CN114725767A - Electro-optical Q-switching based on relaxor ferroelectric single crystal - Google Patents
Electro-optical Q-switching based on relaxor ferroelectric single crystal Download PDFInfo
- Publication number
- CN114725767A CN114725767A CN202210373915.1A CN202210373915A CN114725767A CN 114725767 A CN114725767 A CN 114725767A CN 202210373915 A CN202210373915 A CN 202210373915A CN 114725767 A CN114725767 A CN 114725767A
- Authority
- CN
- China
- Prior art keywords
- crystal
- pmn
- pin
- wave plate
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/115—Q-switching using intracavity electro-optic devices
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及基于弛豫铁电单晶的电光调Q开关,属于激光器技术领域。The invention relates to an electro-optical Q-switching switch based on a relaxor ferroelectric single crystal, and belongs to the technical field of lasers.
背景技术Background technique
脉冲激光器具有高峰值功率的优点,在激光加工、测距、通信、红外对抗等民用及军用领域均有广泛的应用。Pulsed lasers have the advantage of high peak power and are widely used in civil and military fields such as laser processing, ranging, communications, and infrared countermeasures.
电光调Q开关是脉冲激光器的核心器件,具有开关时间短,效率高的优势,可用于获得窄脉宽大能量的激光输出。电光调Q开关的工作原理为利用晶体的电光效应,初始时对晶体施加1/4λ波电压,开关为关闭状态,激光谐振腔处于低Q状态,为储能阶段。储能完成后撤去电压,使得谐振腔内的能量快速释放,处于高Q状态并输出高峰值功率的脉冲激光。The electro-optical Q-switch is the core device of the pulsed laser, which has the advantages of short switching time and high efficiency, and can be used to obtain laser output with narrow pulse width and high energy. The working principle of the electro-optical Q-switch is to use the electro-optical effect of the crystal. Initially, a 1/4λ wave voltage is applied to the crystal, the switch is turned off, and the laser resonator is in a low-Q state, which is the energy storage stage. After the energy storage is completed, the voltage is removed, so that the energy in the resonator is released quickly, and the pulsed laser with high peak power is output in a high-Q state.
LiNbO3(LN)和KD2PO4(DKDP)晶体是目前电光调Q开关中使用最多的两种晶体。其中LN晶体的光学损伤阈值低,约为100MWcm-2,不适用于高功率激光;DKDP晶体具有吸湿特性,需要复杂的防潮工艺,增大了器件的插入损耗。同时,LN和DKDP晶体的有效电光系数rc分别约为21和24pmV-1,需要高驱动电压或大尺寸的晶体来满足使用需求。因此现有电光调Q开关需要配置高压电源,具有高成本和难以小型化的缺点,已成为提高设备性能的关键障碍。LiNbO3 (LN) and KD 2 PO 4 (DKDP) crystals are currently the two most used crystals in electro-optical Q-switches. Among them, the optical damage threshold of LN crystal is low, about 100MWcm -2 , which is not suitable for high-power lasers; DKDP crystal has moisture absorption characteristics, which requires complex moisture-proof technology, which increases the insertion loss of the device. At the same time, the effective electro-optic coefficients rc of LN and DKDP crystals are about 21 and 24pmV -1 respectively, which require high driving voltage or large-sized crystals to meet the application requirements. Therefore, the existing electro-optical Q-switch needs to be equipped with a high-voltage power supply, which has the disadvantages of high cost and difficulty in miniaturization, which has become a key obstacle to improving the performance of the device.
发明内容SUMMARY OF THE INVENTION
针对现有电光调Q开关需要配置高压电源和采用大尺寸晶体,存在的成本高和难以小型化的问题,本发明提供一种基于弛豫铁电单晶的电光调Q开关。Aiming at the problems of high cost and difficulty in miniaturization that the existing electro-optical Q-switch needs to be configured with a high-voltage power supply and large-sized crystals, the present invention provides an electro-optical Q-switch based on a relaxor ferroelectric single crystal.
本发明的一种基于弛豫铁电单晶的电光调Q开关,包括光纤耦合半导体激光器、后反射镜、Nd:YVO4晶体、偏振分束器、四分之一波片、八分之一波片、PIN-PMN-PT晶体和输出镜,An electro-optical Q-switching switch based on relaxor ferroelectric single crystal of the present invention includes a fiber-coupled semiconductor laser, a back reflector, an Nd:YVO 4 crystal, a polarization beam splitter, a quarter-wave plate, an eighth Waveplate, PIN-PMN-PT crystal and output mirror,
光纤耦合半导体激光器用于产生预期中心波长的激光脉冲,所述激光脉冲经后反射镜透射后输出的激光通过Nd:YVO4晶体实现波长转换并实现增益放大,再经偏振分束器输出线偏振光;The fiber-coupled semiconductor laser is used to generate laser pulses with the expected center wavelength. The laser pulses are transmitted through the rear mirror to realize wavelength conversion and gain amplification through the Nd:YVO 4 crystal, and then output linear polarization through the polarization beam splitter. Light;
当PIN-PMN-PT晶体无外加电压时:When the PIN-PMN-PT crystal has no applied voltage:
线偏振光经四分之一波片和八分之一波片进行相位延迟后进入PIN-PMN-PT晶体,PIN-PMN-PT晶体对入射光进行相位延迟后的透射光被输出镜反射后,反向经PIN-PMN-PT晶体进行相位延迟后,再由八分之一波片对PIN-PMN-PT晶体由于双折射效应带来的相位延迟进行相位补偿,再经四分之一波片到达偏振分束器的激光偏振方向与偏振分束器入射激光的偏振方向垂直,无法再通过偏振分束器;此时Nd:YVO4晶体中工作物质持续积累,当前阶段激光谐振腔处于低Q状态;The linearly polarized light enters the PIN-PMN-PT crystal after phase delay by the quarter wave plate and the eighth wave plate, and the transmitted light after the phase delay of the incident light by the PIN-PMN-PT crystal is reflected by the output mirror. , after the phase delay is reversed by the PIN-PMN-PT crystal, the phase delay caused by the birefringence effect of the PIN-PMN-PT crystal is compensated by the eighth wave plate, and then the phase delay caused by the birefringence effect of the PIN-PMN-PT crystal is compensated by the eighth wave plate, The polarization direction of the laser beam arriving at the polarization beam splitter is perpendicular to the polarization direction of the incident laser beam from the polarization beam splitter, and can no longer pass through the polarization beam splitter; at this time, the working substance in the Nd:YVO 4 crystal continues to accumulate, and the laser resonator is at a low level at the current stage. Q state;
当PIN-PMN-PT晶体外加电压时,PIN-PMN-PT晶体相当于四分之一波片:When a voltage is applied to the PIN-PMN-PT crystal, the PIN-PMN-PT crystal is equivalent to a quarter wave plate:
线偏振光经四分之一波片和八分之一波片进行相位延迟后,再进入PIN-PMN-PT晶体进行相位延迟,PIN-PMN-PT晶体的透射光被输出镜反射后,再反向经过PIN-PMN-PT晶体、八分之一波片和四分之一波片,经由四分之一波片到达偏振分束器的激光偏振方向与偏振分束器入射激光的偏振方向相同,反向到达偏振分束器的激光通过偏振分束器后经Nd:YVO4晶体到达后反射镜;当前阶段激光谐振腔处于高Q状态,激光谐振腔内建立起强激光振荡后,经输出镜输出激光脉冲。The linearly polarized light is phase-delayed by a quarter-wave plate and an eighth-wave plate, and then enters the PIN-PMN-PT crystal for phase delay. After the transmitted light of the PIN-PMN-PT crystal is reflected by the output mirror, Reverse through the PIN-PMN-PT crystal, the eighth wave plate and the quarter wave plate, the polarization direction of the laser reaching the polarization beam splitter through the quarter wave plate and the polarization direction of the incident laser beam from the polarization beam splitter In the same way, the laser that reaches the polarizing beam splitter in the reverse direction passes through the polarizing beam splitter and then reaches the rear mirror through the Nd:YVO4 crystal; the laser resonator is in a high-Q state at the current stage, and after a strong laser oscillation is established in the laser resonator, the output The mirror outputs laser pulses.
根据本发明的基于弛豫铁电单晶的电光调Q开关,所述光纤耦合半导体激光器产生的激光脉冲中心波长为808nm,重复频率为10Hz至2kHz,脉冲持续时间为100μs。According to the electro-optical Q-switch based on the relaxor ferroelectric single crystal of the present invention, the center wavelength of the laser pulse generated by the fiber-coupled semiconductor laser is 808 nm, the repetition frequency is 10 Hz to 2 kHz, and the pulse duration is 100 μs.
根据本发明的基于弛豫铁电单晶的电光调Q开关,所述光纤耦合半导体激光器的光纤直径为200μm,数值孔径为0.22。According to the electro-optical Q-switching switch based on the relaxor ferroelectric single crystal of the present invention, the fiber diameter of the fiber-coupled semiconductor laser is 200 μm, and the numerical aperture is 0.22.
根据本发明的基于弛豫铁电单晶的电光调Q开关,Nd:YVO4晶体包括尺寸为3mm×3mm×5mm的α方向切割的0.5at.%掺杂Nd:YVO4晶体;Nd:YVO4晶体的光正向传递时的输出光面为抛光面并以布儒斯特角取向。According to the electro-optical Q-switch based on relaxor ferroelectric single crystal of the present invention, the Nd:YVO4 crystal includes a 0.5at.% doped Nd:YVO4 crystal with a size of 3mm×3mm×5mm cut in the α direction ; The output light surface when the light is transmitted in the forward direction is polished and oriented at the Brewster angle.
根据本发明的基于弛豫铁电单晶的电光调Q开关,所述八分之一波片用于补偿PIN-PMN-PT晶体无外加电压时由于双折射引起的光相位延迟。According to the electro-optical Q-switch based on relaxor ferroelectric single crystal of the present invention, the eighth wave plate is used to compensate the optical phase delay caused by birefringence when the PIN-PMN-PT crystal has no applied voltage.
根据本发明的基于弛豫铁电单晶的电光调Q开关,PIN-PMN-PT晶体沿[100]晶向通光,两个对应晶面上镀防反射膜。According to the electro-optical Q-switching switch based on the relaxor ferroelectric single crystal of the present invention, the PIN-PMN-PT crystal transmits light along the [100] crystal direction, and two corresponding crystal faces are coated with anti-reflection films.
根据本发明的基于弛豫铁电单晶的电光调Q开关,所述防反射膜包括内层膜和外层膜,内层膜为HfO2膜,外层膜为SiO2膜,均采用离子束辅助沉积的电子束蒸发方法镀膜。According to the electro-optical Q-switching switch based on relaxor ferroelectric single crystal of the present invention, the anti-reflection film includes an inner layer film and an outer layer film, the inner layer film is a HfO 2 film, and the outer layer film is a SiO 2 film, both of which are made of ionic Coating by electron beam evaporation method of beam assisted deposition.
根据本发明的基于弛豫铁电单晶的电光调Q开关,PIN-PMN-PT晶体镀防反射膜的过程包括:According to the electro-optical Q-switching switch based on the relaxor ferroelectric single crystal of the present invention, the process of coating the PIN-PMN-PT crystal with an anti-reflection film includes:
使用99.95%的HfO2靶和99.99%的SiO2靶;Use 99.95% HfO2 target and 99.99% SiO2 target;
镀膜时,使真空状态压强低于3×10-3Pa,工作压强保持在1×10-2Pa,并使氧气通过考夫曼离子源以12sccm的速率运输到沉积室中。During coating, the vacuum state pressure was kept below 3×10 -3 Pa, the working pressure was maintained at 1×10 -2 Pa, and oxygen was transported into the deposition chamber at a rate of 12 sccm through the Kauffman ion source.
根据本发明的基于弛豫铁电单晶的电光调Q开关,镀防反射膜的过程中,使PIN-PMN-PT晶体保持为30℃。According to the electro-optical Q-switching switch based on the relaxor ferroelectric single crystal of the present invention, the PIN-PMN-PT crystal is kept at 30° C. during the process of coating the anti-reflection film.
本发明的有益效果:本发明基于弛豫铁电单晶PIN-PMN-PT提供了一种电光调Q开关,经验证,与商用DKDP和LN晶体Q开关相比,可在开关体积缩小了一个数量级以上的同时使工作电压从1300~3200V降低到200V,从而缓解高压脉冲的电磁干扰问题。同时PIN-PMN-PT晶体具有高的光学损伤阈值,约为500MWcm-2,并且不需要防潮工艺,因此能够有效实现低驱动电压和Q开关的小型化。Beneficial effects of the present invention: The present invention provides an electro-optical Q-switch based on relaxor ferroelectric single crystal PIN-PMN-PT. It has been verified that compared with commercial DKDP and LN crystal Q switches, the switch volume can be reduced by one At the same time, the working voltage is reduced from 1300 to 3200V to 200V, thereby alleviating the electromagnetic interference problem of high-voltage pulses. At the same time, the PIN-PMN-PT crystal has a high optical damage threshold, about 500MWcm -2 , and does not require a moisture-proof process, so it can effectively achieve low driving voltage and miniaturization of Q-switching.
本发明有助于众多领域的应用发展,例如超小型,低功耗激光雷达,自动驾驶中小型机器人的传感功能以及要求高稳定性的精密医疗和科学设备。The present invention contributes to the development of applications in many fields, such as ultra-small, low-power lidar, sensing functions of small and medium-sized robots for autonomous driving, and precision medical and scientific equipment requiring high stability.
附图说明Description of drawings
图1是本发明所述基于弛豫铁电单晶的电光调Q开关的结构示意图。FIG. 1 is a schematic structural diagram of an electro-optical Q-switched switch based on a relaxor ferroelectric single crystal according to the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but it is not intended to limit the present invention.
具体实施方式一、结合图1所示,本发明提供了一种基于弛豫铁电单晶的电光调Q开关,其特征在于包括光纤耦合半导体激光器1、后反射镜2、Nd:YVO4晶体3、偏振分束器4、四分之一波片5、八分之一波片6、PIN-PMN-PT晶体7和输出镜8,1, the present invention provides an electro-optical Q-switched switch based on a relaxor ferroelectric single crystal, which is characterized by comprising a fiber-coupled
光纤耦合半导体激光器1用于产生预期中心波长的激光脉冲,所述激光脉冲经后反射镜2透射后输出的激光通过Nd:YVO4晶体3实现波长转换并实现增益放大,再经偏振分束器4输出线偏振光;The fiber-coupled
当PIN-PMN-PT晶体7无外加电压时:When PIN-PMN-
线偏振光经四分之一波片5和八分之一波片6进行相位延迟后进入PIN-PMN-PT晶体7,PIN-PMN-PT晶体7对入射光进行相位延迟后的透射光被输出镜8反射后,反向经PIN-PMN-PT晶体7进行相位延迟后,再由八分之一波片6对PIN-PMN-PT晶体7由于双折射效应带来的相位延迟进行相位补偿,再经四分之一波片5到达偏振分束器4的激光偏振方向与偏振分束器4入射激光的偏振方向垂直,无法再通过偏振分束器4;此时Nd:YVO4晶体3中工作物质持续积累,当前阶段激光谐振腔处于低Q状态;The linearly polarized light enters the PIN-PMN-
当PIN-PMN-PT晶体7外加电压时,PIN-PMN-PT晶体7相当于四分之一波片:When a voltage is applied to the PIN-PMN-
线偏振光经四分之一波片5和八分之一波片6进行相位延迟后,再进入PIN-PMN-PT晶体7进行相位延迟,PIN-PMN-PT晶体7的透射光被输出镜8反射后,再反向经过PIN-PMN-PT晶体7、八分之一波片6和四分之一波片5,经由四分之一波片5到达偏振分束器4的激光偏振方向与偏振分束器4入射激光的偏振方向相同,反向到达偏振分束器4的激光通过偏振分束器4后经Nd:YVO4晶体3到达后反射镜2;当前阶段激光谐振腔处于高Q状态,激光谐振腔内建立起强激光振荡后,经输出镜8输出激光脉冲。四分之一波片5用于提供π/4的相位延迟。After the linearly polarized light is phase delayed by the
本实施方式中,在后反射镜2与输出镜8之间形成激光谐振腔。In this embodiment, a laser resonator is formed between the
作为示例,所述光纤耦合半导体激光器1产生的激光脉冲中心波长为808nm,重复频率为10Hz至2kHz,脉冲持续时间为100μs,泵浦脉冲能量高达3.7mJ。As an example, the center wavelength of the laser pulse generated by the fiber-coupled
808nm中心波长泵浦光可被Nd:YVO4晶体3吸收转换为1064nm的输出光,过程中Nd:YVO4晶体3作为激光谐振腔内的增益介质。为避免热沉积效应,将重复频率设定为10Hz至2kHz,脉冲持续时间设定为100μs。The 808nm central wavelength pump light can be absorbed and converted into 1064nm output light by Nd:
后反射镜2在1064nm下具有高反射率(>99.5%)和808nm下的高透射率(>99.6%),输出镜8在1064nm波长下反射率为10%。
本实施方式中,通过在PIN-PMN-PT晶体7上施加电压控制信号,即重复频率为10Hz至2kHz的脉冲Vπ/2电压,使Q开关处于工作状态。晶体上无外加电压时,激光两次经过四分之一波片,到达偏振器的偏振方向与入射偏振垂直,其中晶体双折射引起的相位延迟由八分之一波片补偿,因此不能通过偏振器。此时Nd:YVO4晶体中工作物质持续积累,当前阶段激光谐振腔处于低Q状态。当工作电压作用在PIN-PMN-PT晶体上时,晶体相当于一个四分之一波片,激光经反射镜反射后两次经过晶体与四分之一波片后,激光偏振态不变,谐振腔内建立起强激光振荡,谐振腔处于高Q状态,在谐振腔的输出端出射波长为1064nm的脉冲激光。In this embodiment, by applying a voltage control signal to the PIN-PMN-
作为示例,所述光纤耦合半导体激光器1的光纤直径为200μm,数值孔径为0.22。可适配于后反射镜2与输出镜8之间形成的谐振腔。As an example, the fiber diameter of the fiber-coupled
作为示例,Nd:YVO4晶体3包括尺寸为3mm×3mm×5mm的α方向切割的0.5at.%掺杂Nd:YVO4晶体;Nd:YVO4晶体3的光正向传递时的输出光面为抛光面并以布儒斯特角取向。所述Nd:YVO4晶体3作为振荡器的增益介质,可防止寄生振荡。As an example, the Nd:YVO4 crystal 3 includes a 0.5at.% doped Nd:YVO4 crystal with a size of 3mm×3mm×5mm cut in the α direction; the output light surface of the Nd:
进一步,所述八分之一波片6用于补偿PIN-PMN-PT晶体7无外加电压时由于双折射引起的光相位延迟。Further, the
PIN-PMN-PT晶体7在正交相下属于双轴晶体,相比于单轴晶体LN和DKDP,双轴晶体由于双折射效应会产生相位延迟。因此在谐振腔中增加八分之一波片6,其位置经过调整,可完全补偿PIN-PMN-PT晶体7由于双折射引起的相位延迟,确保非运行模式下振荡关闭,激光腔处于高损耗状态,从而使激光输出功率为零。使用八分之一波片6补偿相位具有结构简单以及可连续调节的优点。The PIN-PMN-
进一步,PIN-PMN-PT晶体7沿[100]晶向通光,两个对应晶面上镀防反射膜。Further, the PIN-PMN-
为了减少晶体表面反射产生的光强损失,在PIN-PMN-PT晶体7的两个通光面上镀防反射膜,使晶体在1064nm波长下透过率达到99.6%。In order to reduce the loss of light intensity caused by reflection on the crystal surface, anti-reflection films are coated on the two clear surfaces of the PIN-PMN-
作为示例,所述防反射膜包括内层膜和外层膜,内层膜为HfO2膜,外层膜为SiO2膜,均采用离子束辅助沉积的电子束蒸发方法镀膜。As an example, the anti-reflection film includes an inner layer film and an outer layer film, the inner layer film is a HfO 2 film, and the outer layer film is a SiO 2 film, both of which are coated by the electron beam evaporation method of ion beam assisted deposition.
再进一步,PIN-PMN-PT晶体7镀防反射膜的过程包括:Further, the process of anti-reflection coating on PIN-PMN-
使用99.95%的HfO2靶和99.99%的SiO2靶;Use 99.95% HfO2 target and 99.99% SiO2 target;
镀膜时,在HfO2靶和SiO2靶蒸发过程中,使真空状态压强低于3×10-3Pa,工作压强保持在1×10-2Pa,并使氧气通过考夫曼离子源以12sccm的速率运输到沉积室中。When coating, during the evaporation of the HfO 2 target and the SiO 2 target, the vacuum state pressure was kept below 3×10 -3 Pa, the working pressure was kept at 1×10 -2 Pa, and the oxygen was passed through the Kaufman ion source at 12sccm. transport into the deposition chamber.
在整个沉积过程中,PIN-PMN-PT晶体7温度为30℃,远低于PIN-PMN-PT晶体的相变温度,以确保不改变晶体内部的电畴状态。During the entire deposition process, the temperature of the PIN-PMN-
本实施方式中,镀防反射膜的过程中,使PIN-PMN-PT晶体7保持为30℃。In this embodiment, the PIN-PMN-
为避免镀膜过程中晶体温度升高发生相变,内部的畴结构状态改变,镀膜时要始终将PIN-PMN-PT晶体7的温度保持在室温附近。In order to avoid the phase transition due to the increase of the crystal temperature during the coating process and the change of the internal domain structure state, the temperature of the PIN-PMN-
具体实施例:Specific examples:
使用尺寸为5mm×5mm×1.5mm的PIN-PMN-PT晶体制作Q开关,并将其与商用DKDP和LN晶体Q开关进行比较:获得PIN-PMN-PT晶体Q开关尺寸为:12mm×3.4mm;相比于DKDP晶体Q开关尺寸为15mm×18mm和LN的Q开关尺寸为22mm×22mm,减小了超过一个数量级。A Q-switch was fabricated using a PIN-PMN-PT crystal with dimensions of 5mm × 5mm × 1.5mm and compared with commercial DKDP and LN crystal Q-switches: Obtaining PIN-PMN-PT crystal Q-switch dimensions is: 12mm × 3.4mm; compared to the size of the DKDP crystal Q switch Q-switch dimensions of 15mm x 18mm and LN It is 22mm×22mm, which is reduced by more than one order of magnitude.
PIN-PMN-PT晶体Q开关尺寸小的原因在于其大的有效电光系数rc,为670pmV-1;理论上减小Q开关通光方向的长度会导致工作电压的增大,根据电光调Q开关工作电压的公式:The reason for the small size of the Q-switch of the PIN-PMN-PT crystal is its large effective electro-optical coefficient rc, which is 670pmV -1 ; theoretically, reducing the length of the Q-switch light-passing direction will lead to an increase in the operating voltage. According to the electro-optical Q-switching The formula for switching operating voltage:
式中Vπ/2是四分之一波电压,即工作电压,λ是波长,d是PIN-PMN-PT晶体两个电极之间的距离,n是折射率,rc是有效电光系数,l是PIN-PMN-PT晶体在通光方向上的长度。由于PIN-PMN-PT晶体具有大的有效电光系数,工作电压只有0.2kV,与DKDP和LN相比,分别减小了16倍和6.5倍。where V π/2 is the quarter-wave voltage, that is, the working voltage, λ is the wavelength, d is the distance between the two electrodes of the PIN-PMN-PT crystal, n is the refractive index, rc is the effective electro-optic coefficient, l is the length of the PIN-PMN-PT crystal in the light-passing direction. Due to the large effective electro-optic coefficient of PIN-PMN-PT crystal, the working voltage is only 0.2kV, which is 16 times and 6.5 times lower than that of DKDP and LN, respectively.
按图1所示的结构对PIN-PMN-PT晶体制作的Q开关进行测试。在1kHz重复频率,3.7mJ泵浦能量下,PIN-PMN-PT晶体输出的脉冲宽度为1.8ns,与商用Q开关性能相比有明显改善。PIN-PMN-PT晶体能够输出更小的脉冲宽度,这是由于脉冲宽度与激光在腔内传播的时间正相关的缘故,小尺寸的PIN-PMN-PT晶体减小了Q开关插入带来的额外光程,即电光晶体在激光传输方向上的长度与晶体折射率乘积。因此PIN-PMN-PT晶体在腔内调Q时间更短,有利于输出激光脉冲宽度的减小。According to the structure shown in Figure 1, the Q-switch made of PIN-PMN-PT crystal is tested. At a repetition rate of 1 kHz and a pump energy of 3.7 mJ, the output pulse width of the PIN-PMN-PT crystal is 1.8 ns, which is a significant improvement over commercial Q-switching performance. The PIN-PMN-PT crystal can output a smaller pulse width, which is due to the positive correlation between the pulse width and the propagation time of the laser in the cavity, and the small size of the PIN-PMN-PT crystal reduces the Q-switch insertion. The extra optical path is the product of the length of the electro-optic crystal in the laser transmission direction and the refractive index of the crystal. Therefore, the Q-switching time of the PIN-PMN-PT crystal in the cavity is shorter, which is beneficial to the reduction of the output laser pulse width.
峰值功率是Q开关的另一个重要性能参数,PIN-PMN-PT晶体Q开关在1kHz重复频率,泵浦能量为3.7mJ时输出的最大峰值功率为154kW,这与商用DKDP和LN晶体Q开关的峰值功率几乎相同。此结果进一步表明PIN-PMN-PT晶体符合商业Q开关的标准。Peak power is another important performance parameter of the Q-switch. The PIN-PMN-PT crystal Q-switch can output a maximum peak power of 154kW at a repetition rate of 1kHz and a pump energy of 3.7mJ, which is comparable to the commercial DKDP and LN crystal Q-switches. Peak power is almost the same. This result further indicates that the PIN-PMN-PT crystal meets the criteria for commercial Q-switching.
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其它所述实施例中。Although the invention has been described herein with reference to specific embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the invention. It should therefore be understood that many modifications may be made to the exemplary embodiments and other arrangements may be devised without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood that the features described in the various dependent claims and herein may be combined in different ways than are described in the original claims. It will also be appreciated that features described in connection with a single embodiment may be used in other described embodiments.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373915.1A CN114725767A (en) | 2022-04-11 | 2022-04-11 | Electro-optical Q-switching based on relaxor ferroelectric single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373915.1A CN114725767A (en) | 2022-04-11 | 2022-04-11 | Electro-optical Q-switching based on relaxor ferroelectric single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114725767A true CN114725767A (en) | 2022-07-08 |
Family
ID=82244683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210373915.1A Pending CN114725767A (en) | 2022-04-11 | 2022-04-11 | Electro-optical Q-switching based on relaxor ferroelectric single crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114725767A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039511A (en) * | 1988-07-01 | 1990-02-07 | 菲利浦光灯制造公司 | φ-the coating of DFB/DBR laser diode |
CN105308496A (en) * | 2012-04-04 | 2016-02-03 | P·韩 | Electro-optical single crystal element, method for the preparation thereof, and systems employing the same |
CN109462138A (en) * | 2018-12-03 | 2019-03-12 | 南京罗默激光科技有限公司 | A kind of Gao Zhongying short pulse infrared laser |
CN114236884A (en) * | 2021-12-23 | 2022-03-25 | 中国电子科技集团公司第二十六研究所 | Lithium niobate-based high-speed high-threshold acousto-optic modulator |
-
2022
- 2022-04-11 CN CN202210373915.1A patent/CN114725767A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039511A (en) * | 1988-07-01 | 1990-02-07 | 菲利浦光灯制造公司 | φ-the coating of DFB/DBR laser diode |
CN105308496A (en) * | 2012-04-04 | 2016-02-03 | P·韩 | Electro-optical single crystal element, method for the preparation thereof, and systems employing the same |
CN109462138A (en) * | 2018-12-03 | 2019-03-12 | 南京罗默激光科技有限公司 | A kind of Gao Zhongying short pulse infrared laser |
CN114236884A (en) * | 2021-12-23 | 2022-03-25 | 中国电子科技集团公司第二十六研究所 | Lithium niobate-based high-speed high-threshold acousto-optic modulator |
Non-Patent Citations (1)
Title |
---|
戴达煌等编著, 北京:冶金工业出版社 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6259711B1 (en) | Laser | |
CN105140772B (en) | A kind of electro-optical Q-switch that laser heat depolarization is fully compensated | |
CN103779776B (en) | Seed injection single-frequency pulse laser based on tunable cavity length of electro-optical crystal | |
CN100407519C (en) | LD-pumped co-gain dual-cavity dual-frequency Nd:YAG laser | |
CN105161961A (en) | Micro-pulse laser radar light source with high pulse energy | |
CN110854659A (en) | Double-frequency Faraday semiconductor laser and implementation method thereof | |
CN111431021A (en) | Laser with orthogonal polarization output | |
CN109449736B (en) | Compact-structure watt-level continuous wave inner cavity frequency doubling single-frequency laser | |
CN102347585B (en) | One-way traveling wave annular cavity single-frequency quasi-three-level solid laser | |
CA2204563C (en) | Eyesafe laser transmitter with single resonator cavity for both pump laser and optical parametric oscillator | |
US20210391682A1 (en) | Method and Device for Laser Radiation Modulation | |
CN102299469A (en) | Laser for realizing subnanosecond Q-modulated output by controlling pump light characteristic | |
CN111262124A (en) | Brillouin laser | |
CN113937610A (en) | YAG laser with orthogonal linear polarization birefringence and double frequency Nd | |
CN106058625A (en) | Picosecond laser system with self-injection frequency stabilization and pulse amplification functions | |
CN111404009B (en) | Device and method for outputting orthogonal polarization laser based on double Brewster window multiports | |
CN109462138A (en) | A kind of Gao Zhongying short pulse infrared laser | |
CN111509550A (en) | High peak power narrow linewidth 1064nm all-solid-state pulsed laser | |
CN114725767A (en) | Electro-optical Q-switching based on relaxor ferroelectric single crystal | |
WO2024001392A1 (en) | Solid-state laser based on nonlinear amplifying loop mirror | |
CN116581631A (en) | Solid laser and intracavity optical polarizing element for same | |
CN110829172B (en) | Laser output method with repetition frequency 2 times electro-optic Q-switched frequency and laser | |
CN111129917B (en) | Single-block double 45-MgO LN multi-modulation mode-based multifunctional laser device and output method | |
CN212182756U (en) | Laser with orthogonal polarization output | |
JPH0688979A (en) | Q switch/second harmonic generating combined element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |