CN114695115A - Semiconductor device with fin structure and preparation method thereof - Google Patents
Semiconductor device with fin structure and preparation method thereof Download PDFInfo
- Publication number
- CN114695115A CN114695115A CN202210603401.0A CN202210603401A CN114695115A CN 114695115 A CN114695115 A CN 114695115A CN 202210603401 A CN202210603401 A CN 202210603401A CN 114695115 A CN114695115 A CN 114695115A
- Authority
- CN
- China
- Prior art keywords
- heterojunction
- fin
- semiconductor device
- fin structure
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 76
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 53
- 229910002601 GaN Inorganic materials 0.000 claims description 30
- 230000004888 barrier function Effects 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 8
- 229910052594 sapphire Inorganic materials 0.000 claims description 7
- 239000010980 sapphire Substances 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 150000002902 organometallic compounds Chemical class 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 23
- 230000012010 growth Effects 0.000 abstract description 16
- 238000009826 distribution Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 17
- 229910002704 AlGaN Inorganic materials 0.000 description 16
- 238000001312 dry etching Methods 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 7
- 230000005533 two-dimensional electron gas Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体领域,特别是涉及一种具有鳍式结构的半导体器件及其制备方法。The present application relates to the field of semiconductors, and in particular, to a semiconductor device with a fin structure and a preparation method thereof.
背景技术Background technique
随着半导体技术的发展,器件结构从平面结构演化至鳍式三维沟道结构,鳍式沟道结构使栅电极与沟道层的接触面积增加,电子耗尽区域进一步增加,从而使得半导体器件具有更强的栅控能力,有效改善短沟道效应带来的漏电问题。With the development of semiconductor technology, the device structure has evolved from a planar structure to a fin-type three-dimensional channel structure. The fin-type channel structure increases the contact area between the gate electrode and the channel layer, and further increases the electron depletion area, so that the semiconductor device has The stronger gate control capability can effectively improve the leakage problem caused by the short channel effect.
目前,半导体器件的鳍式结构都是通过自上而下的干法刻蚀工艺形成的,在制作完外延平面结构后,通过光刻工艺制作掩膜,再用干法刻蚀出三维沟道,得到鳍式结构晶体管。干法刻蚀会在刻蚀表面引入高密度的缺陷态,类施主的缺陷态会引起严重的漏电流,增加器件的关态漏电流以及功耗。当干法刻蚀的损伤过大,会造成器件漏电严重,甚至出现器件难以关断的情况。目前,虽然刻蚀损伤可以通过湿法溶液刻蚀、介质层钝化等工艺降低,但是高密度的刻蚀损伤依然难以从根本上去除,并且刻蚀成本也较高。At present, the fin structures of semiconductor devices are formed by a top-down dry etching process. After the epitaxial planar structure is fabricated, a mask is fabricated by a photolithography process, and then a three-dimensional channel is etched by dry etching. , a fin structure transistor is obtained. Dry etching will introduce a high density of defect states on the etched surface, and the donor-like defect states will cause serious leakage current, increasing the off-state leakage current and power consumption of the device. When the damage of dry etching is too large, it will cause serious leakage of the device, and even the situation that the device is difficult to turn off. At present, although etching damage can be reduced by wet solution etching, dielectric layer passivation and other processes, high-density etching damage is still difficult to fundamentally remove, and the etching cost is also high.
因此,如何提供一种无刻蚀损伤的器件制作方法应是本领域技术人员亟待解决的。Therefore, how to provide a device fabrication method without etching damage should be urgently solved by those skilled in the art.
发明内容SUMMARY OF THE INVENTION
本申请的目的是提供一种具有鳍式结构的半导体器件及其制备方法,以去除刻蚀带来的损伤。The purpose of the present application is to provide a semiconductor device with a fin structure and a preparation method thereof to remove damage caused by etching.
为解决上述技术问题,本申请提供一种具有鳍式结构的半导体器件的制备方法,包括:In order to solve the above-mentioned technical problems, the present application provides a preparation method of a semiconductor device with a fin structure, including:
获得形成有图形化极性调节层的衬底;obtaining a substrate formed with a patterned polarity adjustment layer;
通过调节Ⅴ族源与Ⅲ族源的输入比生长鳍式异质结,所述鳍式异质结包括在所述衬底未被所述图形化极性调节层覆盖的区域的氮极性异质结,以及位于所述图形化极性调节层上的金属极性异质结,所述氮极性异质结和所述金属极性异质结的高度不同;A fin heterojunction is grown by adjusting the input ratio of the Group V source to the Group III source, the fin heterojunction comprising nitrogen polar heterojunctions in regions of the substrate not covered by the patterned polarity adjusting layer a mass junction, and a metal polar heterojunction on the patterned polarity adjustment layer, the nitrogen polar heterojunction and the metal polar heterojunction have different heights;
制备电极,得到具有鳍式结构的半导体器件。Electrodes are prepared to obtain a semiconductor device with a fin structure.
可选的,当所述金属极性异质结的高度高于所述氮极性异质结的高度时,所述Ⅴ族源与Ⅲ族源的输入比在2500以下,所述鳍式异质结包括在远离所Ⅴ族源与Ⅲ族源次层叠的缓冲层、沟道层、势垒层。Optionally, when the height of the metal polar heterojunction is higher than the height of the nitrogen polar heterojunction, the input ratio of the group V source to the group III source is below 2500, and the fin-type heterojunction The mass junction includes a buffer layer, a channel layer, and a barrier layer that are sub-stacked away from all Group V sources and Group III sources.
可选的,当所述金属极性异质结的高度低于所述氮极性异质结的高度时,所述Ⅴ族源与Ⅲ族源的输入比大于2500,所述鳍式异质结包括在远离所述衬底方向上依次层叠的缓冲层、背势垒层、沟道层。Optionally, when the height of the metal polar heterojunction is lower than the height of the nitrogen polar heterojunction, the input ratio of the Group V source to the Group III source is greater than 2500, and the fin-type heterojunction The junction includes a buffer layer, a back barrier layer, and a channel layer stacked in sequence in a direction away from the substrate.
可选的,所述鳍式异质结还包括插入层。Optionally, the fin-type heterojunction further includes an insertion layer.
可选的,所述生长鳍式异质结包括:Optionally, the growing fin heterojunction includes:
采用金属有机化合物化学气相沉积法或者分子束外延法或者磁控溅射法,外延生长鳍式异质结。The fin-type heterojunction is epitaxially grown by a metal organic compound chemical vapor deposition method, a molecular beam epitaxy method or a magnetron sputtering method.
可选的,所述氮极性异质结和所述金属极性异质结的高度差在500nm以内。Optionally, the height difference between the nitrogen polar heterojunction and the metal polar heterojunction is within 500 nm.
可选的,所述衬底为氮化镓衬底、金刚石衬底、蓝宝石衬底、SiC衬底、Si衬底中的任一种。Optionally, the substrate is any one of a gallium nitride substrate, a diamond substrate, a sapphire substrate, a SiC substrate, and a Si substrate.
可选的,所述鳍式异质结中鳍的宽度在5nm~3μm之间。Optionally, the width of the fins in the fin-type heterojunction is between 5 nm and 3 μm.
可选的,在所述制备电极之后还包括:Optionally, after the preparation of the electrode, the method further includes:
在所述具有鳍式结构的半导体器件的表面沉积钝化层。A passivation layer is deposited on the surface of the semiconductor device having the fin structure.
本申请还提供一种具有鳍式结构的半导体器件,所述具有鳍式结构的半导体器件采用上述任一种所述的具有鳍式结构的半导体器件的制备方法制得。The present application also provides a semiconductor device with a fin structure, the semiconductor device with a fin structure is prepared by using any one of the above-mentioned preparation methods for a semiconductor device with a fin structure.
本申请所提供的一种具有鳍式结构的半导体器件的制备方法,包括:获得形成有图形化极性调节层的衬底;通过调节Ⅴ族源与Ⅲ族源的输入比生长鳍式异质结,所述鳍式异质结包括在所述衬底未被所述图形化极性调节层覆盖的区域的氮极性异质结,以及位于所述图形化极性调节层上的金属极性异质结,所述氮极性异质结和所述金属极性异质结的高度不同; 制备电极,得到具有鳍式结构的半导体器件。A method for preparing a semiconductor device with a fin structure provided by the present application includes: obtaining a substrate formed with a patterned polarity adjustment layer; junction, the fin heterojunction includes a nitrogen-polar heterojunction in a region of the substrate not covered by the patterned polarity-adjusting layer, and a metal electrode on the patterned-polarity-adjusting layer The nitrogen polar heterojunction and the metal polar heterojunction have different heights; electrodes are prepared to obtain a semiconductor device with a fin structure.
可见,本申请中的制备方法在制备半导体器件中的鳍式结构时,获得具有图形化极性调节层的衬底,图形化极性调节层可以控制鳍式异质结中金属极性异质结和氮极性异质结的分布,在不同的Ⅴ族源与Ⅲ族源的输入比下,金属极性异质结和氮极性异质结的生长高度不同,通过调节Ⅴ族源与Ⅲ族源的输入比在图形化极性调节层和衬底未被图形化极性调节层的区域处直接生长出鳍式异质结,无需进行刻蚀即可得到三维沟道结构,既可以避免刻蚀带来的损伤,又可以降低刻蚀成本,并且,还避免了刻蚀损伤造成的沟道漏电通道,进一步改善关态漏电流,使得半导体器件的击穿特性增强、功耗降低。It can be seen that the preparation method in the present application obtains a substrate with a patterned polarity adjustment layer when preparing a fin structure in a semiconductor device, and the patterned polarity adjustment layer can control the metal polarity heterogeneity in the fin heterojunction The distribution of junction and nitrogen polar heterojunction, under different input ratios of group V source and group III source, the growth height of metal polar heterojunction and nitrogen polar heterojunction is different. The input ratio of the group III source directly grows the fin-type heterojunction at the patterned polarity adjustment layer and the region of the substrate without the patterned polarity adjustment layer, and a three-dimensional channel structure can be obtained without etching. The damage caused by the etching can be avoided, the etching cost can be reduced, and the channel leakage channel caused by the etching damage can be avoided, the off-state leakage current can be further improved, and the breakdown characteristics of the semiconductor device can be enhanced and the power consumption can be reduced.
此外,本申请还提供一种具有上述优点的具有鳍式结构的半导体器件。In addition, the present application also provides a semiconductor device with a fin structure having the above advantages.
附图说明Description of drawings
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present application or the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the present application, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例所提供的一种具有鳍式结构的半导体器件的制备方法流程图;FIG. 1 is a flowchart of a method for fabricating a semiconductor device with a fin structure provided by an embodiment of the present application;
图2为本申请实施例所提供的Ⅴ族源与Ⅲ族源的输入比对于金属极性异质结和氮极性异质结高度差调节示意图;FIG. 2 is a schematic diagram of adjusting the height difference between the metal polar heterojunction and the nitrogen polar heterojunction by the input ratio of the group V source and the group III source provided by the embodiment of the present application;
图3为本申请实施例所提供的鳍式AlGaN/GaN异质结的结构示意图;3 is a schematic structural diagram of a fin-type AlGaN/GaN heterojunction provided by an embodiment of the present application;
图4为本申请实施例所提供的鳍式GaN/AlGaN异质结的结构示意图;4 is a schematic structural diagram of a fin-type GaN/AlGaN heterojunction provided by an embodiment of the present application;
图5至图11为本申请实施例所提供的一种具有鳍式结构的半导体器件的工艺流程图;5 to 11 are process flow diagrams of a semiconductor device with a fin structure provided by embodiments of the present application;
图12至图14为本申请实施例所提供的另一种具有鳍式结构的半导体器件的部分工艺流程图;12 to 14 are partial process flow diagrams of another semiconductor device having a fin structure provided by an embodiment of the present application;
图中:1.衬底,2.图形化极性调节层,3.缓冲层,4.沟道层,5.势垒层,6.二维电子气,7.栅介质层,8. 栅电极,9.插入层,10.钝化层,2’ .极性调节层,5’ .背势垒层,A.金属极性异质结,B.氮极性异质结。In the figure: 1. Substrate, 2. Patterned polarity adjustment layer, 3. Buffer layer, 4. Channel layer, 5. Barrier layer, 6. Two-dimensional electron gas, 7. Gate dielectric layer, 8. Gate Electrode, 9. Insertion layer, 10. Passivation layer, 2'. Polarity adjusting layer, 5'. Back barrier layer, A. Metal polar heterojunction, B. Nitrogen polar heterojunction.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make those skilled in the art better understand the solution of the present application, the present application will be further described in detail below with reference to the accompanying drawings and specific embodiments. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotion, therefore, the present invention is not limited by the specific embodiments disclosed below.
正如背景技术部分所述,目前半导体器件的鳍式结构都是通过自上而下的干法刻蚀工艺形成的,干法刻蚀会在刻蚀表面引入高密度的缺陷态,类施主的缺陷态会引起严重的漏电流,增加器件的关态漏电流以及功耗。虽然刻蚀损伤可以通过湿法溶液刻蚀、介质层钝化等工艺降低,但是高密度的刻蚀损伤依然难以从根本上去除,并且刻蚀成本也较高。As mentioned in the background section, the fin structures of current semiconductor devices are all formed by a top-down dry etching process. Dry etching will introduce a high density of defect states on the etched surface, causing donor-like defects. state can cause severe leakage current, increasing the off-state leakage current and power dissipation of the device. Although etching damage can be reduced by processes such as wet solution etching and dielectric layer passivation, high-density etching damage is still difficult to fundamentally remove, and the etching cost is also high.
有鉴于此,本申请提供了一种具有鳍式结构的半导体器件的制备方法,请参考图1,包括:In view of this, the present application provides a method for fabricating a semiconductor device with a fin structure, please refer to FIG. 1 , including:
步骤S101:获得形成有图形化极性调节层的衬底。Step S101 : obtaining a substrate on which a patterned polarity adjustment layer is formed.
可选的,本步骤包括:Optionally, this step includes:
步骤S1011:准备洁净的衬底;Step S1011: prepare a clean substrate;
步骤S1012:在衬底上表面沉积极性调节层,并采用湿法刻蚀或者干法刻蚀方式对极性调节层进行刻蚀,形成图形化极性调节层。Step S1012 : depositing a polarity adjustment layer on the upper surface of the substrate, and etching the polarity adjustment layer by wet etching or dry etching to form a patterned polarity adjustment layer.
其中,所述衬底包括但不限于氮化镓衬底、金刚石衬底、蓝宝石衬底、SiC衬底、Si衬底中的任一种。图形化极性调节层可以为AlN层、GaN层、Al2O3层等。Wherein, the substrate includes but is not limited to any one of a gallium nitride substrate, a diamond substrate, a sapphire substrate, a SiC substrate, and a Si substrate. The patterned polarity adjustment layer may be an AlN layer, a GaN layer, an Al 2 O 3 layer, or the like.
步骤S102:通过调节Ⅴ族源与Ⅲ族源的输入比生长鳍式异质结,所述鳍式异质结包括在所述衬底未被所述图形化极性调节层覆盖的区域的氮极性异质结,以及位于所述图形化极性调节层上的金属极性异质结,所述氮极性异质结和所述金属极性异质结的高度不同。Step S102 : growing a fin heterojunction including nitrogen in the regions of the substrate not covered by the patterned polarity adjustment layer by adjusting the input ratio of the group V source to the group III source A polar heterojunction, and a metal polar heterojunction on the patterned polarity adjustment layer, the nitrogen polar heterojunction and the metal polar heterojunction have different heights.
需要说明的是,本申请中对鳍式异质结的生长方式不做限定,可自行选择。例如,可以采用金属有机化合物化学气相沉积(Metal Organic Chemical Vapor Deposition,简称MOCVD)法或者分子束外延法(Molecular Beam Epitaxy,简称MBE)或者磁控溅射法,外延生长鳍式异质结。It should be noted that the growth method of the fin-type heterojunction is not limited in this application, and can be selected by oneself. For example, a metal organic compound chemical vapor deposition (Metal Organic Chemical Vapor Deposition, MOCVD for short) method, a molecular beam epitaxy (Molecular Beam Epitaxy, MBE for short) method, or a magnetron sputtering method can be used to epitaxially grow the fin-type heterojunction.
可选的,所述氮极性异质结和所述金属极性异质结的高度差可以在500nm以内。所述鳍式异质结中鳍的宽度可以在5nm~3μm之间,其中,宽度所在方向为与鳍式异质结生长方向相垂直的方向。Optionally, the height difference between the nitrogen polar heterojunction and the metal polar heterojunction may be within 500 nm. The width of the fins in the fin-shaped heterojunction may be between 5 nm and 3 μm, wherein the direction of the width is a direction perpendicular to the growth direction of the fin-shaped heterojunction.
对于GaN和AlGaN的异质结而言,Ⅴ族源可以为氨气,Ⅲ族源可以为金属有机化合物,例如三甲基铝等。For the heterojunction of GaN and AlGaN, the source of group V can be ammonia gas, and the source of group III can be metal organic compounds, such as trimethyl aluminum and the like.
由于金属极性以及氮极性表面能的差异,两种极性区域在生长中吸附生长分子以及表面成核的速率也有差异。因此,本申请在外延生长中通过调节Ⅴ族源与Ⅲ族源的输入比,控制金属极性异质结和氮极性异质结的生长速度,得到鳍式结构。Due to the difference in the metal polarity and the surface energy of nitrogen polarity, the two polar regions also have different rates of adsorption of growth molecules and surface nucleation during growth. Therefore, the present application controls the growth rate of the metal polar heterojunction and the nitrogen polar heterojunction by adjusting the input ratio of the group V source to the group III source in the epitaxial growth to obtain a fin structure.
Ⅴ族源与Ⅲ族源的输入比对于金属极性异质结和氮极性异质结高度差调节示意图如图2所示,其中,横坐标为Ⅴ族源与Ⅲ族源的输入比,纵坐标为氮极性异质结和金属极性异质结高度差,当Ⅴ族源与Ⅲ族源低于2500时,金属极性异质结的有机金属分子吸附在衬底后脱附的几率更少,因此成核生长速率更高,导致金属极性异质结高度也更大;当Ⅴ族源与Ⅲ族源的输入比高于2500时,氮极性异质结的成核生长速率更高,此时的生长模式表现为氮极性异质结生长更快,因此在此生长条件下,氮极性异质结高度更高。The schematic diagram of the adjustment of the input ratio of the group V source to the group III source for the height difference between the metal polar heterojunction and the nitrogen polar heterojunction is shown in Figure 2, where the abscissa is the input ratio of the group V source and the group III source, The ordinate is the height difference between the nitrogen polar heterojunction and the metal polar heterojunction. When the V source and the III source are lower than 2500, the organometallic molecules of the metal polar heterojunction are adsorbed on the substrate and desorbed. The probability is less, so the nucleation growth rate is higher, resulting in a larger height of the metal polar heterojunction; when the input ratio of the group V source to the group III source is higher than 2500, the nucleation growth of the nitrogen polar heterojunction At a higher rate, the growth pattern at this time shows that the nitrogen-polar heterojunction grows faster, so the nitrogen-polar heterojunction height is higher under this growth condition.
对于不同的异质结,金属极性异质结和氮极性异质结的高度关系不同Ⅴ族源与Ⅲ族源的输入比不同,下面以GaN和AlGaN形成的异质结为例分别进行介绍。For different heterojunctions, the height relationship between metal polar heterojunction and nitrogen polar heterojunction is different introduce.
第一种,请参考图3,当鳍式异质结为AlGaN/GaN异质结,所述金属极性异质结A的高度高于所述氮极性异质结B的高度,所述Ⅴ族源与Ⅲ族源的输入比在2500以下,所述鳍式异质结包括在远离所述衬底1方向上依次层叠的缓冲层3、沟道层4、势垒层5。其中,势垒层5材料为AlGaN,沟道层4材料为GaN,缓冲层3材料为AlxGa1-xN(0≤x≤1)。The first one, please refer to FIG. 3 , when the fin heterojunction is an AlGaN/GaN heterojunction, the height of the metal polar heterojunction A is higher than the height of the nitrogen polar heterojunction B, and the The input ratio of the group V source to the group III source is below 2500, and the fin-type heterojunction includes a
对应图形化极性调节层2的区域为金属极性异质结A,对应衬底1未被图形化极性调节层2覆盖的区域为氮极性异质结B,金属极性异质结A的沟道层4诱导有二维电子气6,此区域高度较高;氮极性异质结B高度较低,且无二维电子气6产生。The area corresponding to the patterned
AlGaN/GaN异质结中,由于沟道层4和缓冲层3占据绝大部分的厚度,因此可以主要调整这两部分的外延生长的Ⅴ族源与Ⅲ族源的输入比。In the AlGaN/GaN heterojunction, since the
进一步的,AlGaN/GaN异质结还可以包括位于势垒层和沟道层之间的插入层,以调节界面的准直性和均匀性,降低散射。Further, the AlGaN/GaN heterojunction may further include an intervening layer between the barrier layer and the channel layer to adjust the alignment and uniformity of the interface and reduce scattering.
第二种,请参考图4,当鳍式异质结为GaN/AlGaN异质结,所述金属极性异质结A的高度低于所述氮极性异质结B的高度,所述Ⅴ族源与Ⅲ族源的输入比大于2500,所述鳍式异质结包括在远离所述衬底1方向上依次层叠的缓冲层3、背势垒层5’、沟道层4。其中,背势垒层5’材料为AlGaN,沟道层4材料为GaN,缓冲层3材料为AlxGa1-xN(0≤x≤1)。The second type, please refer to FIG. 4 , when the fin heterojunction is a GaN/AlGaN heterojunction, the height of the metal polar heterojunction A is lower than the height of the nitrogen polar heterojunction B, and the The input ratio of the group V source to the group III source is greater than 2500, and the fin-type heterojunction includes a
对应图形化极性调节层2的区域为金属极性异质结A,对应衬底1未被图形化极性调节层2覆盖的区域为氮极性异质结B,氮极性异质结B的沟道层4诱导有二维电子气6,此区域高度较高;金属极性异质结A高度较低,且无二维电子气6产生。The area corresponding to the patterned
进一步的,GaN/AlGaN异质结还可以包括位于背势垒层和沟道层之间的插入层,以调节界面的准直性和均匀性,降低散射。Further, the GaN/AlGaN heterojunction may further include an intervening layer between the back barrier layer and the channel layer to adjust the alignment and uniformity of the interface and reduce scattering.
步骤S103:制备电极,得到具有鳍式结构的半导体器件。Step S103 : preparing electrodes to obtain a semiconductor device with a fin structure.
具有鳍式结构的半导体器件的电极可以包括欧姆电极和栅电极,此时,本步骤可以包括:The electrodes of the semiconductor device with the fin structure may include an ohmic electrode and a gate electrode. In this case, this step may include:
步骤S1031:在形成有鳍式异质结的衬底上沉积欧姆电极以及栅介质层,其中,栅介质层可以降低器件漏电流以及调节阈值电压;Step S1031 : depositing an ohmic electrode and a gate dielectric layer on the substrate formed with the fin heterojunction, wherein the gate dielectric layer can reduce the leakage current of the device and adjust the threshold voltage;
步骤S1032:沉积栅电极。Step S1032: depositing a gate electrode.
本申请中制备的鳍式异质结适用于高耐压的功率器件、先进制程的GaN CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)逻辑电路以及低功耗的GaN单片微波集成电路等。本申请中对具有鳍式结构的半导体器件的种类不做限定,只要具有鳍式异质结构即可,例如,鳍式HEMT(High Electron Mobility Transistor,高电子迁移率晶体管)等。The fin-type heterojunction prepared in this application is suitable for high-voltage power devices, advanced GaN CMOS (Complementary Metal Oxide Semiconductor) logic circuits, and low-power GaN monolithic microwave integrated circuits, etc. . In the present application, the type of semiconductor device having a fin structure is not limited, as long as it has a fin heterostructure, for example, a fin HEMT (High Electron Mobility Transistor, high electron mobility transistor) and the like.
本申请中的制备方法在制备半导体器件中的鳍式结构时,获得具有图形化极性调节层的衬底,图形化极性调节层可以控制鳍式异质结中金属极性异质结和氮极性异质结的分布,在不同的Ⅴ族源与Ⅲ族源的输入比下,金属极性异质结和氮极性异质结的生长高度不同,通过调节Ⅴ族源与Ⅲ族源的输入比在图形化极性调节层和衬底未被图形化极性调节层的区域处直接生长出鳍式异质结,无需进行刻蚀即可得到三维沟道结构,既可以避免刻蚀带来的损伤,又可以降低刻蚀成本,并且,还避免了刻蚀损伤造成的沟道漏电通道,进一步改善关态漏电流,使得半导体器件的击穿特性增强、功耗降低。The preparation method in the present application obtains a substrate with a patterned polarity adjustment layer when preparing a fin structure in a semiconductor device, and the patterned polarity adjustment layer can control the polarity of the metal polarity heterojunction in the fin heterojunction and the The distribution of nitrogen polar heterojunctions, under different input ratios of group V sources and group III sources, the growth heights of metal polar heterojunctions and nitrogen polar heterojunctions are different. The input ratio of the source directly grows the fin-type heterojunction at the area of the patterned polarity adjustment layer and the substrate without the patterned polarity adjustment layer, and a three-dimensional channel structure can be obtained without etching, which can avoid etching. The damage caused by the etching can reduce the etching cost, and also avoid the channel leakage channel caused by the etching damage, further improve the off-state leakage current, and enhance the breakdown characteristics of the semiconductor device and reduce the power consumption.
在上述实施例的基础上,在本申请的一个实施例中,具有鳍式结构的半导体器件的制备方法在所述制备电极之后还包括:On the basis of the above-mentioned embodiments, in an embodiment of the present application, the method for preparing a semiconductor device with a fin structure further includes after preparing the electrodes:
在所述具有鳍式结构的半导体器件的表面沉积钝化层,以保护具有鳍式结构的半导体器件。A passivation layer is deposited on the surface of the semiconductor device with the fin structure to protect the semiconductor device with the fin structure.
下面以鳍式HEMT器件为例,对本申请中的具有鳍式结构的半导体器件的制备方法进行进一步阐述。The method for fabricating the semiconductor device with the fin structure in the present application will be further described below by taking the fin-type HEMT device as an example.
例1、具有AlGaN/GaN异质结的鳍式HEMT器件Example 1. Fin HEMT device with AlGaN/GaN heterojunction
步骤1:将蓝宝石衬底1清洁干净,如图5所示。Step 1: Clean the
步骤2:利用MOCVD法在蓝宝石衬底上外延生长20nm极性调节层2’,如图6所示;利用光刻工艺制备图形化极性调节层(存在极性调节层的区域生长有源区,无极性调节层的区域生长隔离区域),包括对应三维沟道结构的特征尺寸为微米级到亚微米级的图形化极性调节层,再利用干法刻蚀技术去除有源区之外的极性调节层,得到具有图形化极性调节层2的衬底1,如图7所示。Step 2: Use MOCVD to epitaxially grow a 20nm polarity adjustment layer 2' on the sapphire substrate, as shown in Figure 6; use a photolithography process to prepare a patterned polarity adjustment layer (the active area is grown in the region where the polarity adjustment layer exists) , the region growth isolation region of the non-polar adjustment layer), including the patterned polarity adjustment layer with the characteristic size corresponding to the three-dimensional channel structure ranging from microns to sub-microns, and then use dry etching technology to remove the active area. The polarity adjustment layer is obtained to obtain the
步骤3:基于步骤2所制备的带有图形化极性调节层2的衬底1,在MOCVD中外延生长横向极性结构AlGaN/GaN异质结,AlGaN/GaN异质结从上到下分别是20nm Al0.3Ga0.7N势垒层5、1nm AlN插入层9、200nm GaN沟道层4以及2μm GaN高阻缓冲层3,如图8所示。其中,由于沟道层4和缓冲层3占据鳍式HEMT器件绝大部分的厚度,因此主要调整这两部分的外延生长的Ⅴ族源与Ⅲ族源的输入比,将Ⅴ族源与Ⅲ族源的输入比调节至2200生长GaN沟道层4以及缓冲层3,势垒层5以及插入层9正常生长,可以得到金属极性异质结A为较高的高度,即鳍式结构的顶部,氮极性异质结B为较低的高度即鳍式结构的底部,此时二维电子气6存在于金属极性异质结A的GaN沟道层4中。Step 3: Based on the
步骤4:利用光刻工艺以及欧姆电极工艺,制备Ti/Al/Ni/Au欧姆电极区域,并在850℃,N2氛围条件下,快速退火30s,得到低接触电阻的欧姆电极。Step 4: Prepare a Ti/Al/Ni/Au ohmic electrode region by using a photolithography process and an ohmic electrode process, and perform rapid annealing for 30s at 850° C. in a N 2 atmosphere to obtain an ohmic electrode with low contact resistance.
步骤5:利用LPCVD(Low Pressure Chemical Vapor Deposition,低压化学蒸发沉积)法制备10nm SiNx栅介质层7,如图9所示。Step 5: A 10 nm SiN x
步骤6:采用光刻工艺以及电子束工艺,制备沉积Ni/Au栅电极8,如图10所示Step 6: Prepare and deposit Ni/Au gate electrode 8 by photolithography process and electron beam process, as shown in FIG. 10
步骤7:基于PECVD(Plasma Enhanced Chemical Vapor Deposition ,等离子体增强化学的气相沉积)法沉积300nm SiNx钝化层10,如图11所示。Step 7: Deposit a 300 nm SiN x passivation layer 10 based on a PECVD (Plasma Enhanced Chemical Vapor Deposition) method, as shown in FIG. 11 .
例2、具有GaN/AlGaN异质结的鳍式HEMT器件Example 2. Fin HEMT device with GaN/AlGaN heterojunction
步骤1:将蓝宝石衬底1清洁干净,如图5所示。Step 1: Clean the
步骤2:利用MOCVD法在蓝宝石衬底上外延生长20nm极性调节层2’,如图6所示;利用光刻工艺制备图形化极性调节层(存在极性调节层的区域生长有源区,无极性调节层的区域生长隔离区域),包括对应三维沟道结构的特征尺寸为微米级到亚微米级的图形化极性调节层,再利用干法刻蚀技术去除有源区之外的AlN结晶层,得到具有图形化极性调节层2的衬底1,如图7所示。Step 2: Use MOCVD to epitaxially grow a 20nm polarity adjustment layer 2' on the sapphire substrate, as shown in Figure 6; use a photolithography process to prepare a patterned polarity adjustment layer (the active area is grown in the region where the polarity adjustment layer exists) , the region growth isolation region of the non-polar adjustment layer), including the patterned polarity adjustment layer with the characteristic size corresponding to the three-dimensional channel structure ranging from microns to sub-microns, and then use dry etching technology to remove the active area. The AlN crystallized layer is obtained to obtain the
步骤3:基于步骤2所制备的带有图形化极性调节层2的衬底1,在MOCVD中外延生长横向极性结构GaN/ AlGaN异质结,GaN/ AlGaN异质结从上到下分别是100nm GaN沟道层4、50nm Al0.3Ga0.7N背势垒层5’、以及2μm GaN高阻缓冲层3,如图4所示。其中,将Ⅴ族源与Ⅲ族源的输入比调节至2800生长GaN缓冲层3,背势垒层5’以及沟道层4正常生长,便可以得到氮极性异质结B为较高的高度,即鳍式结构的顶部,金属极性异质结A为较低的区域,即鳍式结构的底部,此时二维电子气6存在于氮极性异质结B的GaN沟道层4中。Step 3: Based on the
步骤4:利用光刻工艺以及欧姆电极工艺,制备Ti/Al/Ni/Au欧姆电极区域,并在850℃,N2氛围条件下,快速退火30s,得到低接触电阻的欧姆电极。Step 4: Prepare a Ti/Al/Ni/Au ohmic electrode region by using a photolithography process and an ohmic electrode process, and perform rapid annealing for 30 s at 850° C. in an N2 atmosphere to obtain an ohmic electrode with low contact resistance.
步骤5:利用LPCVD法制备10nm SiNx栅介质层7,如图12所示。Step 5: 10 nm SiN x
步骤6:采用光刻工艺以及电子束工艺,制备沉积Ni/Au栅电极8,如图13所示。Step 6: Using a photolithography process and an electron beam process, the Ni/Au gate electrode 8 is prepared and deposited, as shown in FIG. 13 .
步骤7:基于PECVD法沉积300nm SiNx钝化层10,如图14所示。Step 7: deposit a 300 nm SiN x passivation layer 10 based on PECVD method, as shown in FIG. 14 .
本申请还提供一种具有鳍式结构的半导体器件,所述具有鳍式结构的半导体器件采用上述任一实施例所述的具有鳍式结构的半导体器件的制备方法制得。The present application further provides a semiconductor device with a fin structure, the semiconductor device with a fin structure is prepared by using the method for manufacturing a semiconductor device with a fin structure described in any of the above embodiments.
本申请中对具有鳍式结构的半导体器件的种类不做限定,只要具有鳍式异质结构即可,例如,鳍式HEMT(High Electron Mobility Transistor,高电子迁移率晶体管)等。In the present application, the type of semiconductor device having a fin structure is not limited, as long as it has a fin heterostructure, for example, a fin HEMT (High Electron Mobility Transistor, high electron mobility transistor) and the like.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments may be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
以上对本申请所提供的具有鳍式结构的半导体器件及其制备方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。The semiconductor device with the fin structure and the preparation method thereof provided by the present application have been described in detail above. Specific examples are used herein to illustrate the principles and implementations of the present application, and the descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principles of the present application, several improvements and modifications can also be made to the present application, and these improvements and modifications also fall within the protection scope of the claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603401.0A CN114695115A (en) | 2022-05-31 | 2022-05-31 | Semiconductor device with fin structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603401.0A CN114695115A (en) | 2022-05-31 | 2022-05-31 | Semiconductor device with fin structure and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114695115A true CN114695115A (en) | 2022-07-01 |
Family
ID=82131195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210603401.0A Pending CN114695115A (en) | 2022-05-31 | 2022-05-31 | Semiconductor device with fin structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114695115A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117613052A (en) * | 2023-12-05 | 2024-02-27 | 吉林大学 | A GaN-based CMOS device combining metal polarity and nitrogen polarity and its preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100320505A1 (en) * | 2009-06-17 | 2010-12-23 | Fujitsu Limited | Semiconductor device and method for manufacturing the same, and amplifier |
CN111029404A (en) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | P-GaN/AlGaN/GaN enhancement device based on fin-shaped gate structure and manufacturing method thereof |
CN113394096A (en) * | 2021-06-16 | 2021-09-14 | 中国科学院宁波材料技术与工程研究所 | HEMT device and self-isolation method and manufacturing method thereof |
-
2022
- 2022-05-31 CN CN202210603401.0A patent/CN114695115A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100320505A1 (en) * | 2009-06-17 | 2010-12-23 | Fujitsu Limited | Semiconductor device and method for manufacturing the same, and amplifier |
CN111029404A (en) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | P-GaN/AlGaN/GaN enhancement device based on fin-shaped gate structure and manufacturing method thereof |
CN113394096A (en) * | 2021-06-16 | 2021-09-14 | 中国科学院宁波材料技术与工程研究所 | HEMT device and self-isolation method and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117613052A (en) * | 2023-12-05 | 2024-02-27 | 吉林大学 | A GaN-based CMOS device combining metal polarity and nitrogen polarity and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110190116B (en) | High-threshold-voltage normally-off high-electron-mobility transistor and preparation method thereof | |
CN105655395B (en) | A kind of enhancement type high electron mobility transistor and preparation method thereof | |
CN107946358A (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and its manufacturing method | |
CN113314590B (en) | Nitride high electron mobility transistor and manufacturing method thereof | |
JP2007165431A (en) | Field effect transistor, and method of fabrication same | |
WO2016141762A1 (en) | Iii-nitride enhancement hemt and preparation method therefor | |
JP2009206163A (en) | Heterojunction-type field effect transistor | |
CN113314597B (en) | Nitrogen polar surface gallium nitride high electron mobility transistor and manufacturing method thereof | |
CN111900203A (en) | GaN-based high-hole mobility transistor and preparation method thereof | |
TW202201555A (en) | A vertical hemt and a method to produce a vertical hemt | |
CN114695115A (en) | Semiconductor device with fin structure and preparation method thereof | |
CN113284947A (en) | Semiconductor transistor epitaxial structure, preparation method thereof and semiconductor transistor | |
CN114121656B (en) | Preparation method of novel HEMT device based on silicon substrate and device | |
CN114883407B (en) | HEMT based on Fin-FET gate structure and its fabrication method | |
CN105448977A (en) | High electron mobility transistor and fabrication method thereof | |
CN111755330A (en) | A kind of semiconductor structure and its manufacturing method | |
CN114823891A (en) | A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof | |
CN111952175A (en) | Groove fabrication method of transistor and transistor | |
CN108695383B (en) | Method for realizing high-frequency MIS-HEMT and MIS-HEMT device | |
CN110021659A (en) | High electron mobility transistor and preparation method thereof | |
KR101256465B1 (en) | Nitride baced semiconductor device and manufacturing method thereof | |
CN115274845B (en) | A recessed Fin-MESFET gate structure HEMT and its manufacturing method | |
CN113035934B (en) | GaN-based HEMT device and preparation method thereof | |
CN119230605B (en) | Superlattice cap layer gallium nitride high electron mobility transistor and preparation method thereof | |
CN112753096B (en) | Semiconductor structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220701 |