CN114705734A - Humidity sensor and manufacturing method thereof - Google Patents
Humidity sensor and manufacturing method thereof Download PDFInfo
- Publication number
- CN114705734A CN114705734A CN202210469017.6A CN202210469017A CN114705734A CN 114705734 A CN114705734 A CN 114705734A CN 202210469017 A CN202210469017 A CN 202210469017A CN 114705734 A CN114705734 A CN 114705734A
- Authority
- CN
- China
- Prior art keywords
- silk fibroin
- humidity sensor
- moisture
- layer
- sensing layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 108010022355 Fibroins Proteins 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000000835 fiber Substances 0.000 claims abstract description 19
- 239000003990 capacitor Substances 0.000 claims abstract description 17
- 239000003989 dielectric material Substances 0.000 claims abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 72
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 24
- 150000003384 small molecules Chemical class 0.000 claims description 24
- 238000000889 atomisation Methods 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 15
- 230000004044 response Effects 0.000 abstract description 13
- 239000000243 solution Substances 0.000 description 42
- 239000010408 film Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 14
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 230000008859 change Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- -1 etc. Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000002121 nanofiber Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域technical field
本申请涉及电子领域,尤其涉及一种湿度传感器及其制作方法。The present application relates to the field of electronics, and in particular, to a humidity sensor and a manufacturing method thereof.
背景技术Background technique
湿度传感器用于测量空气中的水蒸气的含量,可以广泛地应用于气象、军事、工业、农业、医疗、建筑、家用电器及日常生活等需要湿度监测、控制与报警的各种场合。Humidity sensor is used to measure the content of water vapor in the air, and can be widely used in various occasions that require humidity monitoring, control and alarm, such as meteorology, military, industry, agriculture, medical treatment, construction, household appliances and daily life.
根据工作原理不同,湿度传感器包括电阻式、电容式、电解质离子型等多种类型。其中,电容式湿度传感器具有灵敏度高、响应速度快、容易实现小型化和集成化等优点。电容式湿度传感器的介质层通常采用金属氧化物或高分子薄膜制成。常用的半导体金属氧化物包括氧化锌、氧化铝等,高分子材料包括聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。其工作原理是当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其中电容变化量与相对湿度成正比。According to different working principles, humidity sensors include resistive, capacitive, electrolyte ionic and other types. Among them, the capacitive humidity sensor has the advantages of high sensitivity, fast response speed, and easy miniaturization and integration. The dielectric layer of capacitive humidity sensor is usually made of metal oxide or polymer film. Commonly used semiconductor metal oxides include zinc oxide, aluminum oxide, etc., and polymer materials include polystyrene, polyimide, butyric acetate, and the like. Its working principle is that when the ambient humidity changes, the dielectric constant of the humidity sensitive capacitor changes, and its capacitance also changes, and the capacitance change is proportional to the relative humidity.
近年来,国内外在湿度传感器研发领域取得了长足进步。随着湿度传感器向各个领域的渗漏,业界对湿度传感器的性能要求也越来越高,例如,业界聚焦于研发在控制成本的基础上,灵敏度和响应速度更快的湿度传感器。In recent years, great progress has been made in the research and development of humidity sensors at home and abroad. With the leakage of humidity sensors to various fields, the industry has higher and higher performance requirements for humidity sensors. For example, the industry focuses on the development of humidity sensors with faster sensitivity and response speed on the basis of cost control.
发明内容SUMMARY OF THE INVENTION
本申请提供一种湿度传感器及其制作方法,能够实现更高的检测灵敏度和更快的响应速度。The present application provides a humidity sensor and a manufacturing method thereof, which can achieve higher detection sensitivity and faster response speed.
第一方面,提供了一种湿度传感器,包括:基底层;电极层,包括所述湿度传感器的电容的两极;丝素蛋白感湿层,设置于所述电容的两极之间,用于作为所述电容的介电材料,所述丝素蛋白感湿层中包括丝素蛋白,所述丝素蛋白感湿层的表面设置有纤维结构。In a first aspect, a humidity sensor is provided, comprising: a base layer; an electrode layer, including two poles of a capacitor of the humidity sensor; In the capacitor dielectric material, the silk fibroin moisture-sensing layer includes silk fibroin, and the surface of the silk fibroin moisture-sensing layer is provided with a fibrous structure.
在本申请实施例中,在丝素蛋白感湿层表面制造纤维结构,能够提高湿度传感器在工作时与空气的接触面积,从而提高湿度传感器的灵敏度和响应速度。In the embodiments of the present application, fabricating a fibrous structure on the surface of the silk fibroin moisture-sensing layer can increase the contact area of the humidity sensor with the air during operation, thereby improving the sensitivity and response speed of the humidity sensor.
在一种可能的实现方式中,所述纤维结构包括直径为1纳米~100微米范围内的纤维单元。In a possible implementation manner, the fiber structure includes fiber units with diameters ranging from 1 nanometer to 100 micrometers.
在本申请实施例中,在丝素蛋白薄膜表面制备出微纳米的纤维结构,作用在于显著提升感湿层的比表面积,提高感湿层的吸水/失水速率,从而提升电容响应幅度和速度,尤其是在低湿度区的电容变化幅度可提高数倍,进而提高湿度传感器的测试灵敏度和响应速度。In the examples of this application, the micro-nano fibrous structure is prepared on the surface of the silk fibroin film, which is used to significantly increase the specific surface area of the moisture-sensing layer, increase the water absorption/water loss rate of the moisture-sensing layer, thereby improving the capacitance response range and speed. , especially in the low humidity area, the capacitance change range can be increased several times, thereby improving the test sensitivity and response speed of the humidity sensor.
在一种可能的实现方式中,所述丝素蛋白感湿层中的至少部分丝素蛋白的分子链结构为结晶状态中的β折叠结构。In a possible implementation manner, the molecular chain structure of at least part of the silk fibroin in the silk fibroin wet layer is a β-sheet structure in a crystalline state.
在一种可能的实现方式中,所述丝素蛋白感湿层中的30%以上的丝素蛋白的分子链结构为结晶状态中的β折叠结构。In a possible implementation manner, the molecular chain structure of more than 30% of the silk fibroin in the silk fibroin wet layer is a β-sheet structure in a crystalline state.
在一种可能的实现方式中,所述丝素蛋白感湿层是将丝素蛋白在水蒸气、小分子的有机极性溶液或其蒸汽中放置预设时长,以使得至少部分丝素蛋白的分子链结构转变为结晶状态中的β折叠结构而得到的。In a possible implementation, the silk fibroin wet layer is placed in water vapor, a small-molecule organic polar solution or its vapor for a preset period of time, so that at least part of the silk fibroin is The molecular chain structure is converted into a β-sheet structure in a crystalline state.
在本申请实施例中,湿度传感器中采用了丝素蛋白感湿层作为介电材料,丝素蛋白感湿层采用水蒸气处理,或在小分子的有机极性溶液或其蒸气中浸泡预设时长之后得到的,经过处理的丝素蛋白感湿层中的β折叠结构大幅提高,由于β折叠结构不溶于水,在湿度环境中能够降低薄膜中的结合水含量,同时提高游离水的含量,从而实现丝素蛋白感湿层的感湿效率的提升,或者说,提高了电容变化速率,进而提高湿度传感器的灵敏度。In the embodiment of the present application, the humidity sensor uses a silk fibroin wet layer as a dielectric material, and the silk fibroin wet layer is treated with water vapor, or soaked in a small molecule organic polar solution or its vapor for preset After a long period of time, the β-sheet structure in the treated silk fibroin moisture-sensing layer is greatly improved. Since the β-sheet structure is insoluble in water, it can reduce the bound water content in the film and increase the free water content in a humid environment. Thus, the moisture sensing efficiency of the silk fibroin moisture sensing layer is improved, or in other words, the capacitance change rate is improved, thereby improving the sensitivity of the humidity sensor.
在一种可能的实现方式中,所述小分子的有机极性溶液包括以下至少一项:无水甲醇、甲醇溶液、无水乙醇、乙醇溶液。In a possible implementation manner, the small molecule organic polar solution includes at least one of the following: anhydrous methanol, methanol solution, anhydrous ethanol, and ethanol solution.
第二方面,提供了一种湿度传感器,包括:基底层;电极层,包括所述湿度传感器的电容的两极;丝素蛋白感湿层,设置于所述电容的两极之间,用于作为所述电容的介电材料,所述丝素蛋白感湿层中包括丝素蛋白,所述丝素蛋白感湿层中的20%以上的丝素蛋白的分子链结构为结晶状态中的β折叠结构。In a second aspect, a humidity sensor is provided, comprising: a base layer; an electrode layer, including two poles of a capacitor of the humidity sensor; In the capacitor dielectric material, the silk fibroin wet layer includes silk fibroin, and the molecular chain structure of more than 20% of the silk fibroin in the silk fibroin wet layer is a β-sheet structure in a crystalline state .
第三方面,提供了一种湿度传感器的制作方法,包括:在基底层上生长电极层,所述电极层中包括所述湿度传感器的电容的两极;在所述电极层之上涂覆丝素蛋白,以生成所述丝素蛋白感湿层;在所述丝素蛋白感湿层的表面制造纤维结构。In a third aspect, a method for fabricating a humidity sensor is provided, comprising: growing an electrode layer on a base layer, wherein the electrode layer includes two electrodes of the capacitance of the humidity sensor; coating silk fibroin on the electrode layer protein to generate the silk fibroin wet layer; fabricate a fibrous structure on the surface of the silk fibroin wet layer.
第四方面,提供了一种湿度传感器的制作方法,包括:在基底层上生长电极层,所述电极层中包括所述湿度传感器的电容的两极;在所述电极层之上涂覆丝素蛋白,以生成所述丝素蛋白感湿层;将丝素蛋白感湿层在小分子的有机极性溶液或其蒸汽中放置预设时长,以使得30%以上的丝素蛋白的分子链结构转变为结晶状态中的β折叠结构。In a fourth aspect, a method for fabricating a humidity sensor is provided, comprising: growing an electrode layer on a base layer, wherein the electrode layer includes two electrodes of the capacitance of the humidity sensor; coating silk fibroin on the electrode layer protein to generate the silk fibroin wet layer; the silk fibroin wet layer is placed in a small molecule organic polar solution or its vapor for a preset period of time, so that more than 30% of the silk fibroin molecular chain structure into the β-sheet structure in the crystalline state.
在本申请实施例中,可通过对丝素蛋白感湿层进行处理,使得其分子链结构中的β折叠结构达到30%以上,由于β折叠结构不溶于水,水分子能够与丝素蛋白中的β折叠进行快速吸附与脱附,在湿度环境中能够降低薄膜中的结合水含量,同时提高游离水的含量,从而实现丝素蛋白感湿层的感湿效率的提升,进而提高湿度传感器的灵敏度。In the examples of this application, the silk fibroin moisture-sensing layer can be treated to make the β-sheet structure in its molecular chain structure reach more than 30%. Since the β-sheet structure is insoluble in water, water molecules can interact with silk fibroin. The β-folding of the silk fibroin can be rapidly adsorbed and desorbed, which can reduce the bound water content in the film and increase the free water content in a humid environment, thereby improving the moisture-sensing efficiency of the silk fibroin moisture-sensing layer, thereby improving the humidity sensor. sensitivity.
附图说明Description of drawings
图1是本申请一实施例的湿度传感器100的结构示意图;FIG. 1 is a schematic structural diagram of a humidity sensor 100 according to an embodiment of the present application;
图2是本申请又一实施例的湿度传感器100的结构示意图;FIG. 2 is a schematic structural diagram of a humidity sensor 100 according to another embodiment of the present application;
图3是本申请一实施例的湿度传感器的制造方法的流程示意图;3 is a schematic flowchart of a manufacturing method of a humidity sensor according to an embodiment of the present application;
图4是本申请又一实施例的湿度传感器的制作方法的流程示意图;4 is a schematic flowchart of a manufacturing method of a humidity sensor according to another embodiment of the present application;
图5是本申请又一实施例的湿度传感器的制作方法的流程示意图。FIG. 5 is a schematic flowchart of a method for fabricating a humidity sensor according to another embodiment of the present application.
具体实施方式Detailed ways
下面将结合附图,对本申请中的技术方案进行描述。The technical solutions in the present application will be described below with reference to the accompanying drawings.
图1是本申请一实施例的湿度传感器100的结构示意图。如图1所示,湿度传感器100包括:丝素蛋白感湿层、电极层和基底层。其中,电极层中包括湿度传感器100的电容的两极,丝素蛋白感湿层用作上述电容的两极之间的介电材料。丝素蛋白感湿层可以覆盖于电极层中的两极中间以及两极之上。FIG. 1 is a schematic structural diagram of a humidity sensor 100 according to an embodiment of the present application. As shown in FIG. 1 , the humidity sensor 100 includes: a silk fibroin moisture-sensing layer, an electrode layer and a base layer. Wherein, the electrode layer includes two electrodes of the capacitor of the humidity sensor 100, and the silk fibroin moisture-sensing layer is used as a dielectric material between the two electrodes of the capacitor. The silk fibroin moisture-sensing layer can cover the middle of the two poles and on the two poles in the electrode layer.
其中,上述丝素蛋白是指从蚕丝中提取的天然高分子纤维蛋白。其具有良好的机械性能和理化性质,例如,良好的柔韧性和抗拉伸强度,透气透湿性、缓释性等。本申请实施对丝素蛋白的提炼方法和具体种类不做限定。Among them, the above-mentioned silk fibroin refers to the natural polymer fibrin extracted from silk. It has good mechanical properties and physicochemical properties, such as good flexibility and tensile strength, breathability and moisture permeability, sustained release and the like. The implementation of this application does not limit the extraction method and specific type of silk fibroin.
在一些示例中,上述电极层可以采用叉指电极的结构。电极层的材料可以是任何导电材料,作为示例,电极层的材料可包括但不限于以下各项:金、银、金纳米线材料、银纳米线材料、石墨烯、氧化铟锡(ITO)等。In some examples, the above-mentioned electrode layers may adopt the structure of interdigitated electrodes. The material of the electrode layer can be any conductive material, as an example, the material of the electrode layer can include but not limited to the following: gold, silver, gold nanowire material, silver nanowire material, graphene, indium tin oxide (ITO), etc. .
可选地,湿度传感器所形成的电容可以为水平平板电容的结构,电极层可采用叉指电极结构,正负极电极板在同一水平方向上,作为电介质的丝素蛋白感湿层填充于叉指电极之间,并且可直接与外界接触。Optionally, the capacitance formed by the humidity sensor can be a horizontal flat capacitor structure, the electrode layer can adopt an interdigital electrode structure, the positive and negative electrode plates are in the same horizontal direction, and the silk fibroin moisture-sensing layer as a dielectric is filled in the fork. Refers to between the electrodes, and can be in direct contact with the outside world.
可选地,上述基底层可以由玻璃材料或者塑料材料构成。作为示例,上述基底层的材料可包括但不限于以下各项:聚酰亚胺(PI)、聚碳酸酯(PC)、ITO玻璃、玻璃、硅片、聚对苯二甲酸乙二醇酯(PET)等。Optionally, the above-mentioned base layer may be composed of glass material or plastic material. As an example, the material of the above-mentioned base layer may include, but is not limited to, the following: polyimide (PI), polycarbonate (PC), ITO glass, glass, silicon wafer, polyethylene terephthalate ( PET) etc.
湿度传感器100的工作原理为:电极层中的电极可作为电容的两极,丝素蛋白感湿层可作为电容极板之间的介电材料。湿度会改变丝素蛋白感湿层的介电常数,从而改变输出的电容值。在湿度传感器100工作时,可以将湿度传感器100放置于测试环境中,测试环境中的水分含量的变化会造成电容值的波动,从而可以根据电容值的变化测量环境中的湿度。The working principle of the humidity sensor 100 is as follows: the electrodes in the electrode layer can be used as two poles of a capacitor, and the silk fibroin moisture-sensing layer can be used as a dielectric material between the capacitor plates. Humidity changes the dielectric constant of the silk fibroin wet-sensing layer, thereby changing the output capacitance. When the humidity sensor 100 is working, the humidity sensor 100 can be placed in a test environment. Changes in the moisture content in the test environment will cause fluctuations in the capacitance value, so that the humidity in the environment can be measured according to the change in the capacitance value.
在本申请实施例中,采用丝素蛋白作为湿度传感器100中的电容的介电材料,能够利用其良好的透气透湿性,增加湿度传感器100的测试灵敏度。In the embodiment of the present application, silk fibroin is used as the dielectric material of the capacitor in the humidity sensor 100 , and its good air and moisture permeability can be used to increase the test sensitivity of the humidity sensor 100 .
进一步地,本申请实施例还可以对丝素蛋白感湿层作进一步的处理,以优化其性能。Further, in the embodiments of the present application, the silk fibroin moisture-sensing layer can be further processed to optimize its performance.
例如,可以对丝素蛋白感湿层进行处理,使丝素蛋白感湿层中的结晶状态的β折叠结构(为了简洁,下文简称为β折叠结构)增加,由于β折叠结构不溶于水,在湿度环境中能够降低薄膜中的结合水含量,同时提高游离水的含量,从而实现丝素蛋白感湿层的感湿效率的提升,进而提高湿度传感器100的灵敏度。For example, the silk fibroin moisture-sensing layer can be treated to increase the β-sheet structure in the crystalline state (hereinafter referred to as β-sheet structure for brevity) in the silk fibroin moisture-sensing layer. Since the β-sheet structure is insoluble in water, In a humidity environment, the content of bound water in the film can be reduced, and the content of free water can be increased at the same time, thereby realizing the improvement of the moisture-sensing efficiency of the silk fibroin moisture-sensing layer, thereby improving the sensitivity of the humidity sensor 100 .
在一些示例中,天然提取的丝素蛋白本身也可能含有一定比例的β折叠结构,但是比例较低,例如,可能在0~20%之间。In some examples, the naturally extracted silk fibroin itself may also contain a certain proportion of beta sheet structure, but the proportion is lower, for example, it may be between 0 and 20%.
可选地,本申请实施例还可以采取一些处理方式,以提高丝素蛋白感湿层中的β折叠结构的比例。在一些示例中,可以将丝素蛋白感湿层在小分子的有机极性溶液或者其蒸汽中放置预设时长,以改变丝素蛋白的分子链结构(也可以称为改性),使其由无定型状态(Silk I)向结晶状态(Silk II)转变,并增加不溶于水的β折叠结构。在这种处理方式下,丝素蛋白感湿层中的β折叠结构的比例可大幅提高,例如,可以提高至30%以上。作为示例,丝素蛋白感湿层中的β折叠结构的比例可以为30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、65%、70%。Optionally, some processing methods may also be adopted in the embodiments of the present application to increase the ratio of the β-sheet structure in the silk fibroin moisture-sensing layer. In some examples, the silk fibroin wet layer can be placed in an organic polar solution of small molecules or its vapor for a preset period of time to change the molecular chain structure of silk fibroin (also referred to as modification), so that the Transition from an amorphous state (Silk I) to a crystalline state (Silk II) and increase the water-insoluble β-sheet structure. Under this treatment, the proportion of the β-sheet structure in the silk fibroin wet layer can be greatly increased, for example, can be increased to more than 30%. As an example, the proportion of beta sheet structure in the silk fibroin wet layer may be 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40% , 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57 %, 58%, 59%, 60%, 65%, 70%.
在一些示例中,丝素蛋白感湿层中的β折叠结构的比例大约在30%~55%之间。或者,随着技术的进步,丝素蛋白感湿层中的β折叠结构的比例也可以增加,例如,达到60%以上。In some examples, the proportion of beta sheet structures in the silk fibroin wet layer is approximately between 30% and 55%. Alternatively, as technology advances, the proportion of β-sheet structures in the silk fibroin wet-sensing layer can also be increased, for example, to more than 60%.
可选地,上述小分子的有机极性溶液可包括但不限于以下各项:无水甲醇、甲醇溶液、无水乙醇、乙醇溶液。Optionally, the organic polar solution of the above-mentioned small molecules may include, but is not limited to, the following: anhydrous methanol, methanol solution, anhydrous ethanol, and ethanol solution.
上述各小分子的有机极性溶液的浓度可根据具体情况配置,只要其能够使得丝素蛋白中的β折叠结构增加即可。例如,上述小分子的有机极性溶液的浓度可以为5%~90%之间。The concentration of the organic polar solution of each of the above-mentioned small molecules can be configured according to specific conditions, as long as it can increase the β-sheet structure in silk fibroin. For example, the concentration of the above-mentioned small molecule organic polar solution may be between 5% and 90%.
在一个示例中,甲醇溶液的浓度可以在75%~85%之间。In one example, the concentration of the methanol solution may be between 75% and 85%.
可选地,本申请实施例对丝素蛋白感湿层在小分子的有机极性溶液中的浸泡时长也不作限定,可以根据具体情况确定。例如,上述浸泡时长可以为0.5小时~12小时。例如,上述预设时长可以为1小时、1小时30分、1小时45分、2小时、2小时15分,2小时30分、10小时等。Optionally, the embodiments of the present application do not limit the soaking time of the silk fibroin moisture-sensing layer in the organic polar solution of small molecules, which can be determined according to specific circumstances. For example, the above soaking time may be 0.5 hours to 12 hours. For example, the above preset duration may be 1 hour, 1 hour and 30 minutes, 1 hour and 45 minutes, 2 hours, 2 hours and 15 minutes, 2 hours and 30 minutes, and 10 hours.
在一个示例中,可以将丝素蛋白感湿层在浓度为80%的甲醇溶液中浸泡2小时,以得到改变分子链结构后的丝素蛋白感湿层。In one example, the silk fibroin wet layer can be soaked in a methanol solution with a concentration of 80% for 2 hours to obtain the silk fibroin wet layer after the molecular chain structure is changed.
上述丝素蛋白感湿层是将蛋白层放置在甲醇水溶液中浸泡预设时长之后,以使蛋白层的分子链结构改变而获得的。The above silk fibroin moisture-sensing layer is obtained by immersing the protein layer in an aqueous methanol solution for a predetermined period of time to change the molecular chain structure of the protein layer.
在本申请实施例中,湿度传感器100中采用了丝素蛋白感湿层作为介电材料,丝素蛋白感湿层是在小分子的有机极性溶液中浸泡预设时长之后得到的,经过处理的丝素蛋白感湿层中的β折叠结构大幅提高,由于β折叠结构不溶于水,在湿度环境中能够降低薄膜中的结合水含量,同时提高游离水的含量,从而实现丝素蛋白感湿层的感湿效率的提升,进而提高湿度传感器的灵敏度。In the embodiment of the present application, the humidity sensor 100 uses a silk fibroin moisture-sensing layer as a dielectric material, and the silk fibroin moisture-sensing layer is obtained after soaking in an organic polar solution of small molecules for a predetermined period of time. The β-sheet structure in the silk fibroin moisture-sensing layer is greatly improved. Since the β-sheet structure is insoluble in water, it can reduce the bound water content in the film and increase the free water content in a humid environment, thereby realizing the silk fibroin moisture-sensing layer. The humidity-sensing efficiency of the layer is improved, thereby improving the sensitivity of the humidity sensor.
其中,上述在蒸气或溶液中浸泡丝素蛋白感湿层的做法属于干膜改性方法,可选地,在一些示例中,还可以采取其它做法实现丝素蛋白感湿层的改性。例如,在丝素蛋白溶液采用加入乙醇溶液、十二烷基硫酸钠、乙二醇二缩水甘油醚等诱导剂,或者对溶液采用超声、机械震荡、施加电场等方式,均能提高溶液态下β折叠含量,在将经过上述处理的丝素蛋白溶液制备成薄膜以后β折叠含量高于本征丝素蛋白所成的膜。Wherein, the above method of soaking the silk fibroin wet layer in steam or solution belongs to the dry film modification method. Optionally, in some examples, other methods can also be adopted to realize the modification of the silk fibroin wet layer. For example, adding inducers such as ethanol solution, sodium lauryl sulfate, ethylene glycol diglycidyl ether to the silk fibroin solution, or using ultrasonic, mechanical vibration, and electric field to the solution can improve the solution state. The β-sheet content, after the silk fibroin solution treated above is prepared into a film, the β-sheet content is higher than that of the film formed by the native silk fibroin.
图2是本申请又一实施例的湿度传感器100的结构示意图。如图2所示,可选地,本申请实施例中还可以在丝素蛋白感湿层的表面制作纤维结构。上述纤维结构中可以包括直径为1纳米(nm)~100微米(μm)范围内的纤维单元。可选地,在丝素蛋白感湿层表面制作纤维结构的工艺也可以称为蛋白质表面打毛工艺。FIG. 2 is a schematic structural diagram of a humidity sensor 100 according to another embodiment of the present application. As shown in FIG. 2 , optionally, in the embodiments of the present application, a fibrous structure may also be fabricated on the surface of the silk fibroin moisture-sensing layer. The above-mentioned fiber structure may include fiber units with a diameter ranging from 1 nanometer (nm) to 100 micrometers (μm). Optionally, the process of fabricating the fiber structure on the surface of the silk fibroin wet layer can also be referred to as a protein surface roughening process.
可选地,在具体示例中,可以采取以下工艺中的一种或多种制造纤维结构:等离子氧化刻蚀工艺、电雾化刻蚀工艺、超声雾化刻蚀工艺、高压雾化刻蚀工艺等。Optionally, in a specific example, one or more of the following processes can be used to manufacture the fiber structure: plasma oxidation etching process, electro-atomization etching process, ultrasonic atomization etching process, high pressure atomization etching process Wait.
其中,电雾化刻蚀原理是指通过电流体动力学雾化原理,将去离子水或去离子水和乙醇的混合溶液雾化成微纳米级的雾滴,然后将雾滴沉积在丝素蛋白感湿层表面,在物理溶解作用下丝素蛋白表面出现微纳结构。与电雾化刻蚀类似,超声雾化及高压雾化分别为采用超声或高压雾化原理将微小液滴沉积在丝素蛋白表面,在溶解作用下产生微结构,提高感湿层的比表面积。Among them, the principle of electro-atomization etching refers to the atomization of deionized water or a mixed solution of deionized water and ethanol into micro-nano-scale droplets through the principle of electrohydrodynamic atomization, and then the droplets are deposited on silk fibroin. On the surface of the moisture-sensing layer, micro-nano structures appear on the surface of silk fibroin under the action of physical dissolution. Similar to electro-atomization etching, ultrasonic atomization and high-pressure atomization use the principle of ultrasonic or high-pressure atomization to deposit tiny droplets on the surface of silk fibroin, generate microstructures under dissolution, and increase the specific surface area of the moisture-sensitive layer .
在本申请实施例中,在丝素蛋白薄膜表面制备出微纳米的纤维结构,作用在于显著提升感湿层的比表面积,提高感湿层的吸水/失水速率,从而提升电容响应幅度和速度,尤其是在低湿度区的电容变化幅度可提高数倍,进而提高湿度传感器的测试灵敏度和响应速度。In the examples of this application, the micro-nano fibrous structure is prepared on the surface of the silk fibroin film, which is used to significantly increase the specific surface area of the moisture-sensing layer, increase the water absorption/water loss rate of the moisture-sensing layer, thereby improving the capacitance response range and speed. , especially in the low humidity area, the capacitance change range can be increased several times, thereby improving the test sensitivity and response speed of the humidity sensor.
其中,比表面积是指单位质量物料所具有的总面积。Among them, the specific surface area refers to the total area possessed by a unit mass of material.
在本申请实施例中,在丝素蛋白感湿层表面制造纤维结构,能够提高湿度传感器100在工作时与空气的接触面积,从而提高湿度传感器100的灵敏度和响应速度。In the embodiment of the present application, fabricating a fibrous structure on the surface of the silk fibroin moisture-sensing layer can increase the contact area of the humidity sensor 100 with the air during operation, thereby improving the sensitivity and response speed of the humidity sensor 100 .
图3是本申请一实施例的湿度传感器的制造方法的流程示意图。如图3所示,该制造方法包括以下步骤。FIG. 3 is a schematic flowchart of a manufacturing method of a humidity sensor according to an embodiment of the present application. As shown in FIG. 3, the manufacturing method includes the following steps.
S301、在基底层上生长电极层,电极层中包括湿度传感器的电容的两极。S301 , growing an electrode layer on the base layer, where the electrode layer includes two electrodes of the capacitance of the humidity sensor.
作为示例,上述基底层也可以由玻璃材料或者塑料材料构成。例如,PI(聚酰亚胺)、PC(聚碳酸酯)或者PET(聚对苯二甲酸乙二醇酯)材料。As an example, the above-mentioned base layer may also be composed of a glass material or a plastic material. For example, PI (polyimide), PC (polycarbonate) or PET (polyethylene terephthalate) material.
上述电极层中的电极可以为叉指电极,也可以为其它类型的电极。The electrodes in the above-mentioned electrode layers may be interdigitated electrodes or other types of electrodes.
在一些示例中,可以采用光刻和蒸镀的工艺制作电极层。In some examples, the electrode layer may be fabricated using photolithography and evaporation processes.
S302、在电极层之上涂覆丝素蛋白,以生成丝素蛋白感湿层。S302 , coating silk fibroin on the electrode layer to generate a silk fibroin moisture-sensing layer.
可选地,上述在电极层之上涂覆丝素蛋白,可包括但不限于以下方式:旋涂、刮涂、丝网印刷、狭缝印刷等。Optionally, the above-mentioned coating of silk fibroin on the electrode layer may include, but is not limited to, the following methods: spin coating, blade coating, screen printing, slit printing, and the like.
S303、在丝素蛋白感湿层的表面制造纤维结构。S303, fabricating a fibrous structure on the surface of the silk fibroin moisture-sensing layer.
可选地,在S303中,使用以下工艺中的至少一种制造纤维结构:等离子氧化刻蚀工艺、电雾化工艺、超声雾化工艺、高压雾化工艺。Optionally, in S303, at least one of the following processes is used to manufacture the fiber structure: a plasma oxidation etching process, an electro-atomization process, an ultrasonic atomization process, and a high-pressure atomization process.
可选地,上述纤维结构包括直径为1纳米~100微米范围内的纤维单元。Optionally, the above-mentioned fiber structure includes fiber units with diameters ranging from 1 nanometer to 100 micrometers.
可选地,图3的方法还可以进一步包括S304。Optionally, the method of FIG. 3 may further include S304.
S304、将丝素蛋白感湿层在小分子的有机极性溶液或其蒸汽中放置预设时长。S304, placing the silk fibroin wet layer in the small molecule organic polar solution or its vapor for a preset period of time.
可选地,S304部分可以在S303之前执行,也可以在S304之后执行,这可以根据具体采取的工艺的特性决定,本申请实施例对此不作限定。Optionally, part of S304 may be performed before S303, or may be performed after S304, which may be determined according to the characteristics of the specifically adopted process, which is not limited in this embodiment of the present application.
可选地,小分子的有机极性溶液包括以下至少一项:无水甲醇、甲醇溶液、无水乙醇、乙醇溶液。Optionally, the organic polar solution of small molecules includes at least one of the following: anhydrous methanol, methanol solution, absolute ethanol, and ethanol solution.
可选地,预设时长为0.5~12小时。Optionally, the preset duration is 0.5 to 12 hours.
在本申请实施例中,在丝素蛋白薄膜表面制备出微纳米纤维结构,作用在于显著提升感湿层的比表面积,提高感湿层的吸水/失水速率,从而提升电容响应幅度和速度,尤其是在低湿度区的电容变化幅度可提高数倍,进而提高湿度传感器的测试灵敏度和响应速度。In the examples of this application, a micro-nanofiber structure is prepared on the surface of the silk fibroin film, which is used to significantly increase the specific surface area of the moisture-sensing layer, increase the water absorption/water loss rate of the moisture-sensing layer, and thereby improve the capacitance response range and speed. Especially in the low humidity area, the capacitance change range can be increased several times, thereby improving the test sensitivity and response speed of the humidity sensor.
在本申请实施例中,通过将丝素蛋白感湿层在水蒸气、小分子的有机极性溶液或其蒸气中放置预设时长,以改变丝素蛋白感湿层的分子链结构,能够增加丝素蛋白感湿层在水中的不溶性。增强水不溶性之后,可以快速的吸水和失水,进而提高湿度传感器的测试灵敏度和响应速度。In the examples of the present application, by placing the silk fibroin wet layer in water vapor, a small molecule organic polar solution or its vapor for a preset period of time to change the molecular chain structure of the silk fibroin wet layer, it is possible to increase the The insolubility of silk fibroin-sensing wet layer in water. After the water insolubility is enhanced, water can be absorbed and lost quickly, thereby improving the test sensitivity and response speed of the humidity sensor.
在一些示例中,在制造湿度传感器时,可以省略S303部分,如此可以得到未设置有纤维结构的湿度传感器。In some examples, when manufacturing the humidity sensor, part S303 can be omitted, so that a humidity sensor without a fiber structure can be obtained.
在一些示例中,在制造湿度传感器时,可以省略S304部分,如此可以得到改变丝素蛋白的分子链结构的湿度传感器。In some examples, when manufacturing the humidity sensor, part S304 can be omitted, so that a humidity sensor that changes the molecular chain structure of silk fibroin can be obtained.
在一些示例中,在制造湿度传感器时,也可以省略S303部分和S304部分。In some examples, when fabricating the humidity sensor, parts S303 and S304 may also be omitted.
以下结合图4和图5,继续介绍湿度传感器的制作方法的具体流程。其中,图4中的湿度传感器的制作方法中包括制造纤维结构和对丝素蛋白感湿层改性的步骤。图5中的湿度传感器的制作方法中包括对丝素蛋白感湿层改性的步骤。4 and 5, the specific flow of the manufacturing method of the humidity sensor will continue to be introduced. Wherein, the fabrication method of the humidity sensor in FIG. 4 includes the steps of fabricating a fiber structure and modifying the silk fibroin moisture-sensing layer. The fabrication method of the humidity sensor in FIG. 5 includes the step of modifying the silk fibroin moisture-sensing layer.
图4是本申请又一实施例的湿度传感器的制作方法的流程示意图。如图4所示,该方法包括以下步骤。FIG. 4 is a schematic flowchart of a manufacturing method of a humidity sensor according to another embodiment of the present application. As shown in Figure 4, the method includes the following steps.
S1、将玻璃清洗并烤干,得玻璃基底11,其上覆盖ITO层12。S1. The glass is washed and dried to obtain a
其中,玻璃可以作为基底材料,可选地,玻璃可以被其它基底材料替代,例如,PI、PET等。Among them, glass can be used as the base material, and optionally, glass can be replaced by other base materials, for example, PI, PET, and the like.
S2、使用刮刀涂布机均匀刮涂一层光刻胶于基底11上,得到光刻胶薄膜13。S2, using a blade coater to uniformly scrape a layer of photoresist on the
S3、将基底与含有反向叉指电极图案的掩模板贴紧后进行光刻,得到具有叉指图案的光刻胶薄膜14。S3, the substrate and the mask plate containing the reverse interdigitated electrode pattern are closely attached, and then photolithography is performed to obtain the
S4、将基底置于ITO刻蚀液中浸泡,无光刻胶保护的裸露ITO区域被刻蚀溶解,而叉指图形部分由于具有叉指图案的光刻胶薄膜14的保护仍然具有良好的导电性,得到带有图形化光刻胶的功能化薄膜15。S4, soak the substrate in ITO etching solution, the exposed ITO area without photoresist protection is etched and dissolved, and the interdigitated pattern part still has good conductivity due to the protection of the
S5、将样品置于乙醇中浸泡去胶,将光刻胶洗掉,用去离子水冲洗后用氮气吹干,得到图案化的ITO薄膜16。S5 , soak the sample in ethanol to remove the adhesive, wash off the photoresist, rinse with deionized water, and dry with nitrogen to obtain a
S6、使用刮刀涂布机在ITO薄膜16上均匀刮涂一层丝素蛋白,得到本征的丝素蛋白感湿膜17。S6, using a blade coater to uniformly scrape a layer of silk fibroin on the
S7、将带有丝素蛋白感湿膜17的样片置于80%甲醇溶液中浸泡2小时,得到改性的不溶于水的丝素蛋白感湿层18。S7, soak the sample with the silk fibroin
可选地,上述甲醇溶液也可以被水蒸气、其它小分子的有机极性溶液或其蒸汽替代,例如,无水乙醇、乙醇溶液等。上述浸泡时长可以根据实践加长或减少。Optionally, the above methanol solution can also be replaced by water vapor, other organic polar solutions of small molecules or their vapors, for example, absolute ethanol, ethanol solution and the like. The above soaking time can be lengthened or reduced according to practice.
S8、采用等离子氧刻蚀方式在丝素蛋白感湿层表面制备纳米纤维结构19,进一步提升湿度传感器的性能。S8, the
可选地,也可以采取其它方式制备纳米纤维结构19,例如,电雾化工艺、超声雾化工艺、高压雾化工艺等。Optionally, the
图5是本申请又一实施例的湿度传感器的制作方法的流程示意图。如图5所示,该方法包括以下步骤。FIG. 5 is a schematic flowchart of a method for fabricating a humidity sensor according to another embodiment of the present application. As shown in Figure 5, the method includes the following steps.
S1、将PET清洗并烤干,得到PET基底11。S1, washing and drying the PET to obtain a
可选地,PET可以被其它基底材料替代,例如,PI、PC等。Alternatively, PET can be replaced by other base materials, eg, PI, PC, and the like.
S2、使用刮刀涂布机均匀刮涂一层光刻胶于基底11上,得到光刻胶薄膜12。S2, using a blade coater to uniformly scrape a layer of photoresist on the
S3、将基底11与含有叉指电极图案的掩模板贴紧后进行光刻,得到具有叉指图案的光刻胶薄膜13。S3, the
S4、在图案化光刻胶薄膜13表面蒸镀一层厚度为100nm的银电极,叉指图形部分即无光刻胶保护的裸露玻璃区域沉积一层均匀的银薄膜,得到带有图形化光刻胶的功能化薄膜14。S4. Evaporate a layer of silver electrodes with a thickness of 100 nm on the surface of the patterned
S5、将样品置于乙醇中浸泡去胶,将光刻胶洗掉,用去离子水冲洗后用氮气吹干,得到图案化银薄膜15。S5 , soak the sample in ethanol to remove the adhesive, wash off the photoresist, rinse with deionized water, and then dry with nitrogen to obtain a
S6、使用刮刀涂布机在银薄膜15上均匀刮涂一层丝素蛋白,得到本征丝素蛋白感湿膜16。S6, using a knife coater to uniformly scrape a layer of silk fibroin on the
S7、将丝素蛋白感湿膜16的样片置于无水乙醇中浸泡2小时,得到改性的不溶于水的丝素蛋白感湿层17,进而得丝素蛋白湿度传感器。S7. Soak the sample of the silk fibroin moisture-sensing
可选地,上述无水乙醇也可以被其它小分子的有机极性溶液或蒸汽替代,例如,乙醇溶液、无水甲醇、甲醇溶液等。上述浸泡时长可以根据实践加长或减少。Optionally, the above anhydrous ethanol can also be replaced by other small molecule organic polar solutions or steam, for example, ethanol solution, anhydrous methanol, methanol solution and the like. The above soaking time can be lengthened or reduced according to practice.
应理解,图3至图5仅作为湿度传感器的制造方法的示例性说明,在实践中,该制造方法还可以包括更多或更少的步骤,其经过适当的变形所得到的方案,依然落入本申请实施例的保护范围中。It should be understood that FIG. 3 to FIG. 5 are only used as an exemplary illustration of the manufacturing method of the humidity sensor. In practice, the manufacturing method may also include more or less steps, and the solution obtained by appropriate deformation still falls. into the protection scope of the embodiments of the present application.
应理解,本申请实施例中的方法中各步骤的编号并不限定其执行的先后顺序,在实际应用中,上述步骤的顺序也可以根据实践进行调整,本申请实施例对此不做限定。It should be understood that the numbers of the steps in the method in the embodiments of the present application do not limit the sequence of their execution. In practical applications, the sequence of the above steps may also be adjusted according to practice, which is not limited in the embodiments of the present application.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the above-described systems, devices and units may refer to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. For example, the device embodiments described above are only illustrative. For example, the division of units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. Any person skilled in the art can easily think of changes or replacements within the technical scope disclosed in the present application, and should cover within the scope of protection of this application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210469017.6A CN114705734A (en) | 2022-04-30 | 2022-04-30 | Humidity sensor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210469017.6A CN114705734A (en) | 2022-04-30 | 2022-04-30 | Humidity sensor and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114705734A true CN114705734A (en) | 2022-07-05 |
Family
ID=82176410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210469017.6A Pending CN114705734A (en) | 2022-04-30 | 2022-04-30 | Humidity sensor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114705734A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025106054A1 (en) * | 2023-11-16 | 2025-05-22 | Süleyman Demi̇rel Üni̇versi̇tesi̇ İdari̇ Ve Mali̇ İşler Dai̇re Başkanliği Genel Sekreterli̇k | Humidity sensor production method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510404A (en) * | 2015-11-30 | 2016-04-20 | 上海集成电路研发中心有限公司 | Rapidly-responsive humidity sensor and manufacturing method thereof |
CN106290325A (en) * | 2016-07-19 | 2017-01-04 | 南通纺织丝绸产业技术研究院 | The application in preparing humidity sensor of the fibroin thin film |
CN109610020A (en) * | 2018-12-28 | 2019-04-12 | 佛山科学技术学院 | A solution-spraying preparation method of silk fibroin biological tissue engineering scaffold with optimized mechanical properties |
CN109781799A (en) * | 2018-12-29 | 2019-05-21 | 西安交通大学 | A capacitive fibroin humidity sensor and preparation method thereof |
US20210309857A1 (en) * | 2018-09-21 | 2021-10-07 | Danmarks Tekniske Universitet | Protein-based water insoluble and bendable polymer with ionic conductivity |
CN114847925A (en) * | 2022-04-30 | 2022-08-05 | 陕西云康智汇科技有限公司 | respiratory monitoring equipment |
-
2022
- 2022-04-30 CN CN202210469017.6A patent/CN114705734A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510404A (en) * | 2015-11-30 | 2016-04-20 | 上海集成电路研发中心有限公司 | Rapidly-responsive humidity sensor and manufacturing method thereof |
CN106290325A (en) * | 2016-07-19 | 2017-01-04 | 南通纺织丝绸产业技术研究院 | The application in preparing humidity sensor of the fibroin thin film |
US20210309857A1 (en) * | 2018-09-21 | 2021-10-07 | Danmarks Tekniske Universitet | Protein-based water insoluble and bendable polymer with ionic conductivity |
CN109610020A (en) * | 2018-12-28 | 2019-04-12 | 佛山科学技术学院 | A solution-spraying preparation method of silk fibroin biological tissue engineering scaffold with optimized mechanical properties |
CN109781799A (en) * | 2018-12-29 | 2019-05-21 | 西安交通大学 | A capacitive fibroin humidity sensor and preparation method thereof |
CN114847925A (en) * | 2022-04-30 | 2022-08-05 | 陕西云康智汇科技有限公司 | respiratory monitoring equipment |
Non-Patent Citations (1)
Title |
---|
郭莎莎: "PBT静电纺/溶喷复合滤材的制备及其在血液过滤中的应用", 《医药卫生科技辑》, no. 09, 15 September 2014 (2014-09-15), pages 88 - 89 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025106054A1 (en) * | 2023-11-16 | 2025-05-22 | Süleyman Demi̇rel Üni̇versi̇tesi̇ İdari̇ Ve Mali̇ İşler Dai̇re Başkanliği Genel Sekreterli̇k | Humidity sensor production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Flexible and transparent cellulose-based ionic film as a humidity sensor | |
CN104458835B (en) | A kind of humidity sensor and preparation method thereof | |
CN111366615B (en) | Humidity sensor based on thin nano-flake MXene niobium carbide and preparation method thereof | |
CN110687169B (en) | A humidity-sensitive carbon nanotube/graphene/organic composite flexible material, humidity sensor and preparation method thereof | |
Ganbold et al. | Highly sensitive interdigitated capacitive humidity sensors based on sponge-like nanoporous PVDF/LiCl composite for real-time monitoring | |
Su et al. | Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly (2-acrylamido-2-methylpropane sulfonate) and its salt complex | |
CN101324539A (en) | Polymer composite resistive humidity sensor with nanofiber structure and manufacturing method thereof | |
CN100523799C (en) | Polyelectrolyte / intrinsic conducting polymer composite humidity sensor and its production method | |
CN108827501A (en) | Tactile sensor and preparation method thereof | |
CN105510404B (en) | A kind of humidity sensor and its manufacturing method of quick response | |
CN111562038A (en) | A flexible capacitive pressure sensor and flexible capacitive pressure array sensor | |
CN111521649B (en) | A two-dimensional MXene material processing method, product and gas sensor | |
CN109556768A (en) | Pressure sensor and preparation method thereof | |
CN101799441A (en) | Polymer resistor type humidity element of water dispersion nano-polyaniline and manufacturing method thereof | |
CN113252081A (en) | Flexible composite sensor based on fibroin and preparation method thereof | |
CN102507664A (en) | Conductive polymer composite nanofiber resistive-type humidity sensor and preparation method thereof | |
CN201340404Y (en) | Macromolecule composite resistive-type humidity sensitive element with nanofiber structure | |
CN101354367A (en) | Polypyrrole gas sensor and its manufacturing method | |
CN101368925B (en) | Poly-pyrrole and metal nanometer particle composite gas sensor and preparation thereof | |
CN114705734A (en) | Humidity sensor and manufacturing method thereof | |
CN102297895A (en) | Nanometer polyaniline composite surface acoustic wave humidity sensor and production method thereof | |
CN114354029A (en) | Flexible carbon nanotube composite film preparation method, flexible sensor and preparation method | |
CN114917771B (en) | A hollow fiber membrane flexible humidity sensor and its efficient preparation method | |
Zhang et al. | A thin film resistive humidity sensor based on polymer and carbon black nanoparticle composites | |
CN110872096A (en) | A kind of anti-humidity interference functionalized silicon nanowire gas sensor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220705 |