CN114693783A - Satellite autonomous pose determination method, system and storage medium - Google Patents
Satellite autonomous pose determination method, system and storage medium Download PDFInfo
- Publication number
- CN114693783A CN114693783A CN202011618502.2A CN202011618502A CN114693783A CN 114693783 A CN114693783 A CN 114693783A CN 202011618502 A CN202011618502 A CN 202011618502A CN 114693783 A CN114693783 A CN 114693783A
- Authority
- CN
- China
- Prior art keywords
- satellite
- equation
- motion
- characteristic information
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星控制领域,尤其是涉及一种基于视觉SLAM(SimultaneousLocalization and Mapping,即同步定位和建图)技术的卫星自主定位定姿的判定方法、系统及存储介质。The invention relates to the field of satellite control, in particular to a method, a system and a storage medium for determining an autonomous positioning and attitude of a satellite based on a visual SLAM (Simultaneous Localization and Mapping) technology.
背景技术Background technique
长期以往,太空一直是人类探索和向往的圣地。进入21世纪以来,人类的科学技术、政治社会、金融经济都取得了令人瞩目的成就,这就为人类探索宇宙、迈向太空提供了坚实基础。与此同时,以航天技术为代表的高新科技的进步,为一个国家的经济建设和富强发展提供强有力的支撑,因此世界各国都把发展航天产业技术放到了极其重要的位置。For a long time, space has been a holy place for human exploration and yearning. Since the beginning of the 21st century, mankind has made remarkable achievements in science and technology, political society, and financial economy, which has provided a solid foundation for mankind to explore the universe and move towards space. At the same time, the advancement of high-tech, represented by aerospace technology, provides strong support for a country's economic construction and prosperous development. Therefore, all countries in the world have placed the development of aerospace industry technology in an extremely important position.
卫星导航是航天器运行的关键环节,随着卫星导航技术的不断发展,针对卫星的自主定轨问题已经展开了大量的研究,现阶段已经在使用的自主定轨方式有:基于星载GPS的自主定轨方法,借助全球性、多观测数据以及低成本的星载GPS测量,在轨实时处理星载GPS观测数据,获取卫星高精度的轨道参数,实现低轨卫星的自主实时定轨;基于星敏感器的自主定轨方法,采用星敏感器对背景恒星资料进行检索,借助相关算法,推算出卫星的位置和姿态,从而实现自主定轨;基于磁强计的自主定轨方法,利用星敏感器、地球敏感器和磁强计作为测量敏感器,利用相关优化算法进行状态估计,实现卫星自主定轨。上述方法,随着太空领域科技的快速发展以及太空航天器数量的快速增加,逐渐无法满足精度准确、智能自主和稳定可靠等性能要求。Satellite navigation is a key link in the operation of spacecraft. With the continuous development of satellite navigation technology, a lot of research has been carried out on the problem of autonomous orbit determination of satellites. The autonomous orbit determination method, with the help of global, multi-observation data and low-cost on-board GPS measurements, processes on-orbit GPS observation data in real time, obtains high-precision satellite orbit parameters, and realizes autonomous real-time orbit determination of low-orbit satellites; The autonomous orbit determination method of the star sensor uses the star sensor to retrieve the background star data, and calculates the position and attitude of the satellite with the help of related algorithms, so as to realize the autonomous orbit determination; the autonomous orbit determination method based on the magnetometer uses the satellite Sensors, earth sensors and magnetometers are used as measurement sensors, and relevant optimization algorithms are used for state estimation to realize autonomous orbit determination of satellites. With the rapid development of science and technology in the space field and the rapid increase in the number of space vehicles, the above methods are gradually unable to meet the performance requirements of accuracy, intelligence, autonomy, stability and reliability.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种卫星自主定位定姿的判定方法,所述方法运用于卫星自主导航中,能够有效地提高卫星姿态和轨道估计的效率和准确率,从而实现卫星离线状态的实时位姿判定,以及提高卫星运控系统的稳定性和可靠性。The invention provides a determination method for satellite autonomous positioning and attitude determination. The method is applied to satellite autonomous navigation, and can effectively improve the efficiency and accuracy of satellite attitude and orbit estimation, thereby realizing real-time attitude determination in satellite offline state. , and improve the stability and reliability of the satellite operation control system.
本发明提供一种卫星自主位姿的判定方法,包括:获取光学相机所拍摄的遥感图像;基于遥感图像,在知识图谱中进行检索,以得到模板图像;传输遥感图像和模板图像至深度卷积网络,以获得匹配特征信息;确定光学相机成像模型、运动方程及观测方程;以及根据所述匹配特征信息,对运动方程和观测方程进行求解操作,以得到卫星姿态状态。The invention provides a method for judging the autonomous pose of a satellite, comprising: acquiring remote sensing images captured by an optical camera; searching in a knowledge map based on the remote sensing images to obtain template images; transmitting the remote sensing images and the template images to depth convolution network to obtain matching feature information; determine the optical camera imaging model, motion equation and observation equation; and solve the motion equation and observation equation according to the matching feature information to obtain the satellite attitude state.
进一步地,所述传输遥感图像和模板图像至深度卷积网络,以获得匹配特征信息的步骤包括:传输遥感图像和模板图像至深度卷积网络的预处理层;通过预处理层提取多组特征信息;搭建特征空间转化器;根据所得到的多组特征信息,并通过特征空间转化器进行归一化操作;传输所得到的归一化特征信息至深度卷积网络;以及对归一化特征信息执行匹配操作,以得到匹配特征信息。Further, the step of transmitting the remote sensing image and the template image to a deep convolutional network to obtain matching feature information includes: transmitting the remote sensing image and the template image to the preprocessing layer of the deep convolutional network; extracting multiple sets of features through the preprocessing layer. information; build a feature space converter; perform normalization operations through the feature space converter according to the obtained sets of feature information; transmit the obtained normalized feature information to a deep convolutional network; information to perform a matching operation to obtain matching feature information.
进一步地,通过预处理层提取多组特征信息的步骤中,还包括:根据预处理层中的不同卷积核提取相应的特征信息;将不同卷积核所提取的相应特征信息进行叠加操作,以得到多组特征信息。Further, in the step of extracting multiple sets of feature information through the preprocessing layer, it also includes: extracting corresponding feature information according to different convolution kernels in the preprocessing layer; to obtain multiple sets of feature information.
进一步地,所述确定光学相机成像模型、运动方程及观测方程的步骤包括:通过光学相机获取光束,并在相机平面上投影成像;根据卫星的运动变化、光学相机所提取的特征信息以及卫星在运动过程中所获得的噪声,得到卫星运动所对应的运动方程;根据卫星的观测数据和卫星在观测过程中所得到的噪声,得到与运动方程相对应的观测方程。Further, the step of determining the imaging model, the motion equation and the observation equation of the optical camera includes: acquiring the light beam through the optical camera, and projecting the image on the camera plane; according to the motion change of the satellite, the feature information extracted by the optical camera, and the location of the satellite in the camera; The noise obtained during the motion process is used to obtain the motion equation corresponding to the motion of the satellite; according to the observation data of the satellite and the noise obtained by the satellite during the observation process, the observation equation corresponding to the motion equation is obtained.
进一步地,所述根据所述匹配特征信息,对运动方程和观测方程进行求解操作,以得到卫星姿态状态的步骤包括:对运动方程和观测方程进行参数化操作;根据条件概率信息,得到卫星的运动状态的概率等式;通过采用最大后验概率方法,对概率等式进行求解操作,以得到卫星的位姿状态信息。Further, the step of solving the motion equation and the observation equation to obtain the satellite attitude state according to the matching feature information includes: performing a parameterization operation on the motion equation and the observation equation; The probability equation of the motion state; by using the maximum a posteriori probability method, the probability equation is solved to obtain the position and attitude state information of the satellite.
本发明还提供一种卫星自主位姿的判定系统,包括:遥感图像获取模块,用于获取光学相机所拍摄的遥感图像;模板图像获取模块,用于基于遥感图像,在知识图谱中进行检索,以得到模板图像;特征信息得到模块,用于传输遥感图像和模板图像至深度卷积网络,以获得匹配特征信息;模型方程确定模块,用于确定光学相机成像模型、运动方程及观测方程;以及姿态状态得到模块,用于根据所述匹配特征信息,对运动方程和观测方程进行求解操作,以得到卫星姿态状态。The invention also provides a satellite autonomous pose determination system, comprising: a remote sensing image acquisition module for acquiring remote sensing images captured by an optical camera; a template image acquisition module for retrieving in a knowledge map based on the remote sensing images, to obtain a template image; a feature information obtaining module for transmitting the remote sensing image and the template image to a deep convolutional network to obtain matching feature information; a model equation determination module for determining the optical camera imaging model, motion equation and observation equation; and The attitude state obtaining module is used for solving the motion equation and the observation equation according to the matching feature information to obtain the satellite attitude state.
进一步地,所述特征信息得到模块包括:图像传输单元,用于传输遥感图像和模板图像至深度卷积网络的预处理层;特征提取单元,用于通过预处理层提取多组特征信息;转化器搭建单元,用于搭建特征空间转化器;归一化操作单元,用于根据所得到的多组特征信息,并通过特征空间转化器进行归一化操作;匹配操作单元,用于对归一化特征信息执行匹配操作,以得到匹配特征信息。Further, the feature information obtaining module includes: an image transmission unit for transmitting remote sensing images and template images to a preprocessing layer of a deep convolutional network; a feature extraction unit for extracting multiple sets of feature information through the preprocessing layer; converting The normalization operation unit is used to perform the normalization operation through the feature space converter according to the obtained multiple sets of feature information; the matching operation unit is used for the normalization operation. Perform a matching operation on the transformed feature information to obtain matching feature information.
进一步地,所述模型方程确定模块包括:光束获取单元,用于通过光学相机获取光束,并在相机平面上投影成像;运动方程得到单元,用于根据卫星的运动变化、光学相机所提取的特征信息以及卫星在运动过程中所获得的噪声,得到卫星运动所对应的运动方程;观测方程得到单元,用于根据卫星的观测数据和卫星在观测过程中所得到的噪声,得到与运动方程相对应的观测方程。Further, the model equation determination module includes: a beam acquisition unit, used for acquiring the beam through an optical camera, and projecting imaging on the camera plane; a motion equation obtaining unit, used for according to the motion change of the satellite and the feature extracted by the optical camera The information and the noise obtained by the satellite during the movement process can obtain the motion equation corresponding to the satellite movement; the observation equation obtaining unit is used to obtain the corresponding motion equation according to the satellite observation data and the noise obtained by the satellite during the observation process. observation equation.
进一步地,所述姿态状态得到模块包括:参数化操作单元,用于对运动方程和观测方程进行参数化操作;概率等式得到单元,用于根据条件概率信息,得到卫星的运动状态的概率等式;位姿状态得到单元,用于通过采用最大后验概率方法,对概率等式进行求解操作,以得到卫星的位姿状态信息。Further, the attitude state obtaining module includes: a parameterized operation unit for performing parameterized operations on the motion equation and the observation equation; a probability equation obtaining unit for obtaining the probability of the motion state of the satellite according to the conditional probability information, etc. formula; the position and attitude state obtaining unit is used to solve the probability equation by using the maximum a posteriori probability method to obtain the position and attitude state information of the satellite.
本发明还一种存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行前文所述的卫星自主位姿的判定方法。The present invention also provides a storage medium, wherein a plurality of instructions are stored in the storage medium, and the instructions are suitable for being loaded by a processor to execute the aforementioned method for determining the autonomous position and attitude of a satellite.
本发明实施例提供了一种卫星自主位姿的判定方法,通过将光学相机拍摄的遥感图像和知识图谱中检索到的模板图像,传输到特征匹配深度卷积网络,获得匹配特征信息;根据匹配特征信息,带入所确定的光学相机成像模型、运动方程和观测方程中进行求解,从而得到卫星姿态状态。本发明所述方法能够有效地提高卫星姿态和轨道估计的效率和准确率,从而实现卫星离线状态的实时位姿判定,以及提高卫星运控系统的稳定性和可靠性。The embodiment of the present invention provides a method for determining the autonomous pose of a satellite. By transmitting a remote sensing image captured by an optical camera and a template image retrieved from a knowledge map to a feature matching deep convolutional network, matching feature information is obtained; The feature information is brought into the determined optical camera imaging model, motion equation and observation equation to solve, so as to obtain the satellite attitude state. The method of the invention can effectively improve the efficiency and accuracy of satellite attitude and orbit estimation, so as to realize the real-time attitude determination of the satellite offline state, and improve the stability and reliability of the satellite operation control system.
附图说明Description of drawings
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。The technical solutions and other beneficial effects of the present invention will be apparent through the detailed description of the specific embodiments of the present invention with reference to the accompanying drawings.
图1为本发明一实施例中所提供的一种卫星自主位姿的判定方法的流程图。FIG. 1 is a flowchart of a method for determining an autonomous pose of a satellite according to an embodiment of the present invention.
图2为本发明一实施例提供的光学相机成像模型的示意图。FIG. 2 is a schematic diagram of an imaging model of an optical camera provided by an embodiment of the present invention.
图3为本发明一实施例提供的多尺度的深度卷积网络的架构示意图。FIG. 3 is a schematic diagram of the architecture of a multi-scale deep convolutional network provided by an embodiment of the present invention.
图4为本发明一实施例提供的步骤S3的子步骤流程图。FIG. 4 is a flowchart of sub-steps of step S3 according to an embodiment of the present invention.
图5为本发明一实施例提供的步骤S302的子步骤流程图。FIG. 5 is a flowchart of sub-steps of step S302 provided by an embodiment of the present invention.
图6为本发明一实施例提供的步骤S4的子步骤流程图。FIG. 6 is a flowchart of sub-steps of step S4 provided by an embodiment of the present invention.
图7为本发明一实施例提供的步骤S5的子步骤流程图。FIG. 7 is a flowchart of sub-steps of step S5 according to an embodiment of the present invention.
图8为本发明一实施例中所提供的一种卫星自主位姿的判定系统的功能模块图。FIG. 8 is a functional block diagram of a system for determining an autonomous position and attitude of a satellite according to an embodiment of the present invention.
图9为本发明一实施例中所提供的所述特征信息得到模块的功能模块图。FIG. 9 is a functional block diagram of the feature information obtaining module provided in an embodiment of the present invention.
图10为本发明一实施例中所提供的所述特征提取单元块的功能模块图。FIG. 10 is a functional block diagram of the feature extraction unit block provided in an embodiment of the present invention.
图11为本发明一实施例中所提供的所述模型方程确定模块的功能模块图。FIG. 11 is a functional block diagram of the model equation determination module provided in an embodiment of the present invention.
图12为本发明一实施例中所提供的姿态状态得到模块的功能模块图。FIG. 12 is a functional block diagram of an attitude state obtaining module provided in an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present disclosure may repeat reference numerals and/or reference letters in different instances for the purpose of simplicity and clarity and not in itself indicative of a relationship between the various embodiments and/or arrangements discussed. In addition, the present disclosure provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the application of other processes and/or the use of other materials.
随着同步定位和建图(SLAM)技术的日益发展以及光学载荷对地分辨率的不断提升,基于视觉SLAM技术的卫星自主定轨、定姿的方法,为卫星的自主导航带来了全新的发展方向。与传统的卫星导航方式相比,基于视觉SLAM技术的卫星自主定轨、定姿的方法有着明显的优势:一方面,光学图像本身包含丰富信息,同时基于视觉SLAM方法的图像视觉领域得到长足发展,使得基于视觉SLAM技术的卫星自主导航得以实现;另一方面,利用基于深度学习的人工智能方法,使得卫星具备较高的自主性能,有效减少对地面站的依赖,节约人力物力资源。With the increasing development of Synchronous Positioning and Mapping (SLAM) technology and the continuous improvement of the ground resolution of optical loads, the method of autonomous orbit determination and attitude determination of satellites based on visual SLAM technology has brought a brand-new method to the autonomous navigation of satellites. Direction of development. Compared with traditional satellite navigation methods, the method of autonomous orbit determination and attitude determination of satellites based on visual SLAM technology has obvious advantages: on the one hand, the optical image itself contains rich information, and the field of image vision based on visual SLAM method has made great progress. , enabling the realization of satellite autonomous navigation based on visual SLAM technology; on the other hand, using artificial intelligence methods based on deep learning, the satellite has high autonomous performance, effectively reducing the dependence on ground stations and saving human and material resources.
如图1所示,本发明一实施例提供一种基于SLAM的卫星自主位姿的判定方法,包括如下步骤S1~S9。As shown in FIG. 1 , an embodiment of the present invention provides a SLAM-based satellite autonomous pose determination method, which includes the following steps S1 to S9.
结合图2所示,步骤S1,获取光学相机所拍摄的遥感图像。With reference to Fig. 2, in step S1, a remote sensing image captured by an optical camera is acquired.
步骤S2,基于遥感图像,在知识图谱中进行检索,以得到模板图像。In step S2, based on the remote sensing image, the knowledge map is retrieved to obtain a template image.
步骤S3,传输遥感图像和模板图像至深度卷积网络(如图3所示,卷积神经网络(CNN)、密集特征(dense feature),稀疏特征(derived feature)),以获得匹配特征信息。如图4所示,步骤S3具体包括如下步骤:S301~S306。Step S3, transmitting the remote sensing image and the template image to a deep convolutional network (as shown in Figure 3, convolutional neural network (CNN), dense feature (dense feature), sparse feature (derived feature)) to obtain matching feature information. As shown in FIG. 4 , step S3 specifically includes the following steps: S301 to S306.
步骤S301,传输遥感图像和模板图像至深度卷积网络的预处理层。Step S301, transmitting the remote sensing image and the template image to the preprocessing layer of the deep convolutional network.
步骤S302,通过预处理层提取多组特征信息。Step S302, extracting multiple sets of feature information through the preprocessing layer.
进一步,如图5所示,步骤S302具体包括如下步骤:Further, as shown in Figure 5, step S302 specifically includes the following steps:
步骤S3021,根据预处理层中的不同卷积核提取相应的特征信息。Step S3021, extract corresponding feature information according to different convolution kernels in the preprocessing layer.
步骤S3022,将不同卷积核所提取的相应特征信息进行叠加操作,以得到多组特征信息。因考虑光学相机拍摄的遥感图像上的目标特征与检索到的模板图像上目标特征之间存在尺度和位置的差异,因此首先将拍摄的遥感图像和检索到的模板图像传输到深度卷积网络的预处理层进行多尺度特征提取层,该层具有多个尺度的特征卷积核,遥感图像将传送多份,在不同尺度的卷积核上同步特征提取操作。同时,不同尺度的卷积核之间并非是独立的,不同特征通过上采样进行多尺度特征叠加,最终得到具有广泛适用性的多组特征信息。Step S3022, performing a superposition operation on the corresponding feature information extracted by different convolution kernels to obtain multiple sets of feature information. Considering the difference in scale and position between the target feature on the remote sensing image captured by the optical camera and the target feature on the retrieved template image, the captured remote sensing image and the retrieved template image are firstly transferred to the deep convolutional network. The preprocessing layer performs a multi-scale feature extraction layer, which has feature convolution kernels of multiple scales, and the remote sensing images will be transmitted in multiple copies to synchronize feature extraction operations on convolution kernels of different scales. At the same time, the convolution kernels of different scales are not independent. Different features are superimposed on multi-scale features through upsampling, and finally multiple sets of feature information with wide applicability are obtained.
步骤S303,搭建特征空间转化器。Step S303, build a feature space converter.
步骤S304,根据所得到的多组特征信息,并通过特征空间转化器进行归一化操作。经过预处理层之后,考虑到获取所述多组特征信息,尽管每组特征信息之间具有广泛适用性,但是不同组特征之间存在特征空间不同的问题,因此,在深度卷积网络的第二阶段引入一个特征空间归一化转化器,将多组特征进行特征空间归一化操作。Step S304, according to the obtained sets of feature information, normalization operation is performed through the feature space converter. After the preprocessing layer, considering the acquisition of the multiple sets of feature information, although each set of feature information has wide applicability, there is a problem of different feature spaces between different sets of features. Therefore, in the first step of the deep convolutional network In the second stage, a feature space normalization converter is introduced to perform feature space normalization operations on multiple sets of features.
步骤S305,传输所得到的归一化特征信息至深度卷积网络。Step S305, transmitting the obtained normalized feature information to the deep convolutional network.
步骤S306,对归一化特征信息执行匹配操作,以得到匹配特征信息。Step S306, performing a matching operation on the normalized feature information to obtain matching feature information.
具体地,在获取到归一化特征信息之后,考虑到归一化特征信息的稀疏性和稠密性,于是将特征信息进行稀疏和稠密同步匹配卷积操作,不同操作引入不同的特征匹配算法。接着,将不同的匹配操作进行叠加,以筛选出具有较强鲁棒性的匹配特征。Specifically, after obtaining the normalized feature information, considering the sparseness and density of the normalized feature information, the feature information is subjected to sparse and dense synchronous matching convolution operations, and different feature matching algorithms are introduced for different operations. Then, different matching operations are superimposed to filter out the matching features with strong robustness.
步骤S4,确定光学相机成像模型、运动方程及观测方程。如图6所示,步骤S4具体包括如下步骤S401~S404。In step S4, the imaging model of the optical camera, the motion equation and the observation equation are determined. As shown in FIG. 6 , step S4 specifically includes the following steps S401 to S404.
步骤S401,通过光学相机获取光束,并在相机平面上投影成像。In step S401, a light beam is acquired by an optical camera, and an image is projected on the camera plane.
步骤S402,根据卫星的运动变化、光学相机所提取的特征信息以及卫星在运动过程中所获得的噪声,得到卫星运动所对应的运动方程。In step S402, a motion equation corresponding to the motion of the satellite is obtained according to the motion change of the satellite, the feature information extracted by the optical camera, and the noise obtained by the satellite during the motion process.
卫星在轨道上运行,将其运动方程抽离为一个数学方程为:xk=f(xk-1,uk,wk),其中xk为第k-1次至第k次的卫星运动变化,uk为卫星携带传感器的输入(此处为星载光学相机提取的特征),wk为此次运动过程中传入的噪声。The satellite is running in orbit, and its motion equation is extracted into a mathematical equation: x k =f(x k-1 ,u k ,w k ), where x k is the k-1th to kth satellites Motion change, uk is the input of the sensor carried by the satellite (here is the feature extracted by the on-board optical camera), and w k is the incoming noise during this motion.
步骤S403,根据卫星的观测数据和卫星在观测过程中所得到的噪声,得到与运动方程相对应的观测方程。In step S403, an observation equation corresponding to the motion equation is obtained according to the observation data of the satellite and the noise obtained by the satellite during the observation process.
具体地,卫星在轨道上运行,其位姿是由位移量和转角表征的,即该处的参数x、y和z表示坐标系三个坐标轴的位移量,参数θ表示转角,参数x下标k为第k-1至第k次的卫星运动变化,而输入的参数是两个时间间隔和转角的变化量,此时运动方程表示为:最后联立上述的运动方程和观测方程,即此时,wk和vk,j为运动方程和观测方程的噪声,Z下标(k,j)表示x下标k运动过程中看到的第j个观察路标点y下标j,所产生的观察方程。Specifically, the satellite is running in orbit, and its pose is characterized by displacement and rotation angle, namely The parameters x, y and z here represent the displacement of the three coordinate axes of the coordinate system, the parameter θ represents the rotation angle, the subscript k of the parameter x is the k-1 to k-th satellite motion change, and the input parameters are two The change of time interval and rotation angle, the equation of motion is expressed as: Finally, the above equations of motion and observation equations are combined, namely At this time, w k and v k , j are the noise of the motion equation and the observation equation, and the Z subscript (k, j) represents the j-th observation landmark point y subscript j seen during the movement of the x subscript k, so The resulting observation equation.
步骤S404,获取一观测点的坐标信息和光学相机的位姿信息,构建该观测点的约束方程组。In step S404, the coordinate information of an observation point and the pose information of the optical camera are acquired, and a constraint equation system of the observation point is constructed.
具体地,考虑空间中某个观测点P,也是如下的特征点,该点齐次坐标为P=(X,Y,Z,1)T,而在像素平面上,对应投影点坐标为P'=(u1,v1,1)T;此时,星载光学相机的位姿由R,t来表征,其中R为旋转矩阵,而t为平移向量。根据观测点的坐标和相机位姿信息,构建方程:此处u下标1和v下标1分别表示像素平面横轴和纵轴坐标,X、Y和Z表征空间坐标系下的三轴的齐次分量。Specifically, consider a certain observation point P in the space, which is also the following feature point, the homogeneous coordinate of this point is P=(X, Y, Z, 1) T , and on the pixel plane, the corresponding projection point coordinate is P' =(u 1 , v 1 , 1) T ; at this time, the pose of the onboard optical camera is represented by R, t, where R is a rotation matrix and t is a translation vector. According to the coordinates of the observation point and the camera pose information, construct the equation: Here, the u subscript 1 and the v subscript 1 represent the coordinates of the horizontal axis and the vertical axis of the pixel plane, respectively, and X, Y, and Z represent the homogeneous components of the three axes in the space coordinate system.
利用由旋转矩阵和平移向量构成的增广矩阵的最后一行,消去s,得到两个约束等式:进一步地,为了简化书写,定义T的行向量为:由上述可知,每对特征点提供两个约束等式,那么N对特征点的约束方程组为:N表示多个,例如1对特征点,2对特征点,3对特征点……N对特征点(常见使用8对),P为空间中某一个观测点。Using the last row of the augmented matrix consisting of the rotation matrix and the translation vector, eliminating s, we get two constraint equations: Further, to simplify writing, define the row vector of T as: It can be seen from the above that each pair of feature points provides two constraint equations, then the constraint equations of N pairs of feature points are: N means multiple, such as 1 pair of feature points, 2 pairs of feature points, 3 pairs of feature points...N pairs of feature points (8 pairs are commonly used), and P is an observation point in the space.
继续参阅图1,步骤S5,根据所述匹配特征信息,对运动方程和观测方程进行求解操作,以得到卫星姿态状态。Continuing to refer to FIG. 1 , step S5 , according to the matching feature information, the motion equation and the observation equation are solved to obtain the satellite attitude state.
结合图7所示,步骤S5具体包括如下步骤S501~S503。As shown in FIG. 7 , step S5 specifically includes the following steps S501 to S503.
步骤S501,对运动方程和观测方程进行参数化操作,得到szk,j=K(Rkyj+tk),其中K为光学相机内参数,s为像素点的距离,假设这种实现方式的噪声满足均值为零的高斯分布,即wk~N(0,Rk),vk~N(0,Qk,j),通过带有噪声的数据z和u推断出位姿x的信息,这就构成一个状态估计问题。Step S501, parameterize the motion equation and the observation equation to obtain sz k,j =K(R k y j +t k ), where K is the internal parameter of the optical camera, and s is the distance of the pixel point, assuming this realization The noise of the mode satisfies the Gaussian distribution with zero mean, that is, w k ~N(0,R k ),v k ~N(0,Q k,j ), and the pose x is inferred from the noisy data z and u information, which constitutes a state estimation problem.
步骤S502,根据条件概率信息,得到卫星的运动状态的概率等式。In step S502, a probability equation of the motion state of the satellite is obtained according to the conditional probability information.
已知输入数据u和观测数据z,求解位姿x和路标点y的状态,引入贝叶斯法则,即得到 Knowing the input data u and observation data z, solve the state of the pose x and the landmark point y, and introduce the Bayesian rule, that is, get
步骤S503,通过采用最大后验概率方法,对概率等式进行求解操作,以得到卫星的位姿状态信息。Step S503 , by adopting the maximum a posteriori probability method, the probability equation is solved to obtain the position and attitude state information of the satellite.
具体地,利用最优化方法,求解一个状态的后验概率的最大化,即该处的arg max指最大后验概率,下标MAP也是最大后验概率所对应的值。基于上述高斯分布的假设下,对应某一次观测:zk,j=h(yj,xk)+vk,j,同时噪声满足vk~N(0,Qk,j),所以此次观测的条件概率为:P(zj,k|xk,yj)=N(h(yi,xk),Qk,j)。考察将高维高斯分布x~N(μ,Σ)展开,同时对其取负对数,即考察上述负对数等式,因为对数单调递增,对原函数求最大相当于对负对数函数求最小,在最小化上述等式时,考虑到x值与右边第一项无关,因此只考虑右侧二次型项,带入观测方程,即进一步假设各个时刻的运动和观测是独立的,因此可以对联合分布进行因式分解:重新定义每次实际运动和观测与模型之间的误差:eu,k=xk-f(xk-1,uk),ez,j,k=zk,j-h(xk,yj)。将上述的最小化等式转化为联乘形式,即这样就转化为一个最小二乘问题。最后由上述的最小二乘等式,可以求解出星载光学相机的位姿状态,进而可以计算出卫星的轨道等信息。其中,上述参数中,μ和Σ分别是高斯分布的均值和方差;det()用于求解一个方阵的行列式;Q及下标(k,j),表示正太分布中噪声方差由参数(k,j)所决定,(k,j)见上述解释。E及下标(u,k),表示每次实际运动和观察与模型之间的误差。Specifically, the optimization method is used to solve the maximization of the posterior probability of a state, namely The arg max here refers to the maximum posterior probability, and the subscript MAP is also the value corresponding to the maximum posterior probability. Based on the assumption of the above Gaussian distribution, corresponding to a certain observation: z k,j =h(y j ,x k )+v k,j , and the noise satisfies v k ~N(0,Q k,j ), so this The conditional probability of the second observation is: P(z j,k |x k ,y j )=N(h(y i ,x k ),Q k,j ). The investigation expands the high-dimensional Gaussian distribution x~N(μ,Σ), and takes the negative logarithm of it at the same time, namely Considering the above negative logarithmic equation, because the logarithm increases monotonically, maximizing the original function is equivalent to minimizing the negative logarithmic function. When minimizing the above equation, considering that the x value has nothing to do with the first item on the right, so only Consider the quadratic term on the right side and bring it into the observation equation, that is Further assuming that the movements and observations at each moment are independent, the joint distribution can be factored: Redefine each actual movement and the error between the observation and the model: e u,k =x k -f(x k-1 ,u k ),e z,j,k =z k,j -h(x k , y j ). Convert the above minimization equation into a multiplication form, that is This translates into a least squares problem. Finally, from the above least squares equation, the pose state of the onboard optical camera can be solved, and then the orbit and other information of the satellite can be calculated. Among the above parameters, μ and Σ are the mean and variance of the Gaussian distribution, respectively; det() is used to solve the determinant of a square matrix; Q and the subscript (k, j) indicate that the noise variance in the normal distribution is determined by the parameter ( k,j), and (k,j) are explained above. E and the subscripts (u, k) represent each actual movement and the error between the observation and the model.
如图8所示,本发明一实施例还提供了一种卫星自主位姿的判定系统200,包括:遥感图像获取模块201、模板图像获取模块202、特征信息得到模块203、模型方程确定模块204以及姿态状态得到模块205。As shown in FIG. 8 , an embodiment of the present invention further provides a satellite autonomous
所述遥感图像获取模块201用于获取光学相机所拍摄的遥感图像。The remote sensing image acquisition module 201 is used to acquire remote sensing images captured by an optical camera.
所述模板图像获取模块202用于基于遥感图像,在知识图谱中进行检索,以得到模板图像。The template image acquisition module 202 is used for searching in the knowledge graph based on the remote sensing image to obtain the template image.
所述特征信息得到模块203用于传输遥感图像和模板图像至深度卷积网络,以获得匹配特征信息。The feature
如图9所示,所述特征信息得到模块203包括:图像传输单元2031、特征提取单元2032、转化器搭建单元2033、归一化操作单元2034以及匹配操作单元2035。As shown in FIG. 9 , the feature
所述图像传输单元2031用于传输遥感图像和模板图像至深度卷积网络的预处理层。The image transmission unit 2031 is used to transmit the remote sensing image and the template image to the preprocessing layer of the deep convolutional network.
所述特征提取单元2032用于通过预处理层提取多组特征信息;如图10所示,所述特征提取单元2032:包括特征信息提取子单元20321以及特征信息叠加子单元20322。所述特征信息提取子单元20321用于根据预处理层中的不同卷积核提取相应的特征信息;所述特征信息叠加子单元20322用于将不同卷积核所提取的相应特征信息进行叠加操作,以得到多组特征信息。The
所述转化器搭建单元2033用于搭建特征空间转化器。The converter building unit 2033 is used to build a feature space converter.
所述归一化操作单元2034用于根据所得到的多组特征信息,并通过特征空间转化器进行归一化操作。The normalization operation unit 2034 is configured to perform a normalization operation through a feature space converter according to the obtained sets of feature information.
所述匹配操作单元2035用于对归一化特征信息执行匹配操作,以得到匹配特征信息。The matching operation unit 2035 is configured to perform a matching operation on the normalized feature information to obtain matching feature information.
所述模型方程确定模块204用于确定光学相机成像模型、运动方程及观测方程。如图11所示,所述模型方程确定模块204包括:光束获取单元2041、运动方程得到单元2042以及观测方程得到单元2043。The model
所述光束获取单元2041用于通过光学相机获取光束,并在相机平面上投影成像。The light beam acquisition unit 2041 is used for acquiring the light beam through an optical camera, and projecting the image on the camera plane.
所述运动方程得到单元2042用于根据卫星的运动变化、光学相机所提取的特征信息以及卫星在运动过程中所获得的噪声,得到卫星运动所对应的运动方程。The motion equation obtaining unit 2042 is configured to obtain the motion equation corresponding to the satellite motion according to the motion change of the satellite, the feature information extracted by the optical camera, and the noise obtained by the satellite during the motion process.
所述观测方程得到单元2043于根据卫星的观测数据和卫星在观测过程中所得到的噪声,得到与运动方程相对应的观测方程。The observation equation obtaining unit 2043 obtains the observation equation corresponding to the motion equation according to the observation data of the satellite and the noise obtained by the satellite during the observation process.
所述姿态状态得到模块205用于根据所述匹配特征信息,对运动方程和观测方程进行求解操作,以得到卫星姿态状态。The attitude
如图12所示,所述姿态状态得到模块205包括:参数化操作单元2051、概率等式得到单元2052以及位姿状态得到单元2053。As shown in FIG. 12 , the posture
所述参数化操作单元2051用于对运动方程和观测方程进行参数化操作。The parameterization operation unit 2051 is used to perform parameterization operations on the motion equation and the observation equation.
所述概率等式得到单元2052用于根据条件概率信息,得到卫星的运动状态的概率等式。The probability equation obtaining unit 2052 is configured to obtain the probability equation of the motion state of the satellite according to the conditional probability information.
所述位姿状态得到单元2053用于通过采用最大后验概率方法,对概率等式进行求解操作,以得到卫星的位姿状态信息。The pose state obtaining unit 2053 is configured to solve the probability equation by using the maximum a posteriori probability method to obtain the pose state information of the satellite.
本发明还提供一种存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行所述的卫星自主位姿的判定方法。The present invention also provides a storage medium, wherein a plurality of instructions are stored in the storage medium, and the instructions are suitable for being loaded by a processor to execute the method for determining the autonomous position and attitude of a satellite.
本发明提供了一种卫星自主位姿的判定方法,通过将光学相机拍摄的遥感图像和知识图谱中检索到的模板图像,传输到特征匹配深度卷积网络,获得匹配特征信息;根据匹配特征信息,带入所确定的光学相机成像模型、运动方程和观测方程中进行求解,从而得到卫星姿态状态。本发明所述方法能够有效地提高卫星姿态和轨道估计的效率和准确率,从而实现卫星离线状态的实时位姿判定,以及提高卫星运控系统的稳定性和可靠性。The invention provides a method for determining the autonomous pose of a satellite. By transmitting the remote sensing image captured by an optical camera and the template image retrieved from the knowledge map to a feature matching deep convolution network, matching feature information is obtained; according to the matching feature information , and bring it into the determined optical camera imaging model, motion equation and observation equation to solve, so as to obtain the satellite attitude state. The method of the invention can effectively improve the efficiency and accuracy of satellite attitude and orbit estimation, so as to realize the real-time attitude determination of the satellite offline state, and improve the stability and reliability of the satellite operation control system.
以上对本发明进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。The present invention has been described in detail above, and the principles and implementations of the present invention are described in this paper by using specific examples. The skilled person should understand that it is still possible to modify the technical solutions recorded in the foregoing embodiments, or to perform equivalent replacements on some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the implementation of the present invention. Examples of the scope of technical solutions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618502.2A CN114693783A (en) | 2020-12-31 | 2020-12-31 | Satellite autonomous pose determination method, system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618502.2A CN114693783A (en) | 2020-12-31 | 2020-12-31 | Satellite autonomous pose determination method, system and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114693783A true CN114693783A (en) | 2022-07-01 |
Family
ID=82134136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011618502.2A Pending CN114693783A (en) | 2020-12-31 | 2020-12-31 | Satellite autonomous pose determination method, system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114693783A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105184762A (en) * | 2015-08-31 | 2015-12-23 | 北京理工大学 | Super-resolution image reconstruction method under synchronous orbit satellite attitude undersampling measurement |
US20170132794A1 (en) * | 2015-11-05 | 2017-05-11 | Samsung Electronics Co., Ltd. | Pose estimation method and apparatus |
WO2017197617A1 (en) * | 2016-05-19 | 2017-11-23 | 深圳市速腾聚创科技有限公司 | Movable three-dimensional laser scanning system and movable three-dimensional laser scanning method |
CN108648214A (en) * | 2018-06-14 | 2018-10-12 | 广东工业大学 | A kind of vision SLAM algorithms and system based on width study filtering |
CN110007324A (en) * | 2019-02-21 | 2019-07-12 | 南京航空航天大学 | A kind of fault satellites Relative Navigation based on SLAM |
WO2020048623A1 (en) * | 2018-09-07 | 2020-03-12 | Huawei Technologies Co., Ltd. | Estimation of a pose of a robot |
CN111121789A (en) * | 2019-12-12 | 2020-05-08 | 上海航天控制技术研究所 | Image-based remote sensing satellite multi-mode autonomous orbit determination method |
CN111337031A (en) * | 2020-02-24 | 2020-06-26 | 南京航空航天大学 | An autonomous position determination method for spacecraft landmark matching based on attitude information |
CN111983636A (en) * | 2020-08-12 | 2020-11-24 | 深圳华芯信息技术股份有限公司 | Pose fusion method, pose fusion system, terminal, medium and mobile robot |
-
2020
- 2020-12-31 CN CN202011618502.2A patent/CN114693783A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105184762A (en) * | 2015-08-31 | 2015-12-23 | 北京理工大学 | Super-resolution image reconstruction method under synchronous orbit satellite attitude undersampling measurement |
US20170132794A1 (en) * | 2015-11-05 | 2017-05-11 | Samsung Electronics Co., Ltd. | Pose estimation method and apparatus |
WO2017197617A1 (en) * | 2016-05-19 | 2017-11-23 | 深圳市速腾聚创科技有限公司 | Movable three-dimensional laser scanning system and movable three-dimensional laser scanning method |
CN108648214A (en) * | 2018-06-14 | 2018-10-12 | 广东工业大学 | A kind of vision SLAM algorithms and system based on width study filtering |
WO2020048623A1 (en) * | 2018-09-07 | 2020-03-12 | Huawei Technologies Co., Ltd. | Estimation of a pose of a robot |
CN110007324A (en) * | 2019-02-21 | 2019-07-12 | 南京航空航天大学 | A kind of fault satellites Relative Navigation based on SLAM |
CN111121789A (en) * | 2019-12-12 | 2020-05-08 | 上海航天控制技术研究所 | Image-based remote sensing satellite multi-mode autonomous orbit determination method |
CN111337031A (en) * | 2020-02-24 | 2020-06-26 | 南京航空航天大学 | An autonomous position determination method for spacecraft landmark matching based on attitude information |
CN111983636A (en) * | 2020-08-12 | 2020-11-24 | 深圳华芯信息技术股份有限公司 | Pose fusion method, pose fusion system, terminal, medium and mobile robot |
Non-Patent Citations (2)
Title |
---|
LIJUN ZHANG ET AL: "Kalman Filtering for Relative Spacecraft Attitude and Position Estimation:A Revisit", 《AEROSPACE RESEARCH CENTER》, 11 September 2014 (2014-09-11) * |
崔小松等: "基于类GPS技术的编队卫星相对参数测量研究", 《飞行器测控学报》, vol. 31, no. 1, 31 December 2012 (2012-12-31) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111862126B (en) | Non-cooperative target relative pose estimation method combining deep learning and geometric algorithm | |
CN105856230B (en) | A kind of ORB key frames closed loop detection SLAM methods for improving robot pose uniformity | |
US11964762B2 (en) | Collaborative 3D mapping and surface registration | |
CN103674021B (en) | Integrated navigation system based on inertial navigation and star sensor and method | |
WO2019029099A1 (en) | Image gradient combined optimization-based binocular visual sense mileage calculating method | |
CN103335648B (en) | A kind of autonomous method for recognising star map | |
Zhao et al. | RTSfM: Real-time structure from motion for mosaicing and DSM mapping of sequential aerial images with low overlap | |
US20230086983A1 (en) | Method for acquiring distance from moving body to at least one object located in any direction of moving body by utilizing camera-view depth map and image processing device using the same | |
CN117253029A (en) | Image matching positioning method based on deep learning and computer equipment | |
Inman et al. | Artemis I optical navigation system performance | |
CN112268564B (en) | Unmanned aerial vehicle landing space position and attitude end-to-end estimation method | |
CN108592916B (en) | Multi-navigation map positioning and navigation method of suspended autonomous underwater vehicle | |
CN105389819A (en) | Robust semi-calibrating down-looking image epipolar rectification method and system | |
CN114693783A (en) | Satellite autonomous pose determination method, system and storage medium | |
CN111521173A (en) | Star sensor-based calculation method for intersection point D coordinates of optical axis and celestial sphere | |
CN114266824B (en) | Deep learning-based non-cooperative target relative pose measurement method and system | |
CN117746231A (en) | Unmanned aerial vehicle cross-view angle positioning navigation method and device based on semi-supervision characteristic enhancement | |
CN114693988B (en) | Satellite autonomous pose judging method, system and storage medium | |
CN117351047A (en) | Local map point cloud global alignment method and device, electronic equipment and storage medium | |
Andolfo et al. | Precise orbit determination through a joint analysis of optical and radiometric data | |
CN118967795B (en) | Visual inertial navigation tight coupling SLAM method based on four-eye panoramic camera | |
CN116342714A (en) | U-Linked network for attitude estimation, attitude estimation method, angle calculation method | |
Soufi et al. | An intelligent deep learning approach to spacecraft attitude control: The case of satellites | |
Qi et al. | A Multi-AUV Collaborative Mapping System With Bathymetric Cooperative Active SLAM Algorithm | |
CN118348554B (en) | Absolute positioning method, device and storage medium for unmanned surface boat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |