CN114702397A - A kind of synthetic method of carbon dioxide absorbent and application thereof - Google Patents
A kind of synthetic method of carbon dioxide absorbent and application thereof Download PDFInfo
- Publication number
- CN114702397A CN114702397A CN202210462856.5A CN202210462856A CN114702397A CN 114702397 A CN114702397 A CN 114702397A CN 202210462856 A CN202210462856 A CN 202210462856A CN 114702397 A CN114702397 A CN 114702397A
- Authority
- CN
- China
- Prior art keywords
- ethyl
- amino
- carbon dioxide
- aminopropyl
- ethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 39
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 35
- 230000002745 absorbent Effects 0.000 title claims abstract description 22
- 239000002250 absorbent Substances 0.000 title claims abstract description 22
- 238000010189 synthetic method Methods 0.000 title claims description 4
- ANGNBVSSNFUJFS-UHFFFAOYSA-N 2-[3-aminopropyl(ethyl)amino]ethanol Chemical group OCCN(CC)CCCN ANGNBVSSNFUJFS-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000010521 absorption reaction Methods 0.000 claims abstract description 30
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 11
- -1 amine carbon dioxide Chemical class 0.000 claims abstract description 11
- 230000008929 regeneration Effects 0.000 claims abstract description 7
- 238000011069 regeneration method Methods 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims abstract 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- JOGVCMRQCJYZPI-UHFFFAOYSA-N 3-[ethyl(2-hydroxyethyl)amino]propanenitrile Chemical compound OCCN(CC)CCC#N JOGVCMRQCJYZPI-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 13
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 9
- 239000012280 lithium aluminium hydride Substances 0.000 claims description 9
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000012279 sodium borohydride Substances 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 3
- 229910000085 borane Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- 239000000376 reactant Substances 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000007864 aqueous solution Substances 0.000 abstract description 6
- 238000003795 desorption Methods 0.000 abstract description 6
- 239000006096 absorbing agent Substances 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 238000001308 synthesis method Methods 0.000 abstract description 2
- 239000003638 chemical reducing agent Substances 0.000 abstract 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 14
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000003141 primary amines Chemical class 0.000 description 6
- 238000011068 loading method Methods 0.000 description 5
- 150000003335 secondary amines Chemical class 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000580063 Ipomopsis rubra Species 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006197 hydroboration reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/08—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/80—Organic bases or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Gas Separation By Absorption (AREA)
Abstract
本发明公开了一种二氧化碳吸收剂的合成方法及其应用。该二氧化碳吸收剂是2‑((3‑氨基丙基)(乙基)氨基)乙醇。其制备方法是以乙醇胺和丙烯腈为原料,低温反应一段时间,然后短暂加热反应,蒸出未反应物,再加入还原剂反应可获得2‑((3‑氨基丙基)(乙基)氨基)乙醇,收率75%‑80%。2‑((3‑氨基丙基)(乙基)氨基)乙醇用作二氧化碳吸收剂,是将其配置成浓度0.5mol/L‑3mol/L的水溶液,在10℃‑80℃吸收二氧化碳,在80℃‑120℃解吸二氧化碳;被吸收二氧化碳的体积分数可以为0%‑99%;与现有常见的胺类二氧化碳吸收剂相比,本发明提出的2‑((3‑氨基丙基)(乙基)氨基)乙醇吸收二氧化碳的性能要优异,体现在具有较大的吸收容量,较快的吸收速率、解吸速率和较高的循环解吸容量,以及较低的再生能耗。
The invention discloses a synthesis method and application of a carbon dioxide absorbent. The carbon dioxide absorbent is 2-((3-aminopropyl)(ethyl)amino)ethanol. The preparation method takes ethanolamine and acrylonitrile as raw materials, reacts at low temperature for a period of time, then briefly heats the reaction, steams the unreacted material, and then adds a reducing agent to react to obtain 2-((3-aminopropyl)(ethyl)amino ) ethanol, the yield is 75%-80%. 2-((3-aminopropyl)(ethyl)amino)ethanol is used as carbon dioxide absorber, it is configured into an aqueous solution with a concentration of 0.5mol/L-3mol/L, absorbs carbon dioxide at 10℃-80℃, 80 ℃-120 ℃ desorb carbon dioxide; the volume fraction of the absorbed carbon dioxide can be 0%-99%; compared with the existing common amine carbon dioxide absorbers, the 2-((3-aminopropyl) ( The performance of ethyl)amino)ethanol to absorb carbon dioxide should be excellent, which is reflected in the larger absorption capacity, faster absorption rate, faster desorption rate, higher cycle desorption capacity, and lower regeneration energy consumption.
Description
技术领域technical field
本发明涉及二氧化碳控制与减排领域,具体涉及2-((3-氨基丙基)(乙基)氨基)乙醇的合成方法及其作为二氧化碳吸收剂方面的应用。The invention relates to the field of carbon dioxide control and emission reduction, in particular to a synthesis method of 2-((3-aminopropyl)(ethyl)amino)ethanol and its application as a carbon dioxide absorbent.
背景技术Background technique
随着人类社会的不断发展、现代工业脚步的加快,人们大量开采矿业,燃烧物和汽车尾气排放物迅速增加,因此造成大气中的二氧化碳的含量暴涨,地球大气层的厚度增加,导致了全球变暖等一系列的环境问题。而二氧化碳作为潜在的化学资源,如何高效的捕获并储存,已经变为了一项非常重要的国际性研究课题。在二氧化碳的吸收方法中,应用最多的是化学吸收法,采用具有化学活性的吸收剂对气体进行洗涤,二氧化碳和吸收剂发生化学反应生成介稳化合物,然后在一定条件下使生成物分解并释放二氧化碳,解吸后的溶液再循环使用。化学吸收法经历了从热钾碱法、苯菲尔法到有机胺法的发展历程,处理水平也在逐渐升高。With the continuous development of human society and the acceleration of the pace of modern industry, people are mining mining in large quantities, and the emissions of combustion products and automobile exhausts increase rapidly, thus causing the content of carbon dioxide in the atmosphere to skyrocket and the thickness of the earth's atmosphere to increase, leading to global warming. and a series of environmental issues. As a potential chemical resource, how to efficiently capture and store carbon dioxide has become a very important international research topic. Among the absorption methods of carbon dioxide, the chemical absorption method is the most widely used. The gas is washed with a chemically active absorbent, and the carbon dioxide and the absorbent chemically react to form metastable compounds, and then the products are decomposed and released under certain conditions. Carbon dioxide, the desorbed solution is recycled. The chemical absorption method has experienced the development process from the hot potash method, the benfeier method to the organic amine method, and the treatment level is gradually increasing.
有机胺法吸收二氧化碳是目前研究的热点问题,因为这种方法具有吸收量大、吸收效果好、吸收速率快、吸收剂可以回收利用等特点。The absorption of carbon dioxide by organic amine method is a hot research topic at present, because this method has the characteristics of large absorption capacity, good absorption effect, fast absorption rate, and recyclable absorbent.
但是目前用于CO2捕获的有机胺溶剂存在一些缺点,例如,伯胺(MEA)、仲胺(DEA)在CO2吸收过程中具有较快的反应速率,但是在解吸过程中却需要消耗较大的能量去释放所吸收的CO2,同时也意味着有较大的溶剂挥发量,造成更高的再生成本;且CO2被吸收后生成的氨基甲酸盐腐蚀性较强,易对设备造成伤害。叔胺类吸收剂(如N-甲基二乙醇胺,MDEA)在CO2解吸过程中相比伯、仲胺需要较小的能量消耗,但是其在CO2吸收过程中的反应速率相比伯、仲胺要低很多,需要加入某些添加剂才能提高其吸收速率。因此,现有的有机胺并不能很好的满足工业化高速率、高容量以及低能耗的要求。However, the organic amine solvents currently used for CO capture have some disadvantages. For example, primary amines (MEA) and secondary amines (DEA) have faster reaction rates during CO absorption, but require relatively high consumption during desorption. The large amount of energy to release the absorbed CO 2 also means that there is a large amount of solvent volatilization, resulting in higher regeneration costs; and the carbamate generated after the CO 2 is absorbed is more corrosive and easy to damage equipment. cause some damages. Tertiary amine absorbents (such as N-methyldiethanolamine, MDEA) require less energy consumption in the CO desorption process than primary and secondary amines, but their reaction rates in the CO absorption process are higher than those of primary and secondary amines. Secondary amines are much lower and certain additives are required to increase their absorption rate. Therefore, the existing organic amines cannot well meet the requirements of high speed, high capacity and low energy consumption in industrialization.
因此,开发高速率、高容量和低能耗的新型吸收剂是二氧化碳捕获领域发展的新趋势。Therefore, the development of new absorbents with high rate, high capacity and low energy consumption is a new trend in the development of carbon dioxide capture.
2-((3-氨基丙基)(乙基)氨基)乙醇结构式为:The structural formula of 2-((3-aminopropyl)(ethyl)amino)ethanol is:
目前该化合物主要应用于医药中间体。本发明提供了其作为CO2吸收剂的用途以及提供了一种2-((3-氨基丙基)(乙基)氨基)乙醇的合成方法,与现有的吸收溶剂相比,2-((3-氨基丙基)(乙基)氨基)乙醇吸收性能优于现有的、常用的吸收溶剂如乙醇胺(MEA)、N-甲基二乙醇胺(MDEA),具有较快的吸收速率,较大的吸收容量,和较低的再生能耗。At present, the compound is mainly used in pharmaceutical intermediates. The present invention provides its use as a CO absorbent and a method for synthesizing 2-((3-aminopropyl)(ethyl)amino)ethanol. Compared with the existing absorbing solvent, 2-((3-aminopropyl)(ethyl)amino)ethanol The absorption performance of (3-aminopropyl)(ethyl)amino)ethanol is better than that of existing and commonly used absorption solvents such as ethanolamine (MEA), N-methyldiethanolamine (MDEA), and it has a faster absorption rate and Large absorption capacity, and lower energy consumption for regeneration.
发明内容SUMMARY OF THE INVENTION
本发明的技术方案一是:Technical scheme one of the present invention is:
一种2-((3-氨基丙基)(乙基)氨基)乙醇的合成方法,包括:A synthetic method of 2-((3-aminopropyl)(ethyl)amino)ethanol, comprising:
(1)丙烯腈(化合物Ⅰ)与乙醇胺(化合物Ⅱ)一定温度下搅拌反应一段时间;反应完成后,将混合物短暂加热;然后于100℃-120℃真空蒸馏出未反应物,得到3-[乙基(2-羟乙基)氨基]丙腈(化合物Ⅲ);(1) Acrylonitrile (compound I) and ethanolamine (compound II) are stirred and reacted at a certain temperature for a period of time; after the reaction is completed, the mixture is briefly heated; then the unreacted material is distilled off under vacuum at 100°C to 120°C to obtain 3-[ Ethyl(2-hydroxyethyl)amino]propionitrile (compound III);
(2)将催化剂与3-[乙基(2-羟乙基)氨基]丙腈分别溶于溶剂,低温下缓慢滴加3-[乙基(2-羟乙基)氨基]丙腈到催化剂溶液中反应1.5-3h,反应完成后淬灭反应,蒸出溶剂,得到2-((3-氨基丙基)(乙基)氨基)乙醇(化合物Ⅲ)。(2) Dissolve the catalyst and 3-[ethyl(2-hydroxyethyl)amino]propionitrile in the solvent respectively, and slowly add 3-[ethyl(2-hydroxyethyl)amino]propionitrile dropwise to the catalyst at low temperature The solution was reacted for 1.5-3 h. After the reaction was completed, the reaction was quenched, and the solvent was evaporated to obtain 2-((3-aminopropyl)(ethyl)amino)ethanol (compound III).
合成路线如下:The synthetic route is as follows:
所述步骤(1)中丙烯腈与乙醇胺的摩尔比优选1.1-1.5,更优选为1.3。In the step (1), the molar ratio of acrylonitrile to ethanolamine is preferably 1.1-1.5, more preferably 1.3.
所述步骤(1)中乙醇胺和丙烯腈反应时间为3h-6h,优选5h。In the step (1), the reaction time of ethanolamine and acrylonitrile is 3h-6h, preferably 5h.
所述步骤(1)中3-[乙基(2-羟乙基)氨基]丙腈反应温度优选为60℃-90℃,更优选70℃-80℃。In the step (1), the reaction temperature of 3-[ethyl(2-hydroxyethyl)amino]propionitrile is preferably 60°C-90°C, more preferably 70°C-80°C.
所述步骤(2)中催化剂与3-[乙基(2-羟乙基)氨基]丙腈的摩尔比是1.5-3,更优选为2。In the step (2), the molar ratio of the catalyst to 3-[ethyl(2-hydroxyethyl)amino]propionitrile is 1.5-3, more preferably 2.
所述步骤(2)中所用催化剂优选硼氢化钠、氢化铝锂、硼烷络合物,更优选氢化铝锂。The catalyst used in the step (2) is preferably sodium borohydride, lithium aluminum hydride, or borane complex, more preferably lithium aluminum hydride.
所述步骤(2)中氢化铝锂与3-[乙基(2-羟乙基)氨基]丙腈反应时间为1-3h,优选2h。In the step (2), the reaction time of lithium aluminum hydride and 3-[ethyl(2-hydroxyethyl)amino]propionitrile is 1-3h, preferably 2h.
所述步骤(2)中所用溶剂优选四氢呋喃、乙醚、乙酸乙酯,更优选四氢呋喃。The solvent used in the step (2) is preferably tetrahydrofuran, diethyl ether and ethyl acetate, more preferably tetrahydrofuran.
所述步骤(2)中的低温为0℃-5℃。The low temperature in the step (2) is 0°C-5°C.
本发明的技术方案二是The second technical solution of the present invention is
一种2-((3-氨基丙基)(乙基)氨基)乙醇作为二氧化碳吸收剂的应用:A kind of application of 2-((3-aminopropyl)(ethyl)amino)ethanol as carbon dioxide absorbent:
所述2-((3-氨基丙基)(乙基)氨基)乙醇作为二氧化碳吸收剂方面的应用,其方法是将2-((3-氨基丙基)(乙基)氨基)乙醇配制0.5mol/L-3mol/L的水溶液作为二氧化碳吸收液,优选2mol/L;并控制二氧化碳吸收液的吸收温度为100℃-80℃,优选30℃-60℃;被吸收的气体压力为0.1-3MPa;所述气体中二氧化碳的体积分数为0%-99%,优选10%-30%;所述吸收剂的再生温度为80℃-120℃,优选90℃-100℃。The application of the 2-((3-aminopropyl)(ethyl)amino)ethanol as carbon dioxide absorbent, the method is to prepare 2-((3-aminopropyl)(ethyl)amino)ethanol for 0.5 The aqueous solution of mol/L-3mol/L is used as carbon dioxide absorption liquid, preferably 2mol/L; and the absorption temperature of the carbon dioxide absorption liquid is controlled to be 100 ℃-80 ℃, preferably 30 ℃-60 ℃; the gas pressure to be absorbed is 0.1-3MPa ; the volume fraction of carbon dioxide in the gas is 0%-99%, preferably 10%-30%; the regeneration temperature of the absorbent is 80°C-120°C, preferably 90°C-100°C.
本发明的优势在于:提供了一种合成2-((3-氨基丙基)(乙基)氨基)乙醇的简单路线。且2-((3-氨基丙基)(乙基)氨基)乙醇作为二氧化碳吸收剂,其结构中具有一个叔胺和一个伯胺,分子内的叔胺可以促进伯胺更快、更多的吸收二氧化碳,且侧链羟基的存在,使其配置成水溶液时传质效率更好。如图1所示,2-((3-氨基丙基)(乙基)氨基)乙醇(HEEPDA)相对于乙醇胺(MEA)和N-甲基二乙醇胺(MDEA)具有较大的CO2吸收容量和较快的吸收速率;如图2所示,通过对三者最大、最低负载量的对比,可以看到2-((3-氨基丙基)(乙基)氨基)乙醇具有较高的循环容量;而通过图3可以看到,2-((3-氨基丙基)(乙基)氨基)乙醇在经历6次再生循环后,吸收CO2的量相对稳定,说明其有较强的稳定性。The advantage of the present invention is that a simple route for synthesizing 2-((3-aminopropyl)(ethyl)amino)ethanol is provided. And 2-((3-aminopropyl)(ethyl)amino)ethanol is used as a carbon dioxide absorber, and its structure has a tertiary amine and a primary amine, and the tertiary amine in the molecule can promote faster and more primary amines. It absorbs carbon dioxide and the presence of side chain hydroxyl groups makes it more efficient in mass transfer when it is configured into an aqueous solution. As shown in Figure 1, 2-((3-aminopropyl)(ethyl)amino)ethanol (HEEPDA) has a larger CO absorption capacity relative to ethanolamine (MEA) and N-methyldiethanolamine (MDEA) and a faster absorption rate; as shown in Figure 2, by comparing the maximum and minimum loadings of the three, it can be seen that 2-((3-aminopropyl)(ethyl)amino)ethanol has a higher circulation As can be seen from Figure 3, after 6 regeneration cycles of 2-((3-aminopropyl)(ethyl)amino)ethanol, the amount of CO2 absorbed is relatively stable, indicating that it has a strong stability sex.
附图说明Description of drawings
图1是乙醇胺(MEA)、N-甲基二乙醇胺(MDEA)、和2-((3-氨基丙基)(乙基)氨基)乙醇(HEEPDA)吸收剂CO2吸收负荷性能的对比曲线。Figure 1 is a comparative curve of CO 2 absorption loading performance of ethanolamine (MEA), N-methyldiethanolamine (MDEA), and 2-((3-aminopropyl)(ethyl)amino)ethanol (HEEPDA) absorbents.
图2是MEA、MDEA和2-((3-氨基丙基)(乙基)氨基)乙醇(HEEPDA)吸收剂最大、最低负载量的对比图。Figure 2 is a graph comparing the maximum and minimum loadings of MEA, MDEA and 2-((3-aminopropyl)(ethyl)amino)ethanol (HEEPDA) absorbents.
图3是MEA、MDEA和2-((3-氨基丙基)(乙基)氨基)乙醇(HEEPDA)吸收剂的再生量的对比图。Figure 3 is a graph comparing regeneration amounts of MEA, MDEA, and 2-((3-aminopropyl)(ethyl)amino)ethanol (HEEPDA) absorbents.
具体实施方式Detailed ways
实施例1Example 1
取丙烯腈47g,在90min中逐滴滴加到50g乙醇胺中,控制反应温度为20℃,滴加完成后搅拌反应3h,反应完成后将反应混合物转移至水浴中,60℃下加热30min,110℃减压蒸干未反应物,得到3-[乙基(2-羟乙基)氨基]丙腈。冰浴、N2保护下将1.1g硼氢化钠溶于25ml四氢呋喃溶液中,;取2ml3-[乙基(2-羟乙基)氨基]丙腈,用20ml四氢呋喃溶解,缓慢滴加至硼氢化钠的溶液中,滴加完成后0℃反应2h。反应完成后,用浓盐酸来水解并转移至干净的烧杯中,然后过滤,用四氢呋喃溶液涮洗,减压蒸干溶剂,得到2-((3-氨基丙基)(乙基)氨基)乙醇,收率50%。Take 47 g of acrylonitrile and add it dropwise to 50 g of ethanolamine in 90 min. The unreacted material was evaporated to dryness under reduced pressure at °C to obtain 3-[ethyl(2-hydroxyethyl)amino]propionitrile. Dissolve 1.1 g of sodium borohydride in 25 ml of tetrahydrofuran solution under ice bath and N2 protection; take 2 ml of 3-[ethyl(2-hydroxyethyl)amino]propionitrile, dissolve in 20 ml of tetrahydrofuran, and slowly add dropwise to the hydroboration In the sodium solution, after the dropwise addition was completed, the reaction was carried out at 0 °C for 2 h. After the completion of the reaction, hydrolyzed with concentrated hydrochloric acid and transferred to a clean beaker, then filtered, rinsed with tetrahydrofuran solution, and evaporated the solvent under reduced pressure to obtain 2-((3-aminopropyl)(ethyl)amino)ethanol , the yield is 50%.
实施例2Example 2
取丙烯腈47g,在90min中逐滴滴加到50g乙醇胺中,控制反应温度为20℃,滴加完成后搅拌反应3h,反应完成后将反应混合物转移至水浴中,80℃下加热30min,110℃减压蒸干未反应物,得到3-[乙基(2-羟乙基)氨基]丙腈。冰浴、N2保护下将1.1g氢化铝锂溶于22ml四氢呋喃溶液中;取2ml3-[乙基(2-羟乙基)氨基]丙腈,用20ml四氢呋喃溶解,缓慢滴加至氢化铝锂的溶液中,滴加完成后0℃反应2h。反应完成后,先将1.1g去离子水缓慢滴加到反应溶液中,滴加去离子水10min后滴加1.1g的15%NaoH溶液淬灭反应,然后过滤,减压蒸干溶剂,得到2-((3-氨基丙基)(乙基)氨基)乙醇,收率70%。47 g of acrylonitrile was taken and added dropwise to 50 g of ethanolamine in 90 min. The reaction temperature was controlled at 20 °C. After the dropwise addition was completed, the reaction was stirred for 3 h. After the reaction was completed, the reaction mixture was transferred to a water bath and heated at 80 °C for 30 min. The unreacted material was evaporated to dryness under reduced pressure at °C to obtain 3-[ethyl(2-hydroxyethyl)amino]propionitrile. Dissolve 1.1 g of lithium aluminum hydride in 22 ml of tetrahydrofuran solution under ice bath and N2 protection; take 2 ml of 3-[ethyl(2-hydroxyethyl)amino]propionitrile, dissolve in 20 ml of tetrahydrofuran, and slowly add dropwise to lithium aluminum hydride The solution was added dropwise and reacted at 0°C for 2h. After the reaction was completed, 1.1 g of deionized water was slowly added dropwise to the reaction solution, deionized water was added dropwise for 10 min, and then 1.1 g of 15% NaOH solution was added dropwise to quench the reaction, then filtered, and the solvent was evaporated under reduced pressure to obtain 2. -((3-aminopropyl)(ethyl)amino)ethanol, 70% yield.
实施例3Example 3
取丙烯腈56.5g,在90min中逐滴滴加到50g乙醇胺中,控制反应温度为30℃,滴加完成后搅拌反应5h,反应完成后将反应混合物转移至水浴中,80℃下加热30min,110℃减压蒸干未反应物,得到3-[乙基(2-羟乙基)氨基]丙腈。冰浴、N2保护下将1.1g氢化铝锂溶于22ml四氢呋喃溶液中;取2ml3-[乙基(2-羟乙基)氨基]丙腈,用20ml四氢呋喃溶解,缓慢滴加至氢化铝锂的溶液中,滴加完成后5℃反应2h。反应完成后,先将1.1g去离子水缓慢滴加到反应溶液中,滴加去离子水10min后滴加1.1g的15%NaoH溶液淬灭反应,然后过滤,减压蒸干溶剂,得到2-((3-氨基丙基)(乙基)氨基)乙醇,收率80%。56.5 g of acrylonitrile was taken and added dropwise to 50 g of ethanolamine in 90 min. The reaction temperature was controlled at 30 °C. After the dropwise addition was completed, the reaction was stirred for 5 h. After the reaction was completed, the reaction mixture was transferred to a water bath and heated at 80 °C for 30 min. The unreacted material was evaporated to dryness under reduced pressure at 110°C to obtain 3-[ethyl(2-hydroxyethyl)amino]propionitrile. Dissolve 1.1 g of lithium aluminum hydride in 22 ml of tetrahydrofuran solution under ice bath and N2 protection; take 2 ml of 3-[ethyl(2-hydroxyethyl)amino]propionitrile, dissolve in 20 ml of tetrahydrofuran, and slowly add dropwise to lithium aluminum hydride The solution was added dropwise and reacted at 5°C for 2h. After the reaction was completed, 1.1 g of deionized water was slowly added dropwise to the reaction solution, deionized water was added dropwise for 10 min, and then 1.1 g of 15% NaOH solution was added dropwise to quench the reaction, then filtered, and the solvent was evaporated to dryness under reduced pressure to obtain 2. -((3-aminopropyl)(ethyl)amino)ethanol, 80% yield.
实施例4:吸收容量考察Example 4: Absorption capacity investigation
将2-((3-氨基丙基)(乙基)氨基)乙醇配制成2mol/l的水溶液作为二氧化碳吸收剂,在常压0.1MPa条件下,控制CO2体积分数为10%,测得2-((3-氨基丙基)(乙基)氨基)乙醇的吸收量随时间的变化。结果显示,相较于其他两种二氧化碳吸收剂,2-((3-氨基丙基)(乙基)氨基)乙醇有最大的吸收容量。如如图1所示。2-((3-aminopropyl)(ethyl)amino)ethanol was prepared into a 2mol/l aqueous solution as a carbon dioxide absorbent. Under the condition of normal pressure of 0.1MPa, the volume fraction of CO2 was controlled to be 10%, and 2 -((3-Aminopropyl)(ethyl)amino)ethanol uptake as a function of time. The results showed that 2-((3-aminopropyl)(ethyl)amino)ethanol had the largest absorption capacity compared to the other two carbon dioxide absorbers. As shown in Figure 1.
实施例5:最大和最低负载量Example 5: Maximum and Minimum Loads
将2-((3-氨基丙基)(乙基)氨基)乙醇配制成2mol/l的水溶液作为二氧化碳吸收剂,在常压0.1MPa条件下,控制CO2体积分数为10%,50℃达到吸收饱和后测得最大负载量;90℃解吸完成后测得最低负载量。结果显示,相较于其他两种二氧化碳吸收剂,2-((3-氨基丙基)(乙基)氨基)乙醇具有最大的活性吸收容量。如图2所示。2-((3-aminopropyl)(ethyl)amino)ethanol was prepared into a 2mol/l aqueous solution as a carbon dioxide absorbent. Under the condition of normal pressure of 0.1MPa, the volume fraction of CO2 was controlled to be 10%, and the temperature reached 50 °C. The maximum loading was measured after the absorption was saturated; the minimum loading was measured after the desorption was completed at 90°C. The results show that 2-((3-aminopropyl)(ethyl)amino)ethanol has the largest active absorption capacity compared to the other two carbon dioxide absorbers. as shown in
实施例6:循环容量Example 6: Cycle capacity
将2-((3-氨基丙基)(乙基)氨基)乙醇配制成2mol/l的水溶液作为二氧化碳吸收剂,在常压0.1MPa条件下,控制CO2体积分数为10%,吸收饱和后,测得负载量,90℃解吸2h后,再进行吸收,重复多次后,性能未见衰减。如图3所示。2-((3-aminopropyl)(ethyl)amino)ethanol was prepared into a 2mol/l aqueous solution as a carbon dioxide absorbent. Under the condition of normal pressure of 0.1MPa, the volume fraction of CO2 was controlled to be 10%, and after the absorption was saturated , the load was measured, and after desorption at 90 °C for 2 hours, the absorption was carried out again. After repeated many times, the performance did not deteriorate. As shown in Figure 3.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210462856.5A CN114702397A (en) | 2022-04-28 | 2022-04-28 | A kind of synthetic method of carbon dioxide absorbent and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210462856.5A CN114702397A (en) | 2022-04-28 | 2022-04-28 | A kind of synthetic method of carbon dioxide absorbent and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114702397A true CN114702397A (en) | 2022-07-05 |
Family
ID=82177582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210462856.5A Pending CN114702397A (en) | 2022-04-28 | 2022-04-28 | A kind of synthetic method of carbon dioxide absorbent and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114702397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117088783A (en) * | 2023-08-17 | 2023-11-21 | 合肥工业大学 | Hydroxyalkyl polybasic aliphatic amine carbon trapping agent, and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0184408A1 (en) * | 1984-12-03 | 1986-06-11 | Exxon Research And Engineering Company | Diaminoalcohols, their preparation and their use as acid gas removal agents |
CN101665440A (en) * | 2009-10-12 | 2010-03-10 | 大连理工大学 | Preparation method of N-ethoxyl-1, 3-propane diamine |
CN104080523A (en) * | 2011-11-30 | 2014-10-01 | Ifp新能源公司 | Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers |
CN106008235A (en) * | 2016-05-20 | 2016-10-12 | 湖南大学 | 4-((2-hydroxyethyl)(methyl)amino)-2-butanol and preparation method thereof |
CN106008233A (en) * | 2016-05-20 | 2016-10-12 | 湖南大学 | 4-((2-hydroxyethyl)(alkyl)amino)-2-butanol and preparation method thereof |
CN113149850A (en) * | 2021-05-07 | 2021-07-23 | 大连理工大学 | Process for continuously preparing N-hydroxyethyl-1, 3-propane diamine by using micro-mixing and fixed bed reactor |
-
2022
- 2022-04-28 CN CN202210462856.5A patent/CN114702397A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0184408A1 (en) * | 1984-12-03 | 1986-06-11 | Exxon Research And Engineering Company | Diaminoalcohols, their preparation and their use as acid gas removal agents |
CN101665440A (en) * | 2009-10-12 | 2010-03-10 | 大连理工大学 | Preparation method of N-ethoxyl-1, 3-propane diamine |
CN104080523A (en) * | 2011-11-30 | 2014-10-01 | Ifp新能源公司 | Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers |
CN106008235A (en) * | 2016-05-20 | 2016-10-12 | 湖南大学 | 4-((2-hydroxyethyl)(methyl)amino)-2-butanol and preparation method thereof |
CN106008233A (en) * | 2016-05-20 | 2016-10-12 | 湖南大学 | 4-((2-hydroxyethyl)(alkyl)amino)-2-butanol and preparation method thereof |
CN113149850A (en) * | 2021-05-07 | 2021-07-23 | 大连理工大学 | Process for continuously preparing N-hydroxyethyl-1, 3-propane diamine by using micro-mixing and fixed bed reactor |
Non-Patent Citations (2)
Title |
---|
SURREY, ALEXANDER R.等: "Preparation of 7-chloro-4-[4-(N-ethyl-N-2-hydroxyethylamino)-1- methylbutylamino]quinoline and related compounds", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY * |
URCKHALTER, J. H.; JONES: "N - Substituted 2 - methoxy - 6 - chloro - 9 - amino- acridines", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117088783A (en) * | 2023-08-17 | 2023-11-21 | 合肥工业大学 | Hydroxyalkyl polybasic aliphatic amine carbon trapping agent, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106966929B (en) | A kind of Linear Double branch azobenzene/graphene composite material and preparation method and application | |
CN107899371B (en) | A kind of method of ionic deep eutectic solvent efficiently and reversibly absorbing ammonia gas | |
CN105969321A (en) | Double-branch azobenzene/graphene energy storage material and preparing method | |
CN107670464A (en) | A kind of process regenerated with eutectic solvent absorbing sulfur dioxide in flue and use hydrogen sulfide | |
CN102974203B (en) | A kind of New Absorbent trapping separating carbon dioxide | |
CN101601961A (en) | Absorb SO with halogenated alkyl quaternary ammonium salt ionic liquid 2The method of gas | |
CN111569612A (en) | Anhydrous chemical absorbent for absorbing acid gas and application thereof | |
CN114702397A (en) | A kind of synthetic method of carbon dioxide absorbent and application thereof | |
CN111871152B (en) | A kind of functionalized ionic liquid and its preparation method and application | |
WO2022022168A1 (en) | Cyclohexyl diamine ionic liquid and use thereof in absorption of sulfur dioxide | |
CN108926963A (en) | A kind of method of anhydrous carbon-dioxide absorbent and absorption and desorption carbon dioxide | |
CN108187449A (en) | A kind of method using alcamines ionic liquid efficient absorption ammonia | |
CN102167686A (en) | Method for preparing 2,2'-dibenzothiazyl disulfide by catalyzing oxidation through molecular oxygen | |
CN105669474B (en) | A kind of amino acid ion liquid molecule and preparation method thereof, application | |
CN117619107A (en) | Phase change absorbent with anti-oxidative degradation function and preparation method thereof | |
CN110563608B (en) | Cyano-substituted polyethyleneimine compounds and their applications | |
CN102764578A (en) | A CO2 absorption and separation device and its method for absorbing and separating CO2 by hot potash method | |
CN114377723B (en) | Titanium dioxide and visible light catalysis hydrogen production thereof | |
CN110586194A (en) | Preparation method and application of metal-organic framework material loaded polyacid site ionic liquid catalyst | |
CN110437201A (en) | A kind of composite absorber and its method for ethylene oxide absorption conversion coupled cogeneration ethylene carbonate | |
KR102638462B1 (en) | Highly efficient CO2 absorbent composition and method for preparing the same | |
CN116474525A (en) | High-efficiency reversible CO absorption 2 Quaternary ammonium low viscosity ionic eutectic absorbent | |
KR101383762B1 (en) | Carbon Dioxide Capture Sorbent and Method for Carbon Dioxide Capture | |
CN112957896B (en) | A new type of fatty polyamine solution for capturing carbon dioxide in mixed gas and its application | |
CN111943858B (en) | A functionalized ionic liquid with an anion containing two functional groups, carboxyl and mercapto, and its preparation method and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |