CN114703493A - A system and method for coupling application of new energy hydrogen production and carbon dioxide capture - Google Patents
A system and method for coupling application of new energy hydrogen production and carbon dioxide capture Download PDFInfo
- Publication number
- CN114703493A CN114703493A CN202210327219.7A CN202210327219A CN114703493A CN 114703493 A CN114703493 A CN 114703493A CN 202210327219 A CN202210327219 A CN 202210327219A CN 114703493 A CN114703493 A CN 114703493A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- hydrochloric acid
- solution
- sodium hydroxide
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 242
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 121
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 121
- 239000001257 hydrogen Substances 0.000 title claims abstract description 81
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 81
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008878 coupling Effects 0.000 title claims abstract description 14
- 238000010168 coupling process Methods 0.000 title claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 282
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 178
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 94
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 87
- 239000012528 membrane Substances 0.000 claims abstract description 72
- 238000003860 storage Methods 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000011780 sodium chloride Substances 0.000 claims abstract description 35
- 238000010248 power generation Methods 0.000 claims abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 238000007670 refining Methods 0.000 claims abstract description 20
- 238000005341 cation exchange Methods 0.000 claims description 52
- 239000003011 anion exchange membrane Substances 0.000 claims description 26
- 238000000926 separation method Methods 0.000 claims description 24
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 20
- 238000005868 electrolysis reaction Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 150000002500 ions Chemical class 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 13
- -1 hydroxide ions Chemical class 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 10
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 10
- 230000005684 electric field Effects 0.000 claims description 9
- 230000032258 transport Effects 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 229910001415 sodium ion Inorganic materials 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims 2
- 150000001768 cations Chemical class 0.000 claims 1
- 238000003892 spreading Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 105
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-O hydridodioxygen(1+) Chemical compound [OH+]=O MYMOFIZGZYHOMD-UHFFFAOYSA-O 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/18—Alkaline earth metal compounds or magnesium compounds
- C25B1/20—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/21—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/304—Alkali metal compounds of sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
- B01D2251/604—Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
技术领域technical field
本发明属于新能源制氢和二氧化碳捕集技术领域,特别涉及一种新能源制氢与二氧化碳捕集耦合应用的系统及方法。The invention belongs to the technical field of new energy hydrogen production and carbon dioxide capture, and particularly relates to a system and method for coupling application of new energy hydrogen production and carbon dioxide capture.
背景技术Background technique
新能源制氢过程中不存在二氧化碳的排放,所生成的氢气为绿氢,是制氢的未来发展方向。化学吸收法捕集二氧化碳是解决化石燃料燃烧产生二氧化碳,实现碳达峰和碳中和目标的有效途径。然而目前的碳捕集技术,无论是化石燃料燃烧前捕集还是燃烧后捕集普遍存在能耗大、成本高的问题,存在以增加碳排放的方式来捕捉排放的碳的问题,这些都限制了碳捕集技术的推广。鉴于以上问题,能否使用新能源技术解决传统二氧化碳捕集技术能耗大、成本高的问题是未来的发展方向,通过新能源技术实现碳捕集过程的“绿色”研究意义重大。There is no carbon dioxide emission in the process of new energy hydrogen production, and the generated hydrogen is green hydrogen, which is the future development direction of hydrogen production. The chemical absorption method to capture carbon dioxide is an effective way to solve the carbon dioxide generated from the combustion of fossil fuels and achieve the goal of carbon peaking and carbon neutrality. However, the current carbon capture technology, whether it is pre-combustion capture or post-combustion capture of fossil fuels, generally has the problems of high energy consumption and high cost, and there is the problem of capturing the emitted carbon in a way of increasing carbon emissions, all of which limit the The promotion of carbon capture technology. In view of the above problems, whether new energy technology can be used to solve the problems of high energy consumption and high cost of traditional carbon dioxide capture technology is the future development direction. It is of great significance to realize the "green" research of carbon capture process through new energy technology.
因此,开发一种利用新能源进行二氧化碳捕捉,同时还能制备绿氢的技术具有重要的理论及应用价值。Therefore, it is of great theoretical and practical value to develop a technology that utilizes new energy to capture carbon dioxide and simultaneously produce green hydrogen.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述现有技术的缺点,提供了一种新能源制氢与二氧化碳捕集耦合应用的系统及方法,该系统及方法能够制备绿氢,同时解决传统二氧化碳捕集技术能耗大及成本高的问题。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and to provide a system and method for coupling application of new energy hydrogen production and carbon dioxide capture, the system and method can prepare green hydrogen and simultaneously solve the energy consumption of traditional carbon dioxide capture technology large and costly problems.
为达到上述目的,本发明所述的新能源制氢与二氧化碳铺集耦合应用的系统包括新能源发电装置、离子膜电解制氢系统及二氧化碳捕集、储存系统,其中,离子膜电解制氢系统包括饱和氯化钠溶液精制浓缩装置、氢气和烧碱制备的除盐水加入装置、氯化钠溶液加入装置、盐酸制备的除盐水加入装置、氧气制备的除盐水加入装置、离子膜电解制氢装置、氢气收集处理装置、氢氧化钠溶液收集输送装置、氯化钠稀溶液收集输送装置及盐酸溶液收集输送装置;所述离子膜电解制氢装置包括依次分布的负极、氢氧化钠制备阳离子交换膜、阴离子交换膜、盐酸制备阳离子交换膜及正极,其中,所述正极及负极分别与新能源发电装置相连接;In order to achieve the above purpose, the system for coupling application of new energy hydrogen production and carbon dioxide deposition according to the present invention includes a new energy power generation device, an ion membrane electrolysis hydrogen production system, and a carbon dioxide capture and storage system, wherein the ion membrane electrolysis hydrogen production system. Including saturated sodium chloride solution refining and concentration device, demineralized water adding device prepared by hydrogen and caustic soda, sodium chloride solution adding device, demineralized water adding device prepared by hydrochloric acid, demineralized water adding device prepared by oxygen, ion membrane electrolysis hydrogen production device, Hydrogen collection and processing device, sodium hydroxide solution collection and transportation device, sodium chloride dilute solution collection and transportation device, and hydrochloric acid solution collection and transportation device; the ion membrane electrolysis hydrogen production device includes sequentially distributed negative electrodes, sodium hydroxide preparation cation exchange membrane, An anion exchange membrane and hydrochloric acid are used to prepare a cation exchange membrane and a positive electrode, wherein the positive electrode and the negative electrode are respectively connected to the new energy power generation device;
负极与氢氧化钠制备阳离子交换膜之间所形成通道的入口与氢气和烧碱制备的除盐水加入装置的出口相连通;负极与氢氧化钠制备阳离子交换膜之间所形成通道的氢气出口与氢气收集处理装置相连通,负极与氢氧化钠制备阳离子交换膜之间所形成通道的氢氧化钠溶液出口与氢氧化钠溶液收集输送装置相连通;The inlet of the channel formed between the negative electrode and the cation exchange membrane prepared by sodium hydroxide is communicated with the outlet of the demineralized water adding device prepared by hydrogen and caustic soda; the hydrogen outlet of the channel formed between the negative electrode and the cation exchange membrane prepared by sodium hydroxide is connected to the hydrogen gas outlet. The collecting and processing device is communicated, and the sodium hydroxide solution outlet of the channel formed between the negative electrode and the cation exchange membrane prepared by sodium hydroxide is communicated with the sodium hydroxide solution collecting and conveying device;
氢氧化钠制备阳离子交换膜与阴离子交换膜之间所形成通道的入口与氯化钠溶液加入装置的出口相连通,氢氧化钠制备阳离子交换膜与阴离子交换膜之间所形成通道的出口与氯化钠稀溶液收集输送装置的入口相连通;The inlet of the channel formed between the cation exchange membrane and the anion exchange membrane prepared by sodium hydroxide is connected with the outlet of the sodium chloride solution feeding device, and the outlet of the channel formed between the cation exchange membrane and the anion exchange membrane prepared by sodium hydroxide is connected to the outlet of the sodium chloride solution adding device. The inlets of the sodium chloride dilute solution collecting and conveying device are communicated with each other;
阴离子交换膜与盐酸制备阳离子交换膜之间所形成通道的入口与盐酸制备的除盐水加入装置的出口相连通;阴离子交换膜与盐酸制备阳离子交换膜之间所形成通道的出口与盐酸溶液收集输送装置的入口相连通;The inlet of the channel formed between the anion exchange membrane and the cation exchange membrane prepared from hydrochloric acid is communicated with the outlet of the desalted water adding device prepared by hydrochloric acid; the outlet of the channel formed between the anion exchange membrane and the cation exchange membrane prepared from hydrochloric acid is connected with the collection and transportation of the hydrochloric acid solution The inlet of the device is connected;
盐酸制备阳离子交换膜与正极之间所形成通道的入口与氧气制备的除盐水加入装置的入口相连通;The inlet of the channel formed between the cation exchange membrane prepared by hydrochloric acid and the positive electrode is communicated with the inlet of the demineralized water adding device prepared by oxygen;
氢氧化钠溶液收集输送装置的出口及盐酸溶液收集输送装置的出口与二氧化碳捕集、储存系统的入口相连通。The outlet of the sodium hydroxide solution collecting and conveying device and the outlet of the hydrochloric acid solution collecting and conveying device are communicated with the inlet of the carbon dioxide capture and storage system.
所述二氧化碳捕集、储存系统包括高二氧化碳含量气体汇集输送装置、氢氧化钠溶液储存输送装置、盐酸溶液储存输送装置、二氧化碳捕集装置、二氧化碳分离装置及二氧化碳收集处理装置;The carbon dioxide capture and storage system includes a high carbon dioxide content gas collection and transportation device, a sodium hydroxide solution storage and transportation device, a hydrochloric acid solution storage and transportation device, a carbon dioxide capture device, a carbon dioxide separation device and a carbon dioxide collection and processing device;
氢氧化钠溶液收集输送装置的出口与氢氧化钠溶液储存输送装置的入口相连通,氢氧化钠溶液储存输送装置的出口与二氧化碳捕集装置的入口相连通,盐酸溶液收集输送装置的出口与盐酸溶液储存输送装置的入口相连通,盐酸溶液储存输送装置的出口与二氧化碳分离装置的入口相连通;高二氧化碳含量气体汇集输送装置的出口与二氧化碳捕集装置相连通,二氧化碳捕集装置的液体出口与二氧化碳分离装置相连通,二氧化碳分离装置的二氧化碳出口与二氧化碳收集处理装置相连通。The outlet of the sodium hydroxide solution collection and conveying device is communicated with the inlet of the sodium hydroxide solution storage and conveying device, the outlet of the sodium hydroxide solution storage and conveying device is communicated with the inlet of the carbon dioxide capture device, and the outlet of the hydrochloric acid solution collection and conveying device is communicated with hydrochloric acid. The inlet of the solution storage and transportation device is communicated with the inlet of the hydrochloric acid solution storage and transportation device, and the outlet of the hydrochloric acid solution storage and transportation device is communicated with the inlet of the carbon dioxide separation device; the outlet of the high carbon dioxide content gas collection and transportation device is communicated with the carbon dioxide capture device, and the liquid outlet of the carbon dioxide capture device is communicated with The carbon dioxide separation device is communicated, and the carbon dioxide outlet of the carbon dioxide separation device is communicated with the carbon dioxide collection and processing device.
二氧化碳分离装置的液体出口与氯化钠稀溶液收集输送装置的液体出口与饱和氯化钠溶液精制浓缩装置的入口相连通。The liquid outlet of the carbon dioxide separation device is communicated with the liquid outlet of the sodium chloride dilute solution collecting and conveying device and the inlet of the saturated sodium chloride solution refining and concentrating device.
离子膜电解制氢系统还包括氧气收集处理装置;盐酸制备阳离子交换膜与正极之间所形成通道的出口与氧气收集处理装置相连通。The ion membrane electrolysis hydrogen production system also includes an oxygen collection and treatment device; the outlet of the channel formed between the cation exchange membrane prepared by hydrochloric acid and the positive electrode is communicated with the oxygen collection and treatment device.
本发明所述的新能源制氢与二氧化碳铺集耦合应用的方法包括以下步骤:The method for coupling application of new energy hydrogen production and carbon dioxide deposition according to the present invention comprises the following steps:
利用新能源发电装置为负极及正极供电,氢气和烧碱制备的除盐水加入装置向负极与氢氧化钠制备阳离子交换膜之间所形成通道内通入除盐水,氯化钠溶液加入装置向氢氧化钠制备阳离子交换膜与阴离子交换膜之间所形成通道内通入饱和氯化钠溶液,盐酸制备的除盐水加入装置向阴离子交换膜与盐酸制备阳离子交换膜之间所形成通道内通入除盐水,氧气制备的除盐水加入装置向盐酸制备阳离子交换膜与正极之间所形成通道内通入除盐水;A new energy power generation device is used to supply power to the negative electrode and the positive electrode. The demineralized water is fed into the channel formed between the negative electrode and the cation exchange membrane prepared by sodium hydroxide through the demineralized water adding device prepared by hydrogen and caustic soda. The sodium chloride solution is added to the device to the hydroxide. Saturated sodium chloride solution is introduced into the channel formed between the sodium-prepared cation exchange membrane and the anion-exchange membrane, and the demineralized water addition device prepared by hydrochloric acid is introduced into the channel formed between the anion-exchange membrane and the hydrochloric acid-prepared cation exchange membrane. , the demineralized water adding device prepared by oxygen feeds demineralized water into the channel formed between the cation exchange membrane prepared by hydrochloric acid and the positive electrode;
除盐水在负极被还原为氢气,同时生成氢氧根离子,受电场作用,钠离子穿过氢氧化钠制备阳离子交换膜与氢氧根离子结合生成氢氧化钠,除盐水在正极处被氧化为氧气,同时生成氢离子,受电场作用,生成的氢离子穿过盐酸制备阳离子交换膜与同样受电场作用穿过阴离子交换膜的氯离子结合成盐酸;The demineralized water is reduced to hydrogen at the negative electrode, and at the same time, hydroxide ions are generated. Under the action of the electric field, the sodium ions pass through the sodium hydroxide to form a cation exchange membrane and combine with the hydroxide ions to form sodium hydroxide. The demineralized water is oxidized at the positive electrode to form sodium hydroxide. Oxygen generates hydrogen ions at the same time. Under the action of the electric field, the generated hydrogen ions pass through the hydrochloric acid to prepare the cation exchange membrane, and the chloride ions that are also affected by the electric field pass through the anion exchange membrane to combine into hydrochloric acid;
生成的氢气进入到氢气收集处理装置中进行干燥及压缩存储;The generated hydrogen enters the hydrogen collection and treatment device for drying and compression storage;
生成的氢氧化钠溶液由氢氧化钠溶液收集输送装置输送至氢氧化钠溶液储存输送装置中进行储存,生成的盐酸溶液由盐酸溶液收集输送装置输送至盐酸溶液储存输送装置中进行储存;The generated sodium hydroxide solution is transported by the sodium hydroxide solution collection and conveying device to the sodium hydroxide solution storage and conveying device for storage, and the generated hydrochloric acid solution is transported by the hydrochloric acid solution collection and conveying device to the hydrochloric acid solution storage and conveying device for storage;
经过离子交换的氯化钠稀溶液通过氯化钠稀溶液收集输送装置回收至饱和氯化钠溶液精制浓缩装置中进行精制及浓缩;The ion-exchanged dilute sodium chloride solution is recycled to the saturated sodium chloride solution refining and concentrating device by the sodium chloride dilute solution collecting and conveying device for refining and concentration;
当需要进行二氧化碳捕集时,氢氧化钠溶液储存输送装置向二氧化碳捕集装置中输送氢氧化钠溶液,在二氧化碳捕集装置中二氧化碳含量高的气体与氢氧化钠溶液采用逆流方式运行,通过控制氢氧化钠溶液的输送流量,使得过量的二氧化碳与氢氧化钠溶液反应生成碳酸氢钠溶液,以去除二氧化碳;When carbon dioxide capture is required, the sodium hydroxide solution storage and delivery device transports sodium hydroxide solution to the carbon dioxide capture device, and the gas with high carbon dioxide content and the sodium hydroxide solution in the carbon dioxide capture device operate in a countercurrent manner. The delivery flow of sodium hydroxide solution makes excess carbon dioxide react with sodium hydroxide solution to generate sodium bicarbonate solution to remove carbon dioxide;
盐酸溶液储存输送装置向二氧化碳分离装置中输送盐酸溶液,在二氧化碳分离装置中由二氧化碳捕集装置产生的碳酸氢钠溶液与盐酸溶液采用逆流方式运行,控制盐酸溶液的输送流量,使得碳酸氢钠溶液完全与盐酸反应,生成氯化钠溶液及二氧化碳,其中,生成的氯化钠溶液回流至饱和氯化钠溶液精制浓缩装置中进行精制及浓缩,生成的二氧化碳进入二氧化碳收集处理装置中进行干燥和压缩储存。The hydrochloric acid solution storage and conveying device conveys the hydrochloric acid solution to the carbon dioxide separation device. In the carbon dioxide separation device, the sodium bicarbonate solution and the hydrochloric acid solution generated by the carbon dioxide capture device are operated in a countercurrent manner, and the conveying flow of the hydrochloric acid solution is controlled to make the sodium bicarbonate solution. Completely react with hydrochloric acid to generate sodium chloride solution and carbon dioxide, wherein, the generated sodium chloride solution is returned to the saturated sodium chloride solution refining and concentrating device for refining and concentration, and the generated carbon dioxide enters the carbon dioxide collection and processing device for drying and compression store.
新能源发电装置的发电方式为风力发电、光伏发电或潮汐发电等。The power generation method of the new energy power generation device is wind power generation, photovoltaic power generation or tidal power generation.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明所述的新能源制氢与二氧化碳捕集耦合应用的系统及方法在具体操作时,离子膜电解制氢系统利用新能源发电装置输出的电生成氢氧化钠溶液、氢气、氧气及盐酸,从而实现在制备绿氢储能的同时制备高纯度的氢氧化钠和盐酸作为二氧化碳捕集的原料,然后利用二氧化碳捕集、储存系统进行二氧化碳铺集及储存,以解决传统二氧化碳捕集技术能耗大及成本高的问题。In the specific operation of the system and method for coupling application of new energy hydrogen production and carbon dioxide capture, the ionic membrane electrolysis hydrogen production system uses the electricity output from the new energy power generation device to generate sodium hydroxide solution, hydrogen, oxygen and hydrochloric acid, In this way, high-purity sodium hydroxide and hydrochloric acid are prepared as raw materials for carbon dioxide capture while preparing green hydrogen energy storage, and then carbon dioxide capture and storage system is used for carbon dioxide deposition and storage, so as to solve the energy consumption of traditional carbon dioxide capture technology. large and costly problems.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明中离子膜电解制氢装置7的结构图。FIG. 2 is a structural diagram of the ion-exchange membrane electrolysis hydrogen production device 7 in the present invention.
其中,1为饱和氯化钠溶液精制浓缩装置、2为氢气和烧碱制备的除盐水加入装置、3为氯化钠溶液加入装置、4为盐酸制备的除盐水加入装置、5为氧气制备的除盐水加入装置、6为新能源发电装置、7为离子膜电解制氢装置、8为氢气收集处理装置、9为氢氧化钠溶液收集输送装置、10为氯化钠稀溶液收集输送装置、11为盐酸溶液收集输送装置、12为氧气收集处理装置、13为高二氧化碳含量气体汇集输送装置、14为二氧化碳捕集装置、15为氢氧化钠溶液储存输送装置、16为二氧化碳分离装置、17为盐酸溶液储存输送装置、18为二氧化碳收集处理装置、19为负极、20为氢氧化钠制备阳离子交换膜、21为阴离子交换膜、22为盐酸制备阳离子交换膜、23为正极。Wherein, 1 is a saturated sodium chloride solution refining and concentrating device, 2 is a demineralized water adding device prepared by hydrogen and caustic soda, 3 is a sodium chloride solution adding device, 4 is a demineralized water adding device prepared by hydrochloric acid, and 5 is a demineralized water prepared by oxygen. Brine adding device, 6 is a new energy power generation device, 7 is an ion membrane electrolysis hydrogen production device, 8 is a hydrogen collection and treatment device, 9 is a sodium hydroxide solution collection and conveying device, 10 is a sodium chloride dilute solution collection and conveying device, 11 is Hydrochloric acid solution collection and conveying device, 12 is oxygen collection and processing device, 13 is high carbon dioxide content gas collection and conveying device, 14 is carbon dioxide capture device, 15 is sodium hydroxide solution storage and conveying device, 16 is carbon dioxide separation device, 17 is hydrochloric acid solution Storage and conveying device, 18 is a carbon dioxide collection and processing device, 19 is a negative electrode, 20 is a cation exchange membrane prepared by sodium hydroxide, 21 is an anion exchange membrane, 22 is a cation exchange membrane prepared from hydrochloric acid, and 23 is a positive electrode.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only The embodiments are part of the present invention, not all of the embodiments, and are not intended to limit the scope of the present disclosure. Furthermore, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts disclosed in the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。The accompanying drawings show a schematic structural diagram of an embodiment according to the disclosure of the present invention. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of various regions and layers shown in the figures and their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.
参考图1及图2,本发明所述的新能源制氢与二氧化碳铺集耦合应用的系统包括新能源发电装置(6)、离子膜电解制氢系统及二氧化碳捕集、储存系统;1 and 2, the system for coupling application of new energy hydrogen production and carbon dioxide deposition according to the present invention includes a new energy power generation device (6), an ion membrane electrolysis hydrogen production system and a carbon dioxide capture and storage system;
离子膜电解制氢系统包括饱和氯化钠溶液精制浓缩装置1、氢气和烧碱制备的除盐水加入装置2、氯化钠溶液加入装置3、盐酸制备的除盐水加入装置4、氧气制备的除盐水加入装置5、离子膜电解制氢装置7、氢气收集处理装置8、氢氧化钠溶液收集输送装置9、氯化钠稀溶液收集输送装置10、盐酸溶液收集输送装置11及氧气收集处理装置12;二氧化碳捕集、储存系统包括高二氧化碳含量气体汇集输送装置13、二氧化碳捕集装置14、氢氧化钠溶液储存输送装置15、二氧化碳分离装置16、盐酸溶液储存输送装置17及二氧化碳收集处理装置18;The ion membrane electrolysis hydrogen production system includes a saturated sodium chloride solution refining and concentrating device 1, a demineralized
所述离子膜电解制氢装置7包括依次分布的负极19、氢氧化钠制备阳离子交换膜20、阴离子交换膜21、盐酸制备阳离子交换膜22及正极23,其中,所述正极23及负极19分别与新能源发电装置6相连接;The ion membrane electrolysis hydrogen production device 7 includes a
负极19与氢氧化钠制备阳离子交换膜20之间所形成通道的入口与氢气和烧碱制备的除盐水加入装置2的出口相连通;负极19与氢氧化钠制备阳离子交换膜20之间所形成通道的氢气出口与氢气收集处理装置8相连通,负极19与氢氧化钠制备阳离子交换膜20之间所形成通道的氢氧化钠溶液出口与氢氧化钠溶液收集输送装置9相连通;The inlet of the channel formed between the
氢氧化钠制备阳离子交换膜20与阴离子交换膜21之间所形成通道的入口与氯化钠溶液加入装置3的出口相连通,氢氧化钠制备阳离子交换膜20与阴离子交换膜21之间所形成通道的出口与氯化钠稀溶液收集输送装置10的入口相连通;The inlet of the channel formed between the
阴离子交换膜21与盐酸制备阳离子交换膜22之间所形成通道的入口与盐酸制备的除盐水加入装置4的出口相连通;阴离子交换膜21与盐酸制备阳离子交换膜22之间所形成通道的出口与盐酸溶液收集输送装置11的入口相连通;The inlet of the channel formed between the
盐酸制备阳离子交换膜22与正极23之间所形成通道的入口与氧气制备的除盐水加入装置5的入口相连通,盐酸制备阳离子交换膜22与正极23之间所形成通道的出口与氧气收集处理装置12相连通;The inlet of the channel formed between the
氢氧化钠溶液收集输送装置9的出口经氢氧化钠溶液储存输送装置15与二氧化碳捕集装置14的入口相连通,盐酸溶液收集输送装置11的出口经盐酸溶液储存输送装置17与二氧化碳分离装置16的入口相连通;高二氧化碳含量气体汇集输送装置13的出口与二氧化碳捕集装置14相连通,二氧化碳捕集装置14的液体出口与二氧化碳分离装置16的入口相连通,二氧化碳分离装置16的二氧化碳出口与二氧化碳收集处理装置18相连通,二氧化碳分离装置16的液体出口与氯化钠稀溶液收集输送装置10的液体出口与饱和氯化钠溶液精制浓缩装置1的入口相连通。The outlet of the sodium hydroxide solution collecting and conveying
本发明的具体工作过程为:The concrete working process of the present invention is:
当开始新能源制氢时,新能源发电装置6与负极19及正极23连接,氢气和烧碱制备的除盐水加入装置2向负极19与氢氧化钠制备阳离子交换膜20之间所形成通道内通入除盐水,其中,除盐水的流量根据电流密度及氢氧化钠溶的液浓度进行调节,控制电流密度在3.0kA/m2~9.0kA/m2,控制氢氧化钠浓度为1mol/L左右;氯化钠溶液加入装置3向氢氧化钠制备阳离子交换膜20与阴离子交换膜21之间所形成通道内通入饱和氯化钠溶液,盐酸制备的除盐水加入装置4向阴离子交换膜21与盐酸制备阳离子交换膜22之间所形成通道内通入除盐水,其中,盐酸浓度为1mol/L左右,氧气制备的除盐水加入装置5向盐酸制备阳离子交换膜22与正极23之间所形成通道内通入除盐水;When starting to produce hydrogen from new energy, the new energy
除盐水在负极19被还原为氢气,同时生成氢氧根离子,受电场作用,钠离子穿过氢氧化钠制备阳离子交换膜20与氢氧根离子结合生成氢氧化钠,除盐水在正极23处被氧化为氧气,同时生成氢离子,受电场作用,生成的氢离子穿过盐酸制备阳离子交换膜22与同样受电场作用穿过阴离子交换膜21的氯离子结合成盐酸;The demineralized water is reduced to hydrogen at the
生成的氢气进入到氢气收集处理装置8中进行干燥及压缩存储,生成的副产品氧气进入到氧气收集处理装置12中进行干燥及压缩存储;The generated hydrogen enters into the hydrogen collection and treatment device 8 for drying and compression storage, and the generated by-product oxygen enters into the oxygen collection and
生成的氢氧化钠溶液由氢氧化钠溶液收集输送装置9输送至氢氧化钠溶液储存输送装置15中进行储存,作为二氧化碳捕集的吸收液,生成的盐酸溶液由盐酸溶液收集输送装置11输送至盐酸溶液储存输送装置17中进行储存,作为二氧化碳分离的分离液;The generated sodium hydroxide solution is transported by the sodium hydroxide solution collecting and conveying
经过离子交换的氯化钠稀溶液通过氯化钠稀溶液收集输送装置10回收至饱和氯化钠溶液精制浓缩装置1中进行精制及浓缩;The ion-exchanged sodium chloride dilute solution is recovered in the saturated sodium chloride solution refining and concentrating device 1 by the sodium chloride dilute solution collecting and conveying
当需要进行二氧化碳捕集时,氢氧化钠溶液储存输送装置15向二氧化碳捕集装置14中输送氢氧化钠溶液,在二氧化碳捕集装置14中二氧化碳含量高的气体与氢氧化钠溶液采用逆流方式运行,控制氢氧化钠溶液的输送流量,使得过量的二氧化碳与氢氧化钠溶液反应生成碳酸氢钠溶液,以去除二氧化碳,剩余二氧化碳含量低的气体被直接排出;When carbon dioxide capture is required, the sodium hydroxide solution storage and
盐酸溶液储存输送装置17向二氧化碳分离装置16中输送盐酸溶液,在二氧化碳分离装置16中由二氧化碳捕集装置14产生的碳酸氢钠溶液与盐酸溶液采用逆流方式运行,控制盐酸溶液的输送流量,使得碳酸氢钠溶液完全与盐酸反应,生成氯化钠溶液及二氧化碳,其中,通过监测盐酸流路的pH值,当pH接近7.0时,则盐酸完全与碳酸氢钠溶液反应,另外,生成的氯化钠溶液回流至饱和氯化钠溶液精制浓缩装置1中进行精制和浓缩,生成的二氧化碳进入二氧化碳收集处理装置18中进行干燥和压缩储存。The hydrochloric acid solution storage and conveying
新能源发电装置6为电解制氢的电源,发电方式可为风力发电、光伏发电和潮汐发电等。The new energy
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210327219.7A CN114703493A (en) | 2022-03-30 | 2022-03-30 | A system and method for coupling application of new energy hydrogen production and carbon dioxide capture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210327219.7A CN114703493A (en) | 2022-03-30 | 2022-03-30 | A system and method for coupling application of new energy hydrogen production and carbon dioxide capture |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114703493A true CN114703493A (en) | 2022-07-05 |
Family
ID=82170703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210327219.7A Pending CN114703493A (en) | 2022-03-30 | 2022-03-30 | A system and method for coupling application of new energy hydrogen production and carbon dioxide capture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114703493A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024016114A1 (en) * | 2022-07-18 | 2024-01-25 | 势加透博(北京)科技有限公司 | Method and device for carbon capture coupled hydrogen production |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6347386A (en) * | 1986-08-14 | 1988-02-29 | Tosoh Corp | Method for separating acids and alkalis from aqueous salt solutions |
US20010013471A1 (en) * | 2000-02-04 | 2001-08-16 | Georg Hartel | Method and device for the simultaneous production of acid and base of high purity |
CA2696086A1 (en) * | 2009-07-15 | 2011-01-15 | Calera Corporation | Electrochemical production of an alkaline solution using co2 |
CN101981744A (en) * | 2007-04-03 | 2011-02-23 | 新空能量公司 | Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide |
WO2016120717A1 (en) * | 2015-01-30 | 2016-08-04 | Genio S.R.L. | Desalination device and process using gas diffusion electrodes |
CN106207234A (en) * | 2015-05-05 | 2016-12-07 | 李坚 | Ionic membrane catalysis method is in fuel cell and the application in ion film caustic soda field |
WO2017213413A1 (en) * | 2016-06-07 | 2017-12-14 | 한국과학기술원 | Carbon dioxide separation method and carbon dioxide separation system |
CN207259604U (en) * | 2017-10-17 | 2018-04-20 | 淄博格瑞水处理工程有限公司 | A kind of relieving haperacidity alkali membrane reactor |
CN109913886A (en) * | 2019-02-01 | 2019-06-21 | 大连理工大学 | A two-way combined hydrogen production method driven by low-grade thermal energy |
CN114214638A (en) * | 2021-12-16 | 2022-03-22 | 东北大学 | Method and equipment for enriching carbon dioxide and co-producing hydrogen and oxygen or chlorine |
-
2022
- 2022-03-30 CN CN202210327219.7A patent/CN114703493A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6347386A (en) * | 1986-08-14 | 1988-02-29 | Tosoh Corp | Method for separating acids and alkalis from aqueous salt solutions |
US20010013471A1 (en) * | 2000-02-04 | 2001-08-16 | Georg Hartel | Method and device for the simultaneous production of acid and base of high purity |
CN101981744A (en) * | 2007-04-03 | 2011-02-23 | 新空能量公司 | Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide |
CA2696086A1 (en) * | 2009-07-15 | 2011-01-15 | Calera Corporation | Electrochemical production of an alkaline solution using co2 |
WO2016120717A1 (en) * | 2015-01-30 | 2016-08-04 | Genio S.R.L. | Desalination device and process using gas diffusion electrodes |
CN106207234A (en) * | 2015-05-05 | 2016-12-07 | 李坚 | Ionic membrane catalysis method is in fuel cell and the application in ion film caustic soda field |
WO2017213413A1 (en) * | 2016-06-07 | 2017-12-14 | 한국과학기술원 | Carbon dioxide separation method and carbon dioxide separation system |
CN207259604U (en) * | 2017-10-17 | 2018-04-20 | 淄博格瑞水处理工程有限公司 | A kind of relieving haperacidity alkali membrane reactor |
CN109913886A (en) * | 2019-02-01 | 2019-06-21 | 大连理工大学 | A two-way combined hydrogen production method driven by low-grade thermal energy |
CN114214638A (en) * | 2021-12-16 | 2022-03-22 | 东北大学 | Method and equipment for enriching carbon dioxide and co-producing hydrogen and oxygen or chlorine |
Non-Patent Citations (1)
Title |
---|
HUI-WEN LIN ET AL.: "Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis", SCIENTIFIC REPORTS, vol. 6, 5 February 2016 (2016-02-05), pages 1 - 2 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024016114A1 (en) * | 2022-07-18 | 2024-01-25 | 势加透博(北京)科技有限公司 | Method and device for carbon capture coupled hydrogen production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113549929B (en) | A method and system for hydrogen production, organic oxidation, carbon dioxide absorption-desorption and hydroxide regeneration | |
CN111517533A (en) | Thermal power plant desulfurization wastewater resource utilization system and method with low reagent consumption | |
CN111924807A (en) | Method and device for trapping carbon dioxide and simultaneously producing sulfuric acid by sodium bisulfate | |
CN205099427U (en) | System for utilize electrolysis electrodialysis to handle chlorion in wet flue gas desulfurization system | |
CN105617842B (en) | Device for carbon dioxide separation and purification | |
CN113502485B (en) | Hydrogen production system and method for electrolysis of seawater in thermal power plant | |
CN114703493A (en) | A system and method for coupling application of new energy hydrogen production and carbon dioxide capture | |
CN118007150A (en) | Electrolytic-air film coupling system for recycling bromine based on BiOBr electrode and Br-Is recovered by the method of (2) | |
Shan et al. | Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries | |
CN109326836B (en) | Enhancing CO by using mirabilite2Method for mineralizing electrogenesis performance of battery and battery thereof | |
CN113416131B (en) | Methods and devices for producing methyl formate and purifying natural gas through carbon capture in gas-fired power plants | |
CN105600881A (en) | Method and system used for treating chloride ions in wet desulphurization system via electrolysis and electrodialysis | |
CN113430547B (en) | Device and method for preparing potassium formate by electrolyzing carbon dioxide | |
CN114804455A (en) | Method for treating alkali and carbon fixation of concentrated sea water by bipolar membrane electrodialysis coupling hollow fiber membrane | |
CN118079603A (en) | An electrochemical carbon capture device for flue gas treatment | |
US20210047742A1 (en) | Method of making alkali and gypsum by proton-coupled electron transfer reaction | |
WO2024002310A1 (en) | Method for coupling carbon dioxide capture and hydrogen production, and system therefor | |
CN114405231B (en) | An electric drive chemical carbon pump compound circulation device and method for lean gas source | |
CN111635058A (en) | Concentration and reduction device and process for desulfurization wastewater of power plant | |
CN105217852A (en) | A kind of wet desulfurization system of non-wastewater discharge and technique | |
CN116219449A (en) | System and method for hydrogen production, oxygen-enriched combustion of boiler and carbon dioxide trapping | |
CN117535694A (en) | Step reactor for preparing formic acid by converting bicarbonate | |
CN212269765U (en) | Concentrated decrement device of power plant's desulfurization waste water | |
WO2024016115A1 (en) | Co2 capture and desorption apparatus and method | |
CN205076931U (en) | No wastewater discharge's wet flue gas desulfurization system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |