CN114722350B - A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data - Google Patents
A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data Download PDFInfo
- Publication number
- CN114722350B CN114722350B CN202210390649.3A CN202210390649A CN114722350B CN 114722350 B CN114722350 B CN 114722350B CN 202210390649 A CN202210390649 A CN 202210390649A CN 114722350 B CN114722350 B CN 114722350B
- Authority
- CN
- China
- Prior art keywords
- data
- surface temperature
- cloud
- temperature
- atmospheric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000012795 verification Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 230000010287 polarization Effects 0.000 claims abstract description 18
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000012952 Resampling Methods 0.000 claims description 6
- 230000003203 everyday effect Effects 0.000 claims description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/007—Radiation pyrometry, e.g. infrared or optical thermometry for earth observation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Geometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Computer Graphics (AREA)
- Remote Sensing (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Geology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Environmental & Geological Engineering (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Radiation Pyrometers (AREA)
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及定量遥感技术领域,特别是涉及一种FY-3D被动微波数据云下地表温度反演与验证方法。The invention relates to the field of quantitative remote sensing technology, and in particular to a method for inverting and verifying surface temperature under a cloud using FY-3D passive microwave data.
背景技术Background Art
地表温度是表征地表过程变化的一个非常重要的特征物理量,是研究地表和大气之间物质和能量交换、气候变化等方面不可或缺的一个重要参数,涉及众多基础学科研究和重大应用领域。如何从遥感数据获取的辐射信息中定量反演地表温度是定量遥感领域的难题。目前利用卫星遥感数据进行地表温度反演主要利用热红外遥感数据进行反演。热红外遥感数据的空间分辨率较高,可以达到公里级甚至百米级。但是热红外遥感不能穿透云层,因此只能获取晴空情况下的地表温度。在地表有云覆盖的情况下,被动微波遥感数据由于其可以穿透云层获取云下地表辐射的优势,是获取云下地表温度的有效方法。The surface temperature is a very important characteristic physical quantity that characterizes the changes in surface processes. It is an indispensable parameter for studying the exchange of matter and energy between the surface and the atmosphere, climate change, etc. It involves many basic disciplines and major application fields. How to quantitatively invert the surface temperature from the radiation information obtained from remote sensing data is a difficult problem in the field of quantitative remote sensing. At present, the inversion of surface temperature using satellite remote sensing data mainly uses thermal infrared remote sensing data. The spatial resolution of thermal infrared remote sensing data is relatively high, reaching the kilometer level or even the hundred-meter level. However, thermal infrared remote sensing cannot penetrate clouds, so it can only obtain the surface temperature under clear sky conditions. When the surface is covered with clouds, passive microwave remote sensing data is an effective method to obtain the surface temperature under the clouds because it can penetrate the clouds to obtain the surface radiation under the clouds.
现有的地表温度反演方法存在以下问题:现有的被动微波地表温度算法简单地忽略云层的影响,没有将云层对被动微波辐射的影响定量化,导致云下地表温度反演的精度不足。由于被动微波数据像元尺度在10km级,而地面站点数据代表站点附近的点数据。因此,传统的直接将遥感获取的地表温度与地面站点实测温度进行对比的方法会导致精度评估产生较大误差。The existing surface temperature inversion methods have the following problems: The existing passive microwave surface temperature algorithm simply ignores the influence of clouds and does not quantify the influence of clouds on passive microwave radiation, resulting in insufficient accuracy of surface temperature inversion under clouds. Since the pixel scale of passive microwave data is at the 10km level, and the ground station data represents point data near the station, the traditional method of directly comparing the surface temperature obtained by remote sensing with the measured temperature of the ground station will lead to large errors in accuracy assessment.
因此,现有的被动微波数据云下地表温度反演与验证技术存在缺陷,需要改进。Therefore, the existing passive microwave data subcloud surface temperature inversion and verification technology has defects and needs to be improved.
发明内容Summary of the invention
本发明针对目前云下地表温度反演存在的精度低、验证困难的问题,提供一种FY-3D被动微波数据云下地表温度反演与验证方法,提高云下地表温度的估算与验证精度。Aiming at the problems of low precision and difficult verification in the current inversion of surface temperature under clouds, the present invention provides a method for inverting and verifying surface temperature under clouds using FY-3D passive microwave data, so as to improve the estimation and verification accuracy of surface temperature under clouds.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:
一种FY-3D被动微波数据云下地表温度反演与验证方法,包括如下步骤:A method for inverting and verifying the surface temperature under the cloud using FY-3D passive microwave data includes the following steps:
S1,基于搭载在FY-3D卫星上的MWRI传感器,获取FY-3D被动微波数据,并进行数据预处理提取18.7GHz和23.8GHz垂直极化通道的双通道亮温;S1, based on the MWRI sensor carried on the FY-3D satellite, obtains FY-3D passive microwave data and performs data preprocessing to extract the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertically polarized channels;
S2,获取ERA5大气廓线数据,并进行数据处理提取大气水汽和液态水含量;S2, obtain ERA5 atmospheric profile data and process the data to extract atmospheric water vapor and liquid water content;
S3,利用18.7GHz和23.8GHz垂直极化通道的双通道亮温,结合对应的大气水汽和液态水含量数据,采用双通道物理算法估算有云情况下的地表温度;S3, using the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertically polarized channels, combined with the corresponding atmospheric water vapor and liquid water content data, a dual-channel physical algorithm is used to estimate the surface temperature in cloudy conditions;
S4,利用站点实测云下地表温度数据对步骤S3估算的地表温度进行验证和校正。S4, using the actual measured surface temperature data under the cloud at the site to verify and correct the surface temperature estimated in step S3.
进一步的,所述步骤S1中,基于搭载在FY-3D卫星上的MWRI传感器,获取FY-3D被动微波数据,并进行数据预处理提取18.7GHz和23.8GHz垂直极化通道的双通道亮温,具体包括:Furthermore, in step S1, based on the MWRI sensor carried on the FY-3D satellite, FY-3D passive microwave data is obtained, and data preprocessing is performed to extract the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertical polarization channels, specifically including:
S101,将MWRI传感器的微波亮温产品中的计数值转换为微波亮温,公式表达如下:S101, convert the count value in the microwave brightness temperature product of the MWRI sensor into microwave brightness temperature. The formula is as follows:
TB=gain×(DN-offset) (1)T B = gain × (DN-offset) (1)
式中,TB为微波亮温;DN为计数值;gain和offset分别为增益和偏移;对于微波亮温产品,18.7GHz垂直极化通道的增益和偏移分别为0.01和0,23.8GHz垂直极化通道通道的增益和偏移分别为0.01和0;Wherein, TB is microwave brightness temperature; DN is count value; gain and offset are gain and offset respectively; for microwave brightness temperature products, the gain and offset of 18.7 GHz vertical polarization channel are 0.01 and 0 respectively, and the gain and offset of 23.8 GHz vertical polarization channel are 0.01 and 0 respectively;
S102,利用遥感图像处理工具ENVI及其附带编程工具IDL对FY-3D微波亮温产品进行图像拼接、重采样和重投影处理,得到全球尺度经纬度投影的10km空间分辨率的微波亮温产品。S102: Use the remote sensing image processing tool ENVI and its accompanying programming tool IDL to perform image stitching, resampling and reprojection on the FY-3D microwave brightness temperature product to obtain a microwave brightness temperature product with a spatial resolution of 10 km in global latitude and longitude projection.
进一步的,所述步骤S102中,重采样利用双线性内插法实现;重投影利用ESD将投影平面坐标转换为地理坐标。Furthermore, in step S102, resampling is implemented using bilinear interpolation; and reprojection uses ESD to convert the projection plane coordinates into geographic coordinates.
进一步的,所述步骤S2中,获取ERA5大气廓线数据,并进行数据处理提取大气水汽和液态水含量,具体包括:Furthermore, in step S2, ERA5 atmospheric profile data is obtained, and data processing is performed to extract atmospheric water vapor and liquid water content, specifically including:
S201,下载空间分辨率为0.25°的ERA5大气廓线数据,提取ERA5大气廓线数据中多种大气压强下的大气相对湿度、位势高、空气温度和臭氧浓度参数;S201, download ERA5 atmospheric profile data with a spatial resolution of 0.25°, and extract atmospheric relative humidity, geopotential height, air temperature and ozone concentration parameters under various atmospheric pressures from ERA5 atmospheric profile data;
S202,根据地面实际的高程,对大气相对湿度、位势高和空气湿度进行高程插值计算,得到地面实际高程处的大气相对湿度、位势高和空气温度;S202, performing elevation interpolation calculation on the atmospheric relative humidity, potential height and air humidity according to the actual elevation of the ground, to obtain the atmospheric relative humidity, potential height and air temperature at the actual elevation of the ground;
S203,将地面实际高程处的大气相对湿度、位势高和空气温度输入到大气辐射传输模型MODTRAN中,进行运算计算得到每天每小时的大气总水汽和液态水含量;S203, inputting the atmospheric relative humidity, potential height and air temperature at the actual ground elevation into the atmospheric radiation transfer model MODTRAN, and performing calculations to obtain the total atmospheric water vapor and liquid water content every day and every hour;
S204,将大气总水汽和液态水含量栅格化,得到每天每小时全球尺度经纬度投影0.25°空间分辨率的大气水汽影像和液态水含量分布影像;S204, rasterizing the total water vapor and liquid water content in the atmosphere to obtain an atmospheric water vapor image and a liquid water content distribution image with a spatial resolution of 0.25° in the global-scale latitude and longitude projection every day and every hour;
S205,根据FY-3D被动微波数据的获取时间,对每小时的大气总水汽和液态水含量进行时间插值,得到每日FY-3D卫星过境时的大气水汽和液态水含量。S205, performing time interpolation on the total atmospheric water vapor and liquid water content per hour according to the acquisition time of the FY-3D passive microwave data, and obtaining the atmospheric water vapor and liquid water content during the daily FY-3D satellite transit.
进一步的,所述步骤S201中,多种大气压强分别为1、2、3、5、7、10、20、30、50、70、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、925、950、975和1000hPa。Furthermore, in step S201, the various atmospheric pressures are 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 925, 950, 975 and 1000 hPa.
进一步的,所述步骤S3中,利用18.7GHz和23.8GHz垂直极化通道的双通道亮温,结合对应的大气水汽和液态水含量数据,采用双通道物理算法估算有云情况下的地表温度,具体包括:Furthermore, in step S3, the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertical polarization channels is used, combined with the corresponding atmospheric water vapor and liquid water content data, and a dual-channel physical algorithm is used to estimate the surface temperature under cloudy conditions, specifically including:
双通道物理算法表达式:Dual-channel physical algorithm expression:
式中,Ts为反演的FY-3D被动微波地表温度;TB18V和TB23V分别为18.7GHz和23.8GHz垂直极化通道的微波亮温;PWV为大气水汽;CLW为大气液态水含量;c、a、γ23、γ18、η23和η18为拟合系数,基于模拟数据通过最小二乘法拟合得到,系数的值分别为:c=1.2628,a=0.1087,γ23=0.6262,γ18=1.2765,η23=0.1683,η18=0.2355。where Ts is the inverted FY-3D passive microwave surface temperature; TB18V and TB23V are the microwave brightness temperatures of the 18.7 GHz and 23.8 GHz vertical polarization channels, respectively; PWV is atmospheric water vapor; CLW is the atmospheric liquid water content; c, a, γ23 , γ18 , η23 and η18 are fitting coefficients, which are obtained by least squares fitting based on the simulated data, and the values of the coefficients are: c=1.2628, a=0.1087, γ23 =0.6262, γ18 =1.2765, η23 =0.1683, η18 =0.2355.
进一步的,所述步骤S4中,利用站点实测云下地表温度数据对步骤S3估算的地表温度进行验证和校正,具体包括:Furthermore, in step S4, the surface temperature estimated in step S3 is verified and corrected using the ground surface temperature data measured at the site, specifically including:
S401,利用地面实测站点获取的地面上行和下行长波辐射,通过以下公式计算地表温度:S401, using the ground uplink and downlink longwave radiation obtained by the ground measurement station, calculate the surface temperature by the following formula:
式中,Ts为站点测量的地表温度;F↑为站点传感器测量的地表上行长波辐射,F↓为站点传感器接收的下行长波辐射,εb为地表的宽波段比辐射率,σ为斯特潘-玻尔兹曼常数,取值为5.67×10-8W·m-2·K-4;Where Ts is the surface temperature measured at the site; F ↑ is the upward long-wave radiation measured by the site sensor, F ↓ is the downward long-wave radiation received by the site sensor, εb is the broadband emissivity of the surface, and σ is the Stepan-Boltzmann constant, which is 5.67× 10-8 W·m -2 ·K -4 .
S402,通过空间分辨率为1km的MODIS热红外地表温度和地面高程模型DEM数据对站点温度的空间均一性进行筛选;S402, the spatial uniformity of the station temperature is screened using MODIS thermal infrared surface temperature and ground elevation model DEM data with a spatial resolution of 1 km;
S403,将站点测量的每小时地表温度和FY-3D被动微波亮温数据进行时间匹配,通过线性插值获取FY-3D被动微波亮温时间一致的站点实测地表温度;S403, time matching the hourly surface temperature measured at the site with the FY-3D passive microwave brightness temperature data, and obtaining the site measured surface temperature with the same FY-3D passive microwave brightness temperature time by linear interpolation;
S404,利用站点实测的短波上下行辐射云检测算法筛选有云情况,采用直接对比法,对估算的地表温度的精度进行评估。S404, using the shortwave uplink and downlink radiation cloud detection algorithm measured at the site to screen for cloud conditions, and using the direct comparison method to evaluate the accuracy of the estimated surface temperature.
进一步的,所述步骤S402中,通过空间分辨率较高的MODIS热红外地表温度和地面高程模型DEM数据对站点温度的空间均一性进行筛选,具体包括:Furthermore, in step S402, the spatial uniformity of the station temperature is screened by using MODIS thermal infrared surface temperature and ground elevation model DEM data with high spatial resolution, specifically including:
统计以站点为中心的10km范围内热红外地表温度和地面高程的标准差,选择温度标准差小于2K和高程标准差小于50m的站点数据作为有效数据以保证站点数据的空间代表性。The standard deviation of thermal infrared surface temperature and ground elevation within a 10km range centered on the station is calculated, and the station data with a temperature standard deviation less than 2K and an elevation standard deviation less than 50m are selected as valid data to ensure the spatial representativeness of the station data.
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的FY-3D被动微波数据云下地表温度反演与验证方法,第一,将大气水汽和云中液态水含量对被动微波辐射的影响进行定量化,实现云下地表温度的高精度估算;第二,利用温度标准差和高程标准差对地面站点实测数据进行控制,保证站点数据的空间代表性,实现地面点数据和被动微波10km遥感数据的精度对比验证。According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects: the FY-3D passive microwave data cloud surface temperature inversion and verification method provided by the present invention, first, quantifies the influence of atmospheric water vapor and liquid water content in clouds on passive microwave radiation, and realizes high-precision estimation of surface temperature under clouds; second, uses temperature standard deviation and elevation standard deviation to control the measured data of ground stations, ensures the spatial representativeness of station data, and realizes precision comparison and verification of ground point data and passive microwave 10km remote sensing data.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative labor.
图1为本发明FY-3D被动微波数据云下地表温度反演与验证方法的流程示意图;FIG1 is a schematic diagram of a flow chart of a method for inverting and verifying the surface temperature under a cloud using FY-3D passive microwave data according to the present invention;
图2为本发明实施例FY-3D被动微波数据反演的2016年7月15日全球日间地表温度示意图;FIG2 is a schematic diagram of the global daytime surface temperature on July 15, 2016 inverted from FY-3D passive microwave data according to an embodiment of the present invention;
图3a为白天有云情况下被动微波地表温度与地面站点实测地表温度对比的散点图;Figure 3a is a scatter plot comparing the passive microwave surface temperature and the measured surface temperature at the ground station under cloudy conditions during the day;
图3b为夜间有云情况下被动微波地表温度与地面站点实测地表温度对比的散点图。Figure 3b is a scatter plot comparing the passive microwave surface temperature and the measured surface temperature at ground stations under cloudy conditions at night.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
本发明的目的是提供一种FY-3D被动微波数据云下地表温度反演与验证方法,能够提高云下地表温度的估算与验证精度。The purpose of the present invention is to provide a method for inverting and verifying the surface temperature under the cloud using FY-3D passive microwave data, which can improve the estimation and verification accuracy of the surface temperature under the cloud.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明提供的FY-3D被动微波数据云下地表温度反演与验证方法,包括如下步骤:As shown in FIG1 , the FY-3D passive microwave data cloud surface temperature inversion and verification method provided by the present invention comprises the following steps:
S1,基于搭载在FY-3D卫星上的MWRI传感器,获取FY-3D被动微波数据,并进行数据预处理提取18.7GHz和23.8GHz垂直极化通道的双通道亮温;S1, based on the MWRI sensor carried on the FY-3D satellite, obtains FY-3D passive microwave data and performs data preprocessing to extract the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertically polarized channels;
S2,获取ERA5大气廓线数据,并进行数据处理提取大气水汽和液态水含量;S2, obtain ERA5 atmospheric profile data and process the data to extract atmospheric water vapor and liquid water content;
S3,利用18.7GHz和23.8GHz垂直极化通道的双通道亮温,结合对应的大气水汽和液态水含量数据,采用双通道物理算法估算有云情况下的地表温度;S3, using the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertically polarized channels, combined with the corresponding atmospheric water vapor and liquid water content data, a dual-channel physical algorithm is used to estimate the surface temperature in cloudy conditions;
S4,利用站点实测云下地表温度数据对步骤S3估算的地表温度进行验证和校正。S4, using the actual measured surface temperature data under the cloud at the site to verify and correct the surface temperature estimated in step S3.
其中,所述步骤S1中,基于搭载在FY-3D卫星上的MWRI传感器,获取FY-3D被动微波数据,并进行数据预处理提取18.7GHz和23.8GHz垂直极化通道的双通道亮温,具体包括:Wherein, in the step S1, based on the MWRI sensor carried on the FY-3D satellite, FY-3D passive microwave data is obtained, and data preprocessing is performed to extract the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertical polarization channels, specifically including:
S101,将MWRI传感器的微波亮温产品中的计数值转换为微波亮温,公式表达如下:S101, convert the count value in the microwave brightness temperature product of the MWRI sensor into microwave brightness temperature. The formula is as follows:
TB=gain×(DN-offset) (1)T B = gain × (DN-offset) (1)
式中,TB为微波亮温;DN为计数值;gain和offset分别为增益和偏移;对于微波亮温产品,18.7GHz垂直极化通道的增益和偏移分别为0.01和0,23.8GHz垂直极化通道通道的增益和偏移分别为0.01和0;Wherein, TB is microwave brightness temperature; DN is count value; gain and offset are gain and offset respectively; for microwave brightness temperature products, the gain and offset of 18.7 GHz vertical polarization channel are 0.01 and 0 respectively, and the gain and offset of 23.8 GHz vertical polarization channel are 0.01 and 0 respectively;
S102,利用遥感图像处理工具ENVI及其附带编程工具IDL对FY-3D微波亮温产品进行图像拼接、重采样和重投影处理,考虑到计算的精度和时间,重采样利用双线性内插法实现,利用ESD将投影平面坐标转换为地理坐标,最终得到全球尺度经纬度投影的10km空间分辨率的微波亮温产品。S102, using the remote sensing image processing tool ENVI and its accompanying programming tool IDL to perform image stitching, resampling and reprojection processing on the FY-3D microwave brightness temperature product. Considering the calculation accuracy and time, the resampling is implemented using bilinear interpolation, and the projection plane coordinates are converted into geographic coordinates using ESD, ultimately obtaining a microwave brightness temperature product with a spatial resolution of 10 km in global-scale latitude and longitude projection.
所述步骤S2中,获取ERA5大气廓线数据,并进行数据处理提取大气水汽和液态水含量,具体包括:In step S2, ERA5 atmospheric profile data is obtained, and data processing is performed to extract atmospheric water vapor and liquid water content, specifically including:
S201,下载空间分辨率为0.25°的ERA5大气廓线数据,提取ERA5大气廓线数据中大气压强分别为1、2、3、5、7、10、20、30、50、70、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、925、950、975和1000hPa的大气相对湿度、位势高、空气温度和臭氧浓度等参数;S201, download ERA5 atmospheric profile data with a spatial resolution of 0.25°, and extract atmospheric relative humidity, potential height, air temperature, ozone concentration and other parameters at atmospheric pressures of 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 925, 950, 975 and 1000 hPa respectively;
S202,根据地面实际的高程,对大气相对湿度、位势高和空气湿度进行高程插值计算,得到地面实际高程处的大气相对湿度、位势高和空气温度;S202, performing elevation interpolation calculation on the atmospheric relative humidity, potential height and air humidity according to the actual elevation of the ground, to obtain the atmospheric relative humidity, potential height and air temperature at the actual elevation of the ground;
S203,将地面实际高程处的大气相对湿度、位势高和空气温度输入到大气辐射传输模型MODTRAN中,进行运算计算得到每天每小时的大气总水汽和液态水含量;S203, inputting the atmospheric relative humidity, potential height and air temperature at the actual ground elevation into the atmospheric radiation transfer model MODTRAN, and performing calculations to obtain the total atmospheric water vapor and liquid water content every day and every hour;
S204,将大气总水汽和液态水含量栅格化,得到每天每小时全球尺度经纬度投影0.25°空间分辨率的大气水汽影像和液态水含量分布影像;S204, rasterizing the total water vapor and liquid water content in the atmosphere to obtain an atmospheric water vapor image and a liquid water content distribution image with a spatial resolution of 0.25° in the global-scale latitude and longitude projection every day and every hour;
S205,根据FY-3D被动微波数据的获取时间,对每小时的大气总水汽和液态水含量进行时间插值,得到每日FY-3D卫星过境时的大气水汽和液态水含量。S205, performing time interpolation on the total atmospheric water vapor and liquid water content per hour according to the acquisition time of the FY-3D passive microwave data, and obtaining the atmospheric water vapor and liquid water content during the daily FY-3D satellite transit.
所述步骤S3中,利用18.7GHz和23.8GHz垂直极化通道的双通道亮温,结合对应的大气水汽和液态水含量数据,采用双通道物理算法估算有云情况下的地表温度,具体包括:In step S3, the dual-channel brightness temperature of the 18.7 GHz and 23.8 GHz vertical polarization channels is used, combined with the corresponding atmospheric water vapor and liquid water content data, and a dual-channel physical algorithm is used to estimate the surface temperature in the case of clouds, specifically including:
双通道物理算法表达式:Dual-channel physical algorithm expression:
式中,Ts为反演的FY-3D被动微波地表温度;TB18V和TB23V分别为18.7GHz和23.8GHz垂直极化通道的微波亮温;PWV为大气水汽;CLW为大气液态水含量;c、a、γ23、γ18、η23和η18为拟合系数,基于模拟数据通过最小二乘法拟合得到,系数的值分别为:c=1.2628,a=0.1087,γ23=0.6262,γ18=1.2765,η23=0.1683,η18=0.2355。where Ts is the inverted FY-3D passive microwave surface temperature; TB18V and TB23V are the microwave brightness temperatures of the 18.7 GHz and 23.8 GHz vertical polarization channels, respectively; PWV is atmospheric water vapor; CLW is the atmospheric liquid water content; c, a, γ23 , γ18 , η23 and η18 are fitting coefficients, which are obtained by least squares fitting based on the simulated data, and the values of the coefficients are: c=1.2628, a=0.1087, γ23 =0.6262, γ18 =1.2765, η23 =0.1683, η18 =0.2355.
图2展示了FY-3D被动微波数据反演的2016年7月15日全球日间地表温度;由图2可见,FY-3D被动微波数据反演地表温度不受云层影响,实现了全球尺度上较完整覆盖,很好地体现了全球地表温度整体的分布和变化趋势。Figure 2 shows the global daytime surface temperature on July 15, 2016, inverted from FY-3D passive microwave data. As can be seen from Figure 2, the surface temperature inverted from FY-3D passive microwave data is not affected by clouds, achieving relatively complete coverage on a global scale, and well reflecting the overall distribution and changing trend of the global surface temperature.
所述步骤S4中,利用站点实测云下地表温度数据对步骤S3估算的地表温度进行验证和校正,具体包括:In step S4, the surface temperature estimated in step S3 is verified and corrected using the actual surface temperature data under the cloud measured at the site, specifically including:
S401,利用地面实测站点获取的地面上行和下行长波辐射,通过以下公式计算地表温度:S401, using the ground uplink and downlink longwave radiation obtained by the ground measurement station, calculate the surface temperature by the following formula:
式中,Ts为站点测量的地表温度;F↑为站点传感器测量的地表上行长波辐射,F↓为站点传感器接收的下行长波辐射,εb为地表的宽波段比辐射率,σ为斯特潘-玻尔兹曼常数,取值为5.67×10-8W·m-2·K-4;Where Ts is the surface temperature measured at the site; F ↑ is the upward long-wave radiation measured by the site sensor, F ↓ is the downward long-wave radiation received by the site sensor, εb is the broadband emissivity of the surface, and σ is the Stepan-Boltzmann constant, which is 5.67× 10-8 W·m -2 ·K -4 .
S402,通过空间分辨率为1km的MODIS热红外地表温度和地面高程模型DEM数据对站点温度的空间均一性进行筛选;具体地,统计以站点为中心的10km范围内热红外地表温度和地面高程的标准差,选择温度标准差小于2K和高程标准差小于50m的站点数据作为有效数据以保证站点数据的空间代表性;S402, screening the spatial uniformity of the station temperature through MODIS thermal infrared surface temperature and ground elevation model DEM data with a spatial resolution of 1 km; specifically, statistically analyzing the standard deviation of thermal infrared surface temperature and ground elevation within a 10 km range centered on the station, and selecting station data with a temperature standard deviation less than 2K and an elevation standard deviation less than 50m as valid data to ensure the spatial representativeness of the station data;
S403,将站点测量的每小时地表温度和FY-3D被动微波亮温数据进行时间匹配,通过线性插值获取FY-3D被动微波亮温时间一致的站点实测地表温度;S403, time matching the hourly surface temperature measured at the site with the FY-3D passive microwave brightness temperature data, and obtaining the site measured surface temperature with the same FY-3D passive microwave brightness temperature time by linear interpolation;
S404,利用站点实测的短波上下行辐射云检测算法筛选有云情况,采用直接对比法,对估算的地表温度的精度进行评估。S404, using the shortwave uplink and downlink radiation cloud detection algorithm measured at the site to screen for cloud conditions, and using the direct comparison method to evaluate the accuracy of the estimated surface temperature.
图3a和3b分别为2016年7月15日白天和夜间有云情况下被动微波地表温度与地面站点实测地表温度对比的散点图;由图3a和3b可见,FY-3D被动微波数据结合双通道物理算法可以很好地估算地表温度。与地面站点实测温度相比,FY-3D被动微波地表温度在有云情况下的精度约为RMSE=3.6K左右,达到了较高的精度。Figures 3a and 3b are scatter plots comparing passive microwave surface temperature and ground station measured surface temperature in cloudy conditions during the day and night of July 15, 2016. It can be seen from Figures 3a and 3b that FY-3D passive microwave data combined with the dual-channel physical algorithm can estimate the surface temperature well. Compared with the measured temperature at the ground station, the accuracy of FY-3D passive microwave surface temperature in cloudy conditions is about RMSE = 3.6K, which has achieved a relatively high accuracy.
本发明提供的FY-3D被动微波数据云下地表温度反演与验证方法,将大气水汽和云中液态水含量对被动微波辐射的影响进行定量化,实现云下地表温度的高精度估算;进一步,利用温度标准差和高程标准差对地面站点实测数据进行控制,保证站点数据的空间代表性,实现地面点数据和被动微波10km遥感数据的精度对比验证。The FY-3D passive microwave data subcloud surface temperature inversion and verification method provided by the present invention quantifies the influence of atmospheric water vapor and liquid water content in clouds on passive microwave radiation, thereby realizing high-precision estimation of subcloud surface temperature. Furthermore, the temperature standard deviation and elevation standard deviation are used to control the measured data of ground stations to ensure the spatial representativeness of the station data, thereby realizing precision comparison and verification between ground point data and passive microwave 10km remote sensing data.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。This article uses specific examples to illustrate the principles and implementation methods of the present invention. The above examples are only used to help understand the method and core ideas of the present invention. At the same time, for those skilled in the art, according to the ideas of the present invention, there will be changes in the specific implementation methods and application scope. In summary, the content of this specification should not be understood as limiting the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210390649.3A CN114722350B (en) | 2022-04-14 | 2022-04-14 | A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210390649.3A CN114722350B (en) | 2022-04-14 | 2022-04-14 | A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114722350A CN114722350A (en) | 2022-07-08 |
CN114722350B true CN114722350B (en) | 2024-09-06 |
Family
ID=82243947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210390649.3A Active CN114722350B (en) | 2022-04-14 | 2022-04-14 | A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114722350B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116358709B (en) * | 2023-06-02 | 2023-08-29 | 中国科学院空天信息创新研究院 | A Method of Land Surface Temperature Retrieval Based on Passive Microwave Multiband Temperature Model |
CN119167312B (en) * | 2024-11-19 | 2025-02-07 | 南京信大气象科学技术研究院有限公司 | A high-precision cloud phase identification method based on data fusion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112464980A (en) * | 2020-10-26 | 2021-03-09 | 中国农业科学院农业资源与农业区划研究所 | Method for inverting earth surface temperature by fusing thermal infrared and passive microwave remote sensing data |
CN113408111B (en) * | 2021-06-01 | 2023-10-20 | 国家卫星气象中心(国家空间天气监测预警中心) | Atmospheric precipitation inversion method and system, electronic equipment and storage medium |
CN114838827A (en) * | 2022-05-23 | 2022-08-02 | 河北地质大学 | Earth surface temperature inversion channel selection method based on MERSI-II remote sensing data |
-
2022
- 2022-04-14 CN CN202210390649.3A patent/CN114722350B/en active Active
Non-Patent Citations (1)
Title |
---|
基于FY-3D微波成像仪的中国陆地区域地表温度反演及验证;王博等;大气科学学报;20220131;第45卷(第1期);正文1-4节 * |
Also Published As
Publication number | Publication date |
---|---|
CN114722350A (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109580003B (en) | Method for estimating near-ground atmospheric temperature by thermal infrared data of stationary meteorological satellite | |
US12031966B2 (en) | Networked environmental monitoring system and method | |
CN109974665B (en) | An aerosol remote sensing retrieval method and system for lack of short-wave infrared data | |
CN102539336B (en) | Method and system for estimating inhalable particles based on HJ-1 satellite | |
CN103018736B (en) | Satellite-borne remote sensor radiation calibration method based on atmospheric parameter remote sensing retrieval | |
CN114722350B (en) | A method for inversion and verification of sub-cloud surface temperature using FY-3D passive microwave data | |
CN112580982B (en) | Ecological protection red line implementation evaluation based on multi-temporal remote sensing and CASA model | |
CN116486931B (en) | Method and system for producing full-coverage atmospheric methane concentration data coupled with physical mechanisms | |
Feng et al. | Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China | |
CN104820250A (en) | Processing method for detecting clouds on sea by polar orbit meteorological satellite visible and infrared radiometer (VIRR) | |
CN105204024A (en) | Method for converting microwave remote sensing surface temperature to thermal infrared remote sensing land surface temperature | |
CN113408111B (en) | Atmospheric precipitation inversion method and system, electronic equipment and storage medium | |
Wan et al. | Accuracy Evaluation and Parameter Analysis of Land Surface Temperature Inversion Algorithm for Landsat‐8 Data | |
CN105069295A (en) | Assimilation method for satellite and ground rainfall measured values based on Kalman filtering | |
Xu et al. | A linear regression of differential PWV calibration model to improve the accuracy of MODIS NIR all-weather PWV products based on ground-based GPS PWV data | |
CN111366195A (en) | A multi-scale observation method for surface water heat flux | |
CN106680273B (en) | High-spatial-resolution satellite earth surface reflectivity inversion method | |
Xie et al. | Calculating NDVI for Landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye city, China | |
CN110764153B (en) | System and method for correcting on-orbit error of hot mirror back lobe of satellite-borne microwave imager | |
CN113836731B (en) | Method and device for constructing top-of-atmosphere reflectance model of land surface stable target | |
CN118606907A (en) | A random forest FY-4A water vapor correction method integrating elevation | |
Adavi et al. | Analyzing different parameterization methods in GNSS tomography using the COST benchmark dataset | |
CN111650128A (en) | A high-resolution atmospheric aerosol retrieval method based on the surface reflectance library | |
CN114814173B (en) | A spaceborne GNSS-R soil moisture retrieval method and system based on dielectric constant | |
CN116341352B (en) | Static satellite land infrared bright temperature simulation method based on earth surface temperature observation information constraint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |