CN114727017A - A method, device and computer-readable storage medium for photographing ID photos - Google Patents
A method, device and computer-readable storage medium for photographing ID photos Download PDFInfo
- Publication number
- CN114727017A CN114727017A CN202210326516.XA CN202210326516A CN114727017A CN 114727017 A CN114727017 A CN 114727017A CN 202210326516 A CN202210326516 A CN 202210326516A CN 114727017 A CN114727017 A CN 114727017A
- Authority
- CN
- China
- Prior art keywords
- face
- image
- posture
- keypoint
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 230000001815 facial effect Effects 0.000 claims description 15
- 238000004590 computer program Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 21
- 238000004891 communication Methods 0.000 description 11
- 238000010295 mobile communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
- H04N23/611—Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/62—Control of parameters via user interfaces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Telephone Function (AREA)
- Studio Devices (AREA)
Abstract
本发明公开了一种证件照拍摄方法、设备及计算机可读存储介质,其中,该方法包括:获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像;根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息;获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。实现了一种更为人性化的证件照拍摄方案,通过结合深度图像对人脸姿态进行识别和调整,提升了证件照的拍摄效果,增强了用户对于证件照拍摄功能的使用体验。
The invention discloses a method, device and computer-readable storage medium for photographing an ID photo, wherein the method includes: acquiring a preview image including a human face, wherein the preview image includes a depth image and a color corresponding to the depth image image; perform face key point detection according to the color image, and obtain the depth information of the face key point according to the depth image; obtain the preset face pose closest to the current face pose, and based on multiple The viewing angle calculates the adjustment mode of the current face pose. A more user-friendly ID photo shooting solution is realized. By combining the depth image to recognize and adjust the face posture, the effect of ID photo shooting is improved, and the user experience of the ID photo shooting function is enhanced.
Description
技术领域technical field
本发明涉及移动通信领域,尤其涉及一种证件照拍摄方法、设备及计算机可读存储介质。The present invention relates to the field of mobile communications, and in particular, to a method, device and computer-readable storage medium for photographing a certificate.
背景技术Background technique
现有技术中,随着智能终端设备的不断发展,基于设备端的拍摄应用功能也越来越丰富。特别地,在现有的相机方案基础上,衍生出了证件照拍摄等人脸拍摄功能。而在传统的证件照拍摄方法中,一般只会议提示框的形式提示拍摄者将人脸置于画面指定位置,例如,中间位置、左右调整等。而为获得好的拍摄效果,在用户将人脸置于画面指定位置的同时,往往需要进一步的调整人脸与终端设备的距离,以及人脸姿态等。但是,传统的证件照拍摄无法准确地实现基于人脸姿态的提示性调整,从而导致证件照的最终拍摄效果往往不尽人意,用户的拍摄体验还有待提升。In the prior art, with the continuous development of intelligent terminal devices, the functions of shooting applications based on the device end are becoming more and more abundant. In particular, based on the existing camera solutions, face shooting functions such as ID photo shooting are derived. In the traditional ID photo shooting method, generally only the meeting prompt box is used to prompt the photographer to place the face in the designated position of the screen, for example, the middle position, left and right adjustment, etc. In order to obtain a good shooting effect, when the user places the face at a designated position on the screen, it is often necessary to further adjust the distance between the face and the terminal device, and the posture of the face. However, traditional ID photo shooting cannot accurately realize prompt adjustment based on face posture, resulting in the final shooting effect of ID photos is often unsatisfactory, and the user's shooting experience needs to be improved.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中的上述技术缺陷,本发明提出了一种证件照拍摄方法,该方法包括:In order to solve the above-mentioned technical defects in the prior art, the present invention proposes a method for photographing an ID photo, the method comprising:
获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像。A preview image containing a human face is acquired, wherein the preview image includes a depth image and a color image corresponding to the depth image.
根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息。Performing face key point detection according to the color image, and acquiring depth information of the face key point according to the depth image.
获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。The preset face pose closest to the current face pose is acquired, and the adjustment mode of the current face pose is calculated based on multiple viewing angles.
生成所述调整方式的提示信息,用以辅助用户进行人脸姿态调整。The prompt information of the adjustment method is generated to assist the user in adjusting the face posture.
可选地,所述获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像之前,包括:Optionally, before the obtaining a preview image including a human face, wherein the preview image includes a depth image and a color image corresponding to the depth image, including:
预置N种可用于证件照拍摄的人脸姿态列表REC_Posture,其中,N≥1,所述人脸姿态包括正脸姿态和侧脸姿态,其中:Preset N types of face pose lists REC_Posture that can be used for photographing ID photos, where N≥1, the face poses include frontal face poses and side face poses, where:
REC_Posture={rec_posture1,……,rec_postureN}。REC_Posture={rec_posture 1 , , rec_posture N }.
所述人脸姿态为包含既定数量M,且按既定规则排序的3D人脸关键点列表;其中,M为既定参数:The face pose is a 3D face key point list that contains a predetermined number M and is sorted according to a predetermined rule; wherein, M is a predetermined parameter:
rec_posturei={keypoint1,keypoint2,……,keypointM}。rec_posture i = {keypoint 1 , keypoint 2 , ..., keypoint M }.
keypointi={xi,yi,di}。keypoint i = { xi , yi , d i }.
其中,xi,yi为关键点keypointi在图像中的横坐标及纵坐标,zi为关键点keypointi在图像中的深度信息。Among them, x i , y i are the abscissa and ordinate of the key point i in the image, and z i is the depth information of the key point i in the image.
可选地,所述获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像,包括:Optionally, the obtaining a preview image containing a human face, wherein the preview image includes a depth image and a color image corresponding to the depth image, including:
获取预览彩色图像pre_image_rgb以及基于ToF深度相机的深度图像 pre_imag_d。Get the preview color image pre_image_rgb and the depth image pre_imag_d based on the ToF depth camera.
其中,所述深度图像pre_imag_d为经过与所述预览彩色图像pre_image_rgb 配准的深度图像。The depth image pre_imag_d is a depth image registered with the preview color image pre_image_rgb.
可选地,所述根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息,包括:Optionally, performing the detection of face key points according to the color image, and obtaining the depth information of the face key points according to the depth image, including:
基于彩色图像进行所述人脸关键点检测,获得预览的人脸关键点列表:The face key point detection is performed based on the color image, and the previewed face key point list is obtained:
pre_posture={keypoint1,keypoint2,……,keypointM}。pre_posture={keypoint 1 , keypoint 2 , ..., keypoint M }.
keypointi={xi,yi}。keypoint i ={x i ,y i }.
其中,xi,yi为关键点keypointi在图像中的横坐标及纵坐标。Among them, x i , y i are the abscissa and ordinate of keypoint i in the image.
可选地,所述根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息,还包括:Optionally, performing the detection of face key points according to the color image, and acquiring the depth information of the face key points according to the depth image, further includes:
基于所述ToF的深度图像,获取当前的所述人脸关键点列表中的所述人脸关键点对应的深度信息,包括:Based on the depth image of the ToF, obtain the depth information corresponding to the face key points in the current face key point list, including:
获取pre_image_rgb及深度图像pre_imag_d的分辨率:Get the resolution of pre_image_rgb and depth image pre_imag_d:
shape_rgb={h_rgb,w_rgb}。shape_rgb={h_rgb,w_rgb}.
shape_d={h_d,w_d}。shape_d={h_d,w_d}.
对于预览的所述人脸关键点列表pre_posture中的每一个所述人脸关键点keypointi,计算其在深度图像中pre_imag_d的映射坐标:For each face keypoint keypoint i in the previewed face keypoint list pre_posture, calculate its mapping coordinates of pre_imag_d in the depth image:
获取深度图像pre_imag_d中位置点mappointi处的深度信息,作为所述人脸关键点keypointi的深度信息di:Obtain the depth information at the position point mappoint i in the depth image pre_imag_d as the depth information d i of the face key point keypoint i :
keypointi={xi,yi,di}。keypoint i = { xi , yi , d i }.
di=pre_imag_d(mappointi)。d i =pre_imag_d(mappoint i ).
可选地,所述获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式,包括:Optionally, obtaining the preset facial posture closest to the current facial posture, and calculating an adjustment method for the current facial posture based on multiple viewing angles, including:
在所预置的所述人脸姿态列表REC_Posture中,获取与所述当前人脸姿态最接近的预置人脸姿态rec_posturei,包括:In the preset face pose list REC_Posture, obtain the preset face pose rec_posture i that is closest to the current face pose, including:
获取平均欧氏距离最小的所述预置人脸姿态,作为与预览人脸姿态最接近的人脸姿态mindiss_rec_posture。The preset face pose with the smallest average Euclidean distance is acquired as the face pose mindiss_rec_posture closest to the preview face pose.
可选地,所述获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式,还包括:Optionally, obtaining the preset facial posture closest to the current facial posture, and calculating the adjustment mode of the current facial posture based on multiple viewing angles, further comprising:
基于多视角,对于预览的所述人脸关键点列表pre_posture,与其最接近的推荐的所述人脸姿态mindiss_rec_posture,计算人脸调整方式,包括:Based on multiple perspectives, for the previewed face key point list pre_posture, and the closest recommended face pose mindiss_rec_posture, the face adjustment method is calculated, including:
根据预设的优先级顺序,对预置的多视角Mul_VS中的各个视角vsi进行约束检查,若当前视角满足约束条件,则检查下一视角是否满足约束条件,若当前视角不满足约束条件,则根据缩放尺度scalei和旋转角度θi提示用户调整姿态。According to the preset priority order, check the constraints of each view vs i in the preset multi-view Mul_VS. If the current view meets the constraints, check whether the next view meets the constraints. If the current view does not meet the constraints, Then, the user is prompted to adjust the posture according to the scaling scale scale i and the rotation angle θ i .
可选地,所述根据预设的优先级顺序,对预置的多视角Mul_VS中的各个视角vsi进行约束检查,包括:Optionally, according to the preset priority order, the constraint check is performed on each view vs i in the preset multi-view Mul_VS, including:
获取当前最高优先级视角vsi及其对应的缩放尺度scalei和旋转角度θi。Obtain the current highest priority viewing angle vs i and its corresponding zoom scale scale i and rotation angle θ i .
根据预设的阈值S_TH及θ_TH,判断是否满足约束条件,其中,所述约束条件为:According to the preset thresholds S_TH and θ_TH, it is judged whether the constraint condition is satisfied, wherein the constraint condition is:
scalei≤S_TH。scale i ≤ S_TH.
θi≤θ_TH。θ i ≤ θ_TH.
本发明还提出了一种证件照拍摄设备,该设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上任一项所述的证件照拍摄方法的步骤。The present invention also provides a device for photographing passports, which includes a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor Implement the steps of the method for photographing a certificate photo as described in any one of the above.
本发明还提出了一种计算机可读存储介质,该计算机可读存储介质上存储有证件照拍摄程序,证件照拍摄程序被处理器执行时实现如上述任一项所述的证件照拍摄方法的步骤。The present invention also provides a computer-readable storage medium, where a program for photographing a certificate photo is stored on the computer-readable storage medium, and when the program for photographing a certificate photo is executed by a processor, the method for photographing a certificate photo as described in any one of the above is realized. step.
实施本发明的证件照拍摄方法、设备及计算机可读存储介质,通过获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像;根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息;获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。实现了一种更为人性化的证件照拍摄方案,通过结合深度图像对人脸姿态进行识别和调整,提升了证件照的拍摄效果,增强了用户对于证件照拍摄功能的使用体验。The method, device and computer-readable storage medium for photographing a certificate photo of the present invention are implemented by acquiring a preview image including a human face, wherein the preview image includes a depth image and a color image corresponding to the depth image; according to the color image Performing face key point detection, and obtaining depth information of the face key points according to the depth image; obtaining a preset face pose closest to the current face pose, and calculating the current face based on multiple perspectives attitude adjustment. A more user-friendly ID photo shooting solution is realized. By combining the depth image to identify and adjust the face posture, the effect of ID photo shooting is improved, and the user experience of the ID photo shooting function is enhanced.
附图说明Description of drawings
下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图1是本发明涉及的一种移动终端的硬件结构示意图;1 is a schematic diagram of a hardware structure of a mobile terminal according to the present invention;
图2是本发明实施例提供的一种通信网络系统架构图;2 is an architectural diagram of a communication network system provided by an embodiment of the present invention;
图3是本发明证件照拍摄方法第一实施例的流程图。FIG. 3 is a flow chart of the first embodiment of the method for photographing a certificate photo of the present invention.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。In the following description, suffixes such as 'module', 'component' or 'unit' used to represent elements are used only to facilitate the description of the present invention and have no specific meaning per se. Thus, "module", "component" or "unit" may be used interchangeably.
终端可以以各种形式来实施。例如,本发明中描述的终端可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant, PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。The terminal may be implemented in various forms. For example, the terminal described in the present invention may include, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a Personal Digital Assistant (PDA), a Portable Media Player (PMP), a navigation device, a Mobile terminals such as wearable devices, smart bracelets, and pedometers, as well as stationary terminals such as digital TVs and desktop computers.
后续描述中将以移动终端为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。In the following description, a mobile terminal will be used as an example, and those skilled in the art will understand that, in addition to elements specially used for mobile purposes, the configurations according to the embodiments of the present invention can also be applied to stationary type terminals.
请参阅图1,其为实现本发明各个实施例的一种移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi 模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Please refer to FIG. 1 , which is a schematic diagram of a hardware structure of a mobile terminal for implementing various embodiments of the present invention. The
下面结合图1对移动终端的各个部件进行具体的介绍:Below in conjunction with Fig. 1, each component of the mobile terminal is introduced in detail:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、 GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(CodeDivision Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code DivisionMultiple Access,宽带码分多址)、TD-SCDMA(Time Division- Synchronous CodeDivision Multiple Access,时分同步码分多址)、FDD-LTE (Frequency DivisionDuplexing-Long Term Evolution,频分双工长期演进)和 TDD-LTE(Time DivisionDuplexing-Long Term Evolution,分时双工长期演进) 等。The
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。WiFi is a short-distance wireless transmission technology, and the mobile terminal can help users to send and receive emails, browse web pages, access streaming media, etc. through the
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101 或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。When the
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风 1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元 101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。The A/
移动终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。The
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。The
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。The
进一步的,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。Further, the
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108 可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100 和外部装置之间传输数据。The
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。The
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。The
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。The
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。Although not shown in FIG. 1 , the
为了便于理解本发明实施例,下面对本发明的移动终端所基于的通信网络系统进行描述。To facilitate understanding of the embodiments of the present invention, the following describes a communication network system on which the mobile terminal of the present invention is based.
请参阅图2,图2为本发明实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。Please refer to FIG. 2. FIG. 2 is an architecture diagram of a communication network system according to an embodiment of the present invention. The communication network system is an LTE system of universal mobile communication technology. ) 201 , E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202 , EPC (Evolved Packet Core, Evolved Packet Core) 203 and operator's
具体地,UE201可以是上述终端100,此处不再赘述。Specifically, the
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。其中,eNodeB2021 可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021 连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体) 2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033, SGW(Serving GateWay,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy andCharging Rules Function,政策和资费功能实体)2036等。其中,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035 可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP 承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP 多媒体子系统)或其它IP业务等。The
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、 CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统等,此处不做限定。Although the LTE system is described above as an example, those skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as GSM, CDMA2000, WCDMA, TD-SCDMA and future new wireless communication systems. The network system, etc., is not limited here.
基于上述移动终端硬件结构以及通信网络系统,提出本发明方法各个实施例。Based on the above-mentioned mobile terminal hardware structure and communication network system, various embodiments of the method of the present invention are proposed.
实施例一Example 1
图3是本发明证件照拍摄方法第一实施例的流程图。一种证件照拍摄方法,该方法包括:FIG. 3 is a flow chart of the first embodiment of the method for photographing a certificate photo of the present invention. A method for photographing a certificate, the method comprising:
S1、获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像。S1. Acquire a preview image including a human face, where the preview image includes a depth image and a color image corresponding to the depth image.
S2、根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息。S2. Perform face key point detection according to the color image, and acquire depth information of the face key point according to the depth image.
S3、获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。S3. Acquire a preset face pose that is closest to the current face pose, and calculate the adjustment mode of the current face pose based on multiple viewing angles.
S4、生成所述调整方式的提示信息,用以辅助用户进行人脸姿态调整。S4. Generate prompt information of the adjustment mode to assist the user in adjusting the face posture.
在本实施例中,通过预置多种人脸姿态,以及基于ToF深度相机的深度图像的人脸姿态估计,以此提醒被拍摄者调整拍照时的人脸姿态。例如,收一下下巴或者向左侧一下脸,从而使得用户获得一个类似专业摄影师的指导,获得更好的拍摄效果。In this embodiment, a variety of face poses are preset, and the face pose estimation based on the depth image of the ToF depth camera is used to remind the subject to adjust the face pose when taking pictures. For example, tuck the chin or turn the face to the left, so that the user can get a professional photographer-like guidance for better shooting results.
在本实施例中,具体的,首先,获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像;然后,根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息;最后,获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式,以及,生成所述调整方式的提示信息,用以辅助用户进行人脸姿态调整。In this embodiment, specifically, first, a preview image containing a human face is acquired, wherein the preview image includes a depth image and a color image corresponding to the depth image; Detecting, and obtaining the depth information of the key points of the face according to the depth image; finally, obtaining the preset face pose closest to the current face pose, and calculating the adjustment of the current face pose based on multiple perspectives method, and generating prompt information of the adjustment method to assist the user in adjusting the face posture.
本实施例的有益效果在于,通过获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像;根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息;获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。实现了一种更为人性化的证件照拍摄方案,通过结合深度图像对人脸姿态进行识别和调整,提升了证件照的拍摄效果,增强了用户对于证件照拍摄功能的使用体验。The beneficial effect of this embodiment is that, by acquiring a preview image containing a human face, the preview image includes a depth image and a color image corresponding to the depth image; performing face key point detection according to the color image, and, Obtain the depth information of the face key points according to the depth image; obtain the preset face pose closest to the current face pose, and calculate the adjustment mode of the current face pose based on multiple perspectives. A more user-friendly ID photo shooting solution is realized. By combining the depth image to identify and adjust the face posture, the effect of ID photo shooting is improved, and the user experience of the ID photo shooting function is enhanced.
实施例二Embodiment 2
基于上述实施例,在本实施例中,首先,预置N种可用于证件照拍摄的人脸姿态列表REC_Posture,N≥1;所述人脸姿态包括但不仅限于正脸、侧脸等等,其中,人脸姿态列表表述为:Based on the above-mentioned embodiment, in this embodiment, firstly, N kinds of face pose lists REC_Posture that can be used for taking ID photos are preset, N≥1; the face poses include but are not limited to frontal faces, side faces, etc., Among them, the face pose list is expressed as:
REC_Posture={rec_posture1,……,rec_postureN}。REC_Posture={rec_posture 1 , , rec_posture N }.
在本实施例中,所述人脸姿态为包含既定数量M,且按既定规则排序的3D 人脸关键点列表。其中,M为既定参数,例如,M=128。上述人脸姿态表述为:In this embodiment, the face pose is a 3D face key point list that includes a predetermined number M and is sorted according to a predetermined rule. Among them, M is a predetermined parameter, for example, M=128. The above face pose is expressed as:
rec_posturei={keypoint1,keypoint2,……,keypointM}。rec_posture i = {keypoint 1 , keypoint 2 , ..., keypoint M }.
keypointi={xi,yi,di}。keypoint i = { xi , yi , d i }.
其中,xi,yi为关键点keypointi在图像中的横坐标及纵坐标,zi为关键点keypointi在图像中的深度信息。Among them, x i , y i are the abscissa and ordinate of the key point i in the image, and z i is the depth information of the key point i in the image.
在本实施例中,获取预览彩色图像pre_image_rgb以及基于ToF的深度图像pre_imag_d;所述深度图像pre_imag_d必需为经过与彩色图像pre_image_rgb 配准的深度图像;可选的,所述深度图像pre_imag_d可以为经过超分辨率计算的深度图像等。In this embodiment, the preview color image pre_image_rgb and the ToF-based depth image pre_imag_d are obtained; the depth image pre_imag_d must be the depth image registered with the color image pre_image_rgb; optionally, the depth image pre_imag_d may be the depth image pre_imag_d Depth images for resolution calculations, etc.
在本实施例中,基于彩色图像进行人脸关键点检测,获得预览的人脸关键点列表,表述为:In this embodiment, face key point detection is performed based on a color image, and a previewed face key point list is obtained, which is expressed as:
pre_posture={keypoint1,keypoint2,……,keypointM}。pre_posture={keypoint 1 , keypoint 2 , ..., keypoint M }.
keypointi={xi,yi}。keypoint i ={x i ,y i }.
其中,xi,yi为关键点keypointi在图像中的横坐标及纵坐标。Among them, x i , y i are the abscissa and ordinate of keypoint i in the image.
在本实施例中,基于ToF深度图像,获取当前人脸关键点列表中的人脸关键点对应的深度信息,具体的,包括如下三个步骤:In this embodiment, based on the ToF depth image, the depth information corresponding to the face key points in the current face key point list is obtained, specifically, including the following three steps:
第一,获取pre_image_rgb及深度图像pre_imag_d的分辨率:First, get the resolution of pre_image_rgb and depth image pre_imag_d:
shape_rgb={h_rgb,w_rgb}。shape_rgb={h_rgb,w_rgb}.
shape_d={h_d,w_d}。shape_d={h_d,w_d}.
第二,对于预览的人脸关键点列表pre_posture中的每一个人脸关键点keypointi,计算其在深度图像中pre_imag_d的映射坐标:Second, for each face keypoint keypoint i in the previewed face keypoint list pre_posture, calculate the mapping coordinates of pre_imag_d in the depth image:
第三,获取深度图像pre_imag_d中位置点mappointi处的深度信息,作为人脸关键点keypointi的深度信息di:Third, obtain the depth information at the position point mappoint i in the depth image pre_imag_d as the depth information d i of the face key point keypoint i :
keypointi={xi,yi,di}。keypoint i = { xi , yi , d i }.
di=pre_imag_d(mappointi)。d i =pre_imag_d(mappoint i ).
在本实施例中,在所预置的人脸姿态列表REC_Posture中,获取与当前人脸姿态最接近的预置人脸姿态rec_posturei,具体包括如下六个步骤:In this embodiment, in the preset face pose list REC_Posture, obtaining the preset face pose rec_posture i that is closest to the current face pose specifically includes the following six steps:
第一,当N==1时(仅预置了1个推荐人脸姿态),则直接将当前预置的人脸姿态作为与预览人脸姿态最接近的预置人脸姿态;First, when N==1 (only one recommended face pose is preset), the currently preset face pose is directly used as the preset face pose closest to the preview face pose;
第二,当N==2时,对于当前预览人脸关键点列表pre_posture,计算其与预置的人脸姿态列表REC_Posture中的每一个预置人脸姿态的人脸关键点列表rec_posturei的单应性矩阵Hi:Second, when N==2, for the current preview face key point list pre_posture, calculate the single difference between it and the face key point list rec_posture i of each preset face pose in the preset face pose list REC_Posture The adaptive matrix H i :
Hi=finHomo(pre_posture,rec_posturei)。H i =finHomo(pre_posture,rec_posture i ).
第三,选取M2个既定的图像标定关键点(如图像原点、图像中心点、图像左下点,图像右下点,图像右上点等),其中M2≥2。Third, select M 2 predetermined image calibration key points (such as image origin, image center point, image lower left point, image lower right point, image upper right point, etc.), where M 2 ≥2.
第四,对于cb_keypoint中的每一个标定点keypointi,根据预览人脸关键点列表pre_posture与预置的人脸姿态列表REC_Posture中的每一个预置人脸姿态的人脸关键点列表rec_posturei的单应性矩阵Hi,求其变换后的坐标位置:Fourth, for each calibration point keypoint i in cb_keypoint, according to the single face key point list rec_posture i of each preset face pose list in the preview face key point list pre_posture and the preset face pose list REC_Posture Responsive matrix H i , find its transformed coordinate position:
其中:in:
keypointi,j ′=keypointj*Hi。keypoint i,j ′ =keypoint j *H i .
第五,对于每一个cb_keypointi ′,求取cb_keypoint与cb_keypointi ′的平均欧氏距离:Fifth, for each cb_keypoint i ′ , find the average Euclidean distance between cb_keypoint and cb_keypoint i ′ :
其中:in:
x1=keypointi,j ′.x。x1=keypoint i,j ′ .x.
x2=keypointj.x。x2=keypoint j .x.
y1=keypointi,j ′.y。y1=keypoint i, j′.y .
y2=keypointj.y。y2=keypoint j.y.
d1=keypointi,j ′.d。d1=keypoint i,j ′ .d.
d2=keypointj.d。d2=keypoint j.d.
第六,获取平均欧氏距离最小的预置的人脸姿态,作为与预览人脸姿态最接近的人脸姿态mindiss_rec_posture。Sixth, obtain the preset face pose with the smallest average Euclidean distance as the face pose mindiss_rec_posture that is closest to the preview face pose.
在本实施例中,对于当前预览人脸姿态pre_posture,与所述与其最接近的推荐的人脸姿态mindiss_rec_posture,基于多视角计算人脸调整方式,具体包括如下四个步骤:In this embodiment, for the currently previewed face pose pre_posture, and the recommended face pose mindiss_rec_posture closest to it, the face adjustment method is calculated based on multiple viewing angles, which specifically includes the following four steps:
第一,获取预置的多视角Mul_VS;所述多视角包含多个特征点对,如(左眼外眼角,右眼外眼角)、(额头中点,下巴中点)等;不同视角下的特征点对可以描述当前人脸姿态特征,所述多视角中的各个视角按照既定优先级排列:First, obtain a preset multi-view Mul_VS; the multi-view includes multiple feature point pairs, such as (left eye outer corner, right eye outer corner), (forehead midpoint, chin midpoint), etc.; The feature point pair can describe the current face pose feature, and each perspective in the multi-view angle is arranged according to the established priority:
Mul_VS={vs1,vs2,……}。Mul_VS={vs 1 ,vs 2 ,...}.
vsi={kp1,kp2}。vs i ={kp 1 ,kp 2 }.
第二,对于多视角Mul_VS中的各个视角vsi,获取其在预览人脸姿态pre_posture中所对应的关键点及在推荐mindiss_rec_posture人脸姿态中所对应的的关键点:Second, for each view vs i in the multi-view Mul_VS, obtain the key points corresponding to the preview face pose pre_posture and the key points corresponding to the recommended mindiss_rec_posture face pose:
pre_vsi={keypointkp1,keypointkp2}。pre_vs i = {keypoint kp1 , keypoint kp2 }.
rec_vsi={keypointkp1,keypointkp2}。rec_vs i = {keypoint kp1 , keypoint kp2 }.
其中,pre_vsi中的关键点对组成的三位向量(keypointkp1→keypointkp2) 表述为:Among them, the three-dimensional vector (keypoint kp1 →keypoint kp2 ) composed of keypoint pairs in pre_vs i is expressed as:
pre_veci={x1,y1,z1}。pre_vec i ={x1,y1,z1}.
x1=pre_vsi.keypointkp2.x-pre_vsi.keypointkp1.x。x1=pre_vs i .keypoint kp2 .x-pre_vs i .keypoint kp1 .x.
y1=pre_vsi.keypointkp2.y-pre_vsi.keypointkp1.y。y1=pre_vs i .keypoint kp2 .y-pre_vs i .keypoint kp1 .y.
z1=pre_vsi.keypointkp2.d-pre_vsi.keypointkp1.d。z1=pre_vs i .keypoint kp2 .d-pre_vs i .keypoint kp1 .d.
同理,rec_vsi中的关键点对组成的三位向量(keypointkp1→keypointkp2) 表述为:Similarly, the three-dimensional vector (keypoint kp1 →keypoint kp2 ) composed of keypoint pairs in rec_vs i is expressed as:
rec_veci={x2,y2,z2}。rec_vec i ={x2,y2,z2}.
x2=rec_vsi.keypointkp2.x-rec_vsi.keypointkp1.x。x2=rec_vs i .keypoint kp2 .x-rec_vs i .keypoint kp1 .x.
y2=rec_vsi.keypointkp2.y-rec_vsi.keypointkp1.y。y2=rec_vs i .keypoint kp2 .y-rec_vs i .keypoint kp1 .y.
z2=rec_vsi.keypointkp2.d-rec_vsi.keypointkp1.d。z2=rec_vs i .keypoint kp2 .d-rec_vs i .keypoint kp1 .d.
第三,计算缩放尺度scalei:Third, calculate the scaling scale scale i :
第四,计算旋转角度θi:Fourth, calculate the rotation angle θ i :
θi=acos(pre_veci·rec_veci/||pre_veci||||rec_veci||)。θ i =acos(pre_vec i ·rec_vec i /||pre_vec i ||||rec_vec i ||).
在本实施例中,获取既定缩放尺度阈值S_TH及旋转角度阈值θ_TH。In this embodiment, a predetermined scaling scale threshold S_TH and a rotation angle threshold θ_TH are obtained.
在本实施例中,根据既定优先级顺序,对多视角Mul_VS中的各个视角vsi进行约束检查,具体包括如下两个步骤:In this embodiment, a constraint check is performed on each view vs i in the multi-view Mul_VS according to a predetermined priority order, which specifically includes the following two steps:
第一,获取当前最高优先级视角vsi及其对应的缩放尺度scalei和旋转角度θi。First, obtain the current highest priority viewing angle vs i and its corresponding scaling scale i and rotation angle θ i .
第二,根基既定阈值S_TH及θ_TH,判断是否满足约束条件;所述约束条件为:Second, based on the established thresholds S_TH and θ_TH, determine whether the constraints are met; the constraints are:
scalei≤S_TH。scale i ≤ S_TH.
θi≤θ_TH。θ i ≤ θ_TH.
在本实施例中,若当前视角满足约束条件,则检查下一视角是否满足约束条件;若当前视角不满足约束条件,则根据缩放尺度scalei和旋转角度θi提示用户调整姿态。In this embodiment, if the current viewing angle satisfies the constraints, check whether the next viewing angle satisfies the constraints; if the current viewing angle does not meet the constraints, the user is prompted to adjust the posture according to the scaling scale scale i and the rotation angle θ i .
本实施例的有益效果在于,通过获取包含人脸的预览图像,其中,所述预览图像包括深度图像以及所述深度图像对应的彩色图像;根据所述彩色图像进行人脸关键点检测,以及,根据所述深度图像获取所述人脸关键点的深度信息;获取与当前人脸姿态最接近的预置人脸姿态,并基于多视角计算所述当前人脸姿态的调整方式。实现了一种更为人性化的证件照拍摄方案,通过结合深度图像对人脸姿态进行识别和调整,提升了证件照的拍摄效果,增强了用户对于证件照拍摄功能的使用体验。The beneficial effect of this embodiment is that, by acquiring a preview image containing a human face, the preview image includes a depth image and a color image corresponding to the depth image; performing face key point detection according to the color image, and, Obtain the depth information of the face key points according to the depth image; obtain the preset face pose closest to the current face pose, and calculate the adjustment mode of the current face pose based on multiple perspectives. A more user-friendly ID photo shooting solution is realized. By combining the depth image to identify and adjust the face posture, the effect of ID photo shooting is improved, and the user experience of the ID photo shooting function is enhanced.
实施例三Embodiment 3
基于上述实施例,本发明还提出了一种证件照拍摄设备,该设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上任一项所述的证件照拍摄方法的步骤。Based on the above embodiments, the present invention also provides a device for photographing a certificate, the device includes a memory, a processor, and a computer program stored on the memory and running on the processor, the computer program being When the processor is executed, the steps of the method for photographing a certificate photo as described in any one of the above are realized.
需要说明的是,上述设备实施例与方法实施例属于同一构思,其具体实现过程详细见方法实施例,且方法实施例中的技术特征在设备实施例中均对应适用,这里不再赘述。It should be noted that the above device embodiments and method embodiments belong to the same concept, and the specific implementation process is detailed in the method embodiments, and the technical features in the method embodiments are correspondingly applicable in the device embodiments, which will not be repeated here.
实施例四Embodiment 4
基于上述实施例,本发明还提出了一种计算机可读存储介质,该计算机可读存储介质上存储有证件照拍摄程序,证件照拍摄程序被处理器执行时实现如上述任一项所述的证件照拍摄方法的步骤。Based on the above embodiments, the present invention also proposes a computer-readable storage medium, where an ID photo shooting program is stored on the computer-readable storage medium. The steps of how to take ID photos.
需要说明的是,上述介质实施例与方法实施例属于同一构思,其具体实现过程详细见方法实施例,且方法实施例中的技术特征在介质实施例中均对应适用,这里不再赘述。It should be noted that the above-mentioned medium embodiments and method embodiments belong to the same concept, and the specific implementation process is detailed in the method embodiments, and the technical features in the method embodiments are all applicable in the medium embodiments, which will not be repeated here.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products are stored in a storage medium (such as ROM/RAM, magnetic disk, CD), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present invention.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, without departing from the scope of protection of the present invention and the claims, many forms can be made, which all belong to the protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210326516.XA CN114727017B (en) | 2022-03-30 | 2022-03-30 | ID photo shooting method, device and computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210326516.XA CN114727017B (en) | 2022-03-30 | 2022-03-30 | ID photo shooting method, device and computer-readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114727017A true CN114727017A (en) | 2022-07-08 |
CN114727017B CN114727017B (en) | 2024-11-26 |
Family
ID=82240512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210326516.XA Active CN114727017B (en) | 2022-03-30 | 2022-03-30 | ID photo shooting method, device and computer-readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114727017B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205462A (en) * | 2015-09-18 | 2015-12-30 | 北京百度网讯科技有限公司 | Shooting promoting method and device |
CN111093022A (en) * | 2018-10-24 | 2020-05-01 | 西安中兴新软件有限责任公司 | Image shooting method, device, terminal and computer storage medium |
CN111131702A (en) * | 2019-12-25 | 2020-05-08 | 航天信息股份有限公司 | Method and device for acquiring image, storage medium and electronic equipment |
CN113810588A (en) * | 2020-06-11 | 2021-12-17 | 青岛海信移动通信技术股份有限公司 | Image synthesis method, terminal and storage medium |
CN113822256A (en) * | 2021-11-24 | 2021-12-21 | 北京的卢深视科技有限公司 | Face recognition method, electronic device and storage medium |
US20220044441A1 (en) * | 2020-01-29 | 2022-02-10 | Boston Polarimetrics, Inc. | Systems and methods for pose detection and measurement |
-
2022
- 2022-03-30 CN CN202210326516.XA patent/CN114727017B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205462A (en) * | 2015-09-18 | 2015-12-30 | 北京百度网讯科技有限公司 | Shooting promoting method and device |
CN111093022A (en) * | 2018-10-24 | 2020-05-01 | 西安中兴新软件有限责任公司 | Image shooting method, device, terminal and computer storage medium |
CN111131702A (en) * | 2019-12-25 | 2020-05-08 | 航天信息股份有限公司 | Method and device for acquiring image, storage medium and electronic equipment |
US20220044441A1 (en) * | 2020-01-29 | 2022-02-10 | Boston Polarimetrics, Inc. | Systems and methods for pose detection and measurement |
CN113810588A (en) * | 2020-06-11 | 2021-12-17 | 青岛海信移动通信技术股份有限公司 | Image synthesis method, terminal and storage medium |
CN113822256A (en) * | 2021-11-24 | 2021-12-21 | 北京的卢深视科技有限公司 | Face recognition method, electronic device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN114727017B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107566730B (en) | A panoramic image shooting method and mobile terminal | |
WO2020020134A1 (en) | Photographing method and mobile terminal | |
CN107682639B (en) | Image processing method, device and mobile terminal | |
CN107864336B (en) | Image processing method and mobile terminal | |
CN107644396B (en) | Lip color adjusting method and device | |
WO2021013009A1 (en) | Photographing method and terminal device | |
CN107845057A (en) | One kind is taken pictures method for previewing and mobile terminal | |
WO2021259093A1 (en) | Image display method and apparatus, computer readable storage medium, and electronic apparatus | |
CN110059590A (en) | A kind of face living body verification method, device, mobile terminal and readable storage medium storing program for executing | |
CN109739602A (en) | A kind of mobile terminal wallpaper setting method and device, mobile terminal and storage medium | |
CN110213485A (en) | A kind of image processing method and terminal | |
CN107102803B (en) | A picture display method, device and computer-readable storage medium | |
WO2021190387A1 (en) | Detection result output method, electronic device, and medium | |
CN114900613A (en) | Control method, intelligent terminal and storage medium | |
CN109005355B (en) | Shooting method and mobile terminal | |
CN110443752B (en) | Image processing method and mobile terminal | |
CN108446665A (en) | A kind of face identification method and mobile terminal | |
CN113301252B (en) | Image photographing method, mobile terminal and computer readable storage medium | |
CN113222850A (en) | Image processing method, device and computer readable storage medium | |
CN114727017A (en) | A method, device and computer-readable storage medium for photographing ID photos | |
WO2024055333A1 (en) | Image processing method, smart device, and storage medium | |
CN110784648B (en) | Image processing method and electronic equipment | |
CN114143467A (en) | A shooting method based on auto focus zoom, mobile terminal and storage medium | |
CN114307136A (en) | Game screen-throwing power consumption control method and device and computer readable storage medium | |
CN107872619B (en) | Photographing processing method, device and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |