CN114727760A - Photoacoustic imaging method and photoacoustic imaging system - Google Patents
Photoacoustic imaging method and photoacoustic imaging system Download PDFInfo
- Publication number
- CN114727760A CN114727760A CN202080076224.4A CN202080076224A CN114727760A CN 114727760 A CN114727760 A CN 114727760A CN 202080076224 A CN202080076224 A CN 202080076224A CN 114727760 A CN114727760 A CN 114727760A
- Authority
- CN
- China
- Prior art keywords
- photoacoustic
- composite probe
- frame
- image
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 137
- 239000000523 sample Substances 0.000 claims abstract description 328
- 239000002131 composite material Substances 0.000 claims abstract description 305
- 238000000034 method Methods 0.000 claims description 85
- 238000002604 ultrasonography Methods 0.000 claims description 68
- 238000012545 processing Methods 0.000 claims description 55
- 230000009471 action Effects 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 39
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 238000003786 synthesis reaction Methods 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 238000012935 Averaging Methods 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 20
- 238000010304 firing Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 8
- 210000003484 anatomy Anatomy 0.000 claims description 5
- 230000000875 corresponding effect Effects 0.000 description 30
- 230000006870 function Effects 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000003754 fetus Anatomy 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000002091 elastography Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0093—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
- A61B5/0095—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Acoustics & Sound (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及医疗器械领域,尤其涉及一种光声成像方法及光声成像系统。The invention relates to the field of medical instruments, in particular to a photoacoustic imaging method and a photoacoustic imaging system.
背景技术Background technique
在生物体光声成像应用中,为了保证足够的穿透深度(大于3cm),通常采用高能量(几十mJ级别)的纳秒级固体激光器。这种激光器的发射脉冲重复频率(PRF)比较低,一般为几十Hz,提高PRF的成本代价很高,同时系统功耗、体积、噪音都会成倍增加。受限于激光器的PRF,光声成像的帧率也会比较低。In the application of biophotoacoustic imaging, in order to ensure sufficient penetration depth (greater than 3 cm), high-energy (tens of mJ level) nanosecond solid-state lasers are usually used. The emission pulse repetition frequency (PRF) of this kind of laser is relatively low, generally tens of Hz. The cost of increasing the PRF is very high, and the power consumption, volume and noise of the system will increase exponentially. Limited by the PRF of the laser, the frame rate of photoacoustic imaging will also be relatively low.
为了保证成像帧率,发射策略通常采用发射一次激光获得一帧图像,但会导致图像的信噪比(SNR)和穿透力都较低的问题,如果增加成一帧图像的激光发射次数,又将损失成像帧率。基于以上问题,用户的使用体验较差。In order to ensure the imaging frame rate, the emission strategy usually adopts one frame of laser emission to obtain one frame of image, but it will lead to the problem of low signal-to-noise ratio (SNR) and penetrating power of the image. Imaging frame rate will be lost. Based on the above problems, the user experience is poor.
发明内容SUMMARY OF THE INVENTION
本申请第一方面,提供一种光声成像方法,包括:A first aspect of the present application provides a photoacoustic imaging method, comprising:
在第一光声成像模式下,控制光声复合探头向待测组织发射一次激光;In the first photoacoustic imaging mode, control the photoacoustic composite probe to emit a laser to the tissue to be tested;
控制所述光声复合探头接收所述待测组织在所述一次激光作用下产生的一次超声波,以得到一个光声电信号;Controlling the photoacoustic composite probe to receive a primary ultrasonic wave generated by the tissue to be tested under the action of the primary laser to obtain a photoacoustic electrical signal;
处理所述一个光声电信号得到一帧光声图像;processing the one photoacoustic electrical signal to obtain a frame of photoacoustic image;
检测光声复合探头的移动速度;Detect the moving speed of the photoacoustic composite probe;
当检测到的所述光声复合探头的移动速度小于第一预设阈值时,从所述第一光声成像模式切换为第二光声成像模式;When the detected moving speed of the photoacoustic composite probe is less than a first preset threshold, switching from the first photoacoustic imaging mode to the second photoacoustic imaging mode;
在所述第二光声成像模式下,控制所述光声复合探头向待测组织发射至少两次激光;In the second photoacoustic imaging mode, controlling the photoacoustic composite probe to emit laser light to the tissue to be measured at least twice;
控制所述光声复合探头分别接收所述待测组织在所述至少两次激光作用下产生的至少两次超声波,以得到至少两个光声电信号,其中所述待测组织在一次发射的激光作用下产生的超声波为一次超声波,接收一次超声波所得到的光声电信号为一个光声电信号;The photoacoustic composite probe is controlled to respectively receive at least two ultrasonic waves generated by the tissue to be tested under the action of the at least two lasers, so as to obtain at least two photoacoustic electrical signals, wherein the tissue to be tested is emitted in one emission. The ultrasonic wave generated under the action of the laser is an ultrasonic wave, and the photoacoustic electrical signal obtained by receiving an ultrasonic wave is a photoacoustic electrical signal;
处理所述至少两个光声电信号得到一帧光声图像。One frame of photoacoustic image is obtained by processing the at least two photoacoustic electrical signals.
本申请第二方面,提供一种光声成像方法,包括:A second aspect of the present application provides a photoacoustic imaging method, comprising:
检测光声复合探头的移动速度;Detect the moving speed of the photoacoustic composite probe;
基于所述移动速度确定激光发射次数N;determining the number N of laser firings based on the moving speed;
控制所述光声复合探头向待测组织发射N次激光;Controlling the photoacoustic composite probe to emit N times of laser light to the tissue to be tested;
控制所述光声复合探头分别接收所述待测组织在所述N次激光作用下产生的N次超声波,以得到N个光声电信号,其中所述待测组织在一次发射的激光作用下产生的超声波为一次超声波,接收一次超声波所得到的光声电信号为一个光声电信号;The photoacoustic composite probe is controlled to receive N times of ultrasonic waves generated by the tissue to be tested under the action of the N times of laser light to obtain N photoacoustic electrical signals, wherein the tissue to be tested is under the action of a laser emitted once The generated ultrasonic wave is an ultrasonic wave, and the photoacoustic electric signal obtained by receiving an ultrasonic wave is a photoacoustic electric signal;
处理所述N个光声电信号得到一帧光声图像。One frame of photoacoustic image is obtained by processing the N photoacoustic electrical signals.
本申请第三方面,提供一种光声成像方法,包括:A third aspect of the present application provides a photoacoustic imaging method, comprising:
检测光声复合探头的移动速度;Detect the moving speed of the photoacoustic composite probe;
当所述移动速度满足第一预设条件时,控制所述光声复合探头不向所述待测组织发射激光;When the moving speed satisfies the first preset condition, controlling the photoacoustic composite probe not to emit laser light to the tissue to be measured;
当所述移动速度满足第二预设条件时,控制所述光声复合探头向所述待测组织发射激光,并控制所述光声复合探头接收所述待测组织在激光作用下产生的超声波,以得到光声电信号,处理所述光声电信号得到光声图像。When the moving speed satisfies the second preset condition, the photoacoustic composite probe is controlled to emit laser light to the tissue to be tested, and the photoacoustic composite probe is controlled to receive ultrasonic waves generated by the tissue to be tested under the action of the laser , to obtain a photoacoustic electrical signal, and process the photoacoustic electrical signal to obtain a photoacoustic image.
本申请第四方面,提供一种光声成像系统,包括:激光器、光声复合探头以及处理器;A fourth aspect of the present application provides a photoacoustic imaging system, including: a laser, a photoacoustic composite probe, and a processor;
所述激光器用于产生激光,并通过光传输装置向目标组织发射所述激光;The laser is used to generate laser light and emit the laser light to the target tissue through the optical transmission device;
所述光声复合探头用于接收从所述目标组织返回的光声信号;The photoacoustic composite probe is used for receiving the photoacoustic signal returned from the target tissue;
所述处理器用于处理所述光声信号得到光声图像;The processor is configured to process the photoacoustic signal to obtain a photoacoustic image;
所述处理器还用于执行上述第一方面至第三方面中任意一方面所述的方法。The processor is further configured to execute the method described in any one of the first aspect to the third aspect.
本申请第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现第一方面至第三方面中任意一方面所述的方法。A fifth aspect of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first to third aspects The method of any one of the aspects.
本申请实施例通过检测光声复合探头的移动速度,确定第一光声成像模式和第二光声成像模式间的切换,满足了用户以不用速度移动光声复合探头时的不同需求。The embodiment of the present application determines the switching between the first photoacoustic imaging mode and the second photoacoustic imaging mode by detecting the moving speed of the photoacoustic composite probe, which meets the different needs of the user when moving the photoacoustic composite probe at different speeds.
附图说明Description of drawings
图1为本申请一种实施例的光声成像系统的示意图;1 is a schematic diagram of a photoacoustic imaging system according to an embodiment of the application;
图2为本申请一种实施例的光声成像方法的流程图;2 is a flowchart of a photoacoustic imaging method according to an embodiment of the present application;
图3为本申请另一种实施例的光声成像方法的流程图;3 is a flowchart of a photoacoustic imaging method according to another embodiment of the present application;
图4为本申请再一种实施例的光声成像方法的流程图。FIG. 4 is a flowchart of a photoacoustic imaging method according to still another embodiment of the present application.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. Wherein similar elements in different embodiments have used associated similar element numbers. In the following embodiments, many details are described so that the present application can be better understood. However, those skilled in the art will readily recognize that some of the features may be omitted under different circumstances, or may be replaced by other elements, materials, and methods. In some cases, some operations related to the present application are not shown or described in the specification, in order to avoid the core part of the present application from being overwhelmed by excessive description, and for those skilled in the art, these are described in detail. The relevant operations are not necessary, and they can fully understand the relevant operations according to the descriptions in the specification and general technical knowledge in the field.
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。Additionally, the features, acts, or characteristics described in the specification may be combined in any suitable manner to form various embodiments. At the same time, the steps or actions in the method description can also be exchanged or adjusted in order in a manner obvious to those skilled in the art. Therefore, the various sequences in the specification and drawings are only for the purpose of clearly describing a certain embodiment and are not meant to be a necessary order unless otherwise stated, a certain order must be followed.
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。The serial numbers themselves, such as "first", "second", etc., for the components herein are only used to distinguish the described objects, and do not have any order or technical meaning. The "connection" and "connection" mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections).
如图1所示,本申请一种实施例中的光声成像系统的结构框图示意图。该成像系统可以包括光声复合探头20、激光器90、发射电路310、接收电路320、处理器70、波束合成模块40、显示器80以及存储器60。当然,该成像系统10还可以包括其他图中未示出的设备或器件等。As shown in FIG. 1 , it is a schematic structural block diagram of a photoacoustic imaging system in an embodiment of the present application. The imaging system may include a
可选的,光声成像系统也可以进行超声成像,在进行超声成像时,发射电路310可以激励光声复合探头20向待测组织发射超声波。在光声复合探头20发射超声波后,接收电路320可以通过光声复合探头20接收从待测组织返回的超声回波,从而获得超声回波信号。该超声回波信号直接或间接经过波束合成模块进行波束合成处理后得到超声图像信号,送入处理器70。处理器70对该超声图像信号进行处理,以获得待测组织的超声图像。Optionally, the photoacoustic imaging system can also perform ultrasonic imaging. When performing ultrasonic imaging, the transmitting
光声成像系统可以进行光声成像,在进行光声成像时,激光器90可以产生激光,该激光器90连接有光传输装置,光传输装置包括光纤(光纤束)、导光臂等可以传输激光的装置,该光传输装置耦合至光声复合探头20,激光器90产生的激光通过光声复合探头20上耦合的光传输装置向待测组织发射激光,待测组织吸收激光能量后产生的超声波。在向待测组织发射激光后,接收电路320还可以通过光声复合探头20接收待测组织返回的超声波以获得光声电信号。该光声电信号直接或经过处理后送入处理器70,以得到待测组织的光声图像。前述的超声图像与光声图像可以存储与存储器60中,也可以在显示器80上显示。The photoacoustic imaging system can perform photoacoustic imaging. When performing photoacoustic imaging, the
本申请的一个实施例中,光声成像系统可以仅具有光声成像功能,形成光声图像;也可以同时具有光声成像功能和超声成像功能,形成超声图像和光声图像,进一步的还可以形成超声图像和光声图像的融合图像,其中超声成像的成像模式不限,可以为灰阶成像模式、彩色成像模式、多普勒成像模式或弹性成像模式等等。In one embodiment of the present application, the photoacoustic imaging system may only have a photoacoustic imaging function to form a photoacoustic image; it may also have both a photoacoustic imaging function and an ultrasonic imaging function to form an ultrasonic image and a photoacoustic image, and further can also form a photoacoustic imaging function. The fusion image of the ultrasonic image and the photoacoustic image, wherein the imaging mode of the ultrasonic imaging is not limited, and can be a gray-scale imaging mode, a color imaging mode, a Doppler imaging mode, an elastography mode, and the like.
本申请的一个实施例中,处理器70还包括时序控制器,时序控制器可以按照一定的逻辑产生一系列的时序控制信号,一方面可以用来控制超声成像中超声激励电压的发射与超声回波信号的接收,另一方面可以用来控制激光器的激光开启与光声信号的接收,从而通过时序的控制避免产生信号混叠与干扰。In an embodiment of the present application, the
需要说明的是,本实施例中,通过光声复合探头20上耦合的光传输装置向待测组织发射激光,该光传输装置可以设置在超声探头外壳的外部,形成光声复合探头20,例如,在超声探头外壳外部耦合光传输装置,利用光传输装置将激光传导至超声探头的两侧,采用背向式打光的方式对待测组织进行照射;光传输装置也可以是设置在超声探头外壳的内部,形成光声复合探头20,例如,可以将光传输装置直接和超声换能器耦合,并通过外壳全部包围或者部分包围,形成一个集成激光发射和超声发射接收为一体的探头。在有些实现方式中,还可以是激光器90通过光传输装置直接照射待测组织,光传输装置不与探头耦合,即光传输装置和超声探头为相互独立的两个部件,其两者的整体形成光声复合探头20。It should be noted that, in this embodiment, the optical transmission device coupled on the photoacoustic
本申请的一个实施例中,光声复合探头20还可以包括机器扫描器,通过机械扫描器可以使光声复合探头20从不同的方位接收超声波,可以对接收到的超声波进行处理,得到超声图像或光声图像。在有些实现方式中,该机械扫描器可以耦合至光声复合探头20内,即该光声复合探头20集合了机械扫描的功能;光声复合探头20也可以是设置在机械扫描器上,由机械扫描器带动探头运动。In an embodiment of the present application, the photoacoustic
本申请的一个实施例中,前述的显示器80可为成像系统内置的触摸显示屏、液晶显示屏等,也可以是独立于成像系统之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏,等等。In one embodiment of the present application, the
本申请的一个实施例中,前述的存储器60可为闪存卡、固态存储器、硬盘等。In an embodiment of the present application, the
本申请的一个实施例中,前述的处理器70可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integratedcircuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器70可以执行本申请的各个实施例中的成像方法的相应步骤。In one embodiment of the present application, the
下面结合附图示例性地说明光声成像的信号处理过程。The signal processing process of photoacoustic imaging is exemplarily described below with reference to the accompanying drawings.
光声复合探头20可以包括超声换能器和光传输装置,其中超声换能器包括由阵列式排布的多个阵元组成的换能器(图中未示出),多个阵元排列成一排构成线阵,或排布成二维矩阵构成面阵,多个阵元也可以构成凸阵列。阵元用于根据激励电信号发射超声波束,或将接收的超声波束变换为电信号。因此每个阵元可用于实现电脉冲信号和超声波束的相互转换,从而实现向人体组织的目标区域(例如本实施例中的胎儿)发射超声波,也可用于接收经组织反射回的超声波的回波,以及接收组织在激光作用下产生的超声波。本实施例中的光声复合探头20可以采用线阵探头,用于获取胎儿的二维超声图像和二维光声图像,也可以采用容积探头,用于获取胎儿的三维超声体数据和三维光声体数据。The photoacoustic
本实施例中,用户通过移动光声复合探头20选择合适的位置和角度向待测组织10发射激光,并接收待测组织10在激光作用下产生的超声波,获得并输出该超声波转化的光声电信号,光声电信号可以是按以接收阵元为通道所形成的通道模拟电信号,其携带有幅度信息、频率信息和时间信息。In this embodiment, the user selects an appropriate position and angle to emit laser light to the
接收电路320用于从光声复合探头20接收光声电信号,并对超声回波的电信号进行处理。接收电路320可以包括一个或多个放大器、模数转换器(ADC)等。放大器用于在适当增益补偿之后放大所接收到的光声电信号,模数转换器用于对模拟回波信号按预定的时间间隔进行采样,从而转换成光声数字化信号,光声数字化信号依然保留有幅度信息、频率信息和相位信息。模数转换模块输出的光声数字化信号可输出给波束合成模块40进行处理,或者,输出给存储器60进行存储。The receiving
波束合成模块40和接收电路320信号相连,用于对接收电路320输出的信号进行相应的延时和加权求和等波束合成处理,由于被测组织中的超声波接收点到接收阵元的距离不同,因此,不同接收阵元输出的同一接收点的通道数据具有延时差异,需要进行延时处理,将相位对齐,并将同一接收点的不同通道数据进行加权求和,得到波束合成后的光声图像信号。在有的实施例中,波束合成模块40可以将光声图像信号输出至存储器60进行缓存或保存,或将光声图像信号直接输出至处理器70的图像处理模块720进行图像处理。The
波束合成模块40可以采用硬件、固件或软件的方式执行上述功能,例如,波束合成模块40可以包括能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理芯片或其他任何电子部件,当波束合成模块40采用软件方式实现时,其可以执行存储在有形和非暂态计算机可读介质(例如,存储器60)上的指令,以使用任何适当波束合成方法进行波束合成计算。The
处理器70用于配置成能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理器、图形控制器电路(GPU)或其他任何电子部件,其可以根据输入的指令或预定的指令对外围电子部件执行控制,或对存储器60执行数据读取和/或保存,也可以通过执行存储器60中的程序对输入数据进行处理,例如根据一个或多个工作模式对采集的光声信号执行一个或多个处理操作,处理操作包括但不限于调整或限定激光器90的激光发射或停止,生成超声图像或光声图像以供后续人机交互装置的显示器80进行显示,或者调整或限定在显示器80上显示的内容和形式,或者调整在显示器80上显示的一个或多个图像显示设置(例如超声图像、界面组件、定位感兴趣区域)。本实施例中的处理器70可以与其他部件配合,以用于执行本申请中任一方法实施例提供的光声成像方法。The
图像处理模块720用于对波束合成模块40输出的光声图像信号进行处理,以生成扫描范围内的信号强弱变化的光声图像,该光声图像反应人体组织内的吸光物质的分布。图像处理模块720可以将光声图像输出至人机交互装置的显示器80进行显示。The
人机交互装置用于进行人机交互,即接收用户的输入和输出可视化信息;其接收用户的输入可采用键盘、操作按钮、鼠标、轨迹球等,也可以采用与显示器集成在一起的触控屏;其输出可视化信息采用显示器80。The human-computer interaction device is used for human-computer interaction, that is, receiving the user's input and outputting visual information; it can receive the user's input by using a keyboard, operation buttons, mouse, trackball, etc., or a touch control integrated with the display. The
存储器60可以是有形且非暂态的计算机可读介质,例如可为闪存卡、固态存储器、硬盘等,用于存储数据或者程序,例如,存储器60可以用于存储所采集的超声数据或处理器70所生成的暂不立即显示的图像帧,或者存储器60可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器、波束合成模块或IQ解码模块的编程指令。The
下面结合光声成像系统的组成,对本申请提供的光声成像方法和光声成像系统的实施例进行介绍。Embodiments of the photoacoustic imaging method and the photoacoustic imaging system provided by the present application will be introduced below in conjunction with the composition of the photoacoustic imaging system.
如图2所示,本申请提供一种光声成像方法,可以基于光声复合探头的速度,在两种光声成像模式间进行切换,该方法可以包括以下步骤:As shown in FIG. 2 , the present application provides a photoacoustic imaging method, which can switch between two photoacoustic imaging modes based on the speed of the photoacoustic composite probe. The method may include the following steps:
步骤201,在第一光声成像模式下,控制光声复合探头向待测组织发射一次激光;
在第一光声成像模式下,处理器70控制光声复合探头20向待测组织发射一次激光,这里的一次激光为激光器90为在时序控制器的控制下一次发射到停止发射的过程,光声复合探头20在发射一次激光后,进入接收待测组织在激光作用下产生的超声波的阶段。In the first photoacoustic imaging mode, the
步骤202,控制所述光声复合探头接收所述待测组织在所述一次激光作用下产生的一次超声波,以得到一个光声电信号;
处理器70控制光声复合探头20接收待测组织在一次激光作用下产生的一次超声波,以得到一个光声电信号。光声复合探头20向待测组织发射一次激光后,待测组织在该次激光的作用下产生超声波,光声复合探头20接收自待测组织传播而来的超声波,并将接收的超声波转化为光声电信号,以便于后续处理。这里的一次超声波为待测组织在一次激光作用下产生的超声波,该一次激光作用下产生的超声波被光声复合探头20接收到的部分,经光声复合探头20处理后得到的光声电信号为一次光声电信号。The
步骤203,处理所述一个光声电信号得到一帧光声图像;
处理一个光声电信号得到一帧光声图像,可以先通过模数转换模块将光声电信号转化为超声数字信号,该超声数字信号再经波束合成模块处理得到光声图像信号,该光声图像信号经进一步处理得到一帧光声图像,该光声图像可以通过显示器80呈现给用户。需要强调的是,处理一个光声电信号得到一帧光声图像,可以不限于以上的环节,还可以包括时间增益补偿、IQ解调和对数压缩等环节。在本申请中,统一将光声复合探头20得到的光声电信号经模数转换后,且在进入波束合成之前的信号称之为超声数字信号,可以理解的,在光声电信号经模数转换后到波束合成之前可能还存在许多的信号处理环节,本申请所指的超声数字信号可以包括模数转换后至波束合成前的各个阶段的信号,模数转换后至波束合成前的各个阶段的信号均能适用于本申请的各个实施例中与超声数字信号相关的技术方案。相类似的,本申请中,统一将超声数字信号经波束合成后到输出为光声图像之间的信号称之为光声图像信号,光声图像信号可以为能够直接输出为光声图像进行显示的信号,也可以为需要经一步或多步处理后才可作为光声图像输出的信号,波束合成后至输出为光声图像之间的信号均能适用于本申请的各个实施例中与光声图像信号相关的技术方案。Processing a photoacoustic electrical signal to obtain a frame of photoacoustic image, the photoacoustic electrical signal can be converted into an ultrasonic digital signal through the analog-to-digital conversion module, and the ultrasonic digital signal is processed by the beam synthesis module to obtain a photoacoustic image signal. The image signal is further processed to obtain a frame of photoacoustic image, and the photoacoustic image can be presented to the user through the
步骤204,检测光声复合探头的移动速度;
处理器70可以检测光声复合探头20的移动速度,这里的光声复合探头20的移动速度可以为光声复合探头在待测组织上的移动速度,也可以为光声复合探头20在空间中的移动速度。The
需要强调的是,本申请各个实施例中的各个步骤间的执行顺序不限,如无特别说明,可以为图例所示的顺序执行,也可以为其他任何可行的顺序执行。在本实施例中,检测光声复合探头20的移动速度是在步骤201之前执行,也可以为步骤201之后且步骤202之前执行,还可以是在步骤202之后且步骤203之前执行等任何可行的执行顺序。It should be emphasized that the execution order of the steps in the various embodiments of the present application is not limited. Unless otherwise specified, the steps may be executed in the order shown in the figures, or may be executed in any other feasible order. In this embodiment, the detection of the moving speed of the photoacoustic
步骤205,当检测到的所述光声复合探头的移动速度小于第一预设阈值时,从所述第一光声成像模式切换为第二光声成像模式;
处理器70当检测到光声复合探头20的移动速度小于第一阈值时,控制从第一光声成像模式切换为第二光声成像模式。将光声复合探头20的移动速度作为两种光声成像模式间的切换条件,可以根据探头移动速度的不同,匹配不同探头移动速度下最佳的光声成像模式,以满足用户以不同速度移动光声复合探头20时不同的光声图像需求。这里的第一预设阈值可以为出厂预设的,也可以为用户自行设定的。The
步骤206,在所述第二光声成像模式下,控制所述光声复合探头向待测组织发射至少两次激光;
在第二光声成像模式下,处理器70控制光声复合探头20向待测组织发射至少两次激光,这里的至少两次激光为激光器90在时序控制器的控制下重复至少两次发射激光并停止发射激光的过程。In the second photoacoustic imaging mode, the
步骤207,控制所述光声复合探头分别接收所述待测组织在所述至少两次激光作用下产生的至少两次超声波,以得到至少两个光声电信号,其中所述待测组织在一次发射的激光作用下产生的超声波为一次超声波,接收一次超声波所得到的光声电信号为一个光声电信号;Step 207: Control the photoacoustic composite probe to receive at least two ultrasonic waves generated by the tissue to be tested under the action of the at least two lasers to obtain at least two photoacoustic electrical signals, wherein the tissue to be tested is The ultrasonic wave generated under the action of the laser emitted once is an ultrasonic wave, and the photoacoustic electrical signal obtained by receiving an ultrasonic wave is a photoacoustic electrical signal;
处理器70控制光声复合探头20分别接收待测组织在所述至少两次激光作用下产生的至少两次超声波,以得到至少两个光声电信号。光声复合探头20向待测组织发射一次激光,将在待测组织内产生一次超声波,光声复合探头20接收待测组织内产生的一次超声波并处理得到一次光声电信号,重复该过程至少两次,则光声复合探头20可以得到至少两个光声电信号。The
步骤208,处理所述至少两个光声电信号得到一帧光声图像。
处理所述至少两个光声电信号得到一帧光声图像,可以为通过模数转换模块、波束合成模块和处理器处理至少两个光声电信号得到一帧光声图像,不限于模数转换模块、波束合成模块和处理器,在光声电信号处理得到一帧光声图像的过程中,还可能包含了其他的处理模块,本实施例不做限制。Processing the at least two photoacoustic electrical signals to obtain a frame of photoacoustic image, which can be obtained by processing at least two photoacoustic electrical signals through an analog-to-digital conversion module, a beam synthesis module and a processor to obtain a frame of photoacoustic image, not limited to analog-digital The conversion module, the beam synthesis module and the processor may also include other processing modules in the process of processing the photoacoustic electrical signal to obtain a frame of photoacoustic image, which is not limited in this embodiment.
第一光声成像模式下,光声复合探头20向待测组织发射一次激光成一帧光声图像,成像帧率较快,但图像质量不高;第二光声成像模式为发射至少两次激光,成一帧光声图像,由于发射次数多,收回的光声电信号多,可以得到较高质量的光声图像,但同时成像帧率会相应地下降,光声图像的更新慢。在一般情况下,采用第一光声成像模式进行光声成像,帧率和图像质量可以满足一般光声成像的需求,但当用户缓慢移动光声复合探头20或保持光声复合探头20在待测组织上不动时,用户往往需要仔细观察待测组织该区域的光声图像,此时第一模式下的光声图像质量将无法满足用户的需求。本实施例通过检测光声复合探头20的移动速度,当光声复合探头20的移动速度小于第一预设阈值时,从第一成像模式切换为第二成像模式,此时,用户缓慢移动或保持光声复合探头20静止,往往需要仔细观察该区域的光声图像,对光声图像的图像质量要求高,且由于光声复合探头20的移动慢或不移动,光声图像的变化不大,用户对光声成像的帧率要求不高,故在第二成像模式下,通过向待测组织发射至少两次激光,生成一帧光声图像,放弃了高成像帧率,但保证了光声图像的质量,符合用户在缓慢移动光声复合探头20或保持光声复合探头20不动时的需求。本实施例通过检测光声复合探头20的移动速度,控制第一光声成像模式和第二光声成像模式的切换,以满足不同场景下,用户移动光声复合探头20的不同需求。In the first photoacoustic imaging mode, the photoacoustic
一种实施例中,在第二光声成像模式下,处理至少两个光声信号得到一帧光声图像可以通过对光声数字化信号取平均的方式,具体可以包括:将所述至少两个光声电信号进行模数转换得到至少两个光声数字化信号;对所述至少两个光声数字化信号取平均,以得到平均光声数字化信号;对所述平均光声数字化信号进行波束合成,以得到目标光声图像信号;处理所述目标光声图像信号,得到一帧光声图像。In an embodiment, in the second photoacoustic imaging mode, processing at least two photoacoustic signals to obtain one frame of photoacoustic image may be performed by averaging the photoacoustic digitized signals, which may specifically include: averaging the at least two photoacoustic signals. performing analog-to-digital conversion on the photoacoustic electrical signal to obtain at least two photoacoustic digitized signals; averaging the at least two photoacoustic digitized signals to obtain an averaged photoacoustic digitized signal; performing beam synthesis on the averaged photoacoustic digitized signal, to obtain a target photoacoustic image signal; process the target photoacoustic image signal to obtain a frame of photoacoustic image.
光声复合探头20向待测组织发射至少两次激光,待测组织在激光作用下分别产生至少两次超声波,在光声复合探头20接收到至少两次超声波后,处理得到至少两个光声电信号。进一步地,通过模数转换模块将该至少两个光声电信号转化为至少两个超声数字信号,可以为一次激光发射得到一个光声电信号,该一个光声电信号转化为一个超声数字信号,该至少两个光声电信号分别转化为至少两个超声数字信号;也可以为一次激光发射得到一个光声电信号,在得到了至少两个光声电信号后,一起将该至少两个光声电信号转化为至少两个超声数字信号。对该至少两个光声数字化信号取平均,得到平均光声数字化信号,至少两个光声数字化信号取平均后,可以克服单个光声数字化信号中随机的噪声,平均光声数字化信号的质量要比单个光声数字化信号的质量要高。进一步的,对平均光声数字化信号进行波束合成,得到目标光声图像信号,处理目标光声图像信号,得到一帧光声图像,由于此时平均光声数字化信号的质量较高,使得到的光声图像的信噪比相对单个光声数字化信号所成的光声图像的信噪比高,可以满足用户在缓慢移动光声复合探头20或保持光声复合探头20静止时对光声图像质量的要求。The photoacoustic
需要说明的是,对至少两个光声数字化信号取平均可以为对模数转换后至波束合成前的任何一个处理阶段的信号取平均,后续可以直接对得到的平均光声数字化信号进行波束合成,也可以对得到的平均光声数字化信号进行其他处理步骤后再进行波束合成。至少两个光声数字化信号取平均得到平均光声数字化信号,将至少两个信号转为为一个信号,后续得到一帧光声图像,虽然此时的成像帧率相比于一个光声数字化信号得到一帧光声图像有所下降,但光声图像的质量得到了提升,在用户缓慢或不移动光声复合探头20的场景下,符合用户需要细致观察光声图像且对光声成像帧率要求不高的需求。It should be noted that the averaging of at least two photoacoustic digitized signals can be the averaging of the signals in any processing stage after analog-to-digital conversion to before beam synthesis, and then the obtained averaged photoacoustic digitized signals can be directly beam synthesized. , the obtained average photoacoustic digitized signal can also be subjected to other processing steps before beamforming. At least two photoacoustic digitized signals are averaged to obtain an average photoacoustic digitized signal, at least two signals are converted into one signal, and a frame of photoacoustic image is obtained subsequently, although the imaging frame rate at this time is compared with a photoacoustic digitized signal. Obtaining a frame of photoacoustic image has decreased, but the quality of the photoacoustic image has been improved. In the scenario where the user moves the photoacoustic
一种实施例中,在第二光声成像模式下,处理两个光声信号得到一帧光声图像可以通过对光声图像信号取平均的方式,具体可以包括:将所述至少两个光声电信号进行模数转换得到至少两个光声数字化信号;对所述至少两个光声数字化信号进行波束合成,以得到至少两个光声图像信号;对所述至少两个光声图像信号取平均,以得到平均光声图像信号;处理所述平均光声图像信号,得到一帧光声图像。In an embodiment, in the second photoacoustic imaging mode, processing two photoacoustic signals to obtain one frame of photoacoustic image may be performed by averaging the photoacoustic image signals, which may specifically include: averaging the at least two photoacoustic signals. performing analog-to-digital conversion on the acoustic and electrical signals to obtain at least two photoacoustic digitized signals; performing beam synthesis on the at least two photoacoustic digitized signals to obtain at least two photoacoustic image signals; averaging to obtain an average photoacoustic image signal; processing the average photoacoustic image signal to obtain a frame of photoacoustic image.
光声复合探头20向待测组织发射至少两次激光,待测组织在激光作用下分别产生至少两次超声波,在光声复合探头20接收到至少两次超声波后,处理得到至少两个光声电信号。将该至少两个光声电信号进行模数转换得到至少两个光声数字化信号,对该至少两个光声数字化信号进行波束合成,以得到至少两个光声图像信号,与上述实施例类似,这里的波束合成过程可以为每生成一个光声数字化信号即进行一次波束合成得到一个光声图像信号,该至少两个光声数字化信号分别进行波束合成,以得到至少两个光声图像信号;也可以为在生成了该至少两个光声数字化信号后,一起将该至少两个光声数字化信号转化为至少两个光声图像信号。对该至少两个光声图像信号取平均,得到平均光声图像信号,至少两个光声图像信号取平均后,可以克服单个光声图像信号中随机的噪声,平均光声图像信号的质量要比单个光声图像信号的质量要高。进一步的,处理平均光声图像信号,得到一帧光声图像,由于此时平均光声图像信号的质量较高,使得到的光声图像的信噪比相对于单个光声图像信号所成的光声图像的信噪比高,可以满足用户在缓慢移动光声复合探头20或保持光声复合探头20静止时对光声图像质量的要求。The photoacoustic
需要说明的是,对至少两个光声图像信号取平均可以为对波束合成后至输出光声图像前的任何一个处理阶段的信号取平均,后续可以直接对得到的平均光声图像信号处理以得到光声图像,也可以对得到的平均光声图像信号进行其他处理后再处理得到一帧光声图像。至少两个光声图像信号取平均得到平均光声图像信号,将至少两个信号转为一个信号,后续得到一帧光声图像,虽然此时的成像帧率相比于一个光声图像信号得到一帧光声图像有所下降,但光声图像的质量得到了提升,在用户缓慢或不移动光声复合探头20的场景下,符合用户需要细致观察光声图像且对光声成像帧率要求不高的需求。It should be noted that the averaging of the at least two photoacoustic image signals may be the averaging of the signals in any processing stage after beamforming to the output of the photoacoustic image, and the obtained averaged photoacoustic image signals may be directly processed subsequently to obtain the average value. To obtain a photoacoustic image, it is also possible to perform other processing on the obtained average photoacoustic image signal and then process to obtain a frame of photoacoustic image. At least two photoacoustic image signals are averaged to obtain an average photoacoustic image signal, at least two signals are converted into one signal, and a frame of photoacoustic image is obtained subsequently, although the imaging frame rate at this time is compared with that of one photoacoustic image signal. One frame of photoacoustic image has decreased, but the quality of the photoacoustic image has been improved. In the scene where the user moves the photoacoustic
第二光声成像模式下,处理至少两个光声电信号得到一帧光声图像,采用对至少两个光声数字化信号取平均,或者采用对至少两个光声图像信号取平均,都能达到多次发射激光,生成一帧光声图像,以提升光声图像质量的效果。其中,对至少两个光声数字化信号取平均,再对平均光声数字化信号进行波束合成,仅需进行一次波束合成,即可得到目标光声图像信号,从而得到一帧光声图像;而对至少两个光声图像信号取平均,需对至少两个光声数字化信号进行至少两次波束合成,得到至少两个光声图像信号,再对至少两个光声图像信号取平均,从而得到一帧光声图像;相比而言,对光声数字化信号取平均比对光声图像信号取平均所需进行的波束合成运算次数较少,总的运算量小,处理时间更快,可以在保证光声图像的质量的同时,提高光声成像的速度。In the second photoacoustic imaging mode, at least two photoacoustic electrical signals are processed to obtain a frame of photoacoustic image, and at least two photoacoustic digital signals are averaged, or at least two photoacoustic image signals are averaged. The laser can be emitted multiple times to generate a frame of photoacoustic image to improve the quality of the photoacoustic image. Among them, at least two photoacoustic digitized signals are averaged, and then the average photoacoustic digitized signal is beamformed, and the target photoacoustic image signal can be obtained by only one beam synthesis, thereby obtaining a frame of photoacoustic image; At least two photoacoustic image signals are averaged, and at least two photoacoustic digitized signals need to be beamformed at least twice to obtain at least two photoacoustic image signals, and then at least two photoacoustic image signals are averaged to obtain a frame photoacoustic image; in comparison, the number of beamforming operations required to average the photoacoustic digitized signal is less than that of the photoacoustic image signal, the total calculation amount is small, and the processing time is faster, which can guarantee While improving the quality of photoacoustic images, the speed of photoacoustic imaging is improved.
对于步骤204,检测光声复合探头的移动速度,具体的可以采用传感器或超声图像检测的方式。For
一种实施例中,可以通过所述光声复合探头上设置的传感器检测所述光声复合探头的移动速度。该传感器可以为速度传感器、加速度传感器或距离传感器等,例如可以通过设置于光声复合探头20上的速度传感器直接检测光声复合探头的移动速度;也可以通过设置于光声复合探头20上的加速度传感器间接检测光声复合探头20的移动速度;还可以通过距离传感器通过检测光声复合探头20与特定参考物的距离变化间接检测光声复合探头20的移动速度,本实施例对传感器的具体类型不做限制,只要能检测光声复合探头20的移动速度的传感器都在本实施例保护的范围内。In one embodiment, the moving speed of the photoacoustic composite probe can be detected by a sensor provided on the photoacoustic composite probe. The sensor can be a speed sensor, an acceleration sensor, a distance sensor, etc., for example, the moving speed of the photoacoustic composite probe can be directly detected by the speed sensor disposed on the photoacoustic
通过传感器检测光声复合探头20的移动速度,该移动速度可以为探头在待测组织上的移动速度,也可以为探头在空间中的移动速度,有时用户在将光声复合探头20从目标组织的两个区域间较长距离移动时,习惯性将探头抬离待测组织表面,在待测组织表面一定的距离处移动探头,此时,仍可以通过传感器检测光声复合探头20的速度。The moving speed of the photoacoustic
在光声成像的同时,也可以进行超声成像,通过超声图像判断光声复合探头20的移动速度。一种实施例中,通过所述光声复合探头获取所述待测组织的连续多帧超声图像;通过所述连续多帧超声图像检测所述光声复合探头在待测组织上的移动速度作为所述光声复合探头的移动速度。例如,可以检测连续多帧超声图像间图像的变化,通过单位时间内图像的变化,反应光声复合探头20的移动速度。At the same time as the photoacoustic imaging, ultrasonic imaging can also be performed, and the moving speed of the photoacoustic
一种实施例中,所述通过所述连续多帧超声图像检测光声复合探头在待测组织上的移动速度包括:识别所述连续多帧超声图像中的目标区域;通过所述连续多帧超声图像中的所述目标区域的位置变化确定所述光声复合探头在待测组织上的移动速度。可以理解的,当光声复合探头20移动时,光声复合探头20所成的超声图像中的组织也会相应的移动,因此可以识别超声图像中的目标区域,在连续多帧超声图像中识别该目标区域,通过计算单位时间内该目标区域在多帧超声图像中的位置变化确定光声复合探头20在待测组织上的移动速度。In an embodiment, the detecting the moving speed of the photoacoustic composite probe on the tissue to be tested by using the continuous multi-frame ultrasonic images includes: identifying the target area in the continuous multi-frame ultrasonic images; The position change of the target area in the ultrasound image determines the moving speed of the photoacoustic composite probe on the tissue to be measured. It can be understood that when the photoacoustic
另一种实施例中,所述通过所述连续多帧超声图像检测光声复合探头在待测组织上的移动速度包括:识别所述连续多帧超声图像中是否包含目标区域;确定所述连续多帧超声图像中包含所述目标区域的连续超声图像的帧数;通过所述帧数确定所述光声复合探头在待测组织上的移动速度。可以理解的,当光声复合探头20在待测组织上移动时,在移动过程中获取的多帧超声图像上某一确定的目标区域会从一帧超声图像的一个边缘出现,在其后的多帧超声图像上渐渐地向另一边移动,直至从其后的一帧超声图像上的另一边消失不见。由于若光声复合探头20移动得越快,目标区域从出现到消失的过程就越快,相应的包含目标区域的超声图像的帧数也就越少,反之,光声复合探头20移动得越慢,目标区域从出现到消失的过程就越慢,相应的包含目标区域的超声图像的帧数也就越多。因此,可以通过识别连续多帧超声图像中是否包括目标区域,确定其中包含目标区域的连续超声图像的帧数,通过所述帧数确定光声复合探头20在待测组织上的移动速度。In another embodiment, the detecting the moving speed of the photoacoustic composite probe on the tissue to be measured by using the continuous multi-frame ultrasonic images includes: identifying whether the continuous multi-frame ultrasonic images include a target area; determining the continuous multi-frame ultrasonic images The multi-frame ultrasound images include the frame numbers of the continuous ultrasound images of the target area; the moving speed of the photoacoustic composite probe on the tissue to be measured is determined by the frame numbers. It can be understood that when the photoacoustic
一种实施例中,识别所述连续多帧超声图像中是否包含目标区域并确定所述连续多帧超声图像中包含所述目标区域的连续超声图像的帧数包括:逐帧识别所述连续多帧超声图像中是否包含目标区域;从识别到一帧超声图像中包含所述目标区域时开始图像的帧数的计数,每连续识别到一帧超声图像中包含所述目标区域时,所述图像的帧数累计一帧,直至识别到一帧超声图像中不包含所述目标区域时,停止所述图像的帧数的计数,确定停止时的所述图像的帧数。上述对超声图像的计数可以通过计数器来完成。通过逐帧识别连续多帧超声图像中是否包含目标区域,从识别到包含有目标区域时开始计数,到目标区域首次消失时停止计数,确定停止时所计的帧数,以该帧数来判断光声复合探头20的移动速度。可以理解的,该帧数越大,光声复合探头20移动得越慢,该帧数越小,光声复合探头20移动的越快。In one embodiment, identifying whether a target area is included in the continuous multiple frames of ultrasound images and determining the number of frames of the continuous ultrasound images including the target area in the continuous multiple frames of ultrasound images includes: identifying the continuous multiple frames frame by frame. Whether a frame of ultrasound image contains the target area; the count of the number of frames from the time when the target area is identified in a frame of ultrasound image, and when the target area is continuously identified in a frame of ultrasound image, the image The number of frames is accumulated for one frame until it is recognized that a frame of ultrasound image does not contain the target area, the counting of the frame number of the image is stopped, and the frame number of the image at the time of stopping is determined. The above-mentioned counting of ultrasound images can be accomplished by a counter. Identify whether the target area is included in the continuous multi-frame ultrasound images frame by frame, start counting when the target area is identified, stop counting when the target area disappears for the first time, determine the number of frames counted when it stops, and use the frame number to judge The moving speed of the photoacoustic
通过包含目标区域的连续超声图像的帧数确定光声复合探头20的移动速度时,可以直接将光声复合探头20的速度通过超声图像的帧数表征,也可以通过超声图像的帧率、超声图像的尺寸和所述帧数计算出目标区域的在超声图像上的移动速度以作为光声复合探头20的运动速度。When the moving speed of the photoacoustic
其中,目标区域可以包括但不限于以下至少一项:特定解剖结构所在区域、亮度符合预设条件的区域和像素梯度符合预设条件的区域。其中,特定解剖结构可以根据本次光声成像的待测组织的类别进行确定,该亮度的预设条件和像素梯度的预设条件可以为出厂预设的,也可以为用户设定的。本实施例对目标区域的种类不做限制,只要该目标区域易于在超声图像上识别出来的即可。The target area may include, but is not limited to, at least one of the following: an area where a specific anatomical structure is located, an area where the brightness meets a preset condition, and an area where the pixel gradient meets the preset condition. The specific anatomical structure can be determined according to the type of the tissue to be tested in this photoacoustic imaging, and the preset conditions of the brightness and the preset conditions of the pixel gradient can be preset by the factory or set by the user. This embodiment does not limit the type of the target area, as long as the target area can be easily identified on the ultrasound image.
其中,对于连续多帧超声图像中目标区域的识别可以通过图像相似性等函数进行识别,也可以通过机器学习模型进行识别,在本实施例中对连续多帧超声图像中目标区域的识别方式不做限制。Among them, the identification of the target area in the continuous multi-frame ultrasonic images can be recognized by functions such as image similarity, or by a machine learning model. In this embodiment, the identification method of the target area in the continuous multi-frame ultrasonic images is not make restrictions.
如图3所示,本申请提供一种光声成像方法,可以基于光声复合探头的移动速度确定成一帧光声图像所发射激光的次数,该方法可以包括以下步骤:As shown in FIG. 3 , the present application provides a photoacoustic imaging method, which can determine the number of times of laser light emitted into one frame of photoacoustic image based on the moving speed of the photoacoustic composite probe, and the method can include the following steps:
步骤301,检测光声复合探头的移动速度;
在光声成像的过程中,用户握持光声复合探头20放置于待测组织表面,光声复合探头20向待测组织发射激光,并接收待测组织在激光作用下产生的超声波,光声复合探头20将接收到的超声波转化为光声电信号,该光声信号进一步地用于后续处理得到光声图像,用户观察光声图像以用于评估待测组织的健康状况。In the process of photoacoustic imaging, the user holds the photoacoustic
根据临床需求,用户往往对需要重点关注的区域缓慢移动光声复合探头20或保持光声复合探头20不动,以细致观察该区域的光声图像,而对于非重点关注区域,用户往往快速移动光声复合探头20一扫而过,或者在两个重点关注的区域间,用户握持光声复合探头20快速移动以实现两个重点关注区域间的切换。在这个过程中,当用户缓慢移动光声复合探头20或保持光声复合探头20不动时,医生需要细致观察该区域的光声图像,此时用户对光声图像的图像质量要求较高;而当用户快速移动光声复合探头20时,用户不需要对该移动经过的区域的光声图像进行细致观察,但往往需要在该快速移动过程中的各个位置能及时观察到对应的光声图像,此时用户对光声图像的图像质量要求不高,但需要光声成像的帧率足够大以匹配光声复合探头20的移动速度。基于这种需求,可以通过处理器70检测光声复合探头20的移动速度,通过光声复合探头20的移动速度控制后续的光声成像过程。According to clinical needs, the user often moves the photoacoustic
步骤302,基于所述移动速度确定激光发射次数N;
处理器70基于步骤301确定的光声复合探头20的移动速度,确定激光发射次数N。可以理解的,激光发射次数N可以是随光声复合探头20的移动速度变化而适应性变化的,以使得在不同光声复合探头20的移动速度下,激光发射次数均能适应用户对光声图像的要求。可以理解的,激光发射次数N可以为大于或等于1的任何整数。The
一种实施例中,可以基于所述移动速度和预设对应关系确定激光发射次数N,其中所述预设对应关系为光声复合探头的移动速度与激光发射次数N的对应关系,所述对应关系为负相关关系。预设对应关系可以为光声复合探头20的移动速度与激光发射次数N的函数关系,当已知光声复合探头20的移动速度时,即可通过该函数关系计算得到对应的激光发射次数N;预设对应关系也可以为光声复合探头20的移动速度与激光发射次数N的其他对应关系,例如当已知光声复合探头20的移动速度时,可以通过查表的方式确定对应的激光发射次数N。本实施例中的对应关系可以为负相关关系,即光声复合探头20的移动速度越大,相应的激光发射次数N越小;光声复合探头20的移动速度越小,相应的激光发射次数N越大;以此来适应在用户快速移动光声复合探头20时对较高成像帧率的要求,以及在用户缓慢移动光声复合探头20或保持光声复合探头20不动时,对较高的图像质量的要求。光声复合探头20的移动速度与激光发射次数N的具体的负相关关系可以为出厂预设的,也可以为用户根据临床需求自行进行设定的。进一步的,还可以将确定的激光发射次数在显示器80上显示出来,检测到的光声复合探头20移动速度也可以在显示器80上显示出来。In an embodiment, the number of laser emission N may be determined based on the moving speed and a preset corresponding relationship, wherein the preset corresponding relationship is the corresponding relationship between the moving speed of the photoacoustic composite probe and the number of laser emission N, and the corresponding relationship is The relationship is negatively correlated. The preset corresponding relationship can be a functional relationship between the moving speed of the photoacoustic
一种实施例中,预设对应关系可以为光声复合探头20的移动速度档位与激光发射次数N的对应关系,例如可以将光声复合探头20的移动速度分为:快速、中速和慢速三个速度档位,其中每一个速度档位代表一个探头移动速度的区间,每一个档位对应了一个激光发射次数N。例如,当当前光声复合探头20的移动速度落入慢速档位时,根据预设对应关系确定激光发射次数N为10次;当当前光声复合探头20的移动速度落入中速档位时,根据预设对应关系确定激光发射次数N为5次;当当前光声复合探头20的移动速度落入快速档位时,根据预设对应关系确定激光发射次数N为1次。进一步的,还可以将光声复合探头20移动速度对应的速度档位在显示器80上显示出来,对应的激光发射次数也可以在显示器80上显示出来。In an embodiment, the preset corresponding relationship may be the corresponding relationship between the moving speed gear of the photoacoustic
步骤303,控制所述光声复合探头向待测组织发射N次激光;
处理器70控制光声复合探头20向待测组织发射N次激光,激光器90在时序控制器的一次发射指令下发射激光到停止发射激光的过程为光声复合探头20向待测组织发射了1次激光,重复该过程N次,则完成了光声复合探头20向待测组织发射N次激光,该N次激光发射将用于后续得到一帧光声图像。The
步骤304,控制所述光声复合探头分别接收所述待测组织在所述N次激光作用下产生的N次超声波,以得到N个光声电信号,其中所述待测组织在一次发射的激光作用下产生的超声波为一次超声波,接收一次超声波所得到的光声电信号为一个光声电信号;Step 304, control the photoacoustic composite probe to respectively receive N times of ultrasonic waves generated by the tissue to be tested under the action of the N times of laser light, to obtain N photoacoustic electrical signals, wherein the tissue to be tested is emitted in one transmission. The ultrasonic wave generated under the action of the laser is an ultrasonic wave, and the photoacoustic electrical signal obtained by receiving an ultrasonic wave is a photoacoustic electrical signal;
处理器70控制光声复合探头20分别接收待测组织在N此激光作用下产生的N次超声波,以得到N个光声电信号。待测组织在一次发射的激光作用下产生的超声波为一次超声波,该过程可以为光声复合探头20向待测组织发射一次激光,接收一次待测组织在该次激光作用下产生的一次超声波,光声复合探头20将该一次超声波转化为一个光声电信号,重复该过程N次,即可以得到N个光声电信号。The
步骤305,处理所述N个光声电信号得到一帧光声图像。
处理所述N个光声电信号得到一帧光声图像,可以为通过模数转换模块、波束合成模块和处理器处理该N个光声电信号得到一帧光声图像,不限于模数转换模块、波束合成模块和处理器,在处理光声电信号得到一帧光声图像的过程中,还可能包含了其他的处理模块,本实施例不做限制。Processing the N photoacoustic electrical signals to obtain a frame of photoacoustic images, which can be obtained by processing the N photoacoustic electrical signals through an analog-to-digital conversion module, a beamforming module and a processor to obtain a frame of photoacoustic images, not limited to analog-to-digital conversion The module, the beam synthesis module and the processor may also include other processing modules in the process of processing the photoacoustic electrical signal to obtain a frame of photoacoustic image, which is not limited in this embodiment.
可以理解的,对越多个光声电信号进行处理以得到一帧光声图像,则该帧光声图像的图像质量越高,而由于激光器发射一次激光的时间是固定的,越多次激光发射占用的时间也越多,因此此时的成像帧率较低;相反的,对越少个光声电信号进行处理以得到一帧光声图像,例如对一个光声电信号处理得到一帧光声图像,由于一次激光发射就可以得到一帧光声图像,因此此时的成像帧率较高,但也由于一次激光发射成一帧光声图像,因此该帧光声图像受该次激光发射和超声波接收的影响较大,一些随机的噪声无法去除,使得该帧光声图像的质量不及多次发射激光所成的一帧光声图像高。由于不同发射次数所成的一帧光声图像的特性不同,可以根据临床医生的需求进行匹配,本实施例中,光声复合探头20的移动速度与激光发射次数N为负相关关系。当医生快速移动光声复合探头20时,需要关注快速变化的光声图像而对图像的质量要求不高,因此当光声复合探头20移动速度快时,确定激光发射次数N较小,例如发射一次或两次激光即成一帧光声图像,因而可以满足医生快速移动光声复合探头20时对成像帧率的要求。当医生缓慢移动光声复合探头20或保持光声复合探头20不动时,医生需要重点查看待测组织该区域的光声图像,此时用户对光声图像的质量要求较高,且由于光声复合探头20移动缓慢或保持不动,光声复合探头20的成像区域变化缓慢或不便,此时对光声图像的更新速度要求不高,即可以采用较低的成像帧率也不会影响用户的观察,因此当光声复合探头20移动速度慢时,确定激光发射次数N较大,例如发射10次激光成一帧光声图像,因而可以满足医生对光声图像质量的要求。It can be understood that the more photoacoustic electrical signals are processed to obtain a frame of photoacoustic image, the higher the image quality of the photoacoustic image. The more time it takes to transmit, the lower the imaging frame rate at this time. On the contrary, the fewer photoacoustic signals are processed to obtain a frame of photoacoustic images, for example, one frame is obtained by processing one photoacoustic signal. For photoacoustic images, one frame of photoacoustic image can be obtained by one laser emission, so the imaging frame rate is high at this time, but also because one laser emission is one frame of photoacoustic image, the photoacoustic image of this frame is affected by this laser emission. And the influence of ultrasonic reception is great, and some random noise cannot be removed, so that the quality of the photoacoustic image of this frame is not as high as that of a frame of photoacoustic image formed by multiple laser emission. Since the characteristics of a frame of photoacoustic images formed by different firing times are different, they can be matched according to the needs of clinicians. In this embodiment, the moving speed of the photoacoustic
一种实施例中,可以将所述N个光声电信号进行模数转换得到N个光声数字化信号;对所述N个光声数字化信号取平均,以得到平均光声数字化信号;对所述平均光声数字化信号进行波束合成,以得到目标光声图像信号;处理所述目标光声图像信号,得到一帧光声图像。In an embodiment, the N photoacoustic electrical signals can be converted into N photoacoustic digital signals by analog-to-digital conversion; the N photoacoustic digital signals are averaged to obtain an average photoacoustic digital signal; The average photoacoustic digitized signal is subjected to beam synthesis to obtain a target photoacoustic image signal; the target photoacoustic image signal is processed to obtain a frame of photoacoustic image.
光声复合探头20向待测组织发射N次激光,待测组织在激光作用下分别产生N次超声波,在光声复合探头20接收到N次超声波后,处理得到N个光声电信号。进一步地,通过模数转换模块将该N个光声电信号转化为N个超声数字化信号,可以为一次激光发射得到一个光声电信号,该一个光声电信号转化为一个超声数字化信号,该N个光声电信号可以分别转化为N个超声数字化信号;也可以为一次激光发射得到一个光声电信号,在得到了N次光声电信号后,一起将该N个光声电信号转化为N个超声数字化信号。对该N个光声数字化信号取平均,得到平均光声数字化信号,进一步的,对平均光声数字化信号进行波束合成,得到目标光声图像信号,处理目标光声图像信号,得到一帧光声图像。可以理解的,当激光发射次数N的值越大,则会对越多个光声数字化信号取平均,对越多个光声数字化信号取平均,则单个光声数字化信号中的随机的噪音对光声图像的影响越小,光声图像的质量越高,但相应的光声图像的成像帧率也会相应地减小。The photoacoustic
当光声复合探头20的移动速度较慢时,激光发射次数N较大,例如为十次。光声复合探头20向待测组织发射十次激光,得到十个光声电信号,该十个光声电信号经模数转换后得到十个光声数字化信号,十个光声数字化信号取平均后,可以克服单个光声数字化信号中随机位置的随机噪声,平均光声数字化信号的质量要比单个光声数字化信号的质量要高。进一步的,对平均光声数字化信号进行波束合成,得到目标光声图像信号,处理目标光声图像信号,得到一帧光声图像,由于此时平均光声数字化信号的质量较高,使得到的光声图像的信噪比相对单个光声数字化信号转化的光声图像的信噪比高,且由于光声图像中远场的噪声经过多个信号平均后被减弱,远场的图像较为清晰,相比之下可以提升图像的成像深度,可以满足用户在缓慢移动光声复合探头20或保持光声复合探头20静止时对光声图像质量的要求。When the moving speed of the photoacoustic
而当光声复合探头20的移动速度较快时,激光发射次数N较小,例如为一次,光声复合探头20向待测组织发射一次激光,得到一个光声电信号,该一个光声电信号经模数转换后得到一个光声数字化信号,对一个光声数字化信号取平均可以认为即得到该一个光声数字化信号本身,进一步的,对一个光声数字化信号进行波束合成,得到目标光声图像信号,处理目标光声图像信号,得到一帧光声图像。此时,一次激光发射即可得到一帧光声图像,成像帧率较高,可以满足用户在快速移动光声复合探头20时希望光声图像能够及时显示探头所覆盖区域的光声图像的要求。但由于一次激光发射得到一帧光声图像,受该一次激光发射得到的光声数字化信号的质量影响较大,该一个光声数字化信号中的随机位置的随机性噪声不能通过多个光声数字化信号的平均而降低影响,故此时光声图像的质量较激光发射次数N较大时的光声图像的质量低,但此时用户不需要细致地观察每一帧光声图像,因此此时光声图像的质量可以满足用户的需求。However, when the moving speed of the photoacoustic
需要说明的是,对N个光声数字化信号取平均可以为对模数转换后至波束合成前的任何一个处理阶段的信号取平均,后续可以直接对得到的平均光声数字化信号进行波束合成,也可以对得到的平均光声数字化信号进行其他处理步骤后再进行波束合成,经过波束合成后的信号为目标光声图像信号,处理该目标光声图像信号可以得到一帧光声图像。It should be noted that the averaging of the N photoacoustic digitized signals may be the averaging of the signals at any processing stage after the analog-to-digital conversion to the beam synthesis, and then the obtained averaged photoacoustic digitized signals can be directly beam synthesized. The obtained average photoacoustic digitized signal can also be subjected to other processing steps before beam synthesis. The beam synthesized signal is the target photoacoustic image signal, and a frame of photoacoustic image can be obtained by processing the target photoacoustic image signal.
一种实施例中,可以将所述N个光声电信号进行模数转换得到N个光声数字化信号;对所述N个光声数字化信号进行波束合成,以得到N个光声图像信号;对所述N个光声图像信号取平均,以得到平均光声图像信号;处理所述平均光声图像信号,得到一帧光声图像。In one embodiment, the N photoacoustic electrical signals can be converted into N photoacoustic digital signals by analog-to-digital conversion; the N photoacoustic digital signals can be beam synthesized to obtain N photoacoustic image signals; The N photoacoustic image signals are averaged to obtain an average photoacoustic image signal; the average photoacoustic image signal is processed to obtain a frame of photoacoustic image.
光声复合探头20向待测组织发射N次激光,待测组织在激光作用下分别产生N次超声波,在光声复合探头20接收到N次超声波后,处理得到N个光声电信号。将该N个光声电信号进行模数转换得到N个光声数字化信号,对该N个光声数字化信号进行波束合成,以得到N个光声图像信号,与上述实施例类似,这里的波束合成过程可以为每生成一个光声数字化信号即进行一次波束合成得到一个光声图像信号,该N个光声数字化信号分别进行波束合成得到N个光声图像信号;也可以为在生成了该N个光声数字化信号后,一起将该N个光声数字化信号转化为N个光声图像信号。对该N个光声图像信号取平均,得到平均光声图像信号,进一步的,处理平均光声图像信号,得到一帧光声图像。可以理解的,当激光发射次数N的值越大,则会对越多个光声图像信号取平均,对越多个光声图像信号取平均,则单个光声图像信号中的随机的噪音对光声图像的影响越小,光声图像的质量越高,但相应的光声图像的成像帧率也会相应地减小。The photoacoustic
当光声复合探头20的移动速度较慢时,激光发射次数N较大,例如为十次。光声复合探头20向待测组织发射十次激光,得到十个光声电信号,该十个光声电信号经模数转换后得到十个光声数字化信号,对十个光声数字化信号进行波束合成得到十个光声图像信号,对十个光声图像信号取平均后,可以克服单个光声图像信号中随机位置的随机噪声,平均光声图像信号的质量要比单个光声图像信号的质量要高。进一步的,对平均光声图像信号进行处理,得到一帧光声图像,由于此时平均光声图像信号的质量较高,使得到的光声图像的信噪比相对单个光声数字化信号转化的光声图像的信噪比高,且由于光声图像中远场的噪声经过多个信号平均后被减弱,远场的图像较为清晰,相比之下可以提升图像的成像深度,可以满足用户在缓慢移动光声复合探头20或保持光声复合探头20静止时对光声图像质量的要求。When the moving speed of the photoacoustic
而当光声复合探头20的移动速度较快时,激光发射次数N较小,例如为两次,光声复合探头20向待测组织发射两次激光,得到两个光声电信号,该两个光声电信号经模数转换后得到两个光声数字化信号,对两个光声数字化信号进行波束合成得到两个光声图像信号,对两个光声图像信号取平均后,得到平均光声图像信号,处理平均光声图像信号,得到一帧光声图像。此时,两次激光发射即可得到一帧光声图像,成像帧率较高,可以满足用户在快速移动光声复合探头20时希望光声图像能够及时显示探头所覆盖区域的光声图像的要求。但由于两次激光发射得到一帧光声图像,受该两次激光发射得到的光声图像信号的质量影响较大,该两个光声图像信号中的随机位置的随机性噪声不能通过多个光声图像信号的平均而降低影响,故此时光声图像的质量较激光发射次数N较大时的光声图像的质量低,但此时用户不需要细致地观察每一帧光声图像,因此此时光声图像的质量可以满足用户的需求。However, when the moving speed of the photoacoustic
需要说明的是,对N个光声图像信号取平均可以为对波束合成后至输出光声图像前的任何一个处理阶段的信号取平均,后续可以直接对得到的平均光声图像信号处理以得到光声图像,也可以对得到的平均光声图像信号进行其他处理后再处理得到一帧光声图像。It should be noted that the averaging of the N photoacoustic image signals may be the averaging of the signals at any processing stage after beam synthesis to the output of the photoacoustic image, and the obtained averaged photoacoustic image signals can be directly processed subsequently to obtain A photoacoustic image can also be processed to obtain a frame of photoacoustic image after performing other processing on the obtained average photoacoustic image signal.
根据临床的光声成像的帧率和图像质量要求,激光发射次数N可以大于或等于1,且小于或等于15。例如,当光声复合探头20移动的很快时,激光发射次数N可以为1;当光声复合探头20保持静止时,激光发射次数N可以为15;当光声复合探头20以中等速度移动时,激光发射次数N可以为8。激光发射次数N的具体值可以根据光声复合探头20的移动速度确定,激光发射次数N的取值范围可以由出厂预设,也可以根据用户的需求进行设置。According to the frame rate and image quality requirements of clinical photoacoustic imaging, the number of laser emission N can be greater than or equal to 1 and less than or equal to 15. For example, when the photoacoustic
步骤301中检测光声复合探头的移动速度可以通过在光声复合探头20上设置传感器实现,也可以通过对超声图像进行检测实现。The detection of the moving speed of the photoacoustic composite probe in
一种实施例中,可以在光声复合探头20上设置传感器,通过光声复合探头20上设置的传感器检测光声复合探头20的移动速度。该传感器可以为速度传感器、加速度传感器或位置传感器等,只要该传感器可以实现对光声复合探头20的移动速度进行检测即可,本申请对传感器的类型不做限制。In one embodiment, a sensor may be provided on the photoacoustic
一种实施例中,通过光声复合探头获取待测组织的连续多帧超声图像;通过连续多帧超声图像检测光声复合探头在待测组织上的移动速度作为光声复合探头的移动速度。In one embodiment, the photoacoustic composite probe is used to obtain continuous multiple frames of ultrasonic images of the tissue to be tested; the moving speed of the photoacoustic composite probe on the tissue to be tested is detected by the continuous multiple ultrasonic images as the moving speed of the photoacoustic composite probe.
一种实现方式中,通过连续多帧超声图像检测光声复合探头在待测组织上的移动速度,可以通过识别连续多帧超声图像中的目标区域;通过连续多帧超声图像中的目标区域的位置变化确定光声复合探头在待测组织上的移动速度。In an implementation manner, the moving speed of the photoacoustic composite probe on the tissue to be tested is detected by using continuous multiple frames of ultrasound images, and the target area in the continuous multiple frames of ultrasound images can be identified; The change in position determines the speed at which the photoacoustic composite probe moves on the tissue to be measured.
另一种实现方式中,通过连续多帧超声图像检测光声复合探头在待测组织上的移动速度,可以通过识别连续多帧超声图像中是否包含目标区域;确定连续多帧超声图像中包含目标区域的连续超声图像的帧数;通过帧数确定光声复合探头在待测组织上的移动速度。In another implementation manner, the moving speed of the photoacoustic composite probe on the tissue to be tested can be detected by using continuous multiple frames of ultrasound images, and whether the continuous multiple frames of ultrasound images contain a target area can be identified; The number of frames of continuous ultrasound images of the area; the moving speed of the photoacoustic composite probe on the tissue to be tested is determined by the number of frames.
具体的,识别连续多帧超声图像中是否包含目标区域并确定连续多帧超声图像中包含目标区域的连续超声图像的帧数,可以通过逐帧识别连续多帧超声图像中是否包含目标区域;从识别到一帧超声图像中包含目标区域时开始图像的帧数的计数,每连续识别到一帧超声图像中包含目标区域时,图像的帧数累计一帧,直至识别到一帧超声图像中不包含目标区域时,停止图像的帧数的计数,确定停止时的图像的帧数。Specifically, identifying whether the continuous multiple frames of ultrasound images include the target area and determining the number of frames of the continuous ultrasound images including the target area in the continuous multiple frames of ultrasound images can identify whether the continuous multiple frames of ultrasound images include the target area by frame by frame; Counting the number of frames of the image when it is recognized that a frame of ultrasound image contains the target area, and each time a frame of ultrasound image is continuously recognized to contain the target area, the number of frames of the image is accumulated to one frame, until it is recognized that there is no image in a frame of ultrasound image. When the target area is included, the count of the number of frames of the image is stopped, and the number of frames of the image at the time of stop is determined.
其中,目标区域可以包括以下至少一项:特定解剖结构所在区域、亮度符合预设条件的区域和像素梯度符合预设条件的区域。Wherein, the target area may include at least one of the following: the area where the specific anatomical structure is located, the area where the brightness meets the preset condition, and the area where the pixel gradient meets the preset condition.
对于检测光声复合探头20的移动速度的方式可以参见上文的论述,在此不再赘述。For the method of detecting the moving speed of the photoacoustic
如图4所示,本申请提供一种光声成像方法,可以基于光声复合探头的移动速度确定是否发射激光以进行光声成像,该方法可以包括以下步骤:As shown in FIG. 4 , the present application provides a photoacoustic imaging method, which can determine whether to emit laser light for photoacoustic imaging based on the moving speed of the photoacoustic composite probe. The method may include the following steps:
步骤401,检测光声复合探头的移动速度;
处理器70检测光声符合探头的移动速度,以此指导后续是否发射激光以得到光声图像。在光声成像的过程中,用户握持光声复合探头20放置于待测组织表面的扫查区域上,当用户需要调整光声成像的区域时,用户握持光声复合探头20向待测组织的下一个扫查区域快速移动,当用户将光声复合探头20移动至待测组织的下一个扫查区域时,用户保持光声复合探头20在待测组织的该下一个扫查区域不动或缓慢移动以进行光声成像。在上述过程中,用户往往仅关注待测组织的扫查区域的光声图像,而快速移动探头的过程往往仅是为了从一个扫查区域移动到另一个扫查区域,因此用户不关注移动过程中的光声图像,或者对移动过程中的光声图像的图像质量要求不高。因此,可以根据探头的移动速度,确定是否发射激光以生成光声图像。The
对于检测光声复合探头20的移动速度的方式可以参见上文的论述,在此不再赘述。For the method of detecting the moving speed of the photoacoustic
步骤402,当所述移动速度满足第一预设条件时,控制所述光声复合探头不向所述待测组织发射激光;
处理器确定光声复合探头20的移动速度满足第一预设条件时,控制光声复合探头20不向待测组织发射激光。该第一预设条件可以基于临床需要设定,当光声复合探头20的移动速度满足该条件时,无需向待测组织发射激光,此时用户无需进行光声成像。When the processor determines that the moving speed of the photoacoustic
一种实施例中,所述第一预设条件为所述移动速度大于或等于第二预设阈值。当光声复合探头20的移动速度过快时,用户往往是将光声复合探头20从待测组织的一个扫查区域移动到另一个扫查区域,用户一般仅关注这两个扫查区域的光声图像,而对移动过程中经过区域的光声图像并不关注,用户往往仅需要尽快将光声复合探头20从一个扫查区域移动到另一个扫查区域即可,因此,可以通过光声复合探头20的移动速度判断用户的意图。可以通过设定第二预设阈值的方式判断用户的意图,当用户移动光声复合探头20的速度大于或等于第二预设阈值时,可知用户处于在两个扫查区域间切换的过程中,或用户可能是由于疏忽晃动了光声复合探头20,因此,可以控制光声复合探头20不向所述待测组织发射激光,以减少激光入射待测组织的量,保证光声成像过程的安全,且此时用户不关注光声图像,不发射激光进行光声成像,可以减少设备的运算量,提高后续的运行速度。In an embodiment, the first preset condition is that the moving speed is greater than or equal to a second preset threshold. When the moving speed of the photoacoustic
这里的第二预设阈值可以基于用户的操作习惯进行设置,可以由出厂预设的,也可以由用户自行设定的。The second preset threshold here may be set based on the user's operating habits, may be preset by the factory, or may be set by the user.
步骤403,当所述移动速度满足第二预设条件时,控制所述光声复合探头向所述待测组织发射激光,并控制所述光声复合探头接收所述待测组织在激光作用下产生的超声波,以得到光声电信号,处理所述光声电信号得到光声图像。
处理器确定光声复合探头20的移动速度满足第二预设条件时,控制光声复合探头20向待测组织发射激光,并基于待测组织在激光作用下产生的超声波获得的光声电信号,进一步处理得到光声图像。当光声复合探头20的移动速度满足第二预设条件时,可以控制光声复合探头20向待测组织发射一次激光,也可以控制光声复合探头20项待测组织发射至少两次激光,并获得一个光声电信号或至少两个光声电信号,进一步地可以基于该一个光声电信号或至少两个光声电信号生成一帧光声图像或多帧光声图像。其中,该第二预设条件可以基于临床需要设定,当光声复合探头20的移动速度满足该条件时,可以推测用户此时需要获取待测组织该区域的光声图像进行观察,光声复合探头20向待测组织发射激光以得到光声图像。When the processor determines that the moving speed of the photoacoustic
一种实施例中,所述第二预设条件为所述移动速度小于所述第二预设阈值。当光声复合探头20的移动速度缓慢或光声复合探头20保持不动时,用户往往需要细致地观察待测组织该区域的光声图像,此时需要发射激光并进行光声成像。可以通过设定第二阈值的方式判断用户的意图,当用户移动光声复合探头20的速度小于第二阈值时,可知用户需要对光声复合探头20所在区域的光声图像进行观察,因此,可以控制光声复合探头20向待测组织发射激光,以得到光声图像。通过第二预设阈值的设置,在用户需要观察光声图像时,通过发射激光进行光声成像得到光声图像供用户观察,满足了用户的需求,而在用户不需要观察光声图像时,不发射激光,不进行光声成像,节省了运算量,提高了安全性。In one embodiment, the second preset condition is that the moving speed is less than the second preset threshold. When the moving speed of the photoacoustic
进一步的,当光声复合探头20的移动速度满足第二预设条件时,还可以基于所述移动速度确定激光发射次数N;控制所述光声复合探头向所述待测组织发射N次激光;控制所述光声复合探头分别接收所述待测组织在所述N次激光作用下产生的N次超声波,以得到N个光声电信号,其中所述待测组织在一次发射的激光作用下产生的超声波为一次超声波,接收一次超声波所得到的光声电信号为一个光声电信号;处理所述N个光声电信号得到一帧光声图像。在移动速度满足第二预设条件时,可以推测用户需要观察光声图像,但在不同情况下,用户对光声图像的帧率和图像质量的要求也不相同,因此,可以在移动速度满足第二预设条件的情况下,进一步通过移动速度,确定成一帧光声图像所需的激光发射次数N。当光声复合探头20的移动速度表明用户需要高质量的光声图像,而对成像帧率要求不高时,激光发射次数N可以较大,以使发射较多次的激光成一帧光声图像,提高了光声图像的质量。当光声复合探头20的移动速度表明用户需要较高的光声图像更新速度,而对光声图像的质量要求不高时,激光发射次数N可以较小,以使发射较少次的激光即可得到一帧光声图像,提高了光声成像的帧率。Further, when the moving speed of the photoacoustic
一种实施例中,可以基于所述移动速度和预设对应关系确定激光发射次数N,其中所述预设对应关系为光声复合探头的移动速度与激光发射次数N的对应关系,所述对应关系为负相关关系。即可以为光声复合探头20的移动速度越大,相应的激光发射次数N越小;光声复合探头20的移动速度越小,相应的激光发射次数N越大;以此来适应在用户快速移动光声复合探头20时对较高成像帧率的要求,以及在用户缓慢移动光声复合探头20或保持光声复合探头20不动时,对较高的图像质量的要求。In an embodiment, the number of laser emission N may be determined based on the moving speed and a preset corresponding relationship, wherein the preset corresponding relationship is the corresponding relationship between the moving speed of the photoacoustic composite probe and the number of laser emission N, and the corresponding relationship is The relationship is negatively correlated. That is to say, the higher the moving speed of the photoacoustic
上文所述的各个实施例中相关联的技术特征,没有特别说明的,均可以在其他实施例中适用,对于相关联的技术特征的描述可以参见相关联的实施例,重复的部分不再赘述。The technical features associated with the various embodiments described above, unless otherwise specified, can be applied in other embodiments. For the description of the associated technical features, reference may be made to the associated embodiments, and the repeated parts will not be repeated. Repeat.
如图1所示,本申请还提供一种光声成像系统,可以用于执行上述各个实施例的光声成像方法,该光声成像系统包括:激光器、光声复合探头以及处理器;As shown in FIG. 1 , the present application further provides a photoacoustic imaging system, which can be used to execute the photoacoustic imaging methods of the above embodiments, the photoacoustic imaging system includes: a laser, a photoacoustic composite probe, and a processor;
所述激光器用于产生激光,并通过光传输装置向目标组织发射所述激光;The laser is used to generate laser light and emit the laser light to the target tissue through the optical transmission device;
所述光声复合探头用于接收从所述目标组织返回的光声信号;The photoacoustic composite probe is used for receiving the photoacoustic signal returned from the target tissue;
所述处理器用于处理所述光声信号得到光声图像;The processor is configured to process the photoacoustic signal to obtain a photoacoustic image;
所述处理器可以用于执行上述实施例所述的方法。The processor may be used to execute the methods described in the above embodiments.
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的光声成像方法的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。In addition, according to an embodiment of the present application, a storage medium is also provided, and program instructions are stored on the storage medium, and the program instructions are used to execute the photoacoustic imaging of the embodiments of the present application when the program instructions are run by a computer or a processor. corresponding steps of the method. The storage medium may include, for example, a memory card of a smartphone, a storage component of a tablet computer, a hard disk of a personal computer, read only memory (ROM), erasable programmable read only memory (EPROM), portable compact disk read only memory (CD-ROM), USB memory, or any combination of the above storage media.
需要强调的是,控制光声复合探头20不向待测组织发射激光、控制光声复合探头20向待测组织发射激光、控制光声复合探头20向待测组织发射至少两次激光和控制光声复合探头20向待测组织发射N次激光均可以为控制激光器不发射或发射相应次数的激光。可以理解的,若激光器发射激光,则激光器发射的激光经光传输装置从光声复合探头20入射至待测组织,可以视为是光声复合探头20向待测组织发射激光,因此,本申请所述的控制光声复合探头20向待测组织发射激光,也包括控制激光器发射激光并经光声复合探头20向待测组织发射。同理,若激光器不发射激光,则光声复合探头也不发射激光,因此,本申请所述的控制光声复合探头20不向待测组织发射激光,也包括控制激光器不发射激光,从而光声复合探头20也不向待测组织发射激光。It should be emphasized that the photoacoustic
需要说明的是,本申请实施例不限于用于人类的光声成像,还可以用于动物光声成像。It should be noted that the embodiments of the present application are not limited to photoacoustic imaging for humans, and can also be used for photoacoustic imaging of animals.
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。Although example embodiments have been described herein with reference to the accompanying drawings, it should be understood that the above-described example embodiments are exemplary only, and are not intended to limit the scope of the application thereto. Various changes and modifications may be made therein by those of ordinary skill in the art without departing from the scope and spirit of the present application. All such changes and modifications are intended to be included within the scope of this application as claimed in the appended claims.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that the embodiments of the present application may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。Similarly, it is to be understood that in the description of the exemplary embodiments of the present application, various features of the present application are sometimes grouped together into a single embodiment, FIG. , or in its description. However, this method of application should not be construed as reflecting an intention that the claimed application requires more features than are expressly recited in each claim. Rather, as the corresponding claims reflect, the invention lies in the fact that the corresponding technical problem may be solved with less than all features of a single disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this application.
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。It will be understood by those skilled in the art that all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or apparatus so disclosed may be used in any combination, except that the features are mutually exclusive. Processes or units are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will appreciate that although some of the embodiments described herein include certain features, but not others, included in other embodiments, that combinations of features of different embodiments are intended to be within the scope of the present application within and form different embodiments. For example, in the claims, any of the claimed embodiments may be used in any combination.
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的物品分析设备中的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的乳腺机程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art should understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules in the article analysis device according to the embodiments of the present application. The present application may also be implemented as a breast machine program (eg, computer program and computer program product) for performing part or all of the methods described herein. Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干乳腺机的单元权利要求中,这些乳腺机中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-described embodiments illustrate rather than limit the application, and alternative embodiments may be devised by those skilled in the art without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The application can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several breast machines, several of these breast machines can be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application or descriptions of the specific embodiments, and the protection scope of the present application is not limited thereto. Any changes or substitutions should be included within the protection scope of the present application. The protection scope of the present application shall be subject to the protection scope of the claims.
Claims (26)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/140968 WO2022141081A1 (en) | 2020-12-29 | 2020-12-29 | Photoacoustic imaging method and photoacoustic imaging system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114727760A true CN114727760A (en) | 2022-07-08 |
Family
ID=82230218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080076224.4A Pending CN114727760A (en) | 2020-12-29 | 2020-12-29 | Photoacoustic imaging method and photoacoustic imaging system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114727760A (en) |
WO (1) | WO2022141081A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116350270A (en) * | 2023-04-24 | 2023-06-30 | 广州医科大学附属第一医院 | Ultrasonic imaging method and device |
CN116482035A (en) * | 2023-06-21 | 2023-07-25 | 之江实验室 | A photoacoustic tomography method and device based on a flexible ultrasonic probe |
CN116740219A (en) * | 2023-08-14 | 2023-09-12 | 之江实验室 | A three-dimensional photoacoustic tomography method, device, equipment and readable storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107157448A (en) * | 2017-05-25 | 2017-09-15 | 睿芯生命科技(深圳)有限公司 | The optoacoustic being imaged for superficial place and ultrasonic synchronous imaging system and method |
CN108095688A (en) * | 2016-11-25 | 2018-06-01 | 佳能株式会社 | Photo-acoustic device, control method and the non-transitory storage medium for storing program |
CN108403084A (en) * | 2017-02-10 | 2018-08-17 | 佳能株式会社 | Subject information acquisition apparatus and display methods |
CN110338754A (en) * | 2018-12-14 | 2019-10-18 | 深圳迈瑞生物医疗电子股份有限公司 | Photoacoustic imaging system and method, storage medium and processor |
WO2020082269A1 (en) * | 2018-10-24 | 2020-04-30 | 中国医学科学院北京协和医院 | Imaging method and imaging system |
WO2020082265A1 (en) * | 2018-10-24 | 2020-04-30 | 深圳迈瑞生物医疗电子股份有限公司 | Imaging method and imaging system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100868483B1 (en) * | 2005-10-07 | 2008-11-12 | 주식회사 메디슨 | Ultrasonic Image Display Method |
CN103156636B (en) * | 2011-12-15 | 2016-05-25 | 深圳迈瑞生物医疗电子股份有限公司 | A kind of supersonic imaging device and method |
JP2018011927A (en) * | 2016-07-08 | 2018-01-25 | キヤノン株式会社 | Control device, control method, control system, and program |
CN108209966B (en) * | 2017-12-29 | 2021-02-12 | 深圳开立生物医疗科技股份有限公司 | Parameter adjusting method and device of ultrasonic imaging equipment |
-
2020
- 2020-12-29 CN CN202080076224.4A patent/CN114727760A/en active Pending
- 2020-12-29 WO PCT/CN2020/140968 patent/WO2022141081A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108095688A (en) * | 2016-11-25 | 2018-06-01 | 佳能株式会社 | Photo-acoustic device, control method and the non-transitory storage medium for storing program |
CN108403084A (en) * | 2017-02-10 | 2018-08-17 | 佳能株式会社 | Subject information acquisition apparatus and display methods |
CN107157448A (en) * | 2017-05-25 | 2017-09-15 | 睿芯生命科技(深圳)有限公司 | The optoacoustic being imaged for superficial place and ultrasonic synchronous imaging system and method |
WO2020082269A1 (en) * | 2018-10-24 | 2020-04-30 | 中国医学科学院北京协和医院 | Imaging method and imaging system |
WO2020082265A1 (en) * | 2018-10-24 | 2020-04-30 | 深圳迈瑞生物医疗电子股份有限公司 | Imaging method and imaging system |
CN110338754A (en) * | 2018-12-14 | 2019-10-18 | 深圳迈瑞生物医疗电子股份有限公司 | Photoacoustic imaging system and method, storage medium and processor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116350270A (en) * | 2023-04-24 | 2023-06-30 | 广州医科大学附属第一医院 | Ultrasonic imaging method and device |
CN116482035A (en) * | 2023-06-21 | 2023-07-25 | 之江实验室 | A photoacoustic tomography method and device based on a flexible ultrasonic probe |
CN116482035B (en) * | 2023-06-21 | 2023-11-17 | 之江实验室 | Photoacoustic tomography method and device based on flexible ultrasonic probe |
CN116740219A (en) * | 2023-08-14 | 2023-09-12 | 之江实验室 | A three-dimensional photoacoustic tomography method, device, equipment and readable storage medium |
CN116740219B (en) * | 2023-08-14 | 2024-01-09 | 之江实验室 | A three-dimensional photoacoustic tomography method, device, equipment and readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2022141081A1 (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10324065B2 (en) | Ultrasound diagnostic apparatus, ultrasound image capturing method, and computer-readable recording medium | |
US20180206820A1 (en) | Ultrasound apparatus and method | |
WO2022141081A1 (en) | Photoacoustic imaging method and photoacoustic imaging system | |
CN114025671B (en) | VTI measuring device and method | |
US8894579B2 (en) | Ultrasonic diagnostic apparatus and controlling method of ultrasonic diagnostic apparatus | |
US10335114B2 (en) | Method and ultrasound apparatus for providing ultrasound image | |
JP5681141B2 (en) | Tomographic image generating apparatus, method, and program | |
CN103648400A (en) | Ultrasonic diagnostic device and method | |
US11432806B2 (en) | Information processing apparatus, information processing method, and storage medium | |
KR102387708B1 (en) | Ultrasound System And Method For Providing Guide To Improve HPRF Doppler Image | |
US10123779B2 (en) | Method and apparatus for generating ultrasound image having enhanced quality | |
KR101776530B1 (en) | Ultrasonic image display apparatus and control program thereof | |
JP5692075B2 (en) | Ultrasonic diagnostic equipment | |
JP2014213030A (en) | Ultrasonic diagnostic system, and control method of ultrasonic diagnostic system | |
CN112469338B (en) | A device for detecting liver based on ultrasound, ultrasound equipment and ultrasound imaging method | |
WO2020082265A1 (en) | Imaging method and imaging system | |
CN113633312B (en) | Ultrasound elastography method and system | |
CN114521915A (en) | Instantaneous elasticity measurement method and ultrasonic imaging system | |
KR102389347B1 (en) | Untrasound dianognosis apparatus and operating method thereof | |
WO2021087765A1 (en) | Ultrasonic imaging device and method for detecting endometrial peristalsis | |
CN114287968A (en) | Elastography method, system and computer readable storage medium | |
CN116350270A (en) | Ultrasonic imaging method and device | |
KR20150047416A (en) | Ultrasound apparatus and method for setting tgc thereof | |
WO2022147690A1 (en) | Elastography method and ultrasound imaging system | |
US10492762B2 (en) | Ultrasound diagnostic device, ultrasound diagnostic method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |