯滕森氏菌种P152-H6d和氯倍他索导致恶唑酮诱导的皮肤厚度减少,而施用细菌菌株X则没有。
5.2恶唑酮引起的特应性皮炎
特应性皮炎,也称为特应性湿疹,是一种导致皮肤发痒、发红、肿胀和开裂、且随着时间的推移皮肤会增厚的炎症。先前已经报道了通过在小鼠中局部应用恶唑酮在小鼠中诱导特应性皮炎。参见例如Hatano et al.,2009Maintenance of an acidic stratumcomeum prevents emergence of murine atopic dermatitis.J Invest Dermat 129:1824-1835,以及Ishii et al.,2013 Antipruritic effect of the topicalphosphodiesterase 4inhibitor E6005ameliorates skin lesions in amouse atopicdermatitis model.J Pharmacol Exp Ther 346:105-112。
在这项研究中,在第0天,BALB/c小鼠在背部皮肤上单次局部应用60μL的0.3%恶唑酮(Ox)致敏。从第5天开始,每两天对动物背部进行一次Ox攻击(60uL,0.3%),直至终止。测试物从第-7天到终止每天一次施用,包括每天一次通过口服强饲活的、纯化的单个细菌菌株或载体(细菌冷冻培养基)。从第1天到第21天,接受阳性对照的动物在背部局部应用0.05%氯倍他索乳膏(62.5mg/天)。在攻击日,在恶唑酮应用后1到2小时给予测试物和氯倍他索。从第5天开始,每隔一天进行一次皮肤评估,包括根据以下等级评估受影响的皮肤是否有红斑或发红、以及背部皮肤脱屑:
皮肤红斑或发红:
无=0
微红=1
中等红色=2
显著红色=3
非常显著的红色=4
皮肤鳞屑:
无=0
轻微脱屑=1
中度脱屑=2
明显脱屑=3
非常明显的脱屑=4
如图10所示,与载体对照相比,施用克里斯滕森氏菌种P152-H6d和氯倍他索导致恶唑酮诱导的皮肤发红临床评分(A-时间进程(A-timecourse);B-AUC)降低,而施用细菌菌株X则没有。同样,如图11所示,与载体对照相比,施用克里斯滕森氏菌种P152-H6d和氯倍他索导致恶唑酮诱导的背部皮肤脱屑临床评分(A-时间进程;B-AUC)降低。
5.3 DSS诱导的结肠炎
结肠炎是指结肠内层的炎症,其可由感染、炎症性肠病(克罗恩病和溃疡性结肠炎)、缺血性结肠炎、过敏反应和显微镜结肠炎引起。先前已经报道了通过施用硫酸葡聚糖钠(DSS)在小鼠中诱导结肠炎。参见,例如Chassaing et al.Dextran sulfate sodium(DSS)-induced colitis in mice.Curr Protoc Immunol.2014Feb 4;104:Unit 15.25。
在该模型中,通过在第0天至第5天向饮用水中添加3%DSS而在C57Bl/6小鼠中诱导结肠炎,但自然对照动物除外。测试物从第-1天到终止每天施用一次,包括通过口服强饲的活的纯化单个细菌菌株或载体(细菌冷冻培养基)。从第6天开始,每3天一次非肠道向接受阳性对照的动物施用抗IL-12p40抗体。在每个施用日的同一时间对动物施用并每天称重。
如图12所示,与载体对照相比,施用克里斯滕森氏菌种P152-H6d以及抗IL-12p40抗体导致DSS诱导的体重减轻减少,而施用细菌菌株1则没有。如图13(左图)所示,与施用载体相比,施用克里斯滕森氏菌种P152-H6d(P152-H6d)和抗IL-12p40抗体导致结肠促炎细胞因子(A)IL-1β、(B)IL-17A和(C)TNF-α的减少。对于这些炎性细胞因子中的每一种,响应于P152-H6d的细胞因子水平的降低与体重减轻百分比的降低相关(图13,右图)。
在另一项DSS研究中,与载体对照相比,施用克里斯滕森氏菌种P152-H6d以及抗IL-12p40抗体导致DSS诱导的体重减轻反复减少(图14)。在第13天从动物身上采集血液,提取血浆,并通过ELISA测量IBD的已知疾病活动生物标志物的血浆水平。如图15所示,施用克里斯滕森氏菌种P152-H6d以及抗IL-12p40抗体导致以下的血浆水平降低:(A)G-CSF;(B)脂质运载蛋白-2/NGAL;(3)血清淀粉样蛋白A(SAA)。额外地,在第13天处死动物后收集结肠并多聚甲醛固定。固定的远端结肠被石腊膜包埋、切割并放置在载玻片上进行H&E染色。在亚急性炎症、结肠腺损伤/丧失、糜烂、增生和黏膜下水肿的类别中,每个样本的评分范围为1至5。图15D中显示了组织学评分,代表每只小鼠所有5个类别的远端结肠评分的总和。与载体对照相比,施用克里斯滕森氏菌种P152-H6d以及抗IL-12p40抗体导致导致组织学评分显著降低。
5.4鼠类柠檬酸杆菌引起的结肠炎
先前已经报道了通过感染天然小鼠病原体鼠类柠檬酸杆菌在小鼠中诱导结肠炎。参见,例如,Koroleva et al.Citrobacter rodentium-induced colitis:A robust modelto study mucosal immune responses in the gut.J Immunol Methods.2015Jun;421:61-72。
在该模型中,C57BL/6小鼠在第0天细菌感染前3小时禁食。第0天,小鼠经口灌胃施用109CFU的鼠类柠檬酸杆菌(DBS100 ATCC 51459)。在整个研究过程中定期监测体重以跟踪临床症状(每周3次)。在第1至14天,每天一次给予动物PO剂量的活的纯化单个细菌菌株或载体。第14天最后一次施用后3至4小时(3.5h+/-30min),处死所有动物,收集结肠和血浆进行分析。评估了三个疗效终点:研究期间的体重减轻和结肠重量以及结肠长度。此外,评估结肠组织的促炎细胞因子的产生,包括TNF-α、IFN-γ、IL-1β和IL-21。
如图16所示,与载体对照和细菌菌株Y相比,施用克里斯滕森氏菌种P152-H6d导致柠檬酸杆菌诱导的体重减轻减少。在结肠重量和结肠长度方面观察到了克里斯滕森氏菌种P152-H6d的相似作用,而用细菌菌株Y处理的小鼠的结肠重量和结肠长度与载体处理的小鼠相似(图17)。如图18所示,与施用载体对照和细菌菌株Y相比,施用克里斯滕森氏菌种P152-H6d(P152-H6d)导致结肠促炎细胞因子(A)IFN-γ、(B)IL-1β、(C)IL-21、和(D)TNF-α的减少。
对血浆样品进行脂质运载蛋白-2/NGAL的评估,脂质运载蛋白-2/NGAL是一种炎症性肠病中的疾病活动生物标志物((Stallhofer et al.,Inflamm Bowel Dis 21(10):2327-2340(2015))。与载体对照和细菌菌株Y相比,施用克里斯滕森氏菌种P152-H6d导致血浆中脂质运载蛋白-2水平降低(图19)。
5.5 TNBS诱导的结肠炎
先前已经报道了通过施用2,4,6-三硝基苯磺酸(TNBS)在小鼠中诱导结肠炎。参见,例如,Antoniou et al.,The TNBS-induced colitis animal model:An overview.AnnMed Surg(Lond)11:9-15(Nov.2016)。
在该模型中,通过在第0天通过直肠沉积添加5mg的TNBS+50%乙醇而在C57Bl/6小鼠中诱导结肠炎,但自然对照动物除外。从第-3天到第3天随意给予载体或细菌试验品(分别为:克里斯滕森氏菌种P152-H6d;粪厌氧棒杆菌;以及克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合)。体重变化评估为每只小鼠体重与在第0天时体重的百分比变化。在第3天处死动物后收集结肠并多聚甲醛固定。固定的远端结肠用石蜡膜包埋、切割并放置在载玻片上进行H&E染色。在亚急性炎症、结肠腺损伤/丧失、糜烂、增生和粘膜下水肿的类别中,对每个样品进行1至5的评分。体重变化如图20A所示,组织学评分如图20B所示(每只小鼠所有5个类别的远端结肠评分总和)。
如图20A所示,与载体对照相比,施用克里斯滕森氏菌种P152-H6d本身导致体重减轻显著减少。相比之下,与载体对照相比,施用粪厌氧棒杆菌本身不会导致体重减轻的减少(观察到体重减轻的轻微增强)。但是,与载体对照相比,施用克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合导致体重减轻的减少幅度最高,超过了单独施用克里斯滕森氏菌种P152-H6d的情况。鉴于单独施用粪厌氧棒杆菌促进体重减轻的效果,与载体相比以及与单独施用克里斯滕森氏菌种P152-H6d相比,粪厌氧棒杆菌和克里斯滕森氏菌种P152-H6d在显著减少提供减轻方面的组合效果是出乎意料的,并且表明粪厌氧棒杆菌和克里斯滕森氏菌种P152-H6d可以协同作用以调节结肠炎相关的疾病活动。
如图20B所示,与载体对照相比,单独施用克里斯滕森氏菌种P152-H6d以及在较小程度上单独施用粪厌氧棒杆菌导致组织学评分降低。然而,施用克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合导致组织学评分的最大降低,显著超过了单独施用克里斯滕森氏菌种P152-H6d或单独施用粪厌氧棒杆菌的情况。这些结果表明粪厌氧棒杆菌和克里斯滕森氏菌种P152-H6d可以协同作用以调节结肠炎相关的疾病活动。
实施例6-克里斯滕森氏菌P152-H6d与粪厌氧棒杆菌组合的体外功能活性
为了进一步评估克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合在调节上述TNBS诱导的结肠炎中的协同作用,针对每种菌株分别测试了该组合调节THP-1巨噬细胞中炎性细胞因子产生的能力。
针对克里斯滕森氏菌种P152-H6d、粪厌氧棒杆菌以及克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的组合或厌氧PBS对照准备了工作储备溶液。将单个细菌测试物品分别以2x和1x剂量添加到THP-1巨噬细胞中,并且分别以克里斯滕森氏菌种P152-H6d和粪厌氧棒杆菌的每一种的1x+1x剂量或05.x+0.5x剂量添加组合。37℃和5%CO2下共培养4小时后,用补充有Pen/Strep的RPMI培养基洗涤并重悬THP-1巨噬细胞以去除多余的细菌。将THP-1巨噬细胞在37℃和5%CO2中培养24小时。收集THP-1细胞上清液并使用ELISA分析IL-1β、IL-12p40和TNF-α。
图21显示,单独粪厌氧棒杆菌显著地诱导了来自THP-1巨噬细胞的炎性细胞因子IL-1β(A)、IL-12p40(B)和TNF-α(C)中的每一种,但克里斯滕森氏菌种P152-H6d的添加相对于仅添加粪厌氧棒杆菌的情况显著地减弱了这些细胞因子中的每一种的产生,这种作用是剂量依赖性的。
实施例7-针对克里斯滕森氏菌种P152-H6d的其它菌株的靶向PCR筛选
7.1粪便来源。来自健康人类供体的粪便样本用于分离克里斯滕森氏菌种P152-H6d的新的菌株。供体如实施例1所述地进行了全面的临床和实验室测试以确认健康状况。
7.2粪便样本的选择。克里斯滕森氏菌种P152-H6d物种特异性引物对是针对P152-H6d(SEQ ID NO:33)的relA基因设计的,因其与克里斯滕森氏菌属的其它三个成员(C.massiliensis(SEQ ID NO:34),C.minuta(SEQ ID NO:35)和C.timonensis(SEQ ID NO:36))的relA基因的相对低同源性而被选择。4个relA序列的序列比对使用Clustal Omega而进行,并且从克里斯滕森氏菌种P152-H6d的relA基因内的与其它三个克里斯滕森氏菌种具有多个错配的区域中设计引物。如表6中所示,来自克里斯滕森氏菌种P152-H6d的relA基因与来自C.massiliensis、C.minuta和C.timonensis的基因具有79%到85%的同一性。
表6四种克里斯滕森氏菌种的relA基因的百分比同一性
两个引物对Ch_relA_1和Ch_relA_2被设计用于对来自健康供体的粪便样本进行实时PCR筛选,以鉴定用于克里斯滕森氏菌种P152-H6d的其它菌株的分离样品。简而言之,使用市售试剂盒(Qiagen PowerSoil Pro)从粪便中分离基因组DNA,并将其用作实时PCR扩增的模板(20μl的反应体积,SYBR Green检测)。从克里斯滕森氏菌种P152-H6d中分离的基因组DNA用作阳性对照(1e5拷贝/反应)。选择对两个引物对具有最低阈值循环的阳性粪便样本并用于克里斯滕森氏菌种P152-H6d的其它菌株的分离。将阳性粪便样本的稀释液铺在隔离培养基上,从隔离培养基琼脂板上挑取菌落到含有200ml液体培养基的96孔微量滴定板中。在96孔微量滴定板中肉眼观察到生长后,从每个孔中取出10μl培养基并进行处理以进行基于PCR的筛选。
7.3 PCR筛选测定。第三个relA引物对(Ch_relA_AA_2)设计用于分离株的PCR筛选,以鉴定克里斯滕森氏菌种P152-H6d的分离株。Ch_relA_AA_2的扩增子比两relA实时PCR扩增子(105121bp)大(589bp),设计用于在2%琼脂糖凝胶中更容易检测。使用分别来自克里斯滕森氏菌种P152-H6d、C.massiliensis DSM 102344、C.minuta DSM 22607和C.timonensis DSM 102800的3μl培养物或gDNA(约1e5个拷贝)测试引物的特异性。为了增加筛选的稳健性,从NAD(P)H黄素还原酶基因内的保守区域(Fred;SEQ ID NO:37至SEQ IDNO:40)设计了属特异性引物对(Ch Fred)。对克里斯滕森氏菌种P152-H6d物种特异的引物和对克里斯滕森氏菌属特异的引物的特异性的验证如图22A所示(Ch=克里斯滕森氏菌种P152-H6d,Cmi=C.minuta,Cma=C.massiliensis和Ct=C.timonensis)。PCR筛选在96孔PCR板中进行,3μl培养物作为模板,在25μl PCR反应(Phusion master mix,NEB,40个循环)中进行,15μl PCR反应在2%琼脂糖凝胶上进行控制以识别阳性分离株。如下进一步纯化所有分离株。
7.4 16S测序纯化验证。将20ml来自96孔微量滴定板PCR阳性孔的培养物转移到含有1ml液体培养基的96孔深孔板中,然后在37℃下培养。目测生长后,向每个孔中加入1ml的50%甘油,并将600μl的混合物转移到Thermo Fisher Matrix管板中。随后将单个培养物铺板在隔离培养基上,以确保菌落形态均匀性的构象。在37℃下培养2周后观察到菌落,菌落呈透明状,直径约为0.1mm。挑选单个菌落进行16S测序鉴定,并重新铺板在琼脂板上。在菌落可见并观察到单一形态后,将单个菌落接种到6ml的YCFAC培养基中。一旦液体培养物变得混浊,通过向液体培养物中加入6ml的50%甘油并在每个matrix管中等分120μl来制备matrix板。通过从一个制备好的matrix小瓶中铺板到琼脂板上并通过物种特异性和属特异性PCR测试(图22B)以及16S rDNA Sanger测序测试单个菌落来确认纯度。鉴定出4种新分离株:P235-A1a、P235-A3a、P237-A7a和P237-B12a,它们的16S rDNA序列均与克里斯滕森氏菌种P152-H6d相同(100%)。(SEQ ID NO:41至SEQ ID NO:44;表7)。
表7.来自4种克里斯滕森氏菌分离株的16S rDNA基因与克里斯滕森氏菌种P152-H6d的百分比同一性
菌株 | P152-H6d | P235-A1a | P235-A3a | P237-A7a | P237-B12a |
P152-H6d | 100 | 100 | 100 | 100 | |
P235-A1a | 100 | 100 | 100 | 100 | |
P235-A3a | 100 | 100 | 100 | 100 | |
P237-A7a | 100 | 100 | 100 | 100 | |
P237-B12a | 100 | 100 | 100 | 100 |
交叉引用
出于所有目的,本文引用的每个专利和科学文献的全部公开内容通过引用并入本文。
等同物
本公开在不背离其精神或基本特征的情况下可以以其他特定形式体现。因此,前述实施例在所有方面都被认为是说明性的,而不是限制在此描述的公开内容。因此,本公开的范围由所附权利要求书而不是由前面的描述来指示,并且所有落入权利要求的等同意义和范围内的变化都旨在包含在其中。
Claims (48)
1.一种组合物,其包含:
克里斯滕森氏菌属的细菌菌株,其中,所述细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98%的序列同一性的16s rRNA基因序列;和
赋形剂、稀释剂和/或载体;
其中,所述细菌菌株是冻干的、升华干燥的或喷雾干燥的。
2.根据权利要求1所述的组合物,其中,所述细菌菌株包含与SEQ ID NO:1的所述多核苷酸序列具有至少约98.5%、99%或99.5%的序列同一性的16s rRNA基因序列。
3.根据权利要求1或2中任一项所述的组合物,其中,所述细菌菌株包含SEQ ID NO:1的16s rRNA基因序列。
4.根据权利要求1至3中任一项所述的组合物,其中,所述细菌菌株与保藏号为DSM33237的克里斯滕森氏菌种P152-H6d共享至少70%的DNA-DNA杂交。
5.根据权利要求1至4中任一项所述的组合物,其中,所述细菌菌株包含与SEQ ID NO:2至SEQ ID NO:28中任一个具有至少约70%的同一性的核苷酸序列。
6.根据权利要求1至5中任一项所述的组合物,其中,所述细菌菌株包含与保藏号为DSM33237的克里斯滕森氏菌种P152-H6d的基因组具有至少95%的平均核苷酸同一性(ANI)的基因组。
7.根据权利要求1至6中任一项所述的组合物,其中,所述细菌菌株包含与保藏号为DSM33237的克里斯滕森氏菌种P152-H6d的基因组具有至少96.5%的平均核苷酸同一性(ANI)和至少60%的比对分数(AF)的基因组。
8.根据权利要求1至7中任一项所述的组合物,其中,所述细菌菌株是保藏号为DSM33237的克里斯滕森氏菌种P152-H6d。
9.根据权利要求1至8中任一项所述的组合物,其中,所述细菌菌株能够增加人体细胞产生抗炎基因产物。
10.根据权利要求9所述的组合物,其中,所述抗炎基因产物选自由CCL-18、IL-10、IL-1RA和MCP-1组成的组。
11.根据权利要求1至10中任一项所述的组合物,其中,所述细菌菌株能够减少或减弱人体细胞产生炎症基因产物。
12.根据权利要求11所述的组合物,其中,所述炎症基因产物选自由IL12-p40、IL-1β、11-17A、IL-21、IFN-γ和TNF-α组成的组。
13.根据权利要求9至12中任一项所述的组合物,其中,所述人体细胞选自由THP-1巨噬细胞、moDC和PBMC组成的组。
14.根据权利要求1至13中任一项所述的组合物,其中,所述细菌菌株能够减少或减弱细胞、组织或受试者中产生选自由脂质运载蛋白-2/NGAL、血清淀粉样蛋白A(SAA)和粒细胞集落刺激因子(G-CSF)组成的组的一种或多种血清生物标志物。
15.根据权利要求1至14中任一项所述的组合物,其中,所述组合物还包含一种或多种其它细菌菌株。
16.根据权利要求15所述的组合物,其中,所述一种或多种其它细菌菌株包含粪厌氧棒杆菌菌株。
17.根据权利要求16所述的组合物,其中,所述粪厌氧棒杆菌菌株是保藏号为DSM33531的粪厌氧棒杆菌菌株P127-A10a。
18.一种药物单元,其包含:
细菌菌株混合物,所述细菌菌株混合物包含克里斯滕森氏菌属的细菌菌株,其中,所述细菌菌株包含与SEQ ID NO:1的多核苷酸序列具有至少约98%的序列同一性的16s rRNA基因序列,其中,所述细菌菌株混合物中的每个细菌菌株为冻干的形式,并且所述药物单元具有至少lx108个活的细菌有机体;和
药学上可接受的赋形剂。
19.根据权利要求18所述的药物单元,其中,所述细菌菌株混合物还包含粪厌氧棒杆菌种的细菌菌株。
20.根据权利要求1至19中任一项所述的组合物或单元,其中,所述组合物或单元被配制成肠溶制剂。
21.根据权利要求20所述的组合物或单元,其中,所述肠溶制剂被配制成胶囊、片剂、囊片、丸剂、锭剂、锭剂、散剂或颗粒剂。
22.根据权利要求1至21中任一项所述的组合物或单元,其中,所述组合物或单元被配制成栓剂、混悬剂、乳剂或凝胶剂。
23.根据权利要求1至22中任一项所述的组合物或单元,其中,所述组合物或单元包含至少1x103CFU的所述细菌菌株。
24.根据权利要求1至23中任一项所述的组合物或单元,其中,所述组合物或单元包含治疗有效量的所述细菌菌株,当施用于有需要的受试者时足以预防或治疗病症。
25.根据权利要求24所述的组合物或单元,其中,所述病症选自由炎性疾病、胃肠道疾病、炎性肠病、癌症、非酒精性脂肪肝病(NAFLD)、非酒精性脂肪肝炎(NASH)、代谢综合征、胰岛素缺乏症、胰岛素抗性相关疾病、胰岛素敏感性、葡萄糖耐受不良、前期糖尿病、糖尿病、高体重指数(BMI)、过度肥胖、肥胖症、超重、心血管疾病、动脉粥样硬化、高脂血症、高血糖、脂质代谢异常和高血压组成的组。
26.根据权利要求25所述的组合物或单元,其中,所述胃肠道疾病选自由溃疡性结肠炎、克罗恩病和肠易激综合症组成的组。
27.根据权利要求1至26中任一项所述的组合物或单元,其中,所述赋形剂选自由填充剂、粘合剂、崩解剂及其任何组合组成的组。
28.根据权利要求1至26中任一项所述的组合物或单元,其中,所述赋形剂选自由纤维素、聚乙烯吡咯烷酮、二氧化硅、硬脂富马酸或其药学上可接受的盐、以及它们的任何组合组成的组。
29.根据权利要求1至28中任一项所述的组合物或单元,其中,所述组合物还包含冷冻保护剂。
30.根据权利要求29所述的组合物或单元,其中,所述冷冻保护剂选自由低聚果糖、海藻糖及其组合组成的组。
32.根据权利要求1至31中任一项所述的组合物或单元,其中,所述组合物或单元适用于推注施用或推注释放。
33.根据权利要求1至32中任一项所述的组合物或单元,其中,所述细菌菌株能够至少部分地在人类受试者的肠道中定植。
34.根据权利要求1至33中任一项所述的组合物或单元,其中,所述组合物或单元适合于口服递送于受试者。
35.根据权利要求1至34中任一项所述的组合物或单元,其中,所述细菌菌株是活的。
36.根据权利要求1至35中任一项所述的组合物或单元,其中,所述组合物或单元包含至少一种或多种其它细菌菌株。
37.根据权利要求1至36中任一项所述的组合物或单元,其中,在4℃下储存6个月后,所述组合物损失至多3log菌落形成单位(cfu)。
38.一种食品,包含根据权利要求1至37中任一项所述的组合物或单元。
39.一种治疗有需要的受试者的生态失调的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
40.一种改变受试者的肠道菌群的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
41.一种用于治疗有需要的受试者的胃肠道疾病的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
42.根据权利要求41所述的方法,其中,所述胃肠道疾病是溃疡性结肠炎(UC)、克罗恩病或肠易激综合症。
43.一种用于治疗有需要的受试者的炎性疾病的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
44.一种用于治疗有需要的受试者的皮肤病的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
45.根据权利要求44所述的方法,其中,所述皮肤病选自由银屑病、湿疹、皮炎(例如,湿疹性皮炎、局部和脂溢性皮炎、过敏性或刺激性接触性皮炎、裂纹样湿疹、光过敏性皮炎、光毒性皮炎、植物日光性皮炎、放射性皮炎和瘀滞性皮炎)以及痤疮组成的组。
46.一种用于治疗有需要的受试者的非酒精性脂肪肝病(NAFLD)、非酒精性脂肪性肝炎(NASH)、代谢综合征、胰岛素缺乏、胰岛素抵抗相关疾病、胰岛素敏感性、葡萄糖耐受不良、前期糖尿病、糖尿病、高体重指数(BMI)、过度肥胖、肥胖症、超重、心血管疾病、动脉粥样硬化、高脂血症、高血糖、脂质代谢异常和高血压的方法,所述方法包含:向所述受试者施用治疗有效量的根据权利要求1至37中任一项所述的组合物或单元。
47.根据权利要求39至46中任一项所述的方法,还包含:向所述受试者施用益生元。
48.根据权利要求39至47中任一项所述的方法,其中,所述受试者选自由人、同伴动物和家畜动物组成的组。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962893142P | 2019-08-28 | 2019-08-28 | |
US62/893,142 | 2019-08-28 | ||
PCT/US2020/048627 WO2021041981A1 (en) | 2019-08-28 | 2020-08-28 | Compositions comprising bacterial species and methods related thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114728026A true CN114728026A (zh) | 2022-07-08 |
Family
ID=74679255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080073508.8A Pending CN114728026A (zh) | 2019-08-28 | 2020-08-28 | 包含细菌物种的组合物及与其相关的方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11969446B2 (zh) |
EP (1) | EP4021467A4 (zh) |
JP (1) | JP2022546117A (zh) |
CN (1) | CN114728026A (zh) |
WO (1) | WO2021041981A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115243697A (zh) * | 2019-11-22 | 2022-10-25 | 未知君有限责任公司 | 包含细菌物种的组合物及其相关方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022213507A1 (zh) * | 2021-04-06 | 2022-10-13 | 慕恩(广州)生物科技有限公司 | 一种细菌菌株及组合物、联用药物和用途 |
CN114177295B (zh) * | 2021-12-16 | 2023-09-19 | 上海市第五人民医院 | 白细胞介素1受体拮抗剂治疗非酒精性脂肪性肝病的应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160158295A1 (en) * | 2013-02-04 | 2016-06-09 | Seres Therapeutics, Inc. | Compositions and Methods |
US20160287636A1 (en) * | 2015-03-31 | 2016-10-06 | International Nutrition Research Company | Compositions and methods for treating a pathogenic metabolic condition of the gut microbiota and derived diseases |
US20170042948A1 (en) * | 2014-04-23 | 2017-02-16 | Cornell University | Modulation of fat storage in a subject by altering population levels of christensenellaceae in the gi tract |
US20170151291A1 (en) * | 2013-11-25 | 2017-06-01 | Seres Health, Inc. | Synergistic bacterial compositions and methods of production and use thereof |
CN107708704A (zh) * | 2015-04-23 | 2018-02-16 | 卡莱多生物科技有限公司 | 微生物组调节剂和其相关用途 |
WO2018162726A1 (fr) * | 2017-03-10 | 2018-09-13 | International Nutrition Research Company S.À.R.L | Bacteries specifiques pour leur utilisation comme medicament en particulier pour lutter contre le surpoids, l'obesite, les maladies cardiometaboliques et les maladies inflammatoires de l'intestin |
WO2019032573A1 (en) * | 2017-08-07 | 2019-02-14 | Finch Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MAINTAINING AND RESTORING A HEALTHY INTESTINAL BARRIER |
WO2019032572A1 (en) * | 2017-08-07 | 2019-02-14 | Finch Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR DECOLONIZING ANTIBIOTIC-RESISTANT BACTERIA IN INTESTINES |
CN113230387A (zh) * | 2021-04-06 | 2021-08-10 | 慕恩(广州)生物科技有限公司 | 包含微生物和降糖降脂药物的联用药物 |
US20220053770A1 (en) * | 2019-04-17 | 2022-02-24 | Andes Ag, Inc. | Novel seed treatment methods and compositions for improving plant traits and yield |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
DE10223290A1 (de) | 2002-05-24 | 2003-12-11 | Mayfran Int Bv | Vorrichtung zur Aufnahme und Trennung von an Werkzeugmaschinen anfallenden Spänen und Kühlflüssigkeit (Antrieb) |
ATE510024T1 (de) | 2003-10-31 | 2011-06-15 | Advanced Genetic Analysis Corp Ab | Verfahren zur herstellung eines gepaarten tag aus einer nukleinsäuresequenz sowie verfahren zur verwendung davon |
US7601499B2 (en) | 2005-06-06 | 2009-10-13 | 454 Life Sciences Corporation | Paired end sequencing |
US8483277B2 (en) | 2005-07-15 | 2013-07-09 | Utc Fire & Security Americas Corporation, Inc. | Method and apparatus for motion compensated temporal filtering using split update process |
US7754429B2 (en) | 2006-10-06 | 2010-07-13 | Illumina Cambridge Limited | Method for pair-wise sequencing a plurity of target polynucleotides |
US7948015B2 (en) | 2006-12-14 | 2011-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
EP2374902B1 (en) | 2007-01-26 | 2017-11-01 | Illumina, Inc. | Nucleic acid sequencing system and method |
US20100035252A1 (en) | 2008-08-08 | 2010-02-11 | Ion Torrent Systems Incorporated | Methods for sequencing individual nucleic acids under tension |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
BR112015023124A2 (pt) | 2013-03-14 | 2017-07-18 | Therabiome Llc | liberação de organismos probióticos e/ou agentes terapêuticos almejada para o trato gastrintestinal |
US10325685B2 (en) | 2014-10-21 | 2019-06-18 | uBiome, Inc. | Method and system for characterizing diet-related conditions |
ES2895725T3 (es) | 2015-04-23 | 2022-02-22 | Kaleido Biosciences Inc | Compuestos terapéuticos de glicano y métodos de tratamiento |
CA2985729C (en) | 2015-05-11 | 2023-05-09 | Mybiotics Pharma Ltd | Systems and methods for growing a biofilm of probiotic bacteria on solid particles for colonization of bacteria in the gut |
ES2833349T3 (es) | 2015-06-09 | 2021-06-15 | Univ Minnesota | Procedimientos para detectar el riesgo de tener una infección de torrente sanguíneo |
CN109310715A (zh) | 2016-04-11 | 2019-02-05 | 哈佛学院董事及会员团体 | 用于促进运动表现的益生菌制剂 |
EP3511407B1 (en) | 2016-09-06 | 2023-05-17 | BGI Shenzhen | Christensenella intestinihominis and application thereof |
CN110267651B (zh) | 2016-09-27 | 2023-09-01 | 得克萨斯系统大学评议会 | 通过调节微生物组来增强免疫检查点阻断疗法的方法 |
EP3559257A1 (en) | 2016-12-22 | 2019-10-30 | Institut Gustave Roussy (IGR) | Microbiota composition, as a marker of responsiveness to anti-pd1/pd-l1/pd-l2 antibodies and use of microbial modulators for improving the efficacy of an anti-pd1/pd-l1/pd-l2 ab-based treatment |
-
2020
- 2020-08-28 CN CN202080073508.8A patent/CN114728026A/zh active Pending
- 2020-08-28 WO PCT/US2020/048627 patent/WO2021041981A1/en unknown
- 2020-08-28 JP JP2022513869A patent/JP2022546117A/ja active Pending
- 2020-08-28 EP EP20858370.8A patent/EP4021467A4/en active Pending
- 2020-08-28 US US17/006,430 patent/US11969446B2/en active Active
- 2020-08-28 US US17/639,299 patent/US20220339212A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160158295A1 (en) * | 2013-02-04 | 2016-06-09 | Seres Therapeutics, Inc. | Compositions and Methods |
US20170151291A1 (en) * | 2013-11-25 | 2017-06-01 | Seres Health, Inc. | Synergistic bacterial compositions and methods of production and use thereof |
US20170042948A1 (en) * | 2014-04-23 | 2017-02-16 | Cornell University | Modulation of fat storage in a subject by altering population levels of christensenellaceae in the gi tract |
US20160287636A1 (en) * | 2015-03-31 | 2016-10-06 | International Nutrition Research Company | Compositions and methods for treating a pathogenic metabolic condition of the gut microbiota and derived diseases |
CN107708704A (zh) * | 2015-04-23 | 2018-02-16 | 卡莱多生物科技有限公司 | 微生物组调节剂和其相关用途 |
WO2018162726A1 (fr) * | 2017-03-10 | 2018-09-13 | International Nutrition Research Company S.À.R.L | Bacteries specifiques pour leur utilisation comme medicament en particulier pour lutter contre le surpoids, l'obesite, les maladies cardiometaboliques et les maladies inflammatoires de l'intestin |
WO2019032573A1 (en) * | 2017-08-07 | 2019-02-14 | Finch Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MAINTAINING AND RESTORING A HEALTHY INTESTINAL BARRIER |
WO2019032572A1 (en) * | 2017-08-07 | 2019-02-14 | Finch Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR DECOLONIZING ANTIBIOTIC-RESISTANT BACTERIA IN INTESTINES |
US20220053770A1 (en) * | 2019-04-17 | 2022-02-24 | Andes Ag, Inc. | Novel seed treatment methods and compositions for improving plant traits and yield |
CN113230387A (zh) * | 2021-04-06 | 2021-08-10 | 慕恩(广州)生物科技有限公司 | 包含微生物和降糖降脂药物的联用药物 |
Non-Patent Citations (4)
Title |
---|
MARTIN KUMMEN等: "The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls", 《GUT MICROBIOTA》, vol. 66, no. 4, 30 April 2017 (2017-04-30) * |
NDONGO S等: "Christensenella timonensis strain Marseille-P2437 16S ribosomal RNA, partial sequence", 《NCBI GENBANK DATABASE》, 12 March 2019 (2019-03-12), pages 144743 * |
NDONGO S等: "Christensenella timonensis, a new bacterial species isolated from the human gut", 《NEW MICROBES NEW INFECT》, 21 May 2016 (2016-05-21), pages 32 - 33 * |
严人;江慧勇;李兰娟;: "人体微生态与健康和疾病", 微生物学报, no. 06, 31 December 2017 (2017-12-31) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115243697A (zh) * | 2019-11-22 | 2022-10-25 | 未知君有限责任公司 | 包含细菌物种的组合物及其相关方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022546117A (ja) | 2022-11-02 |
EP4021467A1 (en) | 2022-07-06 |
WO2021041981A1 (en) | 2021-03-04 |
US20210060090A1 (en) | 2021-03-04 |
US11969446B2 (en) | 2024-04-30 |
EP4021467A4 (en) | 2023-09-13 |
US20220339212A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015353425B2 (en) | Probiotic and prebiotic compositions, and methods of use thereof for modulation of the microbiome | |
CN113728088B (zh) | 治疗胃肠障碍和炎性障碍的方法和组合物 | |
US11969446B2 (en) | Compositions comprising bacterial species and methods related thereto | |
JP2016537434A (ja) | 相乗作用のある細菌組成物ならびにその製造及び使用方法 | |
EP3678639B1 (en) | Bacteriophage for modulating inflammatory bowel disease | |
TW202140051A (zh) | 具有改善的崩散譜之固體劑型 | |
US20220378855A1 (en) | Compositions for modulating gut microflora populations, enhancing drug potency and treating cancer, and methods for making and using same | |
TW202228653A (zh) | 細菌之固體劑型 | |
WO2021141828A1 (en) | Compositions comprising bacterial species and methods related thereto | |
JP2023540973A (ja) | 新規プロバイオティックストレプトコッカス・サリバリウス株とその用途 | |
US20220409675A1 (en) | Compositions comprising bacterial species and methods related thereto | |
TW202302125A (zh) | 固體劑型 | |
WO2021138562A1 (en) | Compositions comprising bacterial species and methods related thereto | |
WO2024182434A2 (en) | Compositions for modulating gut microflora populations, treatment of dysbiosis and disease prevention, and methods for making and using same | |
WO2021097271A1 (en) | Compositions comprising bacterial species and methods related thereto | |
US20230081756A1 (en) | Compositions comprising bacterial species and methods related thereto | |
TW202304415A (zh) | 含有細菌的藥物製劑 | |
WO2023278477A9 (en) | Methods of colonizing a microbiome, treating and/or preventing inflammatory bowel disease and graft versus host disease | |
US20240148797A1 (en) | Compositions and methods for reducing cytokine expression | |
US20230127277A1 (en) | Microbiome-based therapeutics | |
TW202233214A (zh) | 使用小韋榮氏球菌細菌誘導免疫效應 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |