CN114710615B - Efficient single-pixel imaging method and system - Google Patents
Efficient single-pixel imaging method and system Download PDFInfo
- Publication number
- CN114710615B CN114710615B CN202210638656.0A CN202210638656A CN114710615B CN 114710615 B CN114710615 B CN 114710615B CN 202210638656 A CN202210638656 A CN 202210638656A CN 114710615 B CN114710615 B CN 114710615B
- Authority
- CN
- China
- Prior art keywords
- pattern
- target object
- modulation
- elements
- modulation pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学探测成像技术领域,具体是一种采用泽尼克矩光场的高效单像素成像方法及系统。The invention relates to the technical field of optical detection and imaging, in particular to a high-efficiency single-pixel imaging method and system using a Zernike moment light field.
背景技术Background technique
单像素成像是指利用单个感光器件对目标物体进行成像的技术,不同于传统的阵列探测器成像技术仅响应可见光波段,单像素探测器可以实现紫外、红外甚至太赫兹波段的成像,此外,单像素探测器以桶探测的方式记录物体回光,灵敏度极高,可应用于远距离目标探测等弱光探测成像领域。当前,单像素探测技术通常运用空间光调制进行单像素成像,即对照明光场进行空间上的强度调制,产生不同强度分布的结构光场,然后采用单像素探测器探测不同结构光场照射目标物体产生的回光强度,结合结构光场的强度分布和单像素探测器记录的回光强度,可重构出物体图像。最早的单像素成像技术通常采用随机光场作为调制光场,由于照明光场的二维空间强度分布是随机的,不同光场之间所采集的信息有冗余,因此所需要的测量次数远多余重建图案的像素数,数据采集时间较长,成像效率较低。Single-pixel imaging refers to a technology that uses a single photosensitive device to image a target object. Unlike the traditional array detector imaging technology that only responds to the visible light band, a single-pixel detector can achieve imaging in the ultraviolet, infrared and even terahertz bands. The pixel detector records the return light of the object in the way of barrel detection, with high sensitivity, and can be used in the field of low-light detection and imaging such as long-distance target detection. At present, single-pixel detection technology usually uses spatial light modulation to perform single-pixel imaging, that is, the intensity of the illumination light field is spatially modulated to generate structured light fields with different intensity distributions, and then single-pixel detectors are used to detect different structured light fields to illuminate the target. The return light intensity generated by the object, combined with the intensity distribution of the structured light field and the return light intensity recorded by the single-pixel detector, can reconstruct the image of the object. The earliest single-pixel imaging technology usually uses a random light field as a modulated light field. Since the two-dimensional spatial intensity distribution of the illumination light field is random, the information collected between different light fields is redundant, so the number of measurements required is far. The number of pixels in the reconstructed pattern is redundant, the data acquisition time is long, and the imaging efficiency is low.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的缺陷,本发明提出了一种高效单像素成像方法及系统。本发明提出采用基于泽尼克正交矩光场的单像素成像技术,利用图像在泽尼克正交矩变换域的稀疏性,采用少量的泽尼克正交光场进行目标物体的照明,重构出高质量物体图像,可有效提高单像素成像技术的成像效率,且成像质量较高。In view of the defects existing in the prior art, the present invention proposes an efficient single-pixel imaging method and system. The invention proposes to adopt the single-pixel imaging technology based on the Zernike orthogonal moment light field, utilizes the sparsity of the image in the Zernike orthogonal moment transform domain, uses a small amount of Zernike orthogonal light field to illuminate the target object, and reconstructs the image. High-quality object images can effectively improve the imaging efficiency of single-pixel imaging technology, and the imaging quality is high.
为实现上述技术目的,本发明提出的技术方案为:For realizing the above-mentioned technical purpose, the technical scheme proposed by the present invention is:
一方面,本发明提供一种高效单像素成像方法,包括:In one aspect, the present invention provides an efficient single-pixel imaging method, comprising:
生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;Generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;
空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上,并采集从目标物体反射回的回光强度信号;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, projects the modulated laser light onto the target object, and collects the return light intensity signal reflected from the target object;
基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。Based on the return light intensity signal and the modulation pattern, the target object image is reconstructed.
在优选实施方案中,所述调制图案利用以下步骤生成:In a preferred embodiment, the modulation pattern is generated using the following steps:
生成一系列不同阶数的满足泽尼克多项式分布的第一图案;Generate a series of first patterns of different orders that satisfy the Zernike polynomial distribution;
将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。The first pattern is split into two modulation patterns and then loaded on the spatial light modulator in turn, wherein a modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements are taken as zero; In another modulation pattern split from the first pattern, the positions of the non-negative elements in the first pattern are all taken as zero, and the positions of the remaining negative elements are taken as the absolute values of the negative elements.
在优选实施方案中,所述第一图案表达式如下:In a preferred embodiment, the first pattern expression is as follows:
其中r、θ分别为极坐标系下的径向坐标和角向坐标,m、n分别为泽尼克多项式的角向和径向阶数,、分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively, , are the radial and angular components of the Zernike polynomial, respectively;
将第一图案简化为具有一个阶数变量i的形式,如下:the first pattern Simplified to the form with one order variable i , as follows:
其中i和m、n满足Noll多项式;where i and m and n satisfy Noll polynomials;
将拆分成两幅调制图案和,将调制图案和依次加载在空间光调制器上,其中调制图案保留 中的正数元素,其余元素均取零;调制图案将中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,。Will Split into two modulation patterns and , will modulate the pattern and sequentially loaded on the spatial light modulator, where the modulation pattern reserve The positive elements in , and the rest of the elements are zero; modulation pattern Will The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements. .
在优选实施方案中,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构,方法如下:In a preferred embodiment, based on the return light intensity signal and the modulation pattern, the image of the target object is reconstructed, and the method is as follows:
满足分布的激光投射到目标物体上产生的回光强度为,满足分布的激光投射到目标物体上产生的回光强度为,基于回光强度和通过下式计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is ,Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is , based on the return light intensity and The coefficient a i of the i -th order Zernike base in the Zernike polynomial is calculated by the following formula;
。 .
进一步的,利用下式,得到重构的目标物体图像:Further, the following formula is used to obtain the reconstructed image of the target object :
其中N为重构图像所采样的次数。where N is the number of times the reconstructed image is sampled.
另一方面,本发明提供一种高效单像素成像系统,包括:In another aspect, the present invention provides a high-efficiency single-pixel imaging system, comprising:
调制图案生成模块,用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;The modulation pattern generation module is used to generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;
光源,用于产生激光,并将产生的激光投影照射到空间光调制器上;a light source for generating laser light and projecting the generated laser light onto the spatial light modulator;
空间光调制器,利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上;The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, and projects the modulated laser light onto the target object;
单像素光电探测器,用于采集从目标物体反射回的回光强度信号;Single-pixel photodetector, used to collect the return light intensity signal reflected from the target object;
成像模块,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。The imaging module reconstructs the image of the target object based on the returned light intensity signal and the modulation pattern.
作为优选实施方案,所述调制图案生成模块和成像模块均由计算机实现。As a preferred embodiment, both the modulation pattern generation module and the imaging module are implemented by a computer.
作为优选实施方案,所述空间光调制器可以是数字微镜阵列(DMD)或者空间光相位调制器。As a preferred embodiment, the spatial light modulator may be a digital micromirror array (DMD) or a spatial light phase modulator.
作为优选实施方案,所述光源包括激光器以及准直扩束系统。As a preferred embodiment, the light source includes a laser and a collimated beam expander system.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
(1)本发明采用二维泽尼克多项式作为调制图案,调制产生泽尼克基光场进行目标物体照明,根据物体的回光强度和所生成的泽尼克调制图案可直接重构出目标物体图案,无需测量计算目标的频谱信息,实现方法简洁,重构算法耗时短,可实现快速成像;(1) The present invention uses a two-dimensional Zernike polynomial as a modulation pattern, modulates a Zernike light field to illuminate the target object, and can directly reconstruct the target object pattern according to the return light intensity of the object and the generated Zernike modulation pattern, There is no need to measure and calculate the spectral information of the target, the implementation method is simple, the reconstruction algorithm takes less time, and rapid imaging can be achieved;
(2)由于目标图像的信息大部分集中在有限阶数的低阶泽尼可基中,因此在采样数较少的情形下,本发明中所采用的的泽尼克基光场可有效重构出高质量的物体图像,具有较高的成像效率;(2) Since most of the information of the target image is concentrated in the low-order Zernike basis of finite order, the Zernike light field used in the present invention can be effectively reconstructed in the case of a small number of samples High-quality object images with high imaging efficiency;
(3)本发明中采用差分的方式利用两幅投影图案和来替代,实验上更具可操作性,并且差分的方法可有效消除背景光噪声,有效提高成像信噪比;(3) In the present invention, two projection patterns are used in a differential manner and to replace , the experiment is more operational, and the differential method can effectively eliminate the background light noise and effectively improve the imaging signal-to-noise ratio;
(4)由于泽尼克多项式定义在圆域的极坐标系上,且其角向分量满足正弦或余弦分布,因此对于具有圆对称性的目标物体,采用泽尼克基光场的单像素成像技术具有较好的重构图像质量。(4) Since the Zernike polynomial is defined in the polar coordinate system of the circular domain, and its angular component satisfies the sine or cosine distribution, for the target object with circular symmetry, the single-pixel imaging technology using the Zernike light field has a relatively high performance. Good reconstructed image quality.
综上,本发明提供的单像素成像技术可在低采样比的条件下提高成像效率和成像质量。In conclusion, the single-pixel imaging technology provided by the present invention can improve imaging efficiency and imaging quality under the condition of low sampling ratio.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1是本发明一实施例的流程图;1 is a flowchart of an embodiment of the present invention;
图2是本发明一实施例的结构图;2 is a structural diagram of an embodiment of the present invention;
图3是本发明一实施例中计算生成的前9阶泽尼克基光场强度灰度分布图,其中(a)为计算生成的一阶泽尼克基光场强度灰度分布图;(b)为计算生成的二阶泽尼克基光场强度灰度分布图;(c)为计算生成的三阶泽尼克基光场强度灰度分布图;(d)为计算生成的四阶泽尼克基光场强度灰度分布图;(e)为计算生成的五阶泽尼克基光场强度灰度分布图;(f)为计算生成的六阶泽尼克基光场强度灰度分布图;(g)为计算生成的七阶泽尼克基光场强度灰度分布图;(h)为计算生成的八阶泽尼克基光场强度灰度分布图;(i)为计算生成的九阶泽尼克基光场强度灰度分布图;3 is a first-order Zernike light field intensity gray distribution map generated by calculation in an embodiment of the present invention, wherein (a) is a first-order Zernike light field intensity gray distribution map generated by calculation; (b) is the gray distribution map of the second-order Zernike light field intensity generated by calculation; (c) is the gray distribution map of the third-order Zernike light field intensity generated by calculation; (d) is the fourth-order Zernike light field intensity distribution map generated by calculation Field intensity gray distribution map; (e) is the fifth-order Zernike light field intensity gray distribution map generated by calculation; (f) is the sixth-order Zernike light field intensity gray distribution map generated by calculation; (g) is the seventh-order Zernike light field intensity gray distribution map generated by calculation; (h) is the eighth-order Zernike light field intensity gray distribution map generated by calculation; (i) is the ninth-order Zernike light field intensity distribution map generated by calculation Field intensity grayscale distribution map;
图4是本发明一实施例中目标物体的原图;4 is an original image of a target object in an embodiment of the present invention;
图5是本发明一实施例中采用500阶泽尼克基光场重构的物体图像;5 is an image of an object reconstructed using a 500-order Zernike light field according to an embodiment of the present invention;
图6是本发明一实施例中采用1000阶泽尼克基光场重构的物体图像。FIG. 6 is an image of an object reconstructed using a 1000-order Zernike light field according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述来清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention more clearly understood, the following will clearly illustrate the spirit of the disclosed contents of the present invention with the accompanying drawings and detailed description. Afterwards, changes and modifications can be made by the technology taught by the content of the present invention, without departing from the spirit and scope of the content of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention, but are not intended to limit the present invention.
在一实施例中,参照图1,提供一种高效单像素成像方法,包括:In one embodiment, referring to FIG. 1 , an efficient single-pixel imaging method is provided, including:
(S1) 生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;(S1) A series of modulation patterns of different orders satisfying the Zernike polynomial distribution are generated and loaded onto the spatial light modulator;
(S2) 空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体上,并采集从目标物体反射回的回光强度信号;(S2) The spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, projects the modulated laser light on the target object, and collects the return light intensity signal reflected from the target object;
(S3) 基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。(S3) Reconstructing the target object image based on the return light intensity signal and the modulation pattern.
在一实施例中,所述步骤(S1)包括:In one embodiment, the step (S1) includes:
(S1.1)生成一系列不同阶数的满足泽尼克多项式分布的第一图案;(S1.1) Generate a series of first patterns of different orders that satisfy the Zernike polynomial distribution;
(S1.2)将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。(S1.2) Split the first pattern into two modulation patterns and load them on the spatial light modulator in turn, wherein one modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the remaining elements All take zero; for another modulation pattern split from the first pattern, the positions of non-negative elements in the first pattern are all taken as zero, and the positions of other negative elements take the absolute value of the negative element.
在一实施例中,步骤(S1.1)中,第一图案表达式如下:In one embodiment, in step (S1.1), the expression of the first pattern is as follows:
其中r、θ分别为极坐标系下的径向坐标和角向坐标,m、n分别为泽尼克多项式的角向和径向阶数,、分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the angular and radial orders of the Zernike polynomial, respectively, , are the radial and angular components of the Zernike polynomial, respectively;
。 .
进一步地,为了使运算更为方便,在步骤(S1.1)中,将第一图案简化为具有一个阶数变量i的形式,如下:Further, in order to make the operation more convenient, in step (S1.1), the first pattern is Simplified to the form with one order variable i , as follows:
其中i和m、n满足Noll多项式;where i and m and n satisfy Noll polynomials;
由于泽尼克多项式的数值矩阵中既有正值,也存在负值,负值部分无法加载到空间光调制器上。步骤(S1.2)中采用差分的方式分两幅调制图案实现泽尼克多项式的产生。将拆分成两幅调制图案和,将调制图案和依次加载在空间光调制器上,其中调制图案保留 中的正数元素,其余元素均取零;调制图案将中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,。Because of the Zernike polynomial There are both positive and negative values in the numerical matrix of , and the negative value part cannot be loaded on the spatial light modulator. In step (S1.2), the Zernike polynomial is realized by using the differential method to divide the two-amplitude modulation pattern production. Will Split into two modulation patterns and , will modulate the pattern and sequentially loaded on the spatial light modulator, where the modulation pattern reserve The positive elements in , and the rest of the elements are zero; modulation pattern Will The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements. .
本发明将满足二维泽尼克多项式分布的调制图案拆分成两幅调制图案和后依次加载到空间光调制器上,空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后产生满足分布的激光和满足分布的激光依次投射到目标物体上,并采集从目标物体反射回的回光强度和。满足分布的激光投射到目标物体上产生的回光强度为,满足分布的激光投射到目标物体上产生的回光强度为,分别满足下列公式:The present invention will satisfy the modulation pattern of the two-dimensional Zernike polynomial distribution Split into two modulation patterns and Then, they are loaded on the spatial light modulator in turn, and the spatial light modulator uses the modulation pattern to modulate the intensity of the laser light emitted by the light source, so that the modulated output satisfies the distributed laser and meet The distributed lasers are projected onto the target object in turn, and the intensity of the returned light reflected from the target object is collected and . Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is ,Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is , respectively satisfy the following formulas:
其中为目标物体在极坐标系下的反射率函数。in is the reflectance function of the target object in the polar coordinate system.
在一实施例的(S3)中,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构,方法如下:In (S3) of an embodiment, the image of the target object is reconstructed based on the return light intensity signal and the modulation pattern, and the method is as follows:
满足分布的激光投射到目标物体上产生的回光强度为,满足分布的激光投射到目标物体上产生的回光强度为,基于回光强度和计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is ,Satisfy The intensity of the returned light generated by the distributed laser projected onto the target object is , based on the return light intensity and Calculate the coefficient a i of the i -th order Zernike base in the Zernike polynomial;
利用下式,得到重构的目标物体图像:Use the following formula to obtain the reconstructed image of the target object :
其中N为采用的泽尼克多项式的阶数,也即重构图像所采样的次数。where N is the order of the Zernike polynomial used, that is, the number of times the reconstructed image is sampled.
本发明的原理如下:The principle of the present invention is as follows:
由其表达式可知,不同阶数的泽尼克多项式在极坐标系下是正交的,其径向分量和角向分量满足下列正交关系:Depend on Its expression shows that the Zernike polynomials of different orders are orthogonal in the polar coordinate system, and their radial components and angular components The following orthogonal relations are satisfied:
因此,二维泽尼克多项式满足下列的正交关系:Therefore, the two-dimensional Zernike polynomial Satisfy the following orthogonal relationship:
由泽尼克多项式的理论可知,目标物体在极坐标系下的反射率函数可拆分为不同阶数的泽尼克多项式来表示:According to the theory of Zernike polynomial, the reflectivity function of the target object in the polar coordinate system It can be divided into Zernike polynomials of different orders to represent:
根据不同阶数的泽尼克多项式之间的正交性,相应的系数可表示为:According to the orthogonality between Zernike polynomials of different orders, the corresponding coefficients can be expressed as:
其中,I i 为探测到的回光强度。Among them, I i is the detected return light intensity.
。 .
因此,重构的目标物体图像满足下列公式:Therefore, the reconstructed target object image satisfies the following formula:
本发明其相较于现有常用的随机光场、哈达玛基光场以及傅里叶基光场,可以在较少的采样次数下获得较高质量的重构图像,同时,对于具有圆对称性特性的物体,该方法可以较好的重构和识别物体中圆对称性的图案信息,可以大幅减少采样次数,提高成像效率。Compared with the existing random light field, Hadamard-based light field and Fourier-based light field, the present invention can obtain a higher-quality reconstructed image with fewer sampling times, and at the same time, it has the characteristics of circular symmetry. The method can better reconstruct and identify the pattern information of circular symmetry in the object, which can greatly reduce the sampling times and improve the imaging efficiency.
参照图2,一实施例提供一种高效单像素成像系统,包括:Referring to FIG. 2, an embodiment provides a high-efficiency single-pixel imaging system, including:
调制图案生成模块,用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上;The modulation pattern generation module is used to generate a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and load them on the spatial light modulator;
结构光发生装置2,结构光发生装置2包括光源和空间光调制器,其中光源用于产生激光,并将产生的激光投影照射到空间光调制器上;空间光调制器利用调制图案对光源发出的激光进行强度调制,将调制后的激光投射到目标物体3上;Structured
单像素光电探测器4,用于采集从目标物体3反射回的回光强度信号;The single-
成像模块,基于所述回光强度信号以及所述调制图案,对目标物体图像进行重构。The imaging module reconstructs the image of the target object based on the returned light intensity signal and the modulation pattern.
其中,所述调制图案生成模块和成像模块由计算机1实现,还包括数据采集卡(型号不限,如采用NI USB-6361),计算机用于生成一系列不同阶数的满足泽尼克多项式分布的调制图案并加载到空间光调制器上,数据采集卡用于采集记录单像素光电探测器4接收的来自目标物体的回光强度信号并传送至计算机进行图像重构。Wherein, the modulation pattern generation module and the imaging module are realized by the
本发明中所述的光源工作波长不限,可以是可见光波段(如532 nm),也可以是近红外波段(如1064 nm)或者其他波段,所采用的空间光调制器可以是数字微镜阵列(DMD),或者液晶空间光相位调制器(SLM)等空间光调制器,所采用的单像素探测器可以是光电倍增管,PIN光敏二极管,雪崩光敏二极管,纳米线超导单光子探测器等等光电探测器。The working wavelength of the light source described in the present invention is not limited, it can be in the visible light band (such as 532 nm), it can also be in the near-infrared wavelength band (such as 1064 nm) or other wavelength bands, and the spatial light modulator used can be a digital micromirror array. (DMD), or spatial light modulators such as liquid crystal spatial light phase modulators (SLM), the single-pixel detectors used can be photomultiplier tubes, PIN photodiodes, avalanche photodiodes, nanowire superconducting single-photon detectors, etc. and other photodetectors.
本发明一实施例中:结构光发生装置2可以由光源、扩束镜、空间光调制器、投影镜头组成,本实施例中光源采用工作波长532 nm的连续激光器,空间光调制器采用数字微镜阵列器件(TI DLP Discovery V-7001),扩束镜的放大倍数约为10倍;目标物体3为常用的自然图像—摄影师;单像素探测器4采用光电倍增管(Thorlabs PMT-PMM02)。In an embodiment of the present invention, the structured
本发明一实施例中,高效单像素成像系统的工作流程如下:In an embodiment of the present invention, the workflow of the high-efficiency single-pixel imaging system is as follows:
(1)计算机生成一系列不同阶数的满足泽尼克多项式分布的调制图案并依次加载到数字微镜阵列上;(1) The computer generates a series of modulation patterns of different orders satisfying the Zernike polynomial distribution and sequentially loads them onto the digital micromirror array;
(2)光源产生的连续激光经过扩束后投影到数字微镜阵列上进行强度调制;(2) The continuous laser generated by the light source is expanded and projected onto the digital micromirror array for intensity modulation;
(3)调制后产生的结构光场经过投影镜头照射到目标物体3上,产生的回光强度信号由单像素探测器4采集,并转化为电信号输送到数据采集卡,数据采集卡采集记录单像素光电探测器4接收的来自目标物体的回光强度信号并传送至计算机;(3) The structured light field generated after modulation is irradiated onto the
(4)计算机基于调制图案以及回光强度信号对目标物体进行图像重构。(4) The computer reconstructs the image of the target object based on the modulation pattern and the return light intensity signal.
在一实施例中,所述调制图案生成模块包括:In one embodiment, the modulation pattern generation module includes:
第一模块,用于生成一系列不同阶数的满足泽尼克多项式分布的第一图案;The first module is used to generate a series of first patterns of different orders satisfying the Zernike polynomial distribution;
第二模块,用于将第一图案拆分成两幅调制图案后依次加载在空间光调制器上,其中由第一图案拆分出一幅调制图案保留第一图案中的正数元素,其余元素均取零;由第一图案拆分出的另一幅调制图案将第一图案中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值。The second module is used to split the first pattern into two modulation patterns and then load them on the spatial light modulator in turn, wherein one modulation pattern is split from the first pattern to retain the positive elements in the first pattern, and the rest All elements take zero; another modulation pattern split from the first pattern takes zero for the positions of the non-negative elements in the first pattern, and takes the absolute value of the negative elements for the positions of the remaining negative elements.
所述第一模块中,所生成第一图案的表达式如下:In the first module, the expression of the generated first pattern is as follows:
其中r、θ分别为极坐标系下的径向坐标和角向坐标,m、n分别为泽尼克多项式的径向和角向阶数,、分别是泽尼克多项式的径向和角向分量;where r and θ are the radial and angular coordinates in the polar coordinate system, respectively, m and n are the radial and angular orders of the Zernike polynomial, respectively, , are the radial and angular components of the Zernike polynomial, respectively;
将第一图案简化为具有一个阶数变量i的形式,如下:the first pattern Simplified to the form with one order variable i , as follows:
其中i和m、n满足Noll多项式;where i and m and n satisfy Noll polynomials;
所述第二模块将拆分成两幅调制图案和,将调制图案和依次加载在空间光调制器上,其中调制图案保留中的正数元素,其余元素均取零;调制图案将中的非负数元素所在位置均取零,其余负数元素所在位置取该负数元素的绝对值,。The second module will Split into two modulation patterns and , will modulate the pattern and sequentially loaded on the spatial light modulator, where the modulation pattern reserve The positive elements in , and the rest of the elements are zero; modulation pattern Will The positions of the non-negative elements in are all zero, and the positions of the remaining negative elements are the absolute values of the negative elements. .
在一实施例中,所述成像模块包括:In one embodiment, the imaging module includes:
第三模块,利用满足分布的激光投射到目标物体上产生的回光强度和满足分布的激光投射到目标物体上产生的回光强度计算得到泽尼克多项式中第i阶泽尼克基的系数a i ;The third module, using the satisfaction The intensity of the return light generated by the distributed laser projection onto the target object and satisfied The intensity of the return light generated by the distributed laser projection onto the target object Calculate the coefficient a i of the i -th order Zernike base in the Zernike polynomial;
第四模块,用于重构目标物体图像,其中The fourth module is used to reconstruct the image of the target object ,in
N为重构图像所采样的次数。 N is the number of times the reconstructed image is sampled.
上述各模块功能的实现方法,可以采用前述各实施例中相同的方法实现,在此不再赘述。The methods for implementing the functions of the above modules can be implemented by the same methods as those in the foregoing embodiments, and details are not described herein again.
在一实施例中,计算机生成一系列不同阶数的离散二维泽尼克多项式。首先,生成大小为N*N的单位坐标矩阵,本实施例中N=128,单位坐标矩阵的数值范围为(-1,1)。由于泽尼克多项式定义在极坐标系中的单位圆上,因此在本实施例中,将极坐标系中二维泽尼克多项式的值转化为相应笛卡尔坐标系下的值,并投影到大小为N*N的单位矩阵的内切圆上,矩阵中的其余元素值取零,由此可采用大小N*N的矩阵表示一幅泽尼克多项式分布的投影图案。由于原定义式中泽尼克多项式的阶数由m和n两个参数决定,为计算和实验方便,可采用一个参数i来表示泽尼克多项式的阶数,其中m, n和i的对应关系满足Noll多项式,本实施例中,前9阶泽尼克多项式中m, n和i的对应关系以及相应的泽尼克多项式的表达式如下表所示:In one embodiment, the computer generates a series of discrete two-dimensional Zernike polynomials of different orders . First, a unit coordinate matrix with a size of N*N is generated. In this embodiment, N=128, and the numerical range of the unit coordinate matrix is (-1, 1). Because of the Zernike polynomial is defined on the unit circle in the polar coordinate system, so in this embodiment, the two-dimensional Zernike polynomial in the polar coordinate system is The value of is converted to the value in the corresponding Cartesian coordinate system, and projected onto the inscribed circle of the unit matrix of size N*N, and the remaining element values in the matrix are zero, so it can be represented by a matrix of size N*N A projected pattern of a Zernike polynomial distribution. Since the Zernike polynomial in the original definition The order of is determined by two parameters, m and n. For the convenience of calculation and experiment, a parameter i can be used to represent the order of the Zernike polynomial , where the correspondence between m, n and i satisfies the Noll polynomial. In this embodiment, the correspondence between m, n and i in the first 9-order Zernike polynomial and the corresponding Zernike polynomial The expression is shown in the following table:
图3是展示了本实施例中计算生成的前9阶泽尼克基光场强度分布灰度图,其中(a)为计算生成的一阶泽尼克基光场强度灰度分布图;(b)为计算生成的二阶泽尼克基光场强度灰度分布图;(c)为计算生成的三阶泽尼克基光场强度灰度分布图;(d)为计算生成的四阶泽尼克基光场强度灰度分布图;(e)为计算生成的五阶泽尼克基光场强度灰度分布图;(f)为计算生成的六阶泽尼克基光场强度灰度分布图;(g)为计算生成的七阶泽尼克基光场强度灰度分布图;(h)为计算生成的八阶泽尼克基光场强度灰度分布图;(i)为计算生成的九阶泽尼克基光场强度灰度分布图。图4是本实施例中目标物体的原图,图5是本实施例中采用500阶泽尼克基光场重构的物体图像(即采样次数N=500),图6是本发明一实施例中采用1000阶泽尼克基光场重构的物体图像(即采样次数N=1000)。由图5和图6可以看出,本发明提出方法可在欠采样条件下以较少的采样次数重构出清晰的目标物体图像,随着采样次数的提高,重构物体图像更清晰,由于本发明实施例中采用的目标物体大小为128*128的像素矩阵,当采样数为1000时,采样比约为6.1%,可以看出本发明提出的单像素成像方法利用目标物体的信息包含在低阶泽尼克多项式中的特点,以较低的采样比实现对目标物体的清晰成像。FIG. 3 is a grayscale map showing the first 9-order Zernike light field intensity distribution calculated and generated in this embodiment, wherein (a) is the first-order Zernike light field intensity grayscale distribution map generated by calculation; (b) is the gray distribution map of the second-order Zernike light field intensity generated by calculation; (c) is the gray distribution map of the third-order Zernike light field intensity generated by calculation; (d) is the fourth-order Zernike light field intensity distribution map generated by calculation Field intensity gray distribution map; (e) is the fifth-order Zernike light field intensity gray distribution map generated by calculation; (f) is the sixth-order Zernike light field intensity gray distribution map generated by calculation; (g) is the seventh-order Zernike light field intensity gray distribution map generated by calculation; (h) is the eighth-order Zernike light field intensity gray distribution map generated by calculation; (i) is the ninth-order Zernike light field intensity distribution map generated by calculation Field intensity grayscale distribution map. FIG. 4 is the original image of the target object in this embodiment, FIG. 5 is an image of the object reconstructed by using a 500-order Zernike light field in this embodiment (that is, the sampling times N=500), and FIG. 6 is an embodiment of the present invention The image of the object reconstructed by the 1000-order Zernike light field (that is, the sampling times N=1000). It can be seen from Fig. 5 and Fig. 6 that the method proposed in the present invention can reconstruct a clear target object image with less sampling times under the condition of under-sampling. With the increase of sampling times, the reconstructed object image is clearer. The target object size used in the embodiment of the present invention is a pixel matrix of 128*128. When the sampling number is 1000, the sampling ratio is about 6.1%. It can be seen that the single-pixel imaging method proposed by the present invention utilizes the information of the target object to be included in the Features in low-order Zernike polynomials to achieve clear imaging of target objects with lower sampling ratios.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210638656.0A CN114710615B (en) | 2022-06-08 | 2022-06-08 | Efficient single-pixel imaging method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210638656.0A CN114710615B (en) | 2022-06-08 | 2022-06-08 | Efficient single-pixel imaging method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114710615A CN114710615A (en) | 2022-07-05 |
CN114710615B true CN114710615B (en) | 2022-08-12 |
Family
ID=82177747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210638656.0A Active CN114710615B (en) | 2022-06-08 | 2022-06-08 | Efficient single-pixel imaging method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114710615B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117950262B (en) * | 2024-03-18 | 2024-06-18 | 临沂大学 | Single-pixel imaging method and device based on single-photon detector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6842889B2 (en) * | 2002-08-06 | 2005-01-11 | Micron Technology, Inc. | Methods of forming patterned reticles |
EP2118879B1 (en) * | 2007-02-09 | 2013-10-09 | F. Poszat HU, L.L.C. | Drive system for an optically addressed spatial light modulator |
DE102015116838B3 (en) * | 2015-10-05 | 2017-02-02 | Federal-Mogul Burscheid Gmbh | piston ring |
US10657413B2 (en) * | 2018-03-27 | 2020-05-19 | Idaho State University | Restoration of defaced markings using lock-in infrared thermography |
CN110132175B (en) * | 2019-05-30 | 2021-04-20 | 北京理工大学 | Single-pixel phase imaging method and device based on amplitude modulation |
CN114415369B (en) * | 2020-05-15 | 2024-09-06 | 华为技术有限公司 | Imaging method, imaging device, optical imaging system and vehicle |
CN114095718B (en) * | 2021-10-29 | 2023-10-24 | 北京市水产科学研究所(国家淡水渔业工程技术研究中心) | Single pixel imaging system and method |
-
2022
- 2022-06-08 CN CN202210638656.0A patent/CN114710615B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114710615A (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112525851B (en) | Terahertz single-pixel imaging method and system thereof | |
Goodman | Digital image formation from electronically detected holograms | |
CN104154878B (en) | A kind of optical imaging method using single pixel detector | |
CN107306333B (en) | High-speed single-pixel imaging method | |
CN105527242B (en) | A kind of Terahertz compression imaging system and method | |
CN114095718B (en) | Single pixel imaging system and method | |
CN102914367A (en) | Multispectral imaging device and method based on compressed sensing | |
CN103323396A (en) | Two-dimensional compression ghost imaging system and method based on coincidence measurement | |
CN114710615B (en) | Efficient single-pixel imaging method and system | |
Sun et al. | Collective noise model for focal plane modulated single-pixel imaging | |
CN108259865A (en) | A kind of color imaging method and system based on single pixel detector | |
Stojek et al. | Single pixel imaging at high pixel resolutions | |
CN109035168A (en) | A kind of calculating imaging method and device based on fold mask construction | |
CN103954357B (en) | The acquisition methods of compressed spectrum imaging system calculation matrix | |
CN113114882A (en) | Fourier single-pixel imaging method with high sampling efficiency | |
Torkildsen et al. | Full characterization of spatial coregistration errors and spatial resolution in spectral imagers | |
CN106950811A (en) | A kind of digital composite holographic imaging method and device | |
Idell et al. | Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain | |
Zheng et al. | Complementary double pulse-width-modulation for 3D shape measurement of complex surfaces | |
JPH02294680A (en) | Apparatus for sensing hologram | |
CN112702486A (en) | A high-speed coherent imaging camera and phase recovery method based on electrically tunable lens | |
CN112153254B (en) | Two-step phase-shift single-pixel imaging method based on base map | |
CN114966085B (en) | Method and system for measuring angular displacement and angular velocity of moving object | |
Aguilar et al. | 3D Fourier ghost imaging via semi-calibrated photometric stereo | |
US20230280692A1 (en) | Totagraphy: Coherent Diffractive/Digital Information Reconstruction by Iterative Phase Recovery Using a Second Camera Imaging the Input Plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |