[go: up one dir, main page]

CN114710615B - Efficient single-pixel imaging method and system - Google Patents

Efficient single-pixel imaging method and system Download PDF

Info

Publication number
CN114710615B
CN114710615B CN202210638656.0A CN202210638656A CN114710615B CN 114710615 B CN114710615 B CN 114710615B CN 202210638656 A CN202210638656 A CN 202210638656A CN 114710615 B CN114710615 B CN 114710615B
Authority
CN
China
Prior art keywords
pattern
target object
modulation
elements
modulation pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210638656.0A
Other languages
Chinese (zh)
Other versions
CN114710615A (en
Inventor
韩凯
来文昌
王彦
孟琪
雷国忠
崔文达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210638656.0A priority Critical patent/CN114710615B/en
Publication of CN114710615A publication Critical patent/CN114710615A/en
Application granted granted Critical
Publication of CN114710615B publication Critical patent/CN114710615B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The invention provides a high-efficiency single-pixel imaging method and a system, comprising the following steps: generating a series of modulation patterns which satisfy Zernike polynomial distribution and have different orders, and loading the modulation patterns on a spatial light modulator; the spatial light modulator modulates the intensity of the laser emitted by the light source by utilizing the series of modulation patterns with different orders and meeting the Zernike polynomial distribution, projects the modulated laser onto a target object and collects a return light intensity signal reflected from the target object; and reconstructing the target object image based on the return light intensity signal and the series of modulation patterns with different orders and satisfying the Zernike polynomial distribution. Based on the high-efficiency single-pixel imaging method provided by the invention, the imaging efficiency and the imaging quality can be improved under the condition of low sampling ratio.

Description

高效单像素成像方法及系统Efficient single-pixel imaging method and system

技术领域technical field

本发明涉及光学探测成像技术领域,具体是一种采用泽尼克矩光场的高效单像素成像方法及系统。The invention relates to the technical field of optical detection and imaging, in particular to a high-efficiency single-pixel imaging method and system using a Zernike moment light field.

背景技术Background technique

单像素成像是指利用单个感光器件对目标物体进行成像的技术,不同于传统的阵列探测器成像技术仅响应可见光波段,单像素探测器可以实现紫外、红外甚至太赫兹波段的成像,此外,单像素探测器以桶探测的方式记录物体回光,灵敏度极高,可应用于远距离目标探测等弱光探测成像领域。当前,单像素探测技术通常运用空间光调制进行单像素成像,即对照明光场进行空间上的强度调制,产生不同强度分布的结构光场,然后采用单像素探测器探测不同结构光场照射目标物体产生的回光强度,结合结构光场的强度分布和单像素探测器记录的回光强度,可重构出物体图像。最早的单像素成像技术通常采用随机光场作为调制光场,由于照明光场的二维空间强度分布是随机的,不同光场之间所采集的信息有冗余,因此所需要的测量次数远多余重建图案的像素数,数据采集时间较长,成像效率较低。Single-pixel imaging refers to a technology that uses a single photosensitive device to image a target object. Unlike the traditional array detector imaging technology that only responds to the visible light band, a single-pixel detector can achieve imaging in the ultraviolet, infrared and even terahertz bands. The pixel detector records the return light of the object in the way of barrel detection, with high sensitivity, and can be used in the field of low-light detection and imaging such as long-distance target detection. At present, single-pixel detection technology usually uses spatial light modulation to perform single-pixel imaging, that is, the intensity of the illumination light field is spatially modulated to generate structured light fields with different intensity distributions, and then single-pixel detectors are used to detect different structured light fields to illuminate the target. The return light intensity generated by the object, combined with the intensity distribution of the structured light field and the return light intensity recorded by the single-pixel detector, can reconstruct the image of the object. The earliest single-pixel imaging technology usually uses a random light field as a modulated light field. Since the two-dimensional spatial intensity distribution of the illumination light field is random, the information collected between different light fields is redundant, so the number of measurements required is far. The number of pixels in the reconstructed pattern is redundant, the data acquisition time is long, and the imaging efficiency is low.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的缺陷,本发明提出了一种高效单像素成像方法及系统。本发明提出采用基于泽尼克正交矩光场的单像素成像技术,利用图像在泽尼克正交矩变换域的稀疏性,采用少量的泽尼克正交光场进行目标物体的照明,重构出高质量物体图像,可有效提高单像素成像技术的成像效率,且成像质量较高。In view of the defects existing in the prior art, the present invention proposes an efficient single-pixel imaging method and system. The invention proposes to adopt the single-pixel imaging technology based on the Zernike orthogonal moment light field, utilizes the sparsity of the image in the Zernike orthogonal moment transform domain, uses a small amount of Zernike orthogonal light field to illuminate the target object, and reconstructs the image. High-quality object images can effectively improve the imaging efficiency of single-pixel imaging technology, and the imaging quality is high.

为实现上述技术目的,本发明提出的技术方案为:For realizing the above-mentioned technical purpose, the technical scheme proposed by the present invention is:

一方面,本发明提供一种高效单像素成像方法,包括:In one aspect, the present invention provides an efficient single-pixel imaging method, comprising:

生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;Generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;

空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上,并采集从目标物体反射回的回光强度信号;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, projects the modulated laser light onto the target object, and collects the return light intensity signal reflected from the target object;

基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。Based on the return light intensity signal and the modulation pattern, the target object image is reconstructed.

在优选实施方案中,所述调制图案利用以下步骤生成:In a preferred embodiment, the modulation pattern is generated using the following steps:

生成一系列不同阶数的满足泽尼克多项式分布的第一图案;Generate a series of first patterns of different orders that satisfy the Zernike polynomial distribution;

将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。The first pattern is split into two modulation patterns and then loaded on the spatial light modulator in turn, wherein a modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements are taken as zero; In another modulation pattern split from the first pattern, the positions of the non-negative elements in the first pattern are all taken as zero, and the positions of the remaining negative elements are taken as the absolute values of the negative elements.

在优选实施方案中,所述第一图案表达式如下:In a preferred embodiment, the first pattern expression is as follows:

Figure 698916DEST_PATH_IMAGE001
Figure 698916DEST_PATH_IMAGE001

其中rθ分别为极坐标系下的径向坐标和角向坐标,mn分别为泽尼克多项式的角向和径向阶数,

Figure 554876DEST_PATH_IMAGE002
Figure 331202DEST_PATH_IMAGE003
分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively,
Figure 554876DEST_PATH_IMAGE002
,
Figure 331202DEST_PATH_IMAGE003
are the radial and angular components of the Zernike polynomial, respectively;

将第一图案

Figure 284115DEST_PATH_IMAGE004
简化为具有一个阶数变量i的形式,如下:the first pattern
Figure 284115DEST_PATH_IMAGE004
Simplified to the form with one order variable i , as follows:

Figure 757470DEST_PATH_IMAGE005
Figure 757470DEST_PATH_IMAGE005

其中imn满足Noll多项式;where i and m and n satisfy Noll polynomials;

Figure 100726DEST_PATH_IMAGE006
拆分成两幅调制图案
Figure 539798DEST_PATH_IMAGE007
Figure 957004DEST_PATH_IMAGE008
,将调制图案
Figure 721697DEST_PATH_IMAGE009
Figure 473622DEST_PATH_IMAGE010
依次加载在空间光调制器上,其中调制图案
Figure 919647DEST_PATH_IMAGE011
保留
Figure 581572DEST_PATH_IMAGE012
中的正数元素,其余元素均取零;调制图案
Figure 392533DEST_PATH_IMAGE013
Figure 241540DEST_PATH_IMAGE014
中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,
Figure 412628DEST_PATH_IMAGE015
。Will
Figure 100726DEST_PATH_IMAGE006
Split into two modulation patterns
Figure 539798DEST_PATH_IMAGE007
and
Figure 957004DEST_PATH_IMAGE008
, will modulate the pattern
Figure 721697DEST_PATH_IMAGE009
and
Figure 473622DEST_PATH_IMAGE010
sequentially loaded on the spatial light modulator, where the modulation pattern
Figure 919647DEST_PATH_IMAGE011
reserve
Figure 581572DEST_PATH_IMAGE012
The positive elements in , and the rest of the elements are zero; modulation pattern
Figure 392533DEST_PATH_IMAGE013
Will
Figure 241540DEST_PATH_IMAGE014
The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements.
Figure 412628DEST_PATH_IMAGE015
.

在优选实施方案中,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构,方法如下:In a preferred embodiment, based on the return light intensity signal and the modulation pattern, the image of the target object is reconstructed, and the method is as follows:

满足

Figure 132322DEST_PATH_IMAGE016
分布的激光投射到目标物体上产生的回光强度为
Figure 973239DEST_PATH_IMAGE017
,满足
Figure 450488DEST_PATH_IMAGE018
分布的激光投射到目标物体上产生的回光强度为
Figure 35053DEST_PATH_IMAGE019
,基于回光强度
Figure 530625DEST_PATH_IMAGE020
Figure 745706DEST_PATH_IMAGE021
通过下式计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;Satisfy
Figure 132322DEST_PATH_IMAGE016
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 973239DEST_PATH_IMAGE017
,Satisfy
Figure 450488DEST_PATH_IMAGE018
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 35053DEST_PATH_IMAGE019
, based on the return light intensity
Figure 530625DEST_PATH_IMAGE020
and
Figure 745706DEST_PATH_IMAGE021
The coefficient a i of the i -th order Zernike base in the Zernike polynomial is calculated by the following formula;

Figure 834885DEST_PATH_IMAGE022
Figure 834885DEST_PATH_IMAGE022
.

进一步的,利用下式,得到重构的目标物体图像

Figure 98507DEST_PATH_IMAGE023
:Further, the following formula is used to obtain the reconstructed image of the target object
Figure 98507DEST_PATH_IMAGE023
:

Figure 589531DEST_PATH_IMAGE024
Figure 589531DEST_PATH_IMAGE024

其中N为重构图像所采样的次数。where N is the number of times the reconstructed image is sampled.

另一方面,本发明提供一种高效单像素成像系统,包括:In another aspect, the present invention provides a high-efficiency single-pixel imaging system, comprising:

调制图案生成模块,用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;The modulation pattern generation module is used to generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;

光源,用于产生激光,并将产生的激光投影照射到空间光调制器上;a light source for generating laser light and projecting the generated laser light onto the spatial light modulator;

空间光调制器,利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, and projects the modulated laser light onto the target object;

单像素光电探测器,用于采集从目标物体反射回的回光强度信号;Single-pixel photodetector, used to collect the return light intensity signal reflected from the target object;

成像模块,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。The imaging module reconstructs the image of the target object based on the returned light intensity signal and the modulation pattern.

作为优选实施方案,所述调制图案生成模块和成像模块均由计算机实现。As a preferred embodiment, both the modulation pattern generation module and the imaging module are implemented by a computer.

作为优选实施方案,所述空间光调制器可以是数字微镜阵列(DMD)或者空间光相位调制器。As a preferred embodiment, the spatial light modulator may be a digital micromirror array (DMD) or a spatial light phase modulator.

作为优选实施方案,所述光源包括激光器以及准直扩束系统。As a preferred embodiment, the light source includes a laser and a collimated beam expander system.

与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:

(1)本发明采用二维泽尼克多项式作为调制图案,调制产生泽尼克基光场进行目标物体照明,根据物体的回光强度和所生成的泽尼克调制图案可直接重构出目标物体图案,无需测量计算目标的频谱信息,实现方法简洁,重构算法耗时短,可实现快速成像;(1) The present invention uses a two-dimensional Zernike polynomial as a modulation pattern, modulates a Zernike light field to illuminate the target object, and can directly reconstruct the target object pattern according to the return light intensity of the object and the generated Zernike modulation pattern, There is no need to measure and calculate the spectral information of the target, the implementation method is simple, the reconstruction algorithm takes less time, and rapid imaging can be achieved;

(2)由于目标图像的信息大部分集中在有限阶数的低阶泽尼可基中,因此在采样数较少的情形下,本发明中所采用的的泽尼克基光场可有效重构出高质量的物体图像,具有较高的成像效率;(2) Since most of the information of the target image is concentrated in the low-order Zernike basis of finite order, the Zernike light field used in the present invention can be effectively reconstructed in the case of a small number of samples High-quality object images with high imaging efficiency;

(3)本发明中采用差分的方式利用两幅投影图案

Figure 975513DEST_PATH_IMAGE025
Figure 413972DEST_PATH_IMAGE026
来替代
Figure 605919DEST_PATH_IMAGE027
,实验上更具可操作性,并且差分的方法可有效消除背景光噪声,有效提高成像信噪比;(3) In the present invention, two projection patterns are used in a differential manner
Figure 975513DEST_PATH_IMAGE025
and
Figure 413972DEST_PATH_IMAGE026
to replace
Figure 605919DEST_PATH_IMAGE027
, the experiment is more operational, and the differential method can effectively eliminate the background light noise and effectively improve the imaging signal-to-noise ratio;

(4)由于泽尼克多项式定义在圆域的极坐标系上,且其角向分量满足正弦或余弦分布,因此对于具有圆对称性的目标物体,采用泽尼克基光场的单像素成像技术具有较好的重构图像质量。(4) Since the Zernike polynomial is defined in the polar coordinate system of the circular domain, and its angular component satisfies the sine or cosine distribution, for the target object with circular symmetry, the single-pixel imaging technology using the Zernike light field has a relatively high performance. Good reconstructed image quality.

综上,本发明提供的单像素成像技术可在低采样比的条件下提高成像效率和成像质量。In conclusion, the single-pixel imaging technology provided by the present invention can improve imaging efficiency and imaging quality under the condition of low sampling ratio.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.

图1是本发明一实施例的流程图;1 is a flowchart of an embodiment of the present invention;

图2是本发明一实施例的结构图;2 is a structural diagram of an embodiment of the present invention;

图3是本发明一实施例中计算生成的前9阶泽尼克基光场强度灰度分布图,其中(a)为计算生成的一阶泽尼克基光场强度灰度分布图;(b)为计算生成的二阶泽尼克基光场强度灰度分布图;(c)为计算生成的三阶泽尼克基光场强度灰度分布图;(d)为计算生成的四阶泽尼克基光场强度灰度分布图;(e)为计算生成的五阶泽尼克基光场强度灰度分布图;(f)为计算生成的六阶泽尼克基光场强度灰度分布图;(g)为计算生成的七阶泽尼克基光场强度灰度分布图;(h)为计算生成的八阶泽尼克基光场强度灰度分布图;(i)为计算生成的九阶泽尼克基光场强度灰度分布图;3 is a first-order Zernike light field intensity gray distribution map generated by calculation in an embodiment of the present invention, wherein (a) is a first-order Zernike light field intensity gray distribution map generated by calculation; (b) is the gray distribution map of the second-order Zernike light field intensity generated by calculation; (c) is the gray distribution map of the third-order Zernike light field intensity generated by calculation; (d) is the fourth-order Zernike light field intensity distribution map generated by calculation Field intensity gray distribution map; (e) is the fifth-order Zernike light field intensity gray distribution map generated by calculation; (f) is the sixth-order Zernike light field intensity gray distribution map generated by calculation; (g) is the seventh-order Zernike light field intensity gray distribution map generated by calculation; (h) is the eighth-order Zernike light field intensity gray distribution map generated by calculation; (i) is the ninth-order Zernike light field intensity distribution map generated by calculation Field intensity grayscale distribution map;

图4是本发明一实施例中目标物体的原图;4 is an original image of a target object in an embodiment of the present invention;

图5是本发明一实施例中采用500阶泽尼克基光场重构的物体图像;5 is an image of an object reconstructed using a 500-order Zernike light field according to an embodiment of the present invention;

图6是本发明一实施例中采用1000阶泽尼克基光场重构的物体图像。FIG. 6 is an image of an object reconstructed using a 1000-order Zernike light field according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述来清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention more clearly understood, the following will clearly illustrate the spirit of the disclosed contents of the present invention with the accompanying drawings and detailed description. Afterwards, changes and modifications can be made by the technology taught by the content of the present invention, without departing from the spirit and scope of the content of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention, but are not intended to limit the present invention.

在一实施例中,参照图1,提供一种高效单像素成像方法,包括:In one embodiment, referring to FIG. 1 , an efficient single-pixel imaging method is provided, including:

(S1) 生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;(S1) A series of modulation patterns of different orders satisfying the Zernike polynomial distribution are generated and loaded onto the spatial light modulator;

(S2) 空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上,并采集从目标物体反射回的回光强度信号;(S2) The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, projects the modulated laser light on the target object, and collects the return light intensity signal reflected from the target object;

(S3) 基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。(S3) Reconstructing the target object image based on the return light intensity signal and the modulation pattern.

在一实施例中,所述步骤(S1)包括:In one embodiment, the step (S1) includes:

(S1.1)生成一系列不同阶数的满足泽尼克多项式分布的第一图案;(S1.1) Generate a series of first patterns of different orders that satisfy the Zernike polynomial distribution;

(S1.2)将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。(S1.2) Split the first pattern into two modulation patterns and load them on the spatial light modulator in turn, wherein one modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements All take zero; for another modulation pattern split from the first pattern, the positions of non-negative elements in the first pattern are all taken as zero, and the positions of other negative elements take the absolute value of the negative element.

在一实施例中,步骤(S1.1)中,第一图案表达式如下:In one embodiment, in step (S1.1), the expression of the first pattern is as follows:

Figure 826816DEST_PATH_IMAGE028
Figure 826816DEST_PATH_IMAGE028

其中rθ分别为极坐标系下的径向坐标和角向坐标,mn分别为泽尼克多项式的角向和径向阶数,

Figure 180437DEST_PATH_IMAGE029
Figure 181891DEST_PATH_IMAGE030
分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively,
Figure 180437DEST_PATH_IMAGE029
,
Figure 181891DEST_PATH_IMAGE030
are the radial and angular components of the Zernike polynomial, respectively;

Figure 36583DEST_PATH_IMAGE031
Figure 502200DEST_PATH_IMAGE032
Figure 36583DEST_PATH_IMAGE031
Figure 502200DEST_PATH_IMAGE032
.

进一步地,为了使运算更为方便,在步骤(S1.1)中,将第一图案

Figure 902088DEST_PATH_IMAGE033
简化为具有一个阶数变量i的形式,如下:Further, in order to make the operation more convenient, in step (S1.1), the first pattern is
Figure 902088DEST_PATH_IMAGE033
Simplified to the form with one order variable i , as follows:

Figure 390838DEST_PATH_IMAGE034
Figure 390838DEST_PATH_IMAGE034

其中imn满足Noll多项式;where i and m and n satisfy Noll polynomials;

由于泽尼克多项式

Figure 924588DEST_PATH_IMAGE035
的数值矩阵中既有正值,也存在负值,负值部分无法加载到空间光调制器上。步骤(S1.2)中采用差分的方式分两幅调制图案实现泽尼克多项式
Figure 369345DEST_PATH_IMAGE036
的产生。将
Figure 64768DEST_PATH_IMAGE037
拆分成两幅调制图案
Figure 712918DEST_PATH_IMAGE038
Figure 784780DEST_PATH_IMAGE039
,将调制图案
Figure 818464DEST_PATH_IMAGE040
Figure 153630DEST_PATH_IMAGE041
依次加载在空间光调制器上,其中调制图案
Figure 148131DEST_PATH_IMAGE042
保留
Figure 164628DEST_PATH_IMAGE043
中的正数元素,其余元素均取零;调制图案
Figure 928185DEST_PATH_IMAGE044
Figure 434253DEST_PATH_IMAGE045
中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,
Figure 37754DEST_PATH_IMAGE046
。Because of the Zernike polynomial
Figure 924588DEST_PATH_IMAGE035
There are both positive and negative values in the numerical matrix of , and the negative value part cannot be loaded on the spatial light modulator. In step (S1.2), the Zernike polynomial is realized by using the differential method to divide the two-amplitude modulation pattern
Figure 369345DEST_PATH_IMAGE036
production. Will
Figure 64768DEST_PATH_IMAGE037
Split into two modulation patterns
Figure 712918DEST_PATH_IMAGE038
and
Figure 784780DEST_PATH_IMAGE039
, will modulate the pattern
Figure 818464DEST_PATH_IMAGE040
and
Figure 153630DEST_PATH_IMAGE041
sequentially loaded on the spatial light modulator, where the modulation pattern
Figure 148131DEST_PATH_IMAGE042
reserve
Figure 164628DEST_PATH_IMAGE043
The positive elements in , and the rest of the elements are zero; modulation pattern
Figure 928185DEST_PATH_IMAGE044
Will
Figure 434253DEST_PATH_IMAGE045
The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements.
Figure 37754DEST_PATH_IMAGE046
.

本发明将满足二维泽尼克多项式分布的调制图案

Figure 451417DEST_PATH_IMAGE047
拆分成两幅调制图案
Figure 210426DEST_PATH_IMAGE048
Figure 949712DEST_PATH_IMAGE049
后依次加载到空间光调制器上,空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后产生满足
Figure 43439DEST_PATH_IMAGE050
分布的激光和满足
Figure 464056DEST_PATH_IMAGE051
分布的激光依次投射到目标物体上,并采集从目标物体反射回的回光强度
Figure 467784DEST_PATH_IMAGE052
Figure 987758DEST_PATH_IMAGE053
。满足
Figure 647409DEST_PATH_IMAGE054
分布的激光投射到目标物体上产生的回光强度为
Figure 668455DEST_PATH_IMAGE055
,满足
Figure 651323DEST_PATH_IMAGE056
分布的激光投射到目标物体上产生的回光强度为
Figure 404516DEST_PATH_IMAGE057
,分别满足下列公式:The present invention will satisfy the modulation pattern of the two-dimensional Zernike polynomial distribution
Figure 451417DEST_PATH_IMAGE047
Split into two modulation patterns
Figure 210426DEST_PATH_IMAGE048
and
Figure 949712DEST_PATH_IMAGE049
Then, they are loaded on the spatial light modulator in turn, and the spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, so that the modulated output satisfies the
Figure 43439DEST_PATH_IMAGE050
distributed laser and meet
Figure 464056DEST_PATH_IMAGE051
The distributed lasers are projected onto the target object in turn, and the intensity of the returned light reflected from the target object is collected
Figure 467784DEST_PATH_IMAGE052
and
Figure 987758DEST_PATH_IMAGE053
. Satisfy
Figure 647409DEST_PATH_IMAGE054
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 668455DEST_PATH_IMAGE055
,Satisfy
Figure 651323DEST_PATH_IMAGE056
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 404516DEST_PATH_IMAGE057
, respectively satisfy the following formulas:

Figure 348201DEST_PATH_IMAGE058
Figure 348201DEST_PATH_IMAGE058

Figure 48304DEST_PATH_IMAGE059
Figure 48304DEST_PATH_IMAGE059

其中

Figure 761045DEST_PATH_IMAGE060
为目标物体在极坐标系下的反射率函数。in
Figure 761045DEST_PATH_IMAGE060
is the reflectance function of the target object in the polar coordinate system.

在一实施例的(S3)中,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构,方法如下:In (S3) of an embodiment, the image of the target object is reconstructed based on the return light intensity signal and the modulation pattern, and the method is as follows:

满足

Figure 950718DEST_PATH_IMAGE061
分布的激光投射到目标物体上产生的回光强度为
Figure 240754DEST_PATH_IMAGE062
,满足
Figure 603602DEST_PATH_IMAGE063
分布的激光投射到目标物体上产生的回光强度为
Figure 639691DEST_PATH_IMAGE064
,基于回光强度
Figure 672369DEST_PATH_IMAGE065
Figure 325067DEST_PATH_IMAGE066
计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;Satisfy
Figure 950718DEST_PATH_IMAGE061
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 240754DEST_PATH_IMAGE062
,Satisfy
Figure 603602DEST_PATH_IMAGE063
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 639691DEST_PATH_IMAGE064
, based on the return light intensity
Figure 672369DEST_PATH_IMAGE065
and
Figure 325067DEST_PATH_IMAGE066
Calculate the coefficient a i of the i -th order Zernike base in the Zernike polynomial;

Figure 353591DEST_PATH_IMAGE067
Figure 353591DEST_PATH_IMAGE067

利用下式,得到重构的目标物体图像

Figure 306503DEST_PATH_IMAGE068
:Use the following formula to obtain the reconstructed image of the target object
Figure 306503DEST_PATH_IMAGE068
:

Figure 510083DEST_PATH_IMAGE069
Figure 510083DEST_PATH_IMAGE069

其中N为采用的泽尼克多项式的阶数,也即重构图像所采样的次数。where N is the order of the Zernike polynomial used, that is, the number of times the reconstructed image is sampled.

本发明的原理如下:The principle of the present invention is as follows:

Figure 853339DEST_PATH_IMAGE070
其表达式可知,不同阶数的泽尼克多项式在极坐标系下是正交的,其径向分量
Figure 292411DEST_PATH_IMAGE071
和角向分量
Figure 224464DEST_PATH_IMAGE072
满足下列正交关系:Depend on
Figure 853339DEST_PATH_IMAGE070
Its expression shows that the Zernike polynomials of different orders are orthogonal in the polar coordinate system, and their radial components
Figure 292411DEST_PATH_IMAGE071
and angular components
Figure 224464DEST_PATH_IMAGE072
The following orthogonal relations are satisfied:

Figure 926840DEST_PATH_IMAGE073
Figure 926840DEST_PATH_IMAGE073

Figure 554131DEST_PATH_IMAGE074
Figure 554131DEST_PATH_IMAGE074

因此,二维泽尼克多项式

Figure 937839DEST_PATH_IMAGE075
满足下列的正交关系:Therefore, the two-dimensional Zernike polynomial
Figure 937839DEST_PATH_IMAGE075
Satisfy the following orthogonal relationship:

Figure 334185DEST_PATH_IMAGE076
Figure 334185DEST_PATH_IMAGE076

由泽尼克多项式的理论可知,目标物体在极坐标系下的反射率函数

Figure 207463DEST_PATH_IMAGE077
可拆分为不同阶数的泽尼克多项式来表示:According to the theory of Zernike polynomial, the reflectivity function of the target object in the polar coordinate system
Figure 207463DEST_PATH_IMAGE077
It can be divided into Zernike polynomials of different orders to represent:

Figure 446683DEST_PATH_IMAGE078
Figure 446683DEST_PATH_IMAGE078

根据不同阶数的泽尼克多项式之间的正交性,相应的系数可表示为:According to the orthogonality between Zernike polynomials of different orders, the corresponding coefficients can be expressed as:

Figure 758716DEST_PATH_IMAGE079
Figure 758716DEST_PATH_IMAGE079

其中,I i 为探测到的回光强度。Among them, I i is the detected return light intensity.

Figure 884935DEST_PATH_IMAGE080
Figure 884935DEST_PATH_IMAGE080
.

因此,重构的目标物体图像满足下列公式:Therefore, the reconstructed target object image satisfies the following formula:

Figure 929114DEST_PATH_IMAGE081
Figure 929114DEST_PATH_IMAGE081

本发明其相较于现有常用的随机光场、哈达玛基光场以及傅里叶基光场,可以在较少的采样次数下获得较高质量的重构图像,同时,对于具有圆对称性特性的物体,该方法可以较好的重构和识别物体中圆对称性的图案信息,可以大幅减少采样次数,提高成像效率。Compared with the existing random light field, Hadamard-based light field and Fourier-based light field, the present invention can obtain a higher-quality reconstructed image with fewer sampling times, and at the same time, it has the characteristics of circular symmetry. The method can better reconstruct and identify the pattern information of circular symmetry in the object, which can greatly reduce the sampling times and improve the imaging efficiency.

参照图2,一实施例提供一种高效单像素成像系统,包括:Referring to FIG. 2, an embodiment provides a high-efficiency single-pixel imaging system, including:

调制图案生成模块,用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;The modulation pattern generation module is used to generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;

结构光发生装置2,结构光发生装置2包括光源和空间光调制器,其中光源用于产生激光,并将产生的激光投影照射到空间光调制器上;空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体3上;Structured light generating device 2, the structured light generating device 2 includes a light source and a spatial light modulator, wherein the light source is used to generate laser light, and the generated laser light is projected onto the spatial light modulator; the spatial light modulator uses a modulation pattern to emit light to the light source The intensity of the laser is modulated, and the modulated laser is projected onto the target object 3;

单像素光电探测器4,用于采集从目标物体3反射回的回光强度信号;The single-pixel photodetector 4 is used to collect the return light intensity signal reflected from the target object 3;

成像模块,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。The imaging module reconstructs the image of the target object based on the returned light intensity signal and the modulation pattern.

其中,所述调制图案生成模块和成像模块由计算机1实现,还包括数据采集卡(型号不限,如采用NI USB-6361),计算机用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上,数据采集卡用于采集记录单像素光电探测器4接收的来自目标物体的回光强度信号并传送至计算机进行图像重构。Wherein, the modulation pattern generation module and the imaging module are realized by the computer 1, and also includes a data acquisition card (the model is not limited, such as using NI USB-6361), the computer is used to generate a series of different orders satisfying the Zernike polynomial distribution. The modulation pattern is loaded on the spatial light modulator, and the data acquisition card is used to collect and record the return light intensity signal from the target object received by the single-pixel photodetector 4 and transmit it to the computer for image reconstruction.

本发明中所述的光源工作波长不限,可以是可见光波段(如532 nm),也可以是近红外波段(如1064 nm)或者其他波段,所采用的空间光调制器可以是数字微镜阵列(DMD),或者液晶空间光相位调制器(SLM)等空间光调制器,所采用的单像素探测器可以是光电倍增管,PIN光敏二极管,雪崩光敏二极管,纳米线超导单光子探测器等等光电探测器。The working wavelength of the light source described in the present invention is not limited, it can be in the visible light band (such as 532 nm), it can also be in the near-infrared wavelength band (such as 1064 nm) or other wavelength bands, and the spatial light modulator used can be a digital micromirror array. (DMD), or spatial light modulators such as liquid crystal spatial light phase modulators (SLM), the single-pixel detectors used can be photomultiplier tubes, PIN photodiodes, avalanche photodiodes, nanowire superconducting single-photon detectors, etc. and other photodetectors.

本发明一实施例中:结构光发生装置2可以由光源、扩束镜、空间光调制器、投影镜头组成,本实施例中光源采用工作波长532 nm的连续激光器,空间光调制器采用数字微镜阵列器件(TI DLP Discovery V-7001),扩束镜的放大倍数约为10倍;目标物体3为常用的自然图像—摄影师;单像素探测器4采用光电倍增管(Thorlabs PMT-PMM02)。In an embodiment of the present invention, the structured light generating device 2 may be composed of a light source, a beam expander, a spatial light modulator, and a projection lens. In this embodiment, the light source adopts a continuous laser with an operating wavelength of 532 nm, and the spatial light modulator adopts a digital microcomputer. Mirror array device (TI DLP Discovery V-7001), the magnification of the beam expander is about 10 times; the target object 3 is a commonly used natural image-photographer; the single-pixel detector 4 uses a photomultiplier tube (Thorlabs PMT-PMM02) .

本发明一实施例中,高效单像素成像系统的工作流程如下:In an embodiment of the present invention, the workflow of the high-efficiency single-pixel imaging system is as follows:

(1)计算机生成一系列不同阶数的满足泽尼克多项式分布的调制图案并依次加载到数字微镜阵列上;(1) The computer generates a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and sequentially loads them onto the digital micromirror array;

(2)光源产生的连续激光经过扩束后投影到数字微镜阵列上进行强度调制;(2) The continuous laser generated by the light source is expanded and projected onto the digital micromirror array for intensity modulation;

(3)调制后产生的结构光场经过投影镜头照射到目标物体3上,产生的回光强度信号由单像素探测器4采集,并转化为电信号输送到数据采集卡,数据采集卡采集记录单像素光电探测器4接收的来自目标物体的回光强度信号并传送至计算机;(3) The structured light field generated after modulation is irradiated onto the target object 3 through the projection lens, and the generated return light intensity signal is collected by the single-pixel detector 4, and converted into an electrical signal and sent to the data acquisition card, which collects and records The return light intensity signal from the target object received by the single-pixel photodetector 4 is transmitted to the computer;

(4)计算机基于调制图案以及回光强度信号对目标物体进行图像重构。(4) The computer reconstructs the image of the target object based on the modulation pattern and the return light intensity signal.

在一实施例中,所述调制图案生成模块包括:In one embodiment, the modulation pattern generation module includes:

第一模块,用于生成一系列不同阶数的满足泽尼克多项式分布的第一图案;The first module is used to generate a series of first patterns of different orders satisfying the Zernike polynomial distribution;

第二模块,用于将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。The second module is used to split the first pattern into two modulation patterns and then load them on the spatial light modulator in turn, wherein one modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the rest All elements take zero; another modulation pattern split from the first pattern takes zero for the positions of the non-negative elements in the first pattern, and takes the absolute value of the negative elements for the positions of the remaining negative elements.

所述第一模块中,所生成第一图案的表达式如下:In the first module, the expression of the generated first pattern is as follows:

Figure 530997DEST_PATH_IMAGE082
Figure 530997DEST_PATH_IMAGE082

其中rθ分别为极坐标系下的径向坐标和角向坐标,mn分别为泽尼克多项式的径向和角向阶数,

Figure 505775DEST_PATH_IMAGE083
Figure 79976DEST_PATH_IMAGE084
分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the radial and angular orders of the Zernike polynomial, respectively,
Figure 505775DEST_PATH_IMAGE083
,
Figure 79976DEST_PATH_IMAGE084
are the radial and angular components of the Zernike polynomial, respectively;

将第一图案

Figure 91794DEST_PATH_IMAGE085
简化为具有一个阶数变量i的形式,如下:the first pattern
Figure 91794DEST_PATH_IMAGE085
Simplified to the form with one order variable i , as follows:

Figure 321919DEST_PATH_IMAGE086
Figure 321919DEST_PATH_IMAGE086

其中imn满足Noll多项式;where i and m and n satisfy Noll polynomials;

所述第二模块将

Figure 444595DEST_PATH_IMAGE087
拆分成两幅调制图案
Figure 873303DEST_PATH_IMAGE088
Figure 443306DEST_PATH_IMAGE089
,将调制图案
Figure 19780DEST_PATH_IMAGE090
Figure 149410DEST_PATH_IMAGE091
依次加载在空间光调制器上,其中调制图案
Figure 370307DEST_PATH_IMAGE092
保留
Figure 989508DEST_PATH_IMAGE093
中的正数元素,其余元素均取零;调制图案
Figure 912333DEST_PATH_IMAGE094
Figure 845654DEST_PATH_IMAGE095
中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,
Figure 311270DEST_PATH_IMAGE096
。The second module will
Figure 444595DEST_PATH_IMAGE087
Split into two modulation patterns
Figure 873303DEST_PATH_IMAGE088
and
Figure 443306DEST_PATH_IMAGE089
, will modulate the pattern
Figure 19780DEST_PATH_IMAGE090
and
Figure 149410DEST_PATH_IMAGE091
sequentially loaded on the spatial light modulator, where the modulation pattern
Figure 370307DEST_PATH_IMAGE092
reserve
Figure 989508DEST_PATH_IMAGE093
The positive elements in , and the rest of the elements are zero; modulation pattern
Figure 912333DEST_PATH_IMAGE094
Will
Figure 845654DEST_PATH_IMAGE095
The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements.
Figure 311270DEST_PATH_IMAGE096
.

在一实施例中,所述成像模块包括:In one embodiment, the imaging module includes:

第三模块,利用满足

Figure 711159DEST_PATH_IMAGE097
分布的激光投射到目标物体上产生的回光强度
Figure 199909DEST_PATH_IMAGE098
和满足
Figure 468079DEST_PATH_IMAGE099
分布的激光投射到目标物体上产生的回光强度
Figure 912836DEST_PATH_IMAGE100
计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;The third module, using the satisfaction
Figure 711159DEST_PATH_IMAGE097
The intensity of the return light generated by the distributed laser projection onto the target object
Figure 199909DEST_PATH_IMAGE098
and satisfied
Figure 468079DEST_PATH_IMAGE099
The intensity of the return light generated by the distributed laser projection onto the target object
Figure 912836DEST_PATH_IMAGE100
Calculate the coefficient a i of the i -th order Zernike base in the Zernike polynomial;

第四模块,用于重构目标物体图像

Figure 873839DEST_PATH_IMAGE101
,其中The fourth module is used to reconstruct the image of the target object
Figure 873839DEST_PATH_IMAGE101
,in

Figure 849885DEST_PATH_IMAGE102
Figure 849885DEST_PATH_IMAGE102

N为重构图像所采样的次数。 N is the number of times the reconstructed image is sampled.

上述各模块功能的实现方法,可以采用前述各实施例中相同的方法实现,在此不再赘述。The methods for implementing the functions of the above modules can be implemented by the same methods as those in the foregoing embodiments, and details are not described herein again.

在一实施例中,计算机生成一系列不同阶数的离散二维泽尼克多项式

Figure 531533DEST_PATH_IMAGE103
。首先,生成大小为N*N的单位坐标矩阵,本实施例中N=128,单位坐标矩阵的数值范围为(-1,1)。由于泽尼克多项式
Figure 971742DEST_PATH_IMAGE104
定义在极坐标系中的单位圆上,因此在本实施例中,将极坐标系中二维泽尼克多项式
Figure 41329DEST_PATH_IMAGE105
的值转化为相应笛卡尔坐标系下的值,并投影到大小为N*N的单位矩阵的内切圆上,矩阵中的其余元素值取零,由此可采用大小N*N的矩阵表示一幅泽尼克多项式分布的投影图案。由于原定义式中泽尼克多项式
Figure 426043DEST_PATH_IMAGE106
的阶数由m和n两个参数决定,为计算和实验方便,可采用一个参数i来表示泽尼克多项式的阶数
Figure 301595DEST_PATH_IMAGE107
,其中m, n和i的对应关系满足Noll多项式,本实施例中,前9阶泽尼克多项式中m, n和i的对应关系以及相应的泽尼克多项式
Figure 206097DEST_PATH_IMAGE108
的表达式如下表所示:In one embodiment, the computer generates a series of discrete two-dimensional Zernike polynomials of different orders
Figure 531533DEST_PATH_IMAGE103
. First, a unit coordinate matrix with a size of N*N is generated. In this embodiment, N=128, and the numerical range of the unit coordinate matrix is (-1, 1). Because of the Zernike polynomial
Figure 971742DEST_PATH_IMAGE104
is defined on the unit circle in the polar coordinate system, so in this embodiment, the two-dimensional Zernike polynomial in the polar coordinate system is
Figure 41329DEST_PATH_IMAGE105
The value of is converted to the value in the corresponding Cartesian coordinate system, and projected onto the inscribed circle of the unit matrix of size N*N, and the remaining element values in the matrix are zero, so it can be represented by a matrix of size N*N A projected pattern of a Zernike polynomial distribution. Since the Zernike polynomial in the original definition
Figure 426043DEST_PATH_IMAGE106
The order of is determined by two parameters, m and n. For the convenience of calculation and experiment, a parameter i can be used to represent the order of the Zernike polynomial
Figure 301595DEST_PATH_IMAGE107
, where the correspondence between m, n and i satisfies the Noll polynomial. In this embodiment, the correspondence between m, n and i in the first 9-order Zernike polynomial and the corresponding Zernike polynomial
Figure 206097DEST_PATH_IMAGE108
The expression is shown in the following table:

Figure 712165DEST_PATH_IMAGE109
Figure 712165DEST_PATH_IMAGE109

图3是展示了本实施例中计算生成的前9阶泽尼克基光场强度分布灰度图,其中(a)为计算生成的一阶泽尼克基光场强度灰度分布图;(b)为计算生成的二阶泽尼克基光场强度灰度分布图;(c)为计算生成的三阶泽尼克基光场强度灰度分布图;(d)为计算生成的四阶泽尼克基光场强度灰度分布图;(e)为计算生成的五阶泽尼克基光场强度灰度分布图;(f)为计算生成的六阶泽尼克基光场强度灰度分布图;(g)为计算生成的七阶泽尼克基光场强度灰度分布图;(h)为计算生成的八阶泽尼克基光场强度灰度分布图;(i)为计算生成的九阶泽尼克基光场强度灰度分布图。图4是本实施例中目标物体的原图,图5是本实施例中采用500阶泽尼克基光场重构的物体图像(即采样次数N=500),图6是本发明一实施例中采用1000阶泽尼克基光场重构的物体图像(即采样次数N=1000)。由图5和图6可以看出,本发明提出方法可在欠采样条件下以较少的采样次数重构出清晰的目标物体图像,随着采样次数的提高,重构物体图像更清晰,由于本发明实施例中采用的目标物体大小为128*128的像素矩阵,当采样数为1000时,采样比约为6.1%,可以看出本发明提出的单像素成像方法利用目标物体的信息包含在低阶泽尼克多项式中的特点,以较低的采样比实现对目标物体的清晰成像。FIG. 3 is a grayscale map showing the first 9-order Zernike light field intensity distribution calculated and generated in this embodiment, wherein (a) is the first-order Zernike light field intensity grayscale distribution map generated by calculation; (b) is the gray distribution map of the second-order Zernike light field intensity generated by calculation; (c) is the gray distribution map of the third-order Zernike light field intensity generated by calculation; (d) is the fourth-order Zernike light field intensity distribution map generated by calculation Field intensity gray distribution map; (e) is the fifth-order Zernike light field intensity gray distribution map generated by calculation; (f) is the sixth-order Zernike light field intensity gray distribution map generated by calculation; (g) is the seventh-order Zernike light field intensity gray distribution map generated by calculation; (h) is the eighth-order Zernike light field intensity gray distribution map generated by calculation; (i) is the ninth-order Zernike light field intensity distribution map generated by calculation Field intensity grayscale distribution map. FIG. 4 is the original image of the target object in this embodiment, FIG. 5 is an image of the object reconstructed by using a 500-order Zernike light field in this embodiment (that is, the sampling times N=500), and FIG. 6 is an embodiment of the present invention The image of the object reconstructed by the 1000-order Zernike light field (that is, the sampling times N=1000). It can be seen from Fig. 5 and Fig. 6 that the method proposed in the present invention can reconstruct a clear target object image with less sampling times under the condition of under-sampling. With the increase of sampling times, the reconstructed object image is clearer. The target object size used in the embodiment of the present invention is a pixel matrix of 128*128. When the sampling number is 1000, the sampling ratio is about 6.1%. It can be seen that the single-pixel imaging method proposed by the present invention utilizes the information of the target object to be included in the Features in low-order Zernike polynomials to achieve clear imaging of target objects with lower sampling ratios.

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.

Claims (4)

1.一种高效单像素成像方法,其特征在于,包括:1. an efficient single-pixel imaging method, is characterized in that, comprises: 生成一系列不同阶数的满足泽尼克多项式分布的第一图案;Generate a series of first patterns of different orders that satisfy the Zernike polynomial distribution; 将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值;The first pattern is split into two modulation patterns and then loaded on the spatial light modulator in turn, wherein a modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements are taken as zero; In another modulation pattern split from the first pattern, the positions of the non-negative elements in the first pattern are all taken as zero, and the positions of the remaining negative elements are taken as the absolute values of the negative elements; 空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上,并采集从目标物体反射回的回光强度信号;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, projects the modulated laser light onto the target object, and collects the return light intensity signal reflected from the target object; 基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构;reconstructing the image of the target object based on the return light intensity signal and the modulation pattern; 所述第一图案表达式如下:The first pattern expression is as follows:
Figure 210659DEST_PATH_IMAGE001
Figure 210659DEST_PATH_IMAGE001
其中rθ分别为极坐标系下的径向坐标和角向坐标,mn分别为泽尼克多项式的角向和径向阶数,
Figure 684365DEST_PATH_IMAGE002
Figure 919038DEST_PATH_IMAGE003
分别是泽尼克多项式的径向和角向分量;
where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively,
Figure 684365DEST_PATH_IMAGE002
,
Figure 919038DEST_PATH_IMAGE003
are the radial and angular components of the Zernike polynomial, respectively;
将第一图案
Figure 870813DEST_PATH_IMAGE004
简化为具有一个阶数变量i的形式,如下:
the first pattern
Figure 870813DEST_PATH_IMAGE004
Simplified to the form with one order variable i , as follows:
Figure 625274DEST_PATH_IMAGE005
Figure 625274DEST_PATH_IMAGE005
其中imn满足Noll多项式;where i and m and n satisfy Noll polynomials;
Figure 269882DEST_PATH_IMAGE006
拆分成两幅调制图案
Figure 726271DEST_PATH_IMAGE007
Figure 684999DEST_PATH_IMAGE008
,将调制图案
Figure 277655DEST_PATH_IMAGE009
Figure 109476DEST_PATH_IMAGE010
依次加载在空间光调制器上,其中调制图案
Figure 53161DEST_PATH_IMAGE011
保留
Figure 815581DEST_PATH_IMAGE012
中的正数元素,其余元素均取零;调制图案
Figure 528322DEST_PATH_IMAGE013
Figure 514732DEST_PATH_IMAGE014
中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,
Figure 696446DEST_PATH_IMAGE015
Will
Figure 269882DEST_PATH_IMAGE006
Split into two modulation patterns
Figure 726271DEST_PATH_IMAGE007
and
Figure 684999DEST_PATH_IMAGE008
, will modulate the pattern
Figure 277655DEST_PATH_IMAGE009
and
Figure 109476DEST_PATH_IMAGE010
sequentially loaded on the spatial light modulator, where the modulation pattern
Figure 53161DEST_PATH_IMAGE011
reserve
Figure 815581DEST_PATH_IMAGE012
The positive elements in , and the rest of the elements are zero; modulation pattern
Figure 528322DEST_PATH_IMAGE013
Will
Figure 514732DEST_PATH_IMAGE014
The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements.
Figure 696446DEST_PATH_IMAGE015
;
基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构,方法如下:Based on the return light intensity signal and the modulation pattern, the image of the target object is reconstructed, and the method is as follows: 满足
Figure 996977DEST_PATH_IMAGE016
分布的激光投射到目标物体上产生的回光强度为
Figure 829804DEST_PATH_IMAGE017
,满足
Figure 65745DEST_PATH_IMAGE018
分布的激光投射到目标物体上产生的回光强度为
Figure 984022DEST_PATH_IMAGE019
,基于回光强度
Figure 884982DEST_PATH_IMAGE020
Figure 323048DEST_PATH_IMAGE021
计算得到泽尼克多项式中第i阶泽尼克基的系数
Figure 651261DEST_PATH_IMAGE022
Satisfy
Figure 996977DEST_PATH_IMAGE016
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 829804DEST_PATH_IMAGE017
,Satisfy
Figure 65745DEST_PATH_IMAGE018
The intensity of the returned light generated by the distributed laser projected onto the target object is
Figure 984022DEST_PATH_IMAGE019
, based on the return light intensity
Figure 884982DEST_PATH_IMAGE020
and
Figure 323048DEST_PATH_IMAGE021
Calculate the coefficients of the i -th order Zernike base in the Zernike polynomial
Figure 651261DEST_PATH_IMAGE022
;
利用下式,得到重构的目标物体图像
Figure 994517DEST_PATH_IMAGE023
Use the following formula to obtain the reconstructed image of the target object
Figure 994517DEST_PATH_IMAGE023
:
Figure 699168DEST_PATH_IMAGE024
Figure 699168DEST_PATH_IMAGE024
其中N为重构图像所采样的次数。where N is the number of times the reconstructed image is sampled.
2.根据权利要求1所述的高效单像素成像方法,其特征在于,系数
Figure 241008DEST_PATH_IMAGE025
通过下式计算得到:
2. The high-efficiency single-pixel imaging method according to claim 1, wherein the coefficient
Figure 241008DEST_PATH_IMAGE025
It is calculated by the following formula:
Figure 756434DEST_PATH_IMAGE026
Figure 756434DEST_PATH_IMAGE026
.
3.一种高效单像素成像系统,其特征在于,包括:3. A high-efficiency single-pixel imaging system, comprising: 调制图案生成模块,所述调制图案生成模块包括第一模块和第二模块:第一模块,用于生成一系列不同阶数的满足泽尼克多项式分布的第一图案;第二模块,用于将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值;A modulation pattern generation module, the modulation pattern generation module includes a first module and a second module: the first module is used to generate a series of first patterns of different orders satisfying the Zernike polynomial distribution; the second module is used to The first pattern is split into two modulation patterns and then loaded on the spatial light modulator in turn, wherein a modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements are taken as zero; In another modulation pattern split from a pattern, the positions of the non-negative elements in the first pattern are all taken as zero, and the positions of the remaining negative elements are taken as the absolute values of the negative elements; 光源,用于产生激光,并将产生的激光投影照射到空间光调制器上;a light source for generating laser light and projecting the generated laser light onto the spatial light modulator; 空间光调制器,利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, and projects the modulated laser light onto the target object; 单像素光电探测器,用于采集从目标物体反射回的回光强度信号;Single-pixel photodetector, used to collect the return light intensity signal reflected from the target object; 成像模块,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构;an imaging module, for reconstructing the image of the target object based on the return light intensity signal and the modulation pattern; 所述第一模块中,所述第一图案表达式如下:In the first module, the first pattern expression is as follows:
Figure 383725DEST_PATH_IMAGE027
Figure 383725DEST_PATH_IMAGE027
其中rθ分别为极坐标系下的径向坐标和角向坐标,mn分别为泽尼克多项式的角向和径向阶数,
Figure 626487DEST_PATH_IMAGE028
Figure 226096DEST_PATH_IMAGE029
分别是泽尼克多项式的径向和角向分量;
where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively,
Figure 626487DEST_PATH_IMAGE028
,
Figure 226096DEST_PATH_IMAGE029
are the radial and angular components of the Zernike polynomial, respectively;
将第一图案
Figure 161691DEST_PATH_IMAGE030
简化为具有一个阶数变量i的形式,如下:
the first pattern
Figure 161691DEST_PATH_IMAGE030
Simplified to the form with one order variable i , as follows:
Figure 38728DEST_PATH_IMAGE031
Figure 38728DEST_PATH_IMAGE031
其中imn满足Noll多项式;where i and m and n satisfy Noll polynomials;
Figure 819602DEST_PATH_IMAGE032
拆分成两幅调制图案
Figure 539297DEST_PATH_IMAGE033
Figure 645793DEST_PATH_IMAGE034
,将调制图案
Figure 247676DEST_PATH_IMAGE035
Figure 35503DEST_PATH_IMAGE036
依次加载在空间光调制器上,其中调制图案
Figure 157174DEST_PATH_IMAGE037
保留
Figure 434572DEST_PATH_IMAGE038
中的正数元素,其余元素均取零;调制图案
Figure 258171DEST_PATH_IMAGE040
Figure 849689DEST_PATH_IMAGE041
中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,
Figure 75134DEST_PATH_IMAGE042
Will
Figure 819602DEST_PATH_IMAGE032
Split into two modulation patterns
Figure 539297DEST_PATH_IMAGE033
and
Figure 645793DEST_PATH_IMAGE034
, will modulate the pattern
Figure 247676DEST_PATH_IMAGE035
and
Figure 35503DEST_PATH_IMAGE036
sequentially loaded on the spatial light modulator, where the modulation pattern
Figure 157174DEST_PATH_IMAGE037
reserve
Figure 434572DEST_PATH_IMAGE038
The positive elements in , and the rest of the elements are zero; modulation pattern
Figure 258171DEST_PATH_IMAGE040
Will
Figure 849689DEST_PATH_IMAGE041
The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements.
Figure 75134DEST_PATH_IMAGE042
;
所述成像模块包括:The imaging module includes: 第三模块,利用满足
Figure 274166DEST_PATH_IMAGE043
分布的激光投射到目标物体上产生的回光强度
Figure 850641DEST_PATH_IMAGE044
和满足
Figure 980271DEST_PATH_IMAGE045
分布的激光投射到目标物体上产生的回光强度
Figure 60222DEST_PATH_IMAGE046
计算得到泽尼克多项式中第i阶泽尼克基的系数
Figure 945001DEST_PATH_IMAGE047
The third module, using the satisfaction
Figure 274166DEST_PATH_IMAGE043
The intensity of the return light generated by the distributed laser projection onto the target object
Figure 850641DEST_PATH_IMAGE044
and satisfied
Figure 980271DEST_PATH_IMAGE045
The intensity of the return light generated by the distributed laser projection onto the target object
Figure 60222DEST_PATH_IMAGE046
Calculate the coefficients of the i -th order Zernike base in the Zernike polynomial
Figure 945001DEST_PATH_IMAGE047
;
第四模块,用于重构目标物体图像
Figure 493926DEST_PATH_IMAGE048
,其中
The fourth module is used to reconstruct the image of the target object
Figure 493926DEST_PATH_IMAGE048
,in
Figure 427247DEST_PATH_IMAGE049
Figure 427247DEST_PATH_IMAGE049
N为重构图像所采样的次数。 N is the number of times the reconstructed image is sampled.
4.根据权利要求3所述的高效单像素成像系统,其特征在于,所述调制图案生成模块和成像模块由计算机实现。4. The high-efficiency single-pixel imaging system according to claim 3, wherein the modulation pattern generation module and the imaging module are implemented by a computer.
CN202210638656.0A 2022-06-08 2022-06-08 Efficient single-pixel imaging method and system Active CN114710615B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210638656.0A CN114710615B (en) 2022-06-08 2022-06-08 Efficient single-pixel imaging method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210638656.0A CN114710615B (en) 2022-06-08 2022-06-08 Efficient single-pixel imaging method and system

Publications (2)

Publication Number Publication Date
CN114710615A CN114710615A (en) 2022-07-05
CN114710615B true CN114710615B (en) 2022-08-12

Family

ID=82177747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210638656.0A Active CN114710615B (en) 2022-06-08 2022-06-08 Efficient single-pixel imaging method and system

Country Status (1)

Country Link
CN (1) CN114710615B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117950262B (en) * 2024-03-18 2024-06-18 临沂大学 Single-pixel imaging method and device based on single-photon detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842889B2 (en) * 2002-08-06 2005-01-11 Micron Technology, Inc. Methods of forming patterned reticles
EP2118879B1 (en) * 2007-02-09 2013-10-09 F. Poszat HU, L.L.C. Drive system for an optically addressed spatial light modulator
DE102015116838B3 (en) * 2015-10-05 2017-02-02 Federal-Mogul Burscheid Gmbh piston ring
US10657413B2 (en) * 2018-03-27 2020-05-19 Idaho State University Restoration of defaced markings using lock-in infrared thermography
CN110132175B (en) * 2019-05-30 2021-04-20 北京理工大学 Single-pixel phase imaging method and device based on amplitude modulation
CN114415369B (en) * 2020-05-15 2024-09-06 华为技术有限公司 Imaging method, imaging device, optical imaging system and vehicle
CN114095718B (en) * 2021-10-29 2023-10-24 北京市水产科学研究所(国家淡水渔业工程技术研究中心) Single pixel imaging system and method

Also Published As

Publication number Publication date
CN114710615A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN112525851B (en) Terahertz single-pixel imaging method and system thereof
Goodman Digital image formation from electronically detected holograms
CN104154878B (en) A kind of optical imaging method using single pixel detector
CN107306333B (en) High-speed single-pixel imaging method
CN105527242B (en) A kind of Terahertz compression imaging system and method
CN114095718B (en) Single pixel imaging system and method
CN102914367A (en) Multispectral imaging device and method based on compressed sensing
CN103323396A (en) Two-dimensional compression ghost imaging system and method based on coincidence measurement
CN114710615B (en) Efficient single-pixel imaging method and system
Sun et al. Collective noise model for focal plane modulated single-pixel imaging
CN108259865A (en) A kind of color imaging method and system based on single pixel detector
Stojek et al. Single pixel imaging at high pixel resolutions
CN109035168A (en) A kind of calculating imaging method and device based on fold mask construction
CN103954357B (en) The acquisition methods of compressed spectrum imaging system calculation matrix
CN113114882A (en) Fourier single-pixel imaging method with high sampling efficiency
Torkildsen et al. Full characterization of spatial coregistration errors and spatial resolution in spectral imagers
CN106950811A (en) A kind of digital composite holographic imaging method and device
Idell et al. Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain
Zheng et al. Complementary double pulse-width-modulation for 3D shape measurement of complex surfaces
JPH02294680A (en) Apparatus for sensing hologram
CN112702486A (en) A high-speed coherent imaging camera and phase recovery method based on electrically tunable lens
CN112153254B (en) Two-step phase-shift single-pixel imaging method based on base map
CN114966085B (en) Method and system for measuring angular displacement and angular velocity of moving object
Aguilar et al. 3D Fourier ghost imaging via semi-calibrated photometric stereo
US20230280692A1 (en) Totagraphy: Coherent Diffractive/Digital Information Reconstruction by Iterative Phase Recovery Using a Second Camera Imaging the Input Plane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant