CN114695576A - Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof - Google Patents
Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof Download PDFInfo
- Publication number
- CN114695576A CN114695576A CN202011618829.XA CN202011618829A CN114695576A CN 114695576 A CN114695576 A CN 114695576A CN 202011618829 A CN202011618829 A CN 202011618829A CN 114695576 A CN114695576 A CN 114695576A
- Authority
- CN
- China
- Prior art keywords
- layer
- intrinsic
- intrinsic layer
- sih
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims abstract description 53
- 238000002161 passivation Methods 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 59
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 59
- 239000010703 silicon Substances 0.000 claims abstract description 59
- 238000000151 deposition Methods 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000008021 deposition Effects 0.000 claims description 28
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000010849 ion bombardment Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 185
- 235000012431 wafers Nutrition 0.000 description 47
- 239000010408 film Substances 0.000 description 30
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 2
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 2
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/122—Active materials comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于光伏电池技术领域,具体地,涉及用于HJT电池的多本征层非晶硅钝化层结构及其制备方法。The invention belongs to the technical field of photovoltaic cells, and in particular, relates to a multi-intrinsic layer amorphous silicon passivation layer structure for HJT cells and a preparation method thereof.
背景技术Background technique
光伏电池是有效利用太阳能的重要手段。众多类型的光伏电池中,单晶硅太阳能电池技术已经确立光伏产业显著的优势地位。P型单晶硅发展较早,主流产品经历了BSF电池,PERC电池以及双面PERC+电池的不断发展,电池效率已逐渐接近瓶颈。与之相比,N型硅片具有较长的少子寿命、更小的光致衰减,公认未来高效光伏电池发展将切换到N型电池方向。Photovoltaic cells are an important means of effectively utilizing solar energy. Among many types of photovoltaic cells, monocrystalline silicon solar cell technology has established a significant dominant position in the photovoltaic industry. P-type monocrystalline silicon developed earlier, and mainstream products have experienced the continuous development of BSF cells, PERC cells and double-sided PERC+ cells, and the cell efficiency has gradually approached the bottleneck. In contrast, N-type silicon wafers have a longer minority carrier lifetime and less light-induced attenuation. It is recognized that the development of high-efficiency photovoltaic cells in the future will switch to the direction of N-type cells.
HJT电池又称异质结(Heterojunction with Intrinsic Thinfilm,HIT)电池。HIT是一种特殊的PN结,由非晶硅和晶体硅材料形成,是在晶体硅上沉积非晶硅薄膜,属于N型电池中的一种。HJT batteries are also called heterojunction (Heterojunction with Intrinsic Thinfilm, HIT) batteries. HIT is a special PN junction, which is formed by amorphous silicon and crystalline silicon materials. It is a kind of N-type battery by depositing an amorphous silicon film on crystalline silicon.
HJT非晶硅钝化层为氢化非晶硅本征层,能够减少a-Si/c-Si悬挂键,钝化异质结界面。通常情况下,先使用化学气相沉积法(Chemical Vapor Deposition,CVD)在制绒清洗后的硅片正面进行氢离子处理,再沉积一层氢化非晶硅本征层。在硅片下面,先进行氢离子处理,再沉积一层氢化非晶硅本征层。通入气体为SiH4和H2,H2:SiH4=1~20,腔体制程温度一般控制在200℃左右,硅片正反面氢化非晶硅本征层厚度一般控制在5~10nm。The HJT amorphous silicon passivation layer is a hydrogenated amorphous silicon intrinsic layer, which can reduce a-Si/c-Si dangling bonds and passivate the heterojunction interface. Usually, a chemical vapor deposition (Chemical Vapor Deposition, CVD) method is used to perform hydrogen ion treatment on the front surface of the silicon wafer after texturing and cleaning, and then a hydrogenated amorphous silicon intrinsic layer is deposited. Under the silicon wafer, hydrogen ion treatment is performed first, and then a hydrogenated amorphous silicon intrinsic layer is deposited. The feeding gases are SiH 4 and H 2 , H 2 : SiH 4 =1~20, the cavity process temperature is generally controlled at about 200°C, and the thickness of the hydrogenated amorphous silicon intrinsic layer on the front and back of the silicon wafer is generally controlled at 5~10nm.
现有HJT技术,一方面直接对制绒清洗后的硅片进行氢离子处理,虽然可以提高硅片表面清洁度,去除残留氧化物和氟化物,同时钝化表面缺陷,可以提高Isc和Voc,但会选择性刻蚀硅片表面,使硅片表面粗糙度发生改变,使晶体硅产生额外的应变和缺陷,不利于钝化。另一方面,单层结构的氢化非晶硅本征层,沉积过程通入大量的H2稀释SiH4,氢离子会轰击硅片表面,形成额外的缺陷,同时还可能会形成外延硅,其中外延硅是由柱状团聚,裂纹和微孔洞组成,增加薄膜缺陷态密度,会影响电池的电性能。The existing HJT technology, on the one hand, directly performs hydrogen ion treatment on the silicon wafer after texturing and cleaning, although the surface cleanliness of the silicon wafer can be improved, the residual oxide and fluoride can be removed, and the surface defects can be passivated, which can improve the Isc and Voc, However, the surface of the silicon wafer will be selectively etched, which will change the surface roughness of the silicon wafer and cause additional strain and defects in the crystalline silicon, which is not conducive to passivation. On the other hand, for the hydrogenated amorphous silicon intrinsic layer of the single-layer structure, a large amount of H 2 is introduced into the deposition process to dilute SiH 4 , and the hydrogen ions will bombard the surface of the silicon wafer to form additional defects, and at the same time, epitaxial silicon may also be formed, among which Epitaxial silicon is composed of columnar agglomerates, cracks and micro-voids, increasing the density of defect states in the film, which will affect the electrical performance of the battery.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题中的至少一个,本发明采取以下技术方案:In order to solve at least one of the above-mentioned technical problems, the present invention adopts the following technical solutions:
本发明第一方面提供一种用于HJT电池的多本征层非晶硅钝化层结构,其特征在于,包括硅片,硅片正面沉积有第一多本征层组,硅片背面沉积有第二多本征层组,第一多本征层组从硅片正面开始依次包括第一本征层、第二本征层、第三本征层和第四征层,第二多本征层组从硅片背面开始依次包括五本征层、第六本征层和第七本征层,其中:A first aspect of the present invention provides a multi-intrinsic layer amorphous silicon passivation layer structure for HJT cells, which is characterized by comprising a silicon wafer, a first multi-intrinsic layer group is deposited on the front side of the silicon wafer, and a backside of the silicon wafer is deposited There is a second multi-intrinsic layer group, the first multi-intrinsic layer group includes a first intrinsic layer, a second intrinsic layer, a third intrinsic layer and a fourth intrinsic layer in sequence from the front side of the silicon wafer, and the second multi-intrinsic layer The intrinsic layer group includes five intrinsic layers, a sixth intrinsic layer and a seventh intrinsic layer in sequence from the back of the silicon wafer, wherein:
所述第一本征层和所述第五本征层是将CO2和SiH4进行沉积得到的;The first intrinsic layer and the fifth intrinsic layer are obtained by depositing CO 2 and SiH 4 ;
所述第二本征层和所述第六本征层是将SiH4进行沉积得到的;The second intrinsic layer and the sixth intrinsic layer are obtained by depositing SiH 4 ;
所述第三本征层是将H2、CH4和SiH4进行沉积得到的;The third intrinsic layer is obtained by depositing H 2 , CH 4 and SiH 4 ;
所述第四本征层是将H2、CO2和SiH4进行沉积得到的;The fourth intrinsic layer is obtained by depositing H 2 , CO 2 and SiH 4 ;
所述第七本征层是将H2和SiH4进行沉积得到的。The seventh intrinsic layer is obtained by depositing H 2 and SiH 4 .
进一步地,所述硅片为N型掺磷单晶硅片。Further, the silicon wafer is an N-type phosphorus-doped single crystal silicon wafer.
在本发明中,所述硅片正面是指硅片的入光面,相应地,所述硅片背面是指相对于入光面的另一面,即背光面。In the present invention, the front surface of the silicon wafer refers to the light incident surface of the silicon wafer, and correspondingly, the back surface of the silicon wafer refers to the other surface opposite to the light incident surface, that is, the backlight surface.
在本发明的一些实施方案中,所述硅片的厚度为50-300μm,优选地,所述硅片的厚度为100-2000μm,更优选地,所述硅片的厚度为120-180μm。在本发明的一个具体实施方案中,所述硅片的厚度为150μm。In some embodiments of the present invention, the thickness of the silicon wafer is 50-300 μm, preferably, the thickness of the silicon wafer is 100-2000 μm, more preferably, the thickness of the silicon wafer is 120-180 μm. In a specific embodiment of the present invention, the thickness of the silicon wafer is 150 μm.
在本发明中,所述第一本征层的作用是防止各本征层外延生长。在本发明的一些实施方案中,所述第一本征层的厚度为0.2-2nm,优选地,所述第一本征层的厚度为0.5-1.5nm,更优选地,所述第一本征层的厚度为0.8-1.2nm。在本发明的一个具体实施方案中,所述第一本征层的厚度为1nm。In the present invention, the function of the first intrinsic layer is to prevent the epitaxial growth of each intrinsic layer. In some embodiments of the present invention, the thickness of the first intrinsic layer is 0.2-2 nm, preferably, the thickness of the first intrinsic layer is 0.5-1.5 nm, more preferably, the first intrinsic layer has a thickness of 0.5-1.5 nm. The thickness of the sign layer is 0.8-1.2 nm. In a specific embodiment of the present invention, the thickness of the first intrinsic layer is 1 nm.
在本发明中,所述第二本征层的作用是对所述硅片和所述第一本征层进行钝化。在本发明的一些实施方案中,所述第二本征层的厚度为1-10nm,优选地,所述第二本征层的厚度为2-8nm,更优选地,所述第二本征层的厚度为3-5nm。在本发明的一个具体实施方案中,所述第二本征层的厚度为4nm。In the present invention, the function of the second intrinsic layer is to passivate the silicon wafer and the first intrinsic layer. In some embodiments of the present invention, the thickness of the second intrinsic layer is 1-10 nm, preferably, the thickness of the second intrinsic layer is 2-8 nm, more preferably, the thickness of the second intrinsic layer is 2-8 nm The thickness of the layers is 3-5 nm. In a specific embodiment of the present invention, the thickness of the second intrinsic layer is 4 nm.
在本发明中,将H2、CH4和SiH4进行沉积得到所述第三本征层时可以形成a-SiC:H,a-SiC:H对所述硅片和所述第一本征层和所述第二本征层具有良好的钝化作用,同时a-SiC:H具有较大的光学带隙,可以减少光吸收,提高短路电流Isc和开路电压Voc。在本发明的一些实施方案中,所述第三本征层的厚度为0.2-2nm,优选地,所述第三本征层的厚度为0.5-1.5nm,更优选地,所述第三本征层的厚度为0.8-1.2nm。在本发明的一个具体实施方案中,所述第三本征层的厚度为1nm。In the present invention, when the third intrinsic layer is obtained by depositing H 2 , CH 4 and SiH 4 , a-SiC:H can be formed, and a-SiC:H has a negative impact on the silicon wafer and the first intrinsic layer. The layer and the second intrinsic layer have a good passivation effect, and at the same time a-SiC:H has a large optical band gap, which can reduce light absorption and improve the short-circuit current Isc and the open-circuit voltage Voc. In some embodiments of the present invention, the thickness of the third intrinsic layer is 0.2-2 nm, preferably, the thickness of the third intrinsic layer is 0.5-1.5 nm, more preferably, the third intrinsic layer has a thickness of 0.5-1.5 nm. The thickness of the sign layer is 0.8-1.2 nm. In a specific embodiment of the present invention, the thickness of the third intrinsic layer is 1 nm.
在本发明中,将H2、CO2和SiH4进行沉积得到所述第四本征层时可以形成a-SiOX:H,a-SiOx:H对所述硅片、所述第一本征层、所述第二本征层和所述第三本征层具有良好的钝化作用,同时a-SiOx:H具有较大的禁带宽度,可以减少光吸收,进一步提高Isc和Voc。在本发明的一些实施方案中,所述第四本征层的厚度为5-20nm,优选地,所述第四本征层的厚度为7-15nm,更优选地,所述第四本征层的厚度为8-12nm。在本发明的一个具体实施方案中,所述第四本征层的厚度为10nm。In the present invention, when the fourth intrinsic layer is obtained by depositing H 2 , CO 2 and SiH 4 , a-SiOX:H can be formed. layer, the second intrinsic layer and the third intrinsic layer have good passivation, and at the same time a-SiOx:H has a larger forbidden band width, which can reduce light absorption and further improve Isc and Voc. In some embodiments of the present invention, the thickness of the fourth intrinsic layer is 5-20 nm, preferably, the thickness of the fourth intrinsic layer is 7-15 nm, more preferably, the fourth intrinsic layer has a thickness of 7-15 nm The thickness of the layers is 8-12 nm. In a specific embodiment of the present invention, the thickness of the fourth intrinsic layer is 10 nm.
在本发明中,所述第五本征层的作用是防止各本征层外延生长。在本发明的一些实施方案中,所述第五本征层的厚度为0.2-2nm,优选地,所述第五本征层的厚度为0.5-1.5nm,更优选地,所述第五本征层的厚度为0.8-1.2nm。在本发明的一个具体实施方案中,所述第五本征层的厚度为1nm。In the present invention, the function of the fifth intrinsic layer is to prevent epitaxial growth of each intrinsic layer. In some embodiments of the present invention, the fifth intrinsic layer has a thickness of 0.2-2 nm, preferably, the fifth intrinsic layer has a thickness of 0.5-1.5 nm, more preferably, the fifth intrinsic layer has a thickness of 0.5-1.5 nm. The thickness of the sign layer is 0.8-1.2 nm. In a specific embodiment of the present invention, the thickness of the fifth intrinsic layer is 1 nm.
在本发明中,所述第六本征层的作用是对所述硅片和所述第五本征层进行钝化。在本发明的一些实施方案中,所述第六本征层的厚度为1-10nm,优选地,,所述第六本征层的厚度为2-8nm,更优选地,所述第六本征层的厚度为3-5nm。在本发明的一个具体实施方案中,所述第六本征层的厚度为4nm。In the present invention, the function of the sixth intrinsic layer is to passivate the silicon wafer and the fifth intrinsic layer. In some embodiments of the present invention, the thickness of the sixth intrinsic layer is 1-10 nm, preferably, the thickness of the sixth intrinsic layer is 2-8 nm, more preferably, the sixth intrinsic layer has a thickness of 2-8 nm. The thickness of the sign layer is 3-5 nm. In a specific embodiment of the present invention, the thickness of the sixth intrinsic layer is 4 nm.
在本发明的一些实施方案中,所述第七本征层的厚度为1-15nm,优选地,所述第七本征层的厚度为2-10nm,更优选地,所述第七本征层的厚度为3-8nm。在本发明的一个具体实施方案中,所述第七本征层的厚度为5nm。In some embodiments of the present invention, the thickness of the seventh intrinsic layer is 1-15 nm, preferably, the thickness of the seventh intrinsic layer is 2-10 nm, more preferably, the seventh intrinsic layer has a thickness of 2-10 nm The thickness of the layers is 3-8 nm. In a specific embodiment of the present invention, the thickness of the seventh intrinsic layer is 5 nm.
本发明第二方面提供本发明第一方面所述多本征层非晶硅钝化层结构的制备方法,包括以下步骤:A second aspect of the present invention provides a method for preparing the multi-intrinsic layer amorphous silicon passivation layer structure described in the first aspect of the present invention, comprising the following steps:
S1,在所述硅片正面制备第一多本征层组,具体地,先将4个本征层依次沉积在硅片表面,最后在第4个本征层后再进行氢离子处理:S1, prepare a first multi-intrinsic layer group on the front side of the silicon wafer, specifically, first deposit four intrinsic layers on the surface of the silicon wafer in sequence, and finally perform hydrogen ion treatment after the fourth intrinsic layer:
S11,制备第一本征层:通入CO2和SiH4进行沉积;S11, prepare the first intrinsic layer: pass in CO 2 and SiH 4 for deposition;
S12,制备第二本征层:只通入SiH4进行沉积;S12, prepare the second intrinsic layer: only pass through SiH 4 for deposition;
S13,制备第三本征层:通入H2、CH4和SiH4进行沉积;S13, prepare the third intrinsic layer: pass in H 2 , CH 4 and SiH 4 for deposition;
S14,制备第四本征层:通入H2、CO2和SiH4进行沉积,S14, prepare the fourth intrinsic layer: pass H 2 , CO 2 and SiH 4 for deposition,
S2,在所述硅片背面制备第二多本征层组,先将3个本征层依次沉积在硅片表面,最后在第3个本征层后再进行氢处理:S2, preparing a second multi-intrinsic layer group on the back of the silicon wafer, first depositing three intrinsic layers on the surface of the silicon wafer in sequence, and finally performing hydrogen treatment after the third intrinsic layer:
S21,制备第五本征层:通入CO2和SiH4进行沉积;S21, prepare the fifth intrinsic layer: pass in CO 2 and SiH 4 for deposition;
S22,制备第六本征层:只通入SiH4进行沉积;S22, prepare the sixth intrinsic layer: only pass through SiH 4 for deposition;
S23,制备第七本征层:通入H2和SiH4进行沉积。S23, prepare the seventh intrinsic layer: pass H 2 and SiH 4 for deposition.
进一步地,在各步骤中,利用PECVD进行沉积。Further, in each step, deposition is performed using PECVD.
氢离子处理在沉积氢化非晶硅本征层的过程中是必不可少的,但是直接在制绒清洗后的硅片表面进行氢气预处理会产生不利的影响,利用本发明的步骤,使得使用氢离子处理技术不会对硅片表面直接造成损伤。Hydrogen ion treatment is essential in the process of depositing the hydrogenated amorphous silicon intrinsic layer, but directly performing hydrogen pretreatment on the surface of the silicon wafer after texturing and cleaning will have adverse effects. The hydrogen ion treatment technology will not directly damage the surface of the silicon wafer.
在本发明的一些实施方案中,步骤S11中,通入CO2和SiH4的体积比为:CO2:SiH4=0.1~2:1,优选地,通入CO2和SiH4的体积比为:CO2:SiH4=0.2~1:1,更优选地,通入CO2和SiH4的体积比为:CO2:SiH4=0.3~0.7:1。在本发明的一个具体实施方案中,通入CO2和SiH4的体积比为:CO2:SiH4=0.5:1。In some embodiments of the present invention, in step S11, the volume ratio of passing CO 2 and SiH 4 is: CO 2 :SiH 4 =0.1-2:1, preferably, the volume ratio of passing CO 2 and SiH 4 It is: CO 2 :SiH 4 =0.2-1:1, more preferably, the volume ratio of CO 2 and SiH 4 introduced is: CO 2 :SiH 4 =0.3-0.7:1. In a specific embodiment of the present invention, the volume ratio of introducing CO 2 and SiH 4 is: CO 2 :SiH 4 =0.5:1.
在本发明的一些实施方案中,步骤S13中,通入H2、CH4和SiH4的体积比为:H2:CH4:SiH4=1~20:0.1~2:1,优选地,通入H2、CH4和SiH4的体积比为:H2:CH4:SiH4=5~15:0.2~0.8:1,更优选地,通入H2、CH4和SiH4的体积比为:H2:CH4:SiH4=8~12:0.3~0.6:1。在本发明的一个具体实施方案中,通入H2、CH4和SiH4的体积比为:H2:CH4:SiH4=10:0.5:1。In some embodiments of the present invention, in step S13, the volume ratio of passing H 2 , CH 4 and SiH 4 is: H 2 :CH 4 :SiH 4 =1~20:0.1~2:1, preferably, The volume ratio of passing H 2 , CH 4 and SiH 4 is: H 2 :CH 4 :SiH 4 =5~15:0.2~0.8:1, more preferably, the volume of passing H 2 , CH 4 and SiH 4 The ratio is: H 2 :CH 4 :SiH 4 =8 to 12:0.3 to 0.6:1. In a specific embodiment of the present invention, the volume ratio of H 2 , CH 4 and SiH 4 introduced is: H 2 :CH 4 :SiH 4 =10:0.5:1.
在本发明的一些实施方案中,步骤S14中,通入H2、CO2和SiH4的体积比为:H2:CO2:SiH4=1~20:0.1~2:1,优选地,通入H2、CO2和SiH4的体积比为:H2:CO2:SiH4=5~15:0.2~0.8:1,更优选地,通入H2、CO2和SiH4的体积比为:H2:CO2:SiH4=8~12:0.3~0.6:1。在本发明的一个具体实施方案中,通入H2、CO2和SiH4的体积比为:H2:CO2:SiH4=10:0.5:1。In some embodiments of the present invention, in step S14, the volume ratio of passing H 2 , CO 2 and SiH 4 is: H 2 :CO 2 :SiH 4 =1~20:0.1~2:1, preferably, The volume ratio of passing H 2 , CO 2 and SiH 4 is: H 2 :CO 2 :SiH 4 =5~15:0.2~0.8:1, more preferably, the volume of passing H 2 , CO 2 and SiH 4 The ratio is: H 2 :CO 2 :SiH 4 =8-12:0.3-0.6:1. In a specific embodiment of the present invention, the volume ratio of H 2 , CO 2 and SiH 4 introduced is: H 2 :CO 2 :SiH 4 =10:0.5:1.
在本发明的一些实施方案中,步骤S21中,通入CO2和SiH4的体积比为:CO2:SiH4=0.1~2:1,优选地,通入CO2和SiH4的体积比为:CO2:SiH4=0.2~1:1,更优选地,通入CO2和SiH4的体积比为:CO2:SiH4=0.3~0.7:1。在本发明的一个具体实施方案中,通入CO2和SiH4的体积比为:CO2:SiH4=0.5:1。In some embodiments of the present invention, in step S21, the volume ratio of passing CO 2 and SiH 4 is: CO 2 :SiH 4 =0.1-2:1, preferably, the volume ratio of passing CO 2 and SiH 4 It is: CO 2 :SiH 4 =0.2-1:1, more preferably, the volume ratio of CO 2 and SiH 4 introduced is: CO 2 :SiH 4 =0.3-0.7:1. In a specific embodiment of the present invention, the volume ratio of introducing CO 2 and SiH 4 is: CO 2 :SiH 4 =0.5:1.
在本发明的一些实施方案中,步骤S23中,通入H2和SiH4的体积比为:H2:SiH4=1~30:1,优选地,通入H2和SiH4的体积比为:H2:SiH4=5~25:1,更优选地,通入H2和SiH4的体积比为:H2:SiH4=15~22:1。在本发明的一个具体实施方案中,通入H2和SiH4的体积比为:H2:SiH4=20:1。In some embodiments of the present invention, in step S23, the volume ratio of passing H 2 and SiH 4 is: H 2 :SiH 4 =1~30:1, preferably, the volume ratio of passing H 2 and SiH 4 It is: H 2 :SiH 4 =5-25:1, more preferably, the volume ratio of H 2 and SiH 4 introduced is: H 2 :SiH 4 =15-22:1. In a specific embodiment of the present invention, the volume ratio of H 2 and SiH 4 introduced is: H 2 :SiH 4 =20:1.
本发明的第三方面提供一种具有本发明第一方面所述多本征层非晶硅钝化层结构的HJT电池。A third aspect of the present invention provides an HJT cell having the multi-intrinsic layer amorphous silicon passivation layer structure described in the first aspect of the present invention.
进一步地,所述第一多本征层组上沉积有N掺杂层。Further, an N-doped layer is deposited on the first multi-intrinsic layer group.
进一步地,所述第二多本征层组上沉积有P型非晶硅层。本发明中,通入H2和SiH4进行沉积制备所述第七本征层时可以形成a-Si:H,a-Si:H能够阻止P型非晶硅层中的B掺杂原子扩散进入到所述第五本征层和所述第六本征层中,对所述硅片、所述第五本征层和所述第六本征层具有良好的钝化作用,提高Isc和Voc。Further, a P-type amorphous silicon layer is deposited on the second multi-intrinsic layer group. In the present invention, a-Si:H can be formed during deposition and preparation of the seventh intrinsic layer by feeding H 2 and SiH 4 , and a-Si:H can prevent the diffusion of B doping atoms in the P-type amorphous silicon layer Entering into the fifth intrinsic layer and the sixth intrinsic layer, it has a good passivation effect on the silicon wafer, the fifth intrinsic layer and the sixth intrinsic layer, and improves the Isc and Voc.
进一步地,所述N掺杂层上沉积有第一TCO导电膜,P型非晶硅层上沉积有第二TCO导电膜。Further, a first TCO conductive film is deposited on the N-doped layer, and a second TCO conductive film is deposited on the P-type amorphous silicon layer.
透明导电氧化物(Transparent Conductive Oxide,TCO)是一种在可见光光谱范围(380nm<λ<780nm)透过率很高且电阻率较低的薄膜材料。在本发明的一些实施方案中,所述种TCO材料是选自包括但于限于氧化铟锡(ITO,In2O3:Sn)、掺铝的氧化锌(AZO,ZnO:Al)、掺氟的氧化锡(FTO,SnO2:F)、掺锑的氧化锡(ATO,Sn2O:Sb)的组。Transparent Conductive Oxide (TCO) is a thin film material with high transmittance and low resistivity in the visible light spectral range (380nm<λ<780nm). In some embodiments of the present invention, the TCO material is selected from the group consisting of, but not limited to, indium tin oxide (ITO, In 2 O 3 : Sn), aluminum doped zinc oxide (AZO, ZnO: Al), fluorine doped group of tin oxide (FTO, SnO 2 :F), antimony-doped tin oxide (ATO, Sn 2 O:Sb).
更进一步地,所述第一TCO导电膜上设置第一电极,所述第二TCO导电膜上设置第二电极,优选地,所述第一电极和所述第二电极均为Ag电极。Further, a first electrode is provided on the first TCO conductive film, and a second electrode is provided on the second TCO conductive film. Preferably, both the first electrode and the second electrode are Ag electrodes.
HJT电池具有较高的转换效率,而且无需高温炉管制备,可降低生产耗能并缩短制备时间。其具备正反面受光照后都能发电、低温制造工艺保护载流子寿命、高开路电压、温度特性好等优势。HJT cells have high conversion efficiency and do not require high temperature furnace tube preparation, which can reduce production energy consumption and shorten preparation time. It has the advantages of generating electricity after the front and back sides are illuminated, low temperature manufacturing process to protect the carrier life, high open circuit voltage, and good temperature characteristics.
在本发明的一些实施方案中,所述N掺杂层的厚度为5-20nm,优选地,所述N掺杂层的厚度为7-15nm,更优选地,所述N掺杂层的厚度为8-12nm。在本发明的一个具体实施方案中,所述N掺杂层的厚度为10nm。In some embodiments of the present invention, the thickness of the N-doped layer is 5-20 nm, preferably, the thickness of the N-doped layer is 7-15 nm, more preferably, the thickness of the N-doped layer 8-12nm. In a specific embodiment of the present invention, the thickness of the N-doped layer is 10 nm.
在本发明的一些实施方案中,所述P型非晶硅层的厚度为5-20nm,优选地,所述P型非晶硅层的厚度为7-15nm,更优选地,所述P型非晶硅层的厚度为8-12nm。在本发明的一个具体实施方案中,所述P型非晶硅层的厚度为10nm。In some embodiments of the present invention, the P-type amorphous silicon layer has a thickness of 5-20 nm, preferably, the P-type amorphous silicon layer has a thickness of 7-15 nm, more preferably, the P-type amorphous silicon layer has a thickness of 7-15 nm. The thickness of the amorphous silicon layer is 8-12 nm. In a specific embodiment of the present invention, the thickness of the P-type amorphous silicon layer is 10 nm.
在本发明的一些实施方案中,所述第一TCO导电膜和所述第二TCO导电膜的厚度为50-200nm,优选地,所述第一TCO导电膜和所述第二TCO导电膜的厚度为70-150nm,更优选地,所述第一TCO导电膜和所述第二TCO导电膜的厚度为80-120nm。在本发明的一个具体实施方案中,所述第一TCO导电膜和所述第二TCO导电膜的厚度为100nm。In some embodiments of the present invention, the thickness of the first TCO conductive film and the second TCO conductive film is 50-200 nm, preferably, the thickness of the first TCO conductive film and the second TCO conductive film The thickness is 70-150 nm, and more preferably, the thickness of the first TCO conductive film and the second TCO conductive film is 80-120 nm. In a specific embodiment of the present invention, the thickness of the first TCO conductive film and the second TCO conductive film is 100 nm.
本发明第四方面提供本发明第三方面所述HJT电池的制备方法,包括以下步骤:The fourth aspect of the present invention provides the preparation method of the HJT battery described in the third aspect of the present invention, comprising the following steps:
获得本发明第一方面所述多本征层非晶硅钝化层结构,或本发明第二方面所述的方法制备得到所述多本征层非晶硅钝化层结构;obtaining the multi-intrinsic layer amorphous silicon passivation layer structure described in the first aspect of the present invention, or preparing the multi-intrinsic layer amorphous silicon passivation layer structure by the method described in the second aspect of the present invention;
进一步,在所述第四本征层上沉积N掺杂层,在所述第七本征层上沉积P型非晶硅层,优选地,利用PECVD进行沉积;Further, depositing an N-doped layer on the fourth intrinsic layer, and depositing a P-type amorphous silicon layer on the seventh intrinsic layer, preferably by PECVD;
进一步,在所述N掺杂层上沉积所述第一TCO导电膜,在所述P型非晶硅层上沉积所述第二TCO导电膜,优选地,利用RPD或者PVD进行沉积;Further, depositing the first TCO conductive film on the N-doped layer, and depositing the second TCO conductive film on the P-type amorphous silicon layer, preferably, using RPD or PVD for deposition;
进一步,在所述第一TCO导电膜上设置所述第一电极,在所述第二TCO导电膜上设置所述第二电极。Further, the first electrode is provided on the first TCO conductive film, and the second electrode is provided on the second TCO conductive film.
更进一步,优选地,上述方法进一步包括固化的步骤,使得所述第一电极的栅线与所述第一TCO导电膜之间,以及所述第二电极的栅线和所述第二TCO导电膜之间形成良好的欧姆接触。Further, preferably, the above-mentioned method further includes the step of curing, so that the grid lines of the first electrode and the first TCO conductive film, as well as the grid lines of the second electrode and the second TCO are conductive A good ohmic contact is formed between the films.
本发明的有益效果The beneficial effects of the present invention
本发明相对于现有技术,具有以下有效效果:Compared with the prior art, the present invention has the following effective effects:
本发明对用于HJT电池的非晶硅本征层的结构进行优化,采用多层本征层结构,加强本征层的钝化作用,可以有效防止在沉积氢化非晶硅本征层的过程中形成外延硅。每个本征层起着提高不同的电性能参数的作用,可以进一步优化HJT电池的电性能。而且将氢处理放在本征层的最后,既可以有效减轻对硅片表面的离子轰击,又可以强化钝化本征层和硅片的作用,为实现高效率电池提供坚实的基础。The invention optimizes the structure of the intrinsic layer of amorphous silicon used in HJT cells, adopts a multi-layer intrinsic layer structure, strengthens the passivation of the intrinsic layer, and can effectively prevent the process of depositing the intrinsic layer of hydrogenated amorphous silicon. Formed in epitaxial silicon. Each intrinsic layer plays the role of improving different electrical performance parameters, which can further optimize the electrical performance of HJT cells. Moreover, placing the hydrogen treatment at the end of the intrinsic layer can not only effectively reduce the ion bombardment on the surface of the silicon wafer, but also strengthen the passivation of the intrinsic layer and the silicon wafer, providing a solid foundation for the realization of high-efficiency cells.
附图说明Description of drawings
图1示出了本发明实施例1一种用于HJT电池的多本征层非晶硅钝化层结构示意图。FIG. 1 shows a schematic diagram of the structure of a multi-intrinsic layer amorphous silicon passivation layer used in an HJT cell in Example 1 of the present invention.
图2示出了一种含有本发明实施例1中多本征层非晶硅钝化层结构的一种HJT电池的示意图。FIG. 2 shows a schematic diagram of an HJT cell containing the multi-intrinsic layer amorphous silicon passivation layer structure in Example 1 of the present invention.
具体实施方式Detailed ways
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。In order to make the technical problems, technical solutions and beneficial effects solved by the present invention clearer, the present invention will be further described in detail below with reference to the embodiments.
实施例Example
以下例子在此用于示范本发明的优选实施方案。本领域内的技术人员会明白,下述例子中披露的技术代表发明人发现的可以用于实施本发明的技术,因此可以视为实施本发明的优选方案。但是本领域内的技术人员根据本说明书应该明白,这里所公开的特定实施例可以做很多修改,仍然能得到相同的或者类似的结果,而非背离本发明的精神或范围。The following examples are used herein to demonstrate preferred embodiments of the present invention. Those skilled in the art will appreciate that the techniques disclosed in the following examples represent techniques discovered by the inventors that can be used to implement the present invention, and thus can be regarded as preferred solutions for implementing the present invention. However, those skilled in the art should understand from this specification that many modifications can be made to the specific embodiments disclosed herein and still obtain the same or similar results, without departing from the spirit or scope of the present invention.
除非另有定义,所有在此使用的技术和科学的术语,和本发明所属领域内的技术人员所通常理解的意思相同,在此公开引用及他们引用的材料都将以引用的方式被并入。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, the public references herein and the materials to which they refer are incorporated by reference .
那些本领域内的技术人员将意识到或者通过常规试验就能了解许多这里所描述的发明的特定实施方案的许多等同技术。这些等同将被包含在权利要求书中。Those skilled in the art will recognize, or be aware of through routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are to be included in the claims.
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的仪器设备,如无特殊说明,均为实验室常规仪器设备;下述实施例中所用的试验材料,如无特殊说明,均为自常规试剂商店购买得到的。The experimental methods in the following examples are conventional methods unless otherwise specified. The instruments and equipment used in the following examples are conventional laboratory equipment unless otherwise specified; the test materials used in the following examples are purchased from conventional reagent stores unless otherwise specified.
实施例1HJT电池的本征非晶硅钝化层结构Example 1 Structure of Intrinsic Amorphous Silicon Passivation Layer of HJT Cell
本实施例提供一种HJT电池的本征非晶硅钝化层结构,如图1所示。该结构包括硅片1,硅片1正面沉积有第一多本征层组21,硅片1背面沉积有第二多本征层组22,第一多本征层组21从硅片1正面开始依次包括第一本征层211、第二本征层212、第三本征层213和第四征层214,第二多本征层组22从硅片1背面开始依次包括五本征层221、第六本征层222和第七本征层223,其中:This embodiment provides an intrinsic amorphous silicon passivation layer structure of an HJT cell, as shown in FIG. 1 . The structure includes a
第一本征层211和第五本征层221是将CO2和SiH4进行沉积得到的;The first
第二本征层212和第六本征层222是将SiH4进行沉积得到的;The second
第三本征层213是将H2、CH4和SiH4进行沉积得到的;The third
第四本征层214是将H2、CO2和SiH4进行沉积得到的;The fourth
第七本征层223是将H2和SiH4进行沉积得到的。The seventh
实施例2含有实施例1中本征非晶硅钝化层结构的HJT电池Example 2 HJT cell with intrinsic amorphous silicon passivation layer structure in Example 1
本实施例提供一种含有实施例1中本征非晶硅钝化层结构的HJT电池,如图2所示。This embodiment provides an HJT cell containing the intrinsic amorphous silicon passivation layer structure in
在该电池中,第一多本征层组21上沉积有N掺杂层3、第二多本征层组22上沉积有P型非晶硅层4。In this cell, an N-doped
进一步,N掺杂层3上沉积有第一TCO导电膜51,P型非晶硅层4上沉积有第二TCO导电膜52。Further, a first TCO
更进一步,第一TCO导电膜51上设置第一电极61,第二TCO导电膜52上设置有第二电极62。Furthermore, a
实施例3HJT电池的制备方法Example 3 Preparation method of HJT battery
本实施例提供一种具体的实施例2中HJT电池的制备方法,包括以下几个步骤:This embodiment provides a specific preparation method of the HJT battery in Example 2, which includes the following steps:
(1)对硅片1进行制绒、清洗处理,其中,硅片1为N型掺磷单晶硅片,尺寸为158.75mm×158.75mm、厚度为150μm;(1) Texturing and cleaning the
(2)通过等离子体增强化学气相沉积法(Plasma Enhanced Chemical VaporDeposition,PECVD)在硅片入光面(正面)制备第一多本征层组21,包括4个本征层:(2) A first
第一本征层211,通入CO2和SiH4进行沉积,其中CO2:SiH4=0.5,厚度约1nm;The first
第二本征层212,只通入SiH4进行沉积,厚度约4nm;The second
第三本征层213,通入H2、CH4和SiH4进行沉积,其中H2:CH4:SiH4=10:0.5:1,厚度约1nm;The third
第四本征层214,通入H2、CO2和SiH4进行沉积,其中H2:CO2:SiH4=10:0.5:1,厚度约1nm;The fourth
(3)通过PECVD在第一多本征层21上,即第四本征层214上制备正面的N掺杂层3,厚度约10nm;(3) Prepare the front N-doped
(4)将硅片翻面,通过PECVD在硅片背光面制备第二多本征层组22,包括3个本征层:(4) The silicon wafer is turned over, and a second
第五本征层221,通入CO2和SiH4进行沉积,其中CO2:SiH4=0.5,厚度约1nm;The fifth
第六本征层222,只通入SiH4进行沉积,厚度约4nm;The sixth
第七本征层223,通入H2和SiH4进行沉积,其中H2:SiH4=20:1,厚度约5nm;The seventh
(5)使用PECVD制备P型非晶硅层4,厚度约10nm;(5) using PECVD to prepare the P-type
(6)使用等离子体沉积法(Rcactivc Plasma Deposition,RPD)或者物理气相沉积法(Physical Vapour Deposition,PVD)沉积第一TCO导电膜51和第二TCO导电膜52,厚度均约为100nm;(6) using plasma deposition (Rcactivc Plasma Deposition, RPD) or physical vapor deposition (Physical Vapour Deposition, PVD) to deposit the first TCO
(7)通过丝网印刷,在第一TCO导电膜51上形成第一电极61,在第二TCO导电膜52上形成第二电极62,其中,第一电极61和第二电极62均为Ag电极;(7) By screen printing, the
(8)固化,使得Ag电极的栅线与第一TCO导电膜和第二TCO导电膜之间形成良好的欧姆接触。(8) curing, so that a good ohmic contact is formed between the gate line of the Ag electrode and the first TCO conductive film and the second TCO conductive film.
实施例4其他HJT电池的制备方法及电性能测试Example 4 Preparation method and electrical performance test of other HJT batteries
参考实施例3的方法制备其他具体的实施例2中描述的HJT电池。整体步骤均相同,不同的是硅片和各个本征层的参数。进一步对各个HJT电池进行电性能测试。Other specific HJT cells described in Example 2 were prepared by the method of Reference Example 3. The overall steps are the same, the difference is the parameters of the silicon wafer and each intrinsic layer. Further conduct electrical performance tests on each HJT battery.
各个HJT电池的参数和电性能数据如下:The parameters and electrical performance data of each HJT battery are as follows:
根据实施例4中各条件设定的电池片电性能列表如下:The list of the electrical properties of the cell set according to each condition in Example 4 is as follows:
以上结果表明,利用本发明制备的HJT电池均具有良好的电性能,可以大规模推广应用。The above results show that the HJT batteries prepared by the invention all have good electrical properties and can be popularized and applied on a large scale.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned herein are incorporated by reference in this application as if each document were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618829.XA CN114695576A (en) | 2020-12-31 | 2020-12-31 | Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618829.XA CN114695576A (en) | 2020-12-31 | 2020-12-31 | Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114695576A true CN114695576A (en) | 2022-07-01 |
Family
ID=82134921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011618829.XA Pending CN114695576A (en) | 2020-12-31 | 2020-12-31 | Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114695576A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118248762A (en) * | 2024-05-10 | 2024-06-25 | 天合光能股份有限公司 | Heterojunction battery and preparation method thereof |
-
2020
- 2020-12-31 CN CN202011618829.XA patent/CN114695576A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118248762A (en) * | 2024-05-10 | 2024-06-25 | 天合光能股份有限公司 | Heterojunction battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102655185B (en) | Heterojunction solar cell | |
CN111916533B (en) | Preparation method of sliced cell, sliced cell and photovoltaic module | |
WO2022095511A1 (en) | Crystalline silicon solar cell, assembly, and manufacturing method for crystalline silicon solar cell | |
CN106601855A (en) | Preparation method of double-side power generation heterojunction solar cell | |
CN111710759B (en) | A kind of SHJ solar cell TCO thin film surface treatment method | |
CN116093192A (en) | A kind of combined passivation back contact battery with high current density and preparation method thereof | |
CN106098801A (en) | A kind of heterojunction solar battery and preparation method thereof | |
CN117276411A (en) | Solar cell and preparation method thereof | |
CN209104182U (en) | Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells | |
CN102270668B (en) | Heterojunction solar cell and preparation method thereof | |
CN112103366A (en) | Silicon-based heterojunction solar cell, photovoltaic module and preparation method | |
CN103238218B (en) | Many knot photoelectric devices and production technology thereof | |
CN102983215A (en) | Method for preparing silicon thin-film solar cells with silicon nano-wire structures | |
CN103227228B (en) | P-type silicon substrate heterojunction cell | |
CN114695576A (en) | Multi-intrinsic-layer amorphous silicon passivation layer structure for HJT battery and preparation method thereof | |
JP2002009312A (en) | Manufacturing method of non-single crystal thin film solar cell | |
CN111416012A (en) | Silicon heterojunction solar cell comprising silicon nitride antireflection layer and preparation method | |
CN109004045B (en) | A kind of cadmium telluride solar cell and preparation method thereof | |
CN218602440U (en) | Novel heterojunction battery | |
CN102938430B (en) | Comprise the silica-based many knot stacked solar cell, cascade solar cells of flexible substrate and the manufacture method thereof in intermediate layer | |
CN109980020A (en) | A kind of glass substrate heterojunction solar battery and preparation method thereof | |
CN216213500U (en) | Novel heterogeneous crystalline silicon cell | |
CN116469946A (en) | Solar cell and preparation method thereof | |
CN111435693A (en) | Amorphous silicon/crystalline silicon heterojunction solar cell and preparation method thereof | |
CN101312223A (en) | Method for manufacturing thin film on solar cell substrate by sputtering process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |