CN114705788B - 一种水体中嗅味物质的检测方法 - Google Patents
一种水体中嗅味物质的检测方法 Download PDFInfo
- Publication number
- CN114705788B CN114705788B CN202210547673.3A CN202210547673A CN114705788B CN 114705788 B CN114705788 B CN 114705788B CN 202210547673 A CN202210547673 A CN 202210547673A CN 114705788 B CN114705788 B CN 114705788B
- Authority
- CN
- China
- Prior art keywords
- carbon fiber
- carbon fibers
- solution
- water
- water body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 239000000126 substance Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 177
- 239000004917 carbon fiber Substances 0.000 claims abstract description 177
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 118
- 238000000605 extraction Methods 0.000 claims abstract description 47
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000002608 ionic liquid Substances 0.000 claims abstract description 38
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 37
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 37
- XLXCHZCQTCBUOX-UHFFFAOYSA-N 1-prop-2-enylimidazole Chemical compound C=CCN1C=CN=C1 XLXCHZCQTCBUOX-UHFFFAOYSA-N 0.000 claims abstract description 13
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000020477 pH reduction Effects 0.000 claims abstract description 12
- 238000001354 calcination Methods 0.000 claims abstract description 11
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 94
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 32
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 21
- 239000004094 surface-active agent Substances 0.000 claims description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 14
- 229910017604 nitric acid Inorganic materials 0.000 claims description 14
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical group CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 claims description 7
- 229920001993 poloxamer 188 Polymers 0.000 claims description 7
- 229940044519 poloxamer 188 Drugs 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims 2
- 238000002791 soaking Methods 0.000 claims 2
- 238000002444 silanisation Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 70
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 51
- 238000002360 preparation method Methods 0.000 description 37
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 30
- ZFRKQXVRDFCRJG-UHFFFAOYSA-N skatole Chemical compound C1=CC=C2C(C)=CNC2=C1 ZFRKQXVRDFCRJG-UHFFFAOYSA-N 0.000 description 26
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 20
- 239000004810 polytetrafluoroethylene Substances 0.000 description 20
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 20
- 239000008367 deionised water Substances 0.000 description 16
- 229910021641 deionized water Inorganic materials 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 15
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 15
- 239000003205 fragrance Substances 0.000 description 13
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- -1 hexadiene succinate Chemical compound 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 238000010828 elution Methods 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000004381 surface treatment Methods 0.000 description 8
- 241000195493 Cryptophyta Species 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000003795 desorption Methods 0.000 description 6
- 239000003651 drinking water Substances 0.000 description 6
- 235000020188 drinking water Nutrition 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000000967 suction filtration Methods 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- XBJFCYDKBDVADW-UHFFFAOYSA-N acetonitrile;formic acid Chemical compound CC#N.OC=O XBJFCYDKBDVADW-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004811 liquid chromatography Methods 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 238000004885 tandem mass spectrometry Methods 0.000 description 4
- 241000186361 Actinobacteria <class> Species 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical group C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 239000010413 mother solution Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- UMPSXRYVXUPCOS-UHFFFAOYSA-N 2,3-dichlorophenol Chemical compound OC1=CC=CC(Cl)=C1Cl UMPSXRYVXUPCOS-UHFFFAOYSA-N 0.000 description 1
- BHNHHSOHWZKFOX-UHFFFAOYSA-N 2-methyl-1H-indole Chemical compound C1=CC=C2NC(C)=CC2=C1 BHNHHSOHWZKFOX-UHFFFAOYSA-N 0.000 description 1
- SCWBSTVOWDDYHH-UHFFFAOYSA-N 4-amino-2,6-dichlorophenol;4-aminophenol Chemical compound NC1=CC=C(O)C=C1.NC1=CC(Cl)=C(O)C(Cl)=C1 SCWBSTVOWDDYHH-UHFFFAOYSA-N 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 210000002220 organoid Anatomy 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0251—Compounds of Si, Ge, Sn, Pb
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/062—Preparation extracting sample from raw material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
本发明公开了一种水体中嗅味物质的检测方法,属于水体检测领域,具体涉及将碳纤维经预处理及酸化处理后,浸于功能处理液中,然后经煅烧后浸于硅酸酯溶液中,最后经煅烧得到表面介孔硅化碳纤维,将表面介孔硅化碳纤维制成碳纤维萃取柱,对水体中嗅味物质进行吸附,然后经解吸处理并采用LC‑MS/MS检测;功能处理液中含有硅烷化离子液体、氨水、2‑酮‑D‑谷氨酸半钙盐;硅烷化离子液体由1‑烯丙基咪唑和3‑氯丙基三甲氧基硅烷制备。本发明方法对水体中嗅味物质的检测限低,并且对水体中嗅味物质的检测准确度和精密度均较高。
Description
技术领域
本发明属于水体检测领域,具体涉及一种水体中嗅味物质的检测方法。
背景技术
近年来,饮用水嗅味问题在世界上很多国家反复出现,饮用水行业面临巨大挑战,居民生活和健康受到影响和威胁,饮用水安全问题备受威胁,饮用水安全问题备受关注。由于社会发展和生产活中苯、醚酚和吲哚等化学物质的大量使用和随意排放,导致水源的大量使用和随意排放,导致水源的大量使用和随意排放,导致水源中的酚和吲哚类有机物被频繁检出,引起了人们对主要由此引发的化学类嗅味问题的担忧。
嗅味是饮用水质的主要因素。是饮用水质的主要因素。嗅味物质的来源不同,可导致不同种类的嗅味事件的发生,处理应对措施也随之变通。水体嗅味问题的源头大致可以分为三种。一种是藻类、放线菌和真藻类、放线菌和真藻类、放线菌和真生长代谢产生或者衰亡腐败释放的细胞内源物质产生嗅味。水体的富营养化造成藻类大量繁殖,而繁殖,而繁殖,而几乎所有的藻类生长代谢均可产生嗅味物质,不同藻类产生的嗅味物质,不同藻类产生的嗅味物质,不同藻类产生的嗅味物质也不尽相同。一种是饮用水处理过程中氯过量投加引起的嗅味问题。饮用水处理过程中不可或缺的当属消毒工艺,氯消毒是大多数水厂优先选择的处理工艺。当过量氯的投加本身便会产生异味,在消毒过程中氯会与水体中的其他有机物反应,有更多致嗅消毒副产物的生成。还有一种是生活、农业和工业污水废水的大量违规排放产生的嗅味。如酚和吲哚类化合物等能产生嗅味的物质会通过各种方式进入天然受纳水体,其中氮化物、硫化物、硫化物、硫化会产生嗅味,使受纳水体被污染并发生嗅味问题。本发明意在提供一种水体中嗅味物质的检测方法。
发明内容
本发明的目的在于提供一种检测限低、准确度和精密度高的水体中嗅味物质的检测方法。
本发明为实现上述目的所采取的技术方案为:
一种水体中嗅味物质的检测方法,包括:将碳纤维经预处理及酸化处理后,浸于功能处理液中,然后经煅烧后浸于硅酸酯溶液中,最后经煅烧得到表面介孔硅化碳纤维,将表面介孔硅化碳纤维制成碳纤维萃取柱,对水体中嗅味物质进行吸附,然后经解吸处理并采用LC-MS/MS检测;功能处理液中含有硅烷化离子液体、氨水、2-酮-D-谷氨酸半钙盐;硅烷化离子液体由1-烯丙基咪唑和3-氯丙基三甲氧基硅烷制备,氨水以氨水溶液的形式使用,氨水溶液中含有0.8-3.2wt%的未稀释的浓氨水。本发明先经含有硅烷化离子液体和2-酮-D-谷氨酸半钙盐的功能处理液进行浸渍,然后进行煅烧,然后浸渍于硅酸酯溶液中,再次煅烧得到表面介孔硅化碳纤维,通过两次不同的浸渍及煅烧,使碳纤维表面覆盖含介孔硅的功能层,通过调整功能处理液中硅烷化离子液体和2-酮-D-谷氨酸半钙盐的使用及含量,使第二次浸渍硅酸酯溶液及煅烧后,使表面介孔硅化碳纤维对水体中嗅味物质具有优异的吸附及解吸效果,从而提高对水体中嗅味物质的检测效果,通过调控硅烷化离子液体和2-酮-D-谷氨酸半钙盐的使用量,得到具有最佳检测效果的表面介孔硅化碳纤维。
优选地,酸化处理中采用复合酸溶液,复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有20-40wt%的浓硝酸。
优选地,硅烷化离子液体的使用量为氨水溶液的2-6wt%。
优选地,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的1-4wt%。
优选地,硅酸酯溶液中含有正硅酸乙酯、表面活性剂、乙醇和盐酸。
优选地,硅酸酯溶液中含有1-4wt%的正硅酸乙酯。
优选地,表面活性剂为泊洛沙姆188。
优选地,碳纤维萃取柱中表面介孔硅化碳纤维以束的形式使用,表面介孔硅化碳纤维束至少露出1cm。
优选地,碳纤维的预处理中,将碳纤维加入含有丙酮的索氏抽提器中,在260-300℃的温度下回流24-72h,回流处理完成后,取出干燥,得到预处理碳纤维。
更优选地,碳纤维的预处理中,碳纤维的使用量为丙酮的10-40wt%。
优选地,硅烷化离子液体的制备中,将1-烯丙基咪唑滴加入3-氯丙基三甲氧基硅烷中,超声混合均匀,在氮气氛围下,在70-90℃的温度下反应16-48h,反应完成后得到硅烷化离子液体。
更优选地,硅烷化离子液体的制备中,1-烯丙基咪唑的使用摩尔量为3-氯丙基三甲氧基硅烷的100%。
优选地,功能处理液的配制中,将硅烷化离子液体、氨水溶液、2-酮-D-谷氨酸半钙盐混合均匀,得到功能处理液。
更优选地,功能处理液的配制中,氨水溶液中含有0.8-3.2wt%的未稀释的浓氨水。
更优选地,功能处理液的配制中,硅烷化离子液体的使用量为氨水溶液的2-6wt%。
更优选地,功能处理液的配制中,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的1-4wt%。
优选地,碳纤维的表面处理中,将预处理碳纤维采用复合酸溶液进行酸化处理,酸化处理完成后,采用去离子水冲洗至中性,干燥,然后将酸化处理后的碳纤维浸渍于功能处理液中,在20-40℃的温度下处理24-72h,抽滤取出,在400-600℃的温度下煅烧20-60min,得到表面功能化碳纤维。
更优选地,碳纤维的表面处理中,复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有20-40wt%的浓硝酸。
更优选地,碳纤维的表面处理中,预处理碳纤维的使用量为复合酸溶液的5-25wt%。
更优选地,碳纤维的表面处理中,酸化处理后的碳纤维的使用量为功能处理液的10-30wt%。
优选地,硅酸酯溶液的配制中,将正硅酸乙酯、表面活性剂、去离子水、乙醇、盐酸混合,得到硅酸酯溶液。
更优选地,硅酸酯溶液的配制中,硅酸酯溶液中含有1-4wt%的正硅酸乙酯。
更优选地,硅酸酯溶液的配制中,表面活性剂为泊洛沙姆188,表面活性剂的使用量为正硅酸乙酯的1-5wt%。
更优选地,硅酸酯溶液的配制中,乙醇的使用量为正硅酸乙酯的2000-3000wt%。
更优选地,硅酸酯溶液的配制中,盐酸的使用量为正硅酸乙酯的2-6wt%。
优选地,表面介孔硅化碳纤维的制备中,将表面功能化碳纤维浸渍于硅酸酯溶液中,在20-40℃的温度下处理24-72h,抽滤取出,在400-600℃的温度下煅烧20-60min,得到表面介孔硅化碳纤维。
更优选地,表面介孔硅化碳纤维的制备中,表面功能化碳纤维的使用量为硅酸酯溶液的4-24wt%。
更优选地,表面介孔硅化碳纤维的制备中,硅酸酯溶液中可以加入己二烯琥珀酸酯,己二烯琥珀酸酯的使用量为正硅酸乙酯的0.3-2.1wt%。在浸渍完功能处理液并煅烧后,进一步浸渍于含有己二烯琥珀酸酯的硅酸酯溶液中再经煅烧,应用于水体中嗅味物质检测后,对水体中嗅味物质的检测限及检测准确度和精密度有优异的效果。
碳纤维萃取柱的制备:将表面介孔硅化碳纤维以束的形式使用,以PTFE管作为载体,将表面介孔硅化碳纤维束的一端采用树脂固定,然后将其装入PTFE管中,制备得到碳纤维萃取柱。固定端往PTFE管中装,是确保容易装管,碳纤维萃取柱中的表面介孔硅化碳纤维束至少露出1cm。碳纤维萃取柱保存于甲醇中。表面介孔硅化碳纤维束的使用量由PTFE管的内径决定。
水体中嗅味物质的检测:将碳纤维萃取柱采用去离子水冲洗表面,放入待检测水样中静止吸附5-30min,然后将吸附后的碳纤维萃取柱于甲醇溶剂中,超声解吸,取样进行LC-MS/MS检测分析。超声解吸中甲醇溶剂的使用量为每根萃取柱2-5mL。
本发明公开了上述表面介孔硅化碳纤维在检测水体中嗅味物质的用途。
本发明对碳纤维进行预处理后,先通过功能处理液浸渍后煅烧,再通过硅酸酯溶液浸渍后煅烧得到表面介孔硅化碳纤维,本发明由于采用表面介孔硅化碳纤维制成碳纤维萃取柱,然后将碳纤维萃取柱用于水体中嗅味物质的检测,因而具有如下有益效果:对水体中嗅味物质的检测限低,对3-甲基酚的检测限低至2.68ng·L-1;2,6-二氯苯酚的检测限低至3.71ng·L-1;吲哚的检测限低至6.39ng·L-1;3-甲基吲哚的检测限低至7.58ng·L-1;对水体中嗅味物质的检测准确度高;对水体中嗅味物质的检测精密度高。因此,本发明是一种检测限低、准确度和精密度高的水体中嗅味物质的检测方法。
附图说明
图1为表面介孔硅化碳纤维的电镜图。
具体实施方式
以下结合具体实施方式和附图对本发明的技术方案作进一步详细描述:
实施例1:
一种水体中嗅味物质的检测方法,
碳纤维的预处理:将碳纤维加入含有丙酮的索氏抽提器中,在280℃的温度下回流48h,回流处理完成后,取出干燥,得到预处理碳纤维。碳纤维的使用量为丙酮的30wt%。
硅烷化离子液体的制备:将1-烯丙基咪唑滴加入3-氯丙基三甲氧基硅烷中,超声混合均匀,在氮气氛围下,在80℃的温度下反应24h,反应完成后得到硅烷化离子液体。1-烯丙基咪唑的使用摩尔量为3-氯丙基三甲氧基硅烷的100%。
功能处理液的配制:将硅烷化离子液体、氨水溶液、2-酮-D-谷氨酸半钙盐混合均匀,得到功能处理液。氨水溶液中含有1.6wt%的未稀释的浓氨水,硅烷化离子液体的使用量为氨水溶液的3wt%,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的2.5wt%。
碳纤维的表面处理:将预处理碳纤维采用复合酸溶液进行酸化处理,酸化处理完成后,采用去离子水冲洗至中性,干燥,然后将酸化处理后的碳纤维浸渍于功能处理液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面功能化碳纤维。复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有30wt%的浓硝酸,预处理碳纤维的使用量为复合酸溶液的15wt%,酸化处理后的碳纤维的使用量为功能处理液的20wt%。
硅酸酯溶液的配制:将正硅酸乙酯、表面活性剂、去离子水、乙醇、盐酸混合,得到硅酸酯溶液。硅酸酯溶液中含有3wt%的正硅酸乙酯,表面活性剂为泊洛沙姆188,表面活性剂的使用量为正硅酸乙酯的4wt%,乙醇的使用量为正硅酸乙酯的2600wt%,盐酸的使用量为正硅酸乙酯的4wt%。
表面介孔硅化碳纤维的制备:将表面功能化碳纤维浸渍于硅酸酯溶液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面介孔硅化碳纤维。表面功能化碳纤维的使用量为硅酸酯溶液的14wt%。
碳纤维萃取柱的制备:将表面介孔硅化碳纤维以束的形式使用,以PTFE管作为载体,将表面介孔硅化碳纤维束的一端采用树脂固定,然后将其装入PTFE管中,制备得到碳纤维萃取柱。固定端往PTFE管中装,是确保容易装管,碳纤维萃取柱中的表面介孔硅化碳纤维束露出1cm。碳纤维萃取柱保存于甲醇中。表面介孔硅化碳纤维束的使用量由PTFE管的内径决定。
水体中嗅味物质的检测:将碳纤维萃取柱采用去离子水冲洗表面,放入待检测水样中静止吸附20min,然后将吸附后的碳纤维萃取柱于甲醇溶剂中,超声解吸,取样进行LC-MS/MS检测分析。超声解吸中甲醇溶剂的使用量为每根萃取柱3mL。
液相色谱分离条件:
流动相:A相为0.05wt%的甲酸水溶液,B相为0.05wt%的甲酸乙腈溶液;ZORBAXEclipse XDB-C18色谱柱;流速为500μL/min,柱温30℃,每次进样10μL。
梯度洗脱的步骤:AB相混合洗脱中以B相占比来表征,B相初始使用量为10%,在10min内逐渐增加至40%,保持5min,然后在5min内增加至90%,保持5min,然后在10min内降低至10%。
质谱检测条件:
电离模式:离子源为ESI,毛细管电压:离子水源电压为4kV,离子源温度为300℃;雾化气压力:15psi;干燥器流速:8L/min;正离子模式检测。
实施例2:
一种水体中嗅味物质的检测方法,
碳纤维的预处理:将碳纤维加入含有丙酮的索氏抽提器中,在280℃的温度下回流48h,回流处理完成后,取出干燥,得到预处理碳纤维。碳纤维的使用量为丙酮的30wt%。
硅烷化离子液体的制备:将1-烯丙基咪唑滴加入3-氯丙基三甲氧基硅烷中,超声混合均匀,在氮气氛围下,在80℃的温度下反应24h,反应完成后得到硅烷化离子液体。1-烯丙基咪唑的使用摩尔量为3-氯丙基三甲氧基硅烷的100%。
功能处理液的配制:将硅烷化离子液体、氨水溶液、2-酮-D-谷氨酸半钙盐混合均匀,得到功能处理液。氨水溶液中含有1.6wt%的未稀释的浓氨水,硅烷化离子液体的使用量为氨水溶液的5wt%,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的2.5wt%。
碳纤维的表面处理:将预处理碳纤维采用复合酸溶液进行酸化处理,酸化处理完成后,采用去离子水冲洗至中性,干燥,然后将酸化处理后的碳纤维浸渍于功能处理液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面功能化碳纤维。复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有30wt%的浓硝酸,预处理碳纤维的使用量为复合酸溶液的15wt%,酸化处理后的碳纤维的使用量为功能处理液的20wt%。
硅酸酯溶液的配制:将正硅酸乙酯、表面活性剂、去离子水、乙醇、盐酸混合,得到硅酸酯溶液。硅酸酯溶液中含有3wt%的正硅酸乙酯,表面活性剂为泊洛沙姆188,表面活性剂的使用量为正硅酸乙酯的4wt%,乙醇的使用量为正硅酸乙酯的2600wt%,盐酸的使用量为正硅酸乙酯的4wt%。
表面介孔硅化碳纤维的制备:将表面功能化碳纤维浸渍于硅酸酯溶液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面介孔硅化碳纤维。表面功能化碳纤维的使用量为硅酸酯溶液的14wt%。
碳纤维萃取柱的制备:将表面介孔硅化碳纤维以束的形式使用,以PTFE管作为载体,将表面介孔硅化碳纤维束的一端采用树脂固定,然后将其装入PTFE管中,制备得到碳纤维萃取柱。固定端往PTFE管中装,是确保容易装管,碳纤维萃取柱中的表面介孔硅化碳纤维束露出1cm。碳纤维萃取柱保存于甲醇中。表面介孔硅化碳纤维束的使用量由PTFE管的内径决定。
水体中嗅味物质的检测:将碳纤维萃取柱采用去离子水冲洗表面,放入待检测水样中静止吸附20min,然后将吸附后的碳纤维萃取柱于甲醇溶剂中,超声解吸,取样进行LC-MS/MS检测分析。超声解吸中甲醇溶剂的使用量为每根萃取柱3mL。
液相色谱分离条件:
流动相:A相为0.05wt%的甲酸水溶液,B相为0.05wt%的甲酸乙腈溶液;ZORBAXEclipse XDB-C18色谱柱;流速为500μL/min,柱温30℃,每次进样10μL。
梯度洗脱的步骤:AB相混合洗脱中以B相占比来表征,B相初始使用量为10%,在10min内逐渐增加至40%,保持5min,然后在5min内增加至90%,保持5min,然后在10min内降低至10%。
质谱检测条件:
电离模式:离子源为ESI,毛细管电压:离子水源电压为4kV,离子源温度为300℃;雾化气压力:15psi;干燥器流速:8L/min;正离子模式检测。
实施例3:
一种水体中嗅味物质的检测方法,
碳纤维的预处理:将碳纤维加入含有丙酮的索氏抽提器中,在280℃的温度下回流48h,回流处理完成后,取出干燥,得到预处理碳纤维。碳纤维的使用量为丙酮的30wt%。
硅烷化离子液体的制备:将1-烯丙基咪唑滴加入3-氯丙基三甲氧基硅烷中,超声混合均匀,在氮气氛围下,在80℃的温度下反应24h,反应完成后得到硅烷化离子液体。1-烯丙基咪唑的使用摩尔量为3-氯丙基三甲氧基硅烷的100%。
功能处理液的配制:将硅烷化离子液体、氨水溶液、2-酮-D-谷氨酸半钙盐混合均匀,得到功能处理液。氨水溶液中含有1.6wt%的未稀释的浓氨水,硅烷化离子液体的使用量为氨水溶液的5wt%,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的2.5wt%。
碳纤维的表面处理:将预处理碳纤维采用复合酸溶液进行酸化处理,酸化处理完成后,采用去离子水冲洗至中性,干燥,然后将酸化处理后的碳纤维浸渍于功能处理液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面功能化碳纤维。复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有30wt%的浓硝酸,预处理碳纤维的使用量为复合酸溶液的15wt%,酸化处理后的碳纤维的使用量为功能处理液的20wt%。
硅酸酯溶液的配制:将正硅酸乙酯、己二烯琥珀酸酯、表面活性剂、去离子水、乙醇、盐酸混合,得到硅酸酯溶液。硅酸酯溶液中含有3wt%的正硅酸乙酯,己二烯琥珀酸酯的使用量为正硅酸乙酯的0.6wt%,表面活性剂为泊洛沙姆188,表面活性剂的使用量为正硅酸乙酯的4wt%,乙醇的使用量为正硅酸乙酯的2600wt%,盐酸的使用量为正硅酸乙酯的4wt%。
表面介孔硅化碳纤维的制备:将表面功能化碳纤维浸渍于硅酸酯溶液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面介孔硅化碳纤维。表面功能化碳纤维的使用量为硅酸酯溶液的14wt%。
碳纤维萃取柱的制备:将表面介孔硅化碳纤维以束的形式使用,以PTFE管作为载体,将表面介孔硅化碳纤维束的一端采用树脂固定,然后将其装入PTFE管中,制备得到碳纤维萃取柱。固定端往PTFE管中装,是确保容易装管,碳纤维萃取柱中的表面介孔硅化碳纤维束露出1cm。碳纤维萃取柱保存于甲醇中。表面介孔硅化碳纤维束的使用量由PTFE管的内径决定。
水体中嗅味物质的检测:将碳纤维萃取柱采用去离子水冲洗表面,放入待检测水样中静止吸附20min,然后将吸附后的碳纤维萃取柱于甲醇溶剂中,超声解吸,取样进行LC-MS/MS检测分析。超声解吸中甲醇溶剂的使用量为每根萃取柱3mL。
液相色谱分离条件:
流动相:A相为0.05wt%的甲酸水溶液,B相为0.05wt%的甲酸乙腈溶液;ZORBAXEclipse XDB-C18色谱柱;流速为500μL/min,柱温30℃,每次进样10μL。
梯度洗脱的步骤:AB相混合洗脱中以B相占比来表征,B相初始使用量为10%,在10min内逐渐增加至40%,保持5min,然后在5min内增加至90%,保持5min,然后在10min内降低至10%。
质谱检测条件:
电离模式:离子源为ESI,毛细管电压:离子水源电压为4kV,离子源温度为300℃;雾化气压力:15psi;干燥器流速:8L/min;正离子模式检测。
实施例4:
一种水体中嗅味物质的检测方法,
碳纤维的预处理:将碳纤维加入含有丙酮的索氏抽提器中,在280℃的温度下回流48h,回流处理完成后,取出干燥,得到预处理碳纤维。碳纤维的使用量为丙酮的30wt%。
硅烷化离子液体的制备:将1-烯丙基咪唑滴加入3-氯丙基三甲氧基硅烷中,超声混合均匀,在氮气氛围下,在80℃的温度下反应24h,反应完成后得到硅烷化离子液体。1-烯丙基咪唑的使用摩尔量为3-氯丙基三甲氧基硅烷的100%。
功能处理液的配制:将硅烷化离子液体、氨水溶液、2-酮-D-谷氨酸半钙盐混合均匀,得到功能处理液。氨水溶液中含有1.6wt%的未稀释的浓氨水,硅烷化离子液体的使用量为氨水溶液的5wt%,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的2.5wt%。
碳纤维的表面处理:将预处理碳纤维采用复合酸溶液进行酸化处理,酸化处理完成后,采用去离子水冲洗至中性,干燥,然后将酸化处理后的碳纤维浸渍于功能处理液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面功能化碳纤维。复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有30wt%的浓硝酸,预处理碳纤维的使用量为复合酸溶液的15wt%,酸化处理后的碳纤维的使用量为功能处理液的20wt%。
硅酸酯溶液的配制:将正硅酸乙酯、己二烯琥珀酸酯、表面活性剂、去离子水、乙醇、盐酸混合,得到硅酸酯溶液。硅酸酯溶液中含有3wt%的正硅酸乙酯,己二烯琥珀酸酯的使用量为正硅酸乙酯的1.4wt%,表面活性剂为泊洛沙姆188,表面活性剂的使用量为正硅酸乙酯的4wt%,乙醇的使用量为正硅酸乙酯的2600wt%,盐酸的使用量为正硅酸乙酯的4wt%。
表面介孔硅化碳纤维的制备:将表面功能化碳纤维浸渍于硅酸酯溶液中,在30℃的温度下处理48h,抽滤取出,在500℃的温度下煅烧40min,得到表面介孔硅化碳纤维。表面功能化碳纤维的使用量为硅酸酯溶液的14wt%。
碳纤维萃取柱的制备:将表面介孔硅化碳纤维以束的形式使用,以PTFE管作为载体,将表面介孔硅化碳纤维束的一端采用树脂固定,然后将其装入PTFE管中,制备得到碳纤维萃取柱。固定端往PTFE管中装,是确保容易装管,碳纤维萃取柱中的表面介孔硅化碳纤维束露出1cm。碳纤维萃取柱保存于甲醇中。表面介孔硅化碳纤维束的使用量由PTFE管的内径决定。
水体中嗅味物质的检测:将碳纤维萃取柱采用去离子水冲洗表面,放入待检测水样中静止吸附20min,然后将吸附后的碳纤维萃取柱于甲醇溶剂中,超声解吸,取样进行LC-MS/MS检测分析。超声解吸中甲醇溶剂的使用量为每根萃取柱3mL。
液相色谱分离条件:
流动相:A相为0.05wt%的甲酸水溶液,B相为0.05wt%的甲酸乙腈溶液;ZORBAXEclipse XDB-C18色谱柱;流速为500μL/min,柱温30℃,每次进样10μL。
梯度洗脱的步骤:AB相混合洗脱中以B相占比来表征,B相初始使用量为10%,在10min内逐渐增加至40%,保持5min,然后在5min内增加至90%,保持5min,然后在10min内降低至10%。
质谱检测条件:
电离模式:离子源为ESI,毛细管电压:离子水源电压为4kV,离子源温度为300℃;雾化气压力:15psi;干燥器流速:8L/min;正离子模式检测。
实施例5:
本实施例与实施例2相比,不同之处仅在于,功能处理液的配制中未使用硅烷化离子液体。
实施例6:
本实施例与实施例2相比,不同之处仅在于,功能处理液的配制中,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的0.5wt%。
实施例7:
本实施例与实施例2相比,不同之处仅在于,2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的4.5wt%。
试验例:
1.电镜表征
测试样品:实施例2制备得到的表面介孔硅化碳纤维。
本发明制备得到的表面介孔硅化碳纤维的电镜图如图1所示,表明成功在碳纤维表面形成含有表面介孔硅的功能层。
2.检出限
待测样品为3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚。将3-甲基酚标准品、2,6-二氯苯酚标准品、吲哚标准品和3-甲基吲哚标准品采用HPLC级甲醇稀释为浓度为1g/L的混合母液。混合母液中3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的浓度均为1g/L。
标准曲线:混合母液采用稀释剂稀释成1、5、10、30、50μg/L的混合标准工作液,采用内标法定量,内标物为双酚A,浓度为100μg/L。稀释剂为HPLC级甲醇。
3-甲基酚的线性关系:y=0.064x+0.011;R2=0.9992。
2,6-二氯苯酚的线性关系:y=0.25x-0.18;R2=0.9996。
吲哚的线性关系:y=0.051x+0.048;R2=0.9982。
3-甲基吲哚的线性关系:y=0.019x-0.021;R2=0.9995。
本发明中所指的“检测限高”或“检测限提高”等表述,代表的是该方法的可以检出的限量值更低,本发明各方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的检测限如表1所示,其中,实施例1-2的方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的检测限均小于实施例5-7的方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的检测限,表明按本发明方法制备得到表面介孔硅化碳纤维后,将其制成碳纤维萃取柱后,对水体中嗅味物质的检测具有优异的效果,检测限低,本发明方法是对碳纤维进行预处理后,先通过功能处理液浸渍后煅烧,再通过硅酸酯溶液浸渍后煅烧得到表面介孔硅化碳纤维,最后制成碳纤维萃取柱后应用于水体中嗅味物质检测,通过实施例2与实施例5-7的比较,可以得出,本发明功能处理液浸渍中,如果未使用硅烷化离子液体,相比于其它实施例的检测限最高,表明硅烷化离子液体的使用提高了表面介孔硅化碳纤维在水体中嗅味物质检测中的检测效果,并且2-酮-D-谷氨酸半钙盐的使用量同样影响着表面介孔硅化碳纤维在水体中嗅味物质检测中的检测效果,2-酮-D-谷氨酸半钙盐的使用量较少时,则对水体中嗅味物质的检测限几乎没有提高效果,而2-酮-D-谷氨酸半钙盐的使用量较高时,对水体中嗅味物质的检测限并非随着2-酮-D-谷氨酸半钙盐的使用量的增加而提高,因此,在使用了硅烷化离子液体时,同时需要控制2-酮-D-谷氨酸半钙盐的使用量在合适的范围内;实施例3-4与实施例1-2相比,表明在硅酸酯溶液中加入己二烯琥珀酸酯后,按本发明方法制备得到的碳纤维萃取柱应用于水体中嗅味物质的检测,具有更高的检测限。
表1 检测限
3.加标测试
测试方法:各实施例的方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚进行检测。
在去离子水中进行加标回收率测试,加标浓度为50ng/L,浓缩倍数为1000倍。
加标物为3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的混合液,由上述混合母液稀释至1mg/L后进行加标使用。
本发明各方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的加标回收率和相对标准偏差如表2所示,其中,实施例1-2的方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的加标回收率和相对标准偏差均优于实施例5-7的方法对3-甲基酚、2,6-二氯苯酚、吲哚和3-甲基吲哚的加标回收率和相对标准偏差,表明按本发明方法制备得到表面介孔硅化碳纤维后,将其制成碳纤维萃取柱后,对水体中嗅味物质的检测具有优异的加标回收率和低的相对标准偏差,本发明方法是对碳纤维进行预处理后,先通过功能处理液浸渍后煅烧,再通过硅酸酯溶液浸渍后煅烧得到表面介孔硅化碳纤维,最后制成碳纤维萃取柱后应用于水体中嗅味物质检测,通过实施例2与实施例5-7的比较,可以得出,本发明功能处理液浸渍中,如果未使用硅烷化离子液体,相比于其它实施例的加标回收率最高,相比于其它实施例的相对标准偏差最低,表明硅烷化离子液体的使用提高了表面介孔硅化碳纤维在水体中嗅味物质检测中的检测准确度和精密度,并且2-酮-D-谷氨酸半钙盐的使用量同样影响着表面介孔硅化碳纤维在水体中嗅味物质检测中的检测准确度和精密度,2-酮-D-谷氨酸半钙盐的使用量较少时,则对水体中嗅味物质的检测准确度和精密度几乎没有影响,而2-酮-D-谷氨酸半钙盐的使用量较高时,对水体中嗅味物质的检测准确度和精密度并非随着2-酮-D-谷氨酸半钙盐的使用量的增加而提高,因此,在使用了硅烷化离子液体时,同时需要控制2-酮-D-谷氨酸半钙盐的使用量在合适的范围内;实施例3-4与实施例1-2相比,表明在硅酸酯溶液中加入己二烯琥珀酸酯后,按本发明方法制备得到的碳纤维萃取柱应用于水体中嗅味物质的检测,具有更高的检测准确度和精密度。
表2 加标回收率和相对标准偏差
以上实施方式仅用于说明本发明,而并非对本发明的限制,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此,所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
Claims (8)
1.一种水体中嗅味物质的检测方法,包括:将碳纤维经预处理及酸化处理后,浸于功能处理液中,然后经煅烧后浸于硅酸酯溶液中,最后经煅烧得到表面介孔硅化碳纤维,将表面介孔硅化碳纤维制成碳纤维萃取柱,对水体中嗅味物质进行吸附,然后经解吸处理并采用LC-MS/MS检测;所述功能处理液中含有硅烷化离子液体、氨水、2-酮-D-谷氨酸半钙盐;所述硅烷化离子液体由1-烯丙基咪唑和3-氯丙基三甲氧基硅烷制备,氨水以氨水溶液的形式使用,所述氨水溶液中含有0.8-3.2wt%的未稀释的浓氨水。
2.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述酸化处理中采用复合酸溶液,复合酸溶液为浓硝酸和浓硫酸的混合液,复合酸溶液中含有20-40wt%的浓硝酸。
3.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述硅烷化离子液体的使用量为氨水溶液的2-6wt%。
4.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述2-酮-D-谷氨酸半钙盐的使用量为氨水溶液的1-4wt%。
5.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述硅酸酯溶液中含有正硅酸乙酯、表面活性剂、乙醇和盐酸。
6.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述硅酸酯溶液中含有1-4wt%的正硅酸乙酯。
7.根据权利要求5所述的一种水体中嗅味物质的检测方法,其特征是:所述表面活性剂为泊洛沙姆188。
8.根据权利要求1所述的一种水体中嗅味物质的检测方法,其特征是:所述碳纤维萃取柱中表面介孔硅化碳纤维以束的形式使用,表面介孔硅化碳纤维束至少露出1cm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210547673.3A CN114705788B (zh) | 2022-05-20 | 2022-05-20 | 一种水体中嗅味物质的检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210547673.3A CN114705788B (zh) | 2022-05-20 | 2022-05-20 | 一种水体中嗅味物质的检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114705788A CN114705788A (zh) | 2022-07-05 |
CN114705788B true CN114705788B (zh) | 2022-08-19 |
Family
ID=82177107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210547673.3A Active CN114705788B (zh) | 2022-05-20 | 2022-05-20 | 一种水体中嗅味物质的检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114705788B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292881A (ja) * | 1988-09-29 | 1990-04-03 | Oji Paper Co Ltd | 高黒鉛化多孔質炭素繊維シートおよびその製造方法 |
CN101318949A (zh) * | 2008-07-23 | 2008-12-10 | 中国科学院过程工程研究所 | 一种固载离子液体催化剂催化合成环状碳酸酯的方法 |
CN101559954A (zh) * | 2009-05-26 | 2009-10-21 | 上海大学 | 以离子液体为模板剂制备高水热稳定性介孔分子筛的方法 |
KR20110131715A (ko) * | 2010-05-31 | 2011-12-07 | 인하대학교 산학협력단 | 탄소나노섬유의 합성 방법 |
CN104359996A (zh) * | 2014-12-02 | 2015-02-18 | 武汉大学 | 修饰碳纤维填充聚醚醚酮管固相微萃取柱及其制备方法 |
CN105131181A (zh) * | 2015-08-26 | 2015-12-09 | 河北大学 | 一种离子液体杂化印迹材料的制备方法 |
CN106353439A (zh) * | 2016-08-17 | 2017-01-25 | 延边大学 | 碳纳米纤维/碳纤维固相微萃取涂层的制备方法及其装置 |
CN111604067A (zh) * | 2020-06-02 | 2020-09-01 | 河北大学 | 卤氧化硅铋材料及其制备方法与应用 |
-
2022
- 2022-05-20 CN CN202210547673.3A patent/CN114705788B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292881A (ja) * | 1988-09-29 | 1990-04-03 | Oji Paper Co Ltd | 高黒鉛化多孔質炭素繊維シートおよびその製造方法 |
CN101318949A (zh) * | 2008-07-23 | 2008-12-10 | 中国科学院过程工程研究所 | 一种固载离子液体催化剂催化合成环状碳酸酯的方法 |
CN101559954A (zh) * | 2009-05-26 | 2009-10-21 | 上海大学 | 以离子液体为模板剂制备高水热稳定性介孔分子筛的方法 |
KR20110131715A (ko) * | 2010-05-31 | 2011-12-07 | 인하대학교 산학협력단 | 탄소나노섬유의 합성 방법 |
CN104359996A (zh) * | 2014-12-02 | 2015-02-18 | 武汉大学 | 修饰碳纤维填充聚醚醚酮管固相微萃取柱及其制备方法 |
CN105131181A (zh) * | 2015-08-26 | 2015-12-09 | 河北大学 | 一种离子液体杂化印迹材料的制备方法 |
CN106353439A (zh) * | 2016-08-17 | 2017-01-25 | 延边大学 | 碳纳米纤维/碳纤维固相微萃取涂层的制备方法及其装置 |
CN111604067A (zh) * | 2020-06-02 | 2020-09-01 | 河北大学 | 卤氧化硅铋材料及其制备方法与应用 |
Non-Patent Citations (2)
Title |
---|
Ionic Liquid−Hybrid Molecularly Imprinted Material−Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6‑Benzyladenine and 4‑Chlorophenoxyacetic Acid in Bean Sprouts;Yehong Han 等;《Journal of Agricultural and Food Chemistry》;20170202;第65卷;1750-1757 * |
Ionic liquid-modified mesoporous silica stationary phase for separation of polysaccharides with size exclusion chromatography;Yu Ri Lee 等;《Separation and Purification Technology》;20170818;第196卷;183-190 * |
Also Published As
Publication number | Publication date |
---|---|
CN114705788A (zh) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples | |
CN104134606B (zh) | 一种微萃取探针电喷雾离子源及其制备方法和应用 | |
Pan et al. | Nonderivatization method for determination of glyphosate, glufosinate, bialaphos, and their main metabolites in environmental waters based on magnetic metal‐organic framework pretreatment | |
Zhu et al. | Solid phase extraction of trace copper in water samples via modified corn silk as a novel biosorbent with detection by flame atomic absorption spectrometry | |
CN102866225A (zh) | 一种定量检测水样中全氟辛烷磺酸同分异构体的方法 | |
CN107238651B (zh) | 一种检测多巴胺的电化学传感器的制备方法 | |
Jakubus et al. | Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies | |
CN102183603B (zh) | 一种全氟毛细管萃取整体柱及其制备方法和应用 | |
Michel et al. | Porous graphitic carbon sorbents in biomedical and environmental applications | |
CN114705788B (zh) | 一种水体中嗅味物质的检测方法 | |
Li et al. | Benzoyl isothiocyanate modified surface of silica gel as the extraction material for adsorbing steroid hormones in water | |
Xu et al. | Trace analysis of diethylstilbestrol, dienestrol and hexestrol in environmental water by Nylon 6 nanofibers mat-based solid-phase extraction coupled with liquid chromatography-mass spectrometry | |
Zhu et al. | Extraction of natural estrogens in environmental waters by dispersive multiwalled carbon nanotube-based agitation-assisted adsorption and ultrasound-assisted desorption | |
CN115090668A (zh) | 一种人工强化土壤中多环芳烃自然衰减的方法 | |
CN110161136B (zh) | 一种片剂冒泡辅助分散磁性固相萃取测定水中持久性有机污染物的方法 | |
CN106179281A (zh) | 一种金离子固相萃取剂及其制备方法和应用 | |
Li et al. | Hollow fiber-based solid–liquid phase microextraction combined with theta capillary electrospray ionization mass spectrometry for sensitive and accurate analysis of methamphetamine | |
CN109946409A (zh) | 一种雌激素干扰物固相萃取亲和柱及其制备方法和应用 | |
CN114057753B (zh) | 一种分离纯化产酶溶杆菌发酵液中抗真菌活性物质hsaf的方法 | |
JP2007331982A (ja) | 疎水性ゼオライトの製造方法 | |
CN104215494B (zh) | 一种利用花粉作为固相萃取剂的样品前处理方法 | |
CN101906457A (zh) | 一种生物不对称转化制备r-肾上腺素的方法 | |
CN108355614A (zh) | 一种选择性固相萃取剂的制备方法 | |
CN114887605A (zh) | 一种全氟棉花固相萃取材料及其在有机氟化物的富集与检测中的应用 | |
CN103816695B (zh) | 一种样品中酚类内分泌干扰物的固相萃取法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |