CN114688009A - Intelligent intermittent pumping control system of beam-pumping unit and control method thereof - Google Patents
Intelligent intermittent pumping control system of beam-pumping unit and control method thereof Download PDFInfo
- Publication number
- CN114688009A CN114688009A CN202210370875.5A CN202210370875A CN114688009A CN 114688009 A CN114688009 A CN 114688009A CN 202210370875 A CN202210370875 A CN 202210370875A CN 114688009 A CN114688009 A CN 114688009A
- Authority
- CN
- China
- Prior art keywords
- pumping
- unit
- data
- computing unit
- intelligent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
- E21B43/126—Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
- E21B43/127—Adaptations of walking-beam pump systems
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
本发明涉及了一种游梁式抽油机智能间抽控制系统,至少包括能够根据收集的抽油过程中的设备参数和油田参数进行处理的云计算单元(2),所述云计算单元(2)能够接收由智能感知单元(4)采集并且由边缘计算单元(3)进行数据预处理后的数据信息,其中,所述云计算单元(2)能够按照建立灰色模型的方式对其接收到的油井抽汲过程中的实时数据进行处理,并且其依据建立的灰色模型对数据进行有序化处理,从而所述云计算单元(2)根据其生成的能够预测间抽周期的数据序列输出间抽周期控制策略。此外,本发明还涉及了一种游梁式抽油机智能间抽控制系统的控制方法。
The invention relates to an intelligent intermediate pumping control system for a beam pumping unit, comprising at least a cloud computing unit (2) capable of processing according to the collected equipment parameters and oil field parameters in the pumping process, the cloud computing unit (2) 2) being able to receive the data information collected by the intelligent sensing unit (4) and subjected to data preprocessing by the edge computing unit (3), wherein the cloud computing unit (2) can receive the data in the manner of establishing a grey model; The real-time data in the pumping process of the oil well is processed, and the data is processed in an orderly manner according to the established gray model, so that the cloud computing unit (2) outputs the interval according to the data sequence generated by the cloud computing unit (2) that can predict the interval pumping period. Pump cycle control strategy. In addition, the present invention also relates to a control method of an intelligent intermediate pumping control system for a beam pumping unit.
Description
技术领域technical field
本发明涉及游梁式抽油设备技术领域,尤其涉及一种游梁式抽油机智能间抽控制系统及其控制方法。The invention relates to the technical field of beam pumping equipment, in particular to an intelligent intermediate pumping control system for a beam pumping unit and a control method thereof.
背景技术Background technique
目前提高低产井开发水平已经成为国内各油田的主攻方向之一。常规人工启停间抽控制技术存在停机时间长、管理难度大、冬季井易冻堵以及间抽制度无法执行等问题。为此,国内大庆油田、长庆油田、胜利油田研究重点主要集中在智能提捞抽油机、抽油机智能间抽控制装置、智能长冲程抽油机等技术,但是提捞机存在抽子易损坏的问题,智能间抽需要加装液和测试设备,长冲程抽油机的一次性投资大。国内缺少低成本、便于安全管理的抽油机间抽技术。At present, improving the development level of low-yield wells has become one of the main directions of domestic oilfields. The conventional manual start-stop intermittent pumping control technology has problems such as long downtime, difficult management, easy freezing and blocking of wells in winter, and inability to implement the intermittent pumping system. For this reason, the research focus of domestic Daqing Oilfield, Changqing Oilfield, and Shengli Oilfield mainly focuses on technologies such as intelligent extraction pumping unit, intelligent pumping unit control device, and intelligent long-stroke pumping unit. The problem of easy damage, intelligent intermediate pumping needs to add fluid and test equipment, and the one-time investment of long-stroke pumping units is large. There is a lack of low-cost and safe management of pumping technology between pumping units in China.
大庆油田研发的抽油机小停机高效间抽控制技术,通过将常规长周期集中式的间歇采油转变成多次短周期间歇采油,将曲柄整周运行与摆动运行组合的方式工作,实现井下泵停抽、地面设备小停机。但是,该技术没有针对油田的实际油层供液能力的变化以及曲柄整周运动和摆动交替进行的运动机制进行智能化的设计,现采取的人工输入固定参数的调节方式虽然能够在间抽初期实现高效和节能,但是抽油机无法在一定工作时间后随着油田内油层供液能力的变化进行有效地自动调整曲柄交替进行整周运动和摆动的运动机制。The high-efficiency intermittent pumping control technology of pumping units developed by Daqing Oilfield realizes downhole pumping by converting conventional long-cycle centralized intermittent oil production into multiple short-cycle intermittent oil production, and combining crank full-cycle operation and swing operation. Stop pumping, ground equipment small shutdown. However, this technology does not have an intelligent design for the change of the actual oil layer liquid supply capacity in the oil field and the movement mechanism of the crank's full-circle movement and swinging alternately. High efficiency and energy saving, but the pumping unit cannot effectively automatically adjust the motion mechanism of the crank alternately performing full-cycle motion and swinging with the change of the oil supply capacity of the oil field after a certain working time.
为了提高采油效率、降低能耗,目前大多数油田采用基于云计算的数字化控制系统对抽油机的运行进行优化控制。通过对抽油机井关键数据的数字化采集,传输到云计算中心进行数据分析处理,然后根据计算结果发送指令到生产现场的抽油机控制器,对抽油机进行智能化的控制。现阶段的数字化抽油机控制系统,在一定程度上改善了抽油机耗能过大的问题,但是在系统可靠性与抽油机冲次调节以及间抽控制等方面依旧不能满足智慧油田建设的需求。目前,低渗透油井开采具有以下特征:In order to improve oil production efficiency and reduce energy consumption, most oilfields currently use cloud computing-based digital control systems to optimize the operation of pumping units. Through the digital collection of the key data of the pumping unit, it is transmitted to the cloud computing center for data analysis and processing, and then the instruction is sent to the pumping unit controller at the production site according to the calculation result, and the pumping unit is intelligently controlled. The current digital pumping unit control system has improved the problem of excessive energy consumption of the pumping unit to a certain extent, but it still cannot meet the requirements of the construction of smart oil fields in terms of system reliability, adjustment of pumping unit strokes, and indirect pumping control. demand. At present, low-permeability oil well production has the following characteristics:
(1)可靠性差:油井短时间内产生大量数据,需要云计算中心对这些数据进行分析处理,并且提供实时的响应。但油田生产现场一般处于偏远地区网络不稳定,且大量的数据传输会加重网络负载,难以满足油井控制系统对可靠性、低时延的需求。(1) Poor reliability: Oil wells generate a large amount of data in a short period of time, which requires a cloud computing center to analyze and process these data and provide real-time responses. However, oilfield production sites are generally located in remote areas where the network is unstable, and a large amount of data transmission will increase the network load, making it difficult to meet the requirements of oil well control systems for reliability and low latency.
(2)依靠人工经验确定间抽周期:低渗透油井供液能力差,工作人员根据主观经验确定抽油井的开关时间,或者采用8小时或16小时的定时间抽制度。相比于连续运行的方式,间歇式开采虽然能降低能耗,但抽油机井的间抽制度如果依赖于油井工作人员的主观判断,有可能会降低采油效率与产液量。(2) Relying on manual experience to determine the interval pumping cycle: low-permeability oil wells have poor liquid supply capacity, and the staff determines the switching time of the pumping wells according to subjective experience, or adopts a fixed-time pumping system of 8 hours or 16 hours. Compared with continuous operation, although intermittent production can reduce energy consumption, if the intermittent pumping system of pumping wells relies on the subjective judgment of oil well staff, it may reduce oil production efficiency and liquid production.
(3)冲次的调整不匹配实际供产平衡:低渗透油井的井下情况复杂,抽油井液面波动大,一般对抽油机的运行采取固定冲次。为了保证产液量,冲次值一般会大于合理值,致使泵效低,设备磨损大。(3) The adjustment of the stroke times does not match the actual supply and production balance: the downhole situation of low-permeability oil wells is complex, and the liquid level of the pumping well fluctuates greatly. Generally, fixed stroke times are adopted for the operation of the pumping unit. In order to ensure the liquid production, the stroke value is generally larger than the reasonable value, resulting in low pump efficiency and large equipment wear.
专利号为CN106285572A的专利文献公开了一种抽油机智能间抽控制装置,其包括间抽控制器、电控箱、位移传感器、载荷传感器、无线天线;位移传感器测量抽油机光杆处的位移并连接到间抽控制器;载荷传感器测量抽油机光杆处的载荷并连接到间抽控制器;间抽控制器连接电控箱,间抽控制器包括:电源模块、通信模块、控制模块、电量模块;电量模块采集抽油机工作过程中的电流、电压和功率,并发送给控制模块;通信模块与无线天线连接,控制模块根据抽油机光杆处的载荷和位移获得抽油机的启动停止信息并发送启停命令到电控箱;电控箱包括供电单元和变频器,根据间抽控制器的命令实现抽油机的启停以及冲次调节。但是该装置没有针对低渗透油田的实际渗透情况对其间抽策略进行精准调节,其获取的控制调节参数存在一定的延迟和误差,无法准确地判断油田实际的渗透情况和储油恢复情况,从而无法做出最优且可智能调节的间抽周期控制策略。The patent document with the patent number of CN106285572A discloses an intelligent pumping control device for pumping units, which includes a pumping controller, an electric control box, a displacement sensor, a load sensor, and a wireless antenna; the displacement sensor measures the displacement at the polished rod of the pumping unit and connected to the indirect pumping controller; the load sensor measures the load at the polished rod of the pumping unit and is connected to the indirect pumping controller; the indirect pumping controller is connected to the electric control box, and the indirect pumping controller includes: power supply module, communication module, control module, Power module; the power module collects the current, voltage and power during the working process of the pumping unit and sends it to the control module; the communication module is connected with the wireless antenna, and the control module obtains the start of the pumping unit according to the load and displacement at the polished rod of the pumping unit Stop information and send start and stop commands to the electric control box; the electric control box includes the power supply unit and the frequency converter, and realizes the start and stop of the pumping unit and the adjustment of the stroke times according to the commands of the intermittent pumping controller. However, the device does not accurately adjust the intermediate pumping strategy according to the actual permeability of the low-permeability oilfield, and the acquired control and adjustment parameters have certain delays and errors. Make an optimal and intelligently adjustable interval pumping cycle control strategy.
因此,针对现有技术的缺陷,需要一种能够对间抽机制和冲次进行智能调整实现高效间抽的智能间抽控制系统。Therefore, in view of the defects of the prior art, there is a need for an intelligent thinning control system capable of intelligently adjusting the thinning mechanism and the number of strokes to achieve efficient thinning.
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于发明人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。In addition, on the one hand, there are differences in the understanding of those skilled in the art; on the other hand, because the inventor has studied a large number of documents and patents when making the present invention, but the space limit does not list all the details and contents in detail, but this is by no means The present invention does not possess the features of the prior art, on the contrary, the present invention already possesses all the features of the prior art, and the applicant reserves the right to add relevant prior art to the background art.
发明内容SUMMARY OF THE INVENTION
针对现有技术之不足,本发明的技术方案提供的是一种游梁式抽油机智能间抽控制系统,其至少包括能够根据收集到的抽油过程中的设备参数和油田参数进行处理的云计算单元,所述云计算单元能够接收由智能感知单元采集并且由边缘计算单元进行数据预处理后的数据信息,其中,所述云计算单元能够按照建立灰色模型的方式对其接收到的油井抽汲过程中的实时数据进行处理,并且其依据建立的灰色模型预测下一间抽周期的数据序列,从而所述云计算单元根据其生成的能够预测间抽周期的数据序列输出间抽周期控制策略。其优势在于,通过智能感知单元部署的传感器采集油田生产过程中的实时数据,然后在边缘端的控制器中对数据进行初步处理。边缘计算单元通过计算卸载策略将云端部分计算功能部署在具有有限计算、网络和存储功能的智能抽油机控制器中,由于智能控制器处于网络的边缘,靠近智能感知单元的传感设备与抽油机等相关设备,不仅可以减少网络负载、降低传输时延,还可以满足生产设备对实时计算功能的需求。同时还可以在边缘端对数据进行异常检测、过滤等处理,减少传统云端模式下大量无效数据的传输和存储,从而提高系统对设备的响应速度,最终实现高效安全生产的目标。此外,云计算单元通过建立的灰色模型实现了对信息获取不完整的系统进行预测,通过研究系统中不同因素在相互作用下发展趋势的异同,得出各因素之间的关联程度。将己获取的数据进行相应的处理,把无序杂乱的数据转变成有规律的数据序列,从而根据生成数据呈现的规律预测事物未来发展趋势。通常针对系统获取的数据需要满足等时距和反映系统特征的要求,通过对一定数量的数据建立灰色模型来预测未来系统的特征值。In view of the deficiencies of the prior art, the technical solution of the present invention provides an intelligent intermediate pumping control system for beam pumping units, which at least includes a system capable of processing according to the collected equipment parameters and oil field parameters in the pumping process. Cloud computing unit, the cloud computing unit can receive the data information collected by the intelligent perception unit and preprocessed by the edge computing unit, wherein the cloud computing unit can build a gray model for the oil wells it receives. The real-time data in the pumping process is processed, and it predicts the data sequence of the next pumping cycle according to the established gray model, so that the cloud computing unit outputs the control of the pumping cycle according to the data sequence that can predict the pumping cycle. Strategy. The advantage is that the real-time data in the oilfield production process is collected by the sensors deployed by the intelligent perception unit, and then the data is preliminarily processed in the controller at the edge. The edge computing unit deploys some computing functions of the cloud in the intelligent pumping unit controller with limited computing, network and storage functions through the computing offloading strategy. Oil machines and other related equipment can not only reduce network load and transmission delay, but also meet the needs of production equipment for real-time computing functions. At the same time, it can also perform abnormal detection and filtering of data at the edge, reducing the transmission and storage of a large amount of invalid data in the traditional cloud mode, thereby improving the system's response speed to equipment, and ultimately achieving the goal of efficient and safe production. In addition, the cloud computing unit realizes the prediction of the system with incomplete information acquisition through the established gray model. By studying the similarities and differences of the development trends of different factors in the system under the interaction, the degree of correlation between the factors is obtained. The acquired data is processed accordingly, and the disordered data is transformed into a regular data sequence, so as to predict the future development trend of things according to the laws presented by the generated data. Usually, the data obtained by the system needs to meet the requirements of equidistant and reflect the characteristics of the system, and the eigenvalues of the future system are predicted by establishing a gray model for a certain amount of data.
根据一种优选的实施方式,所述云计算单元是与所述边缘计算单元进行协同工作的,其中,所述边缘计算单元接收所述智能感知单元获取的抽油机的运行参数和在抽汲过程中的油田参数,并且对其接收的数据信息进行预处理,使得所述云计算单元能够获取到已筛除无效数据的数据信息。According to a preferred embodiment, the cloud computing unit cooperates with the edge computing unit, wherein the edge computing unit receives the operating parameters of the pumping unit acquired by the intelligent sensing unit and Oilfield parameters in the process, and preprocessing the received data information, so that the cloud computing unit can obtain the data information from which invalid data has been screened out.
根据一种优选的实施方式,所述云计算单元是依据边缘计算单元上传的数据信息完成油田示功图数据的计算和处理,并且建立与沉没度相关的灰色模型,从而根据得到的示功图数据和建立的灰色模型输出适合油田实际渗透情况的抽油机的间抽周期控制策略。其优势在于,利用抽油机完成一个阶段抽油工作后采集的数据信息而输出的示功图计算得到的油田满抽面积、停抽面积、停抽时长和抽油时长等参数。并且依据建立的灰色模型输出的关于沉没度的预测结果输出抽油机下一阶段抽油工作的间抽周期控制策略,消除了单一分析方式获取的控制策略存在无法匹配实际油田抽汲参数的缺陷,通过对两种控制策略相关数据的整合和相互印证,使得系统能够输出准确性更高的控制策略。According to a preferred embodiment, the cloud computing unit completes the calculation and processing of the oilfield dynamometer data according to the data information uploaded by the edge computing unit, and establishes a gray model related to the submersion degree, so as to obtain the dynamometer according to the obtained gray model. The data and the established grey model output the pumping unit interval control strategy suitable for the actual seepage situation of the oil field. Its advantage is that the oilfield full pumping area, stop pumping area, stop pumping time and pumping time and other parameters are calculated by using the dynamometer diagram outputted by the data information collected after the pumping unit completes a stage of pumping work. And according to the prediction results of the submersion degree output by the established grey model, the control strategy of the pumping unit's interval pumping cycle in the next stage of pumping work is output, which eliminates the defect that the control strategy obtained by a single analysis method cannot match the actual oil field swabbing parameters. , through the integration and mutual verification of the relevant data of the two control strategies, the system can output a control strategy with higher accuracy.
根据一种优选的实施方式,所述云计算单元还能够根据接收到的数据信息创建出能够对所述抽油机工作时的平衡度进行调控的模糊规则,使得所述抽油机能够依据所述云计算单元建立的模糊规则进行自平衡的抽油工作。其优势在于,根据抽油机的智能控制系统能够对抽油机工作时的平衡度进行调节的特点,系统的输入量为平衡度偏差和平衡度偏差变化率。将二者经过分析计算得到对应的自平衡的抽油机的控制输出量,构成平衡度的总控制查询表。根据两个输入量对游梁式抽油机的平衡度进行调节,使得智能控制系统具有较好且稳定的动态性能。According to a preferred embodiment, the cloud computing unit can also create a fuzzy rule that can adjust the balance degree of the pumping unit according to the received data information, so that the pumping unit can The fuzzy rules established by the cloud computing unit are used to carry out self-balancing oil pumping work. The advantage lies in that, according to the characteristic that the intelligent control system of the pumping unit can adjust the balance degree when the pumping unit is working, the input quantity of the system is the balance degree deviation and the balance degree deviation change rate. The control output of the corresponding self-balancing pumping unit is obtained by analyzing and calculating the two, which constitutes the total control look-up table of the balance degree. The balance of the beam pumping unit is adjusted according to the two input quantities, so that the intelligent control system has better and stable dynamic performance.
根据一种优选的实施方式,所述云计算单元依据接收的数据信息实时更新其建立的示功图和灰色模型,从而依据计算得到的示功图的抽汲面积和灰色模型预测的沉没度数据调节所述抽油机在下一工作阶段中的间抽周期控制策略。模糊控制不需要建立精确的数学模型,并且能够简化控制系统的复杂性,还能够拥有较强的鲁棒性。因此,采用模糊控制算法能够较好地解决非线性控制系统的复杂性。According to a preferred embodiment, the cloud computing unit updates the dynamometer diagram and the grey model established by the cloud computing unit in real time according to the received data information, so as to obtain the swept area data of the dynamometer diagram and the subsidence degree data predicted by the grey model. The control strategy of the interval pumping period of the pumping unit in the next working stage is adjusted. Fuzzy control does not need to establish an accurate mathematical model, and can simplify the complexity of the control system, and can also have strong robustness. Therefore, the use of fuzzy control algorithm can better solve the complexity of nonlinear control system.
根据一种优选的实施方式,所述抽油机在其曲柄整周运行时,抽油电机正常工作,所述抽油机的间抽周期控制策略至少包括调节曲柄交替进行整周运动和摆动的运动机制以及控制曲柄在摆动过程中的摆动幅度。According to a preferred embodiment, the pumping motor works normally when the crank of the oil pumping unit operates in a full circle, and the control strategy of the interval pumping period of the oil pumping unit at least includes adjusting the crank to alternately perform full circle motion and swing. Movement mechanism and control how much the crank swings during the swing.
根据一种优选的实施方式,所述抽油机至少包括抽油电机、智能抽油机控制器和调平衡单元,其中,所述智能抽油机控制器能够依据所述云计算单元输出的最新间抽周期控制策略调节所述抽油电机的工作状态,从而完成抽油机构的冲次自动调节、智能间抽控制和平衡度自动调节。According to a preferred embodiment, the pumping unit includes at least a pumping motor, an intelligent pumping unit controller, and a balancing unit, wherein the intelligent pumping unit controller can be based on the latest output from the cloud computing unit The interval pumping cycle control strategy adjusts the working state of the oil-pumping motor, so as to complete the automatic adjustment of the stroke times, the intelligent interval-pump control and the automatic adjustment of the balance of the oil-pumping mechanism.
根据一种优选的实施方式,在曲柄整周运行阶段,智能抽油机控制器控制抽油电机以额定转速工作;根据光杆示功图计算油井的冲程损失,在光杆运动长度小于冲程损失的情况下,抽油泵停止工作;在曲柄旋转一周,光杆完成一个周期的往复运行的情况下,根据光杆运动长度计算曲柄摆动角度;根据实时采集的电功率曲线监测摆动过程中的功率最小值点,确定最佳驱动位置。According to a preferred embodiment, the intelligent pumping unit controller controls the pumping motor to work at the rated speed during the whole cycle of the crank; the stroke loss of the oil well is calculated according to the polished rod dynamometer diagram, and when the polished rod movement length is less than the stroke loss When the crank rotates once and the polished rod completes a cycle of reciprocating operation, the crank swing angle is calculated according to the motion length of the polished rod; the minimum value point of the power during the swing process is monitored according to the electric power curve collected in real time, and the maximum value is determined. best drive position.
本申请还提供一种游梁式抽油机智能间抽控制系统的控制方法,至少包括以下步骤:利用智能感知单元采集抽油机的三相电参数和各类传感器信号,并且通过通讯模块将采集的数据传输至边缘计算单元;通过边缘计算单元对采集的数据信息进行预处理后进一步上传至云计算单元;利用云计算单元对接收到的数据进行分析,并且将得到的数据及控制信号下发到智能抽油机控制器以实现抽油机的冲次调节、自平衡调节以及通过控制面板进行显示。The present application also provides a control method for an intelligent intermediate pumping control system for a beam pumping unit, which at least includes the following steps: using an intelligent sensing unit to collect three-phase electrical parameters and various sensor signals of the pumping unit, and using a communication module to The collected data is transmitted to the edge computing unit; the collected data information is preprocessed by the edge computing unit and further uploaded to the cloud computing unit; the cloud computing unit is used to analyze the received data, and the obtained data and control signals are downloaded. Send it to the intelligent pumping unit controller to realize the stroke adjustment, self-balancing adjustment of the pumping unit and display through the control panel.
根据一种优选的实施方式,云计算单元和边缘计算单元是通过通讯模块进行数据传输以及控制信号的下发。According to a preferred embodiment, the cloud computing unit and the edge computing unit perform data transmission and control signal delivery through a communication module.
附图说明Description of drawings
图1是本发明的一种游梁式抽油机智能间抽控制系统的工作流程示意图。FIG. 1 is a schematic diagram of the work flow of an intelligent intermediate pumping control system for a beam pumping unit of the present invention.
附图标记列表List of reference signs
1:抽油机;2:云计算单元;3:边缘计算单元;4:智能感知单元;5:通讯模块;6:控制面板;11:抽油电机;12:智能抽油机控制器;13:调平衡单元。1: pumping unit; 2: cloud computing unit; 3: edge computing unit; 4: intelligent sensing unit; 5: communication module; 6: control panel; 11: pumping motor; 12: intelligent pumping unit controller; 13 : Balance unit.
具体实施方式Detailed ways
下面结合附图进行详细说明。The following detailed description is given in conjunction with the accompanying drawings.
低渗透油田泛指地层供液能力不足的油田,由于其油层连续性差、渗透率低、孔隙度低造成油井采油过程中,井下液面无法快速恢复到生产的合理范围内,使得抽油泵出现液面撞击和空抽的现象。Low-permeability oilfields generally refer to oilfields with insufficient formation liquid supply capacity. Due to the poor continuity, low permeability and low porosity of the oil layer, during the oil production process of the oil well, the downhole liquid level cannot be quickly restored to the reasonable range of production, which makes the oil pump appear liquid. The phenomenon of face impact and emptying.
(1)液面撞击(1) Liquid level impact
液面撞击是指抽油泵在采油过程中由于泵不满抽引起冲击波损坏设备的现象。由于上冲程时泵无法达到满抽,泵内压力低于满抽时的压力,导致在下冲程时游动阀打开过迟。此时在游动阀无法正常打开的情况下,抽油杆向下加速运动会产生冲击波,对设备造成损坏。Liquid level impact refers to the phenomenon that the oil well pump damages the equipment due to the shock wave caused by the pump being not full during the oil extraction process. Since the pump cannot reach full pumping during the upstroke, the pressure inside the pump is lower than the pressure at full pumping, resulting in a late opening of the traveling valve during the downstroke. At this time, when the swimming valve cannot be opened normally, the downward acceleration of the sucker rod will generate shock waves and cause damage to the equipment.
(2)空抽(2) Evacuation
低渗透油田在生产的中后期普遍会出现供液不足的现象,即地层供液能力与抽油泵的产出能力不匹配,致使抽油机低效运行,抽油泵出现不满抽和空抽的现象,这样不仅会加剧设备的磨损提高事故率,还会增大电能浪费。In low permeability oilfields, the phenomenon of insufficient liquid supply will generally occur in the middle and late stages of production, that is, the liquid supply capacity of the formation does not match the output capacity of the oil well pump, resulting in the inefficient operation of the oil pumping unit, and the phenomenon of unsatisfactory pumping and empty pumping of the oil well pump. , which will not only increase the wear and tear of the equipment and increase the accident rate, but also increase the waste of electric energy.
(3)液面波动大(3) The liquid level fluctuates greatly
低渗透油田地层环境复杂,影响因素较多,油井采油过程中井下液面恢复往往呈不规律状,波动性大。对抽油机运行制度的制定造成了很大的影响,设定的冲次值不能使泵效处于合理生产范围内。The formation environment of low-permeability oilfields is complex, and there are many influencing factors. During the oil production process of oil wells, the recovery of downhole liquid level is often irregular and fluctuates greatly. It has a great impact on the formulation of the pumping unit operation system, and the set stroke value cannot make the pump efficiency within a reasonable production range.
因此,确定抽油机合理的开关机时间以及运行过程中合理的冲次值是实现油田降本增效的关键问题。对抽油机的调整需要满足以下的条件:Therefore, determining the reasonable switching time of the pumping unit and the reasonable stroke value during the operation are the key issues to realize the cost reduction and efficiency increase of the oil field. The adjustment of the pumping unit needs to meet the following conditions:
(1)供液能力不足。当井下供液能力不足时,抽油机停机。(1) The liquid supply capacity is insufficient. When the downhole liquid supply capacity is insufficient, the pumping unit stops.
(2)供液能力正常,泵充满度低。当井下供液能力正常,但是泵效低时,降低抽油机的冲次值,使得泵充满度处于合理范围,减少电能消耗。(2) The liquid supply capacity is normal and the pump fullness is low. When the downhole liquid supply capacity is normal, but the pump efficiency is low, the stroke value of the pumping unit is reduced, so that the pump fullness is within a reasonable range and the power consumption is reduced.
(3)供液能力正常,泵充满度高。当井下供液能力正常,但是泵充满度高时,增大抽油机的冲次值,使得抽油机泵充满度处于合理范围,提高产液量。(3) The liquid supply capacity is normal and the pump fullness is high. When the downhole liquid supply capacity is normal, but the pump fullness is high, increase the stroke value of the pumping unit, so that the fullness of the pumping unit is in a reasonable range and increase the liquid production.
实施例1Example 1
本申请提供了一种游梁式抽油机智能间抽控制系统,其可以包括抽油机1、云计算单元2、边缘计算单元3、智能感知单元4。The present application provides an intelligent intermediate pumping control system for a beam pumping unit, which may include a
根据图1示出的一种具体的实施方式,抽油机1及其连接的油井内均安装有智能感知单元4。抽油机1上还外置有能够对智能感知单元4采集的数据信息进行预处理的边缘计算单元3。边缘计算单元3能够将其进行预处理后的数据信息传输至云计算单元2。云计算单元2能够对接收到的已完成预处理的数据信息进行更具体地计算和分析。边缘计算单元3的引入能够降低数据传输的时延和云计算单元2的计算压力,提高对任务的处理速度,满足物联网系统对实时性的需求。According to a specific embodiment shown in FIG. 1 , an
优选地,云计算单元2能够对油井复杂数据进行分析处理和显示,并且提供报警监测、异常数据过滤和设备管理等功能,云计算单元2还能够与边缘计算单元3,实现抽油机的高可靠控制。Preferably, the
优选地,边缘计算单元3具有网关的功能,向下可以实现对数据的分析、处理和存储,向上可以将数据上传至处于云端的云计算单元2。边缘计算单元3还提供有限的函数计算功能并且方便业务场景的控制。随着大数据与物联网技术在油田生产行业的深入挖掘与广泛应用,接入到油田物联网中的设备数量激增,油田生产所产生的数据呈爆发式的增长。传统的油田物联网技术通过把计算、存储和网络资源集中化,由云计算中心对油田生产现场提供服务,高效地利用现有的资源。但是随着油田数据业务的不断发展,油田物联网体系需要保证海量数据的实时性和可靠性,然而以云计算这种中心式的数据处理模式难以实现低时延的响应,而且会加剧网络的负载,影响油井数据业务的有效处理。通过将边缘计算技术应用到油田物联网中,将部分计算和存储功能下放到网络边缘的节点,使部分业务在网络边缘得到处理,这样不仅可以提高控制系统对设备的响应速度,还可以减少大量数据上传到云端的需求,减轻了系统对网络稳定性的依赖。通过智能感知单元4部署的传感器采集油田生产的实时数据,然后在边缘端的控制器中的边缘计算单元3对数据进行初步处理,为处在边缘端的生产设备提供实时响应。优选地,边缘计算单元3通过计算卸载策略将云端部分计算功能部署在具有有限计算、网络和存储功能的智能抽油机控制器中,由于智能控制器处于网络的边缘,靠近智能感知单元4的传感设备与抽油机等相关设备,不仅可以减少网络负载、降低传输时延,还可以满足生产设备对实时计算功能的需求。同时边缘计算单元3还可以在边缘端对数据进行异常检测、过滤等处理,减少传统云端模式下大量无效数据的传输和存储,从而提高系统对设备的响应速度,最终实现高效安全生产的目标。Preferably, the
优选地,智能感知单元4通常包括速度传感器、震动传感器、温度传感器、压强传感器、示功图传感器、智能控制器、电参模块和电机速度传感器等。电参模块采集电机运行电流、电压频率等参数,实时监测驱动力大小;电机速度传感器根据采集电机转角,监测电机的运行情况;温度、压强、震动传感器主要反映抽油机1运行时设备与井下的变化情况;示功图传感器主要采集生成示功图需要的参数。智能感知单元4主要通过无线与有线结合的方式与边缘计算单元3进行通信。Preferably, the
优选地,云计算单元2能够基于灰色系统对其接收到的经边缘计算单元3进行预处理后的数据信息进行间抽周期控制策略的制定和调整。灰色系统通过对云计算单元2己获取数据信息进行分析和处理的方式提高对系统的认识程度。灰色系统以灰色模型为基础,主要内容包括灰色预测、灰色决策、灰色统计、灰色聚类等。灰色预测主要是对信息获取不完整的系统进行预测,通过研究系统中不同因素在相互作用下发展趋势的异同,得出各因素之间的关联程度。将己获取的数据进行相应的处理,把无序杂乱的数据转变成有规律的数据序列,从而可以根据生成数据呈现的规律预测事物未来发展趋势,并且生成能够表征下一间抽周期时间段中抽油机和油田在不同时间点的工作状态和储油状态的数据序列。该数据序列可以是一定时间段内抽油机1的运行参数和油井的储油参数。通常对系统获取的数据需要满足等时距和能够反映系统特征的要求,通过已获取的一定数量的数据建立能够进行灰色预测的灰色模型来预测系统的特征值。灰色系统的主要依据是信息覆盖,信息覆盖的实质是部分信息的聚集,特点为利用不完全的少量数据完成灰色动态建模,数据要求最少为3个,且数据必须为任意分布,具有规律性。Preferably, the
油井井下环境复杂,间抽周期受到流体、油层和运行模式等因素影响,抽油机开机时间和关机时间主要通过将沉没度作为依据来确定。在间抽期间内,工作人员需要对井下液面定时检测以作为间抽周期判断的依据。动液面数据受井下复杂环境影响不能准确反映井下供液能力,属于贫信息,且数据量少。灰色系统理论对于这种类型的数据有很好的处理效果,因此对于油井的间抽周期控制策略的制定,灰色系统理论是一个很好的选择。沉没度受到渗透率、地层能量、温度等因素的影响,由于各因素不确定性,沉没度影响因子具有灰色覆盖特性。采油过程中,沉没度在各个时间点上是具体的和确定的,具有白信息覆盖特性,因此沉没度具有灰因白果的特性,符合灰色系统对其建模的条件。因此可以根据关井时期的沉没度作为原始数据建立灰色预测模型。The downhole environment of oil wells is complex, and the intermittent pumping period is affected by factors such as fluid, oil layer, and operation mode. During the interval pumping period, the staff needs to regularly detect the downhole liquid level as the basis for judging the interval pumping period. Affected by the complex underground environment, the dynamic liquid level data cannot accurately reflect the downhole liquid supply capacity, which is poor information and has a small amount of data. The gray system theory has a good effect on this type of data, so it is a good choice for the formulation of the control strategy of the interval pumping cycle of oil wells. The subsidence degree is affected by factors such as permeability, formation energy, temperature, etc. Due to the uncertainty of each factor, the subsidence degree influencing factor has the characteristics of gray coverage. In the process of oil production, the subsidence degree is specific and deterministic at each time point, and has the characteristics of white information coverage. Therefore, the grey prediction model can be established according to the subsidence degree during the shut-in period as the original data.
实际生产过程中,沉没度数据变化小、数据量少,符合灰色模型对数据的特性要求。以沉没度为基础建模时精确度高、误差小。因此以抽油机1运行时期的沉没度为基础建立灰色模型是可行的。云计算单元2可以根据建立的灰色预测模型对下一间抽周期中抽油机1与油井之间的工作状态变化情况进行预测,然后输出抽油机1的间抽周期控制策略。相对于传统的抽油设备在低渗透油田运行存在工作效率低、电能浪费和实时控制滞后等问题,本申请提供的在低渗透油田运行的智能抽油机控制系统具有以下优势:In the actual production process, the subsidence degree data has small changes and a small amount of data, which meets the characteristics requirements of the gray model for data. Modeling based on submersion has high accuracy and small error. Therefore, it is feasible to establish a grey model based on the submersion degree of the
(1)系统实时性。系统可以对抽油机1的相关数据进行实时处理和分析,根据现场获得的分析结果,对抽油机1进行实时的控制。(1) The system is real-time. The system can process and analyze the relevant data of the
(2)智能间抽控制。系统可以根据井下供液能力的变化情况,对抽油机1进行科学合理的间抽控制。(2) Intelligent pumping control. The system can carry out scientific and reasonable intermittent pumping control on the
(3)冲次调整控制。系统能够根据抽油机1的泵效,合理调整抽油机1的冲次从而提高抽油机1的运行效率。(3) Stroke adjustment control. The system can reasonably adjust the stroke times of the
(4)平衡控制。系统能够根据抽油机1的运行状态,判断抽油机1的平衡度并自动进行调整。(4) Balance control. The system can judge the balance of the
在低渗透油井的生产初始阶段,云计算单元2根据预先获取的地下油田参数计算抽油机1的工作策略。在低渗透油井的间抽生产阶段,抽油机1的智能抽油机控制器12从云计算单元2接收抽油机1的抽油电机11的最佳运行频率值,然后以此频率值驱动抽油电机11运行。抽油电机11带动抽油机1的四连杆结构做周期机械运动,四连杆机构带动抽油泵完成抽汲周期,并且将原油抽汲到地面。在抽油机1运行的过程中,智能感知单元4将感知到的各类物理信号转换为电信号并将其传输至边缘计算单元3进行数据过滤等预处理。边缘计算单元3将其完成预处理后的数据信息上传至云计算单元2进行进一步的处理和分析。云计算单元2利用接收到的示功图数据和灰色幂模型数据计算出抽油机1的最佳冲次和间抽周期控制策略,然后通过智能抽油机控制器12驱动抽油电机11按照最新的运行参数进行工作。云计算单元2还能够通过对抽油电机11的电参数的分析完成抽油机1的平衡度的计算,然后通过控制调平衡单元13完成对抽油机1的平衡度的调节。In the initial stage of production of the low-permeability oil well, the
优选地,云计算单元2能够控制智能感知单元4完成抽油机1的三相电参数、抽油电机11和调平衡单元13的电流数据、示功图数据以及设置于抽油机1和油井内的传感器的参数的采集。优选地,传感器参数可以包括角位移传感器、载荷传感器、压力传感器等传感器监测到的实时数据信息以及油田的井口温度和流量等数据,从而依据上述数据信息计算得到抽油机1的冲次、间抽时长、平衡度、功率因数、吨油耗电量以及单井有功节电率等重要生产数据。此外,利用传感器对油田进行实时监测,还可以获取到能够用于计算示功图和沉没度等能够表征油田渗透情况的数据信息。优选地,云计算单元2计算出的实时更新的间抽周期控制策略是指根据实时采集到的示功图数据和抽油机1的运行参数(例如:冲次、间抽时长、平衡度、功率因数、吨油耗电量和单井有功节电率)对抽油机参数、油田参数是否存在失配或对已设定的抽油机参数、油田参数是否能够会在下一个间抽周期出现失配的情况进行判断,并且根据判断结果针对性地输出抽油机1后续工作时间的运行参数。优选地,油田参数包括了油田中实时变化的渗透速度、储油量、压强、温度等。优选地,云计算单元2输出的控制策略即是指在一个间抽周期内表征抽油机1的运行参数发生持续变换的抽油工艺,抽油机1的运行参数包括对抽油机1在一个抽汲周期中的冲次、间抽时长和平衡度进行调整和设定。优选地,现有油田普遍处于低渗透状态,因此,需要在抽油机1持续抽汲一定时间后停止抽汲操作,使得油田内的原油能够缓慢从地层中渗出以恢复油田油量。此外,抽油机1在抽汲过程中还需要根据需求调节光杆的冲程,使得抽油机1能够在一个周期时间段内,随油田储油量的下降而调整曲柄每一次整周运动时光杆的冲程,避免出现空抽等低效运行的情况。具体地,光杆的冲程跟随油田内储油量的减少而逐渐缩短。云计算单元2能够对采集到的示功图数据进行智能分析并控制抽油机1的运行参数,使抽油机1与油井参数保持动态匹配,实现抽油机1始终处于最佳运行状态,并且能够配合上位机监控组态软件和油气工艺研究院的示功图智能工况诊断和示功图量油系统实现油量计量、故障诊断和智能控制等。Preferably, the
优选地,云计算单元2能够控制智能感知单元4完成抽油机1的三相电参数、抽油电机11和调平衡单元13的电流数据、示功图数据以及其他传感器参数的采集。云计算单元2还能够通过其主控芯片的片内DSP引擎完成对实时采集到的工况数据的处理并通过片内MCU单元对智能抽油机控制器12等外部设备进行参数控制,最终实现抽油机1的冲次自动调节、智能间抽控制和平衡度自动调节。优选地,云计算单元2根据载荷传感器和角位移传感器等连续多次采集到的数据信息计算得到多个连续间抽周期的示功图,根据从示功图中获取多组逐渐变化的满抽面积、停抽面积、停抽时长和抽油时长等参数对下一间抽周期的上述参数进行预测,从而根据预测的满抽面积、停抽面积、停抽时长和抽油时长对抽油机1的运行参数进行调整并且生成最新的控制策略,进而抽油机1依据云计算单元2发出的包含其运行参数的控制策略对抽油电机11的工作状态进行调节,使得抽油机1能够始终保持其抽油参数与油田的油液参数之间的相互匹配,避免出现空抽等现象。优选地,抽油机1的冲次自动调节、智能间抽控制和平衡度自动调节即是依据控制策略中的抽油机1的运行参数数据在不同时间段实时变化的调节光杆的冲程、曲柄的摆动角度以及调平衡电机的运行。云计算单元2依据在时间轴上连续的多个示功图的历史数据对抽油机1的运行参数和油井参数在下一间抽周期内的匹配情况进行预测后生成控制策略,并且依据智能感知单元4在这一间抽周期内实时获取的传感器监测数据对预测的控制策略进行验证,依据验证结果更新控制策略,根据更新后的控制策略调整抽油机1在同一间抽周期的后续抽汲时间段内的运行参数。测控终端会根据历史数据预测下一间抽周期的示功图,并且根据预测的示功图输出能够预先调整抽油机1在这一间抽周期内不同时间点的运行参数的控制策略,从而建立起一个依据历史数据不断迭代更新的抽汲工艺,在抽汲过程中,测控终端还能够根据实际采集的油田参数和抽油机1的实际运行参数生成实时示功图,根据将实时示功图与预测的示功图进行对比验证,从而依据实时示功图与预测的示功图之间的差异而输出更新后的控制策略,从而依据控制策略调整抽油机1在此间抽周期剩余时间段的运行参数。Preferably, the
优选地,抽油机1的平衡度是抽油机1稳定运行的关键参数,良好的控制策略能够稳定控制自平衡抽油机的平衡度。由于地质特征和地层供液能力不一,抽油机1在驱动电机的高速带动下,经过减速箱的能量转换,使其能量传递至驴头,使油杆做上下的往复运动。在游梁式自平衡抽油机正常运行的过程中,在平衡电机工作时,抽油机1的各个参数的变化均为非线性变化,抽油机1的平衡臂的转动也较为复杂,建立准确的数学模型较为困难,对系统的鲁棒性要求较高。而模糊控制能够满足上述抽油机1的使用需求,作为智能控制的一个分支的模糊控制主要有以下特点:(1)不需要建立精确的数学模型;(2)能够简化控制系统复杂性;(3)拥有较强的鲁棒性。因此,采用模糊控制算法能够较好地解决非线性控制系统的复杂性。Preferably, the balance of the
优选地,抽油机1的平衡度受到多种因素的影响,而采用模糊控制可以很好地实现对游梁式抽油机平衡度的控制。模糊控制一共需要三个重要的步骤,分别是模糊化、模糊规则设计及推理和去模糊化,在具体设计时通常采用两个输入量,即偏差和偏差变化率,根据两个输入量对游梁式抽油机的平衡度进行调节,并且能够使智能控制系统具有较好且稳定的动态性能。根据数字化游梁式自平衡抽油机智能控制系统能够对抽油机1的平衡度进行控制的特点,系统的输入量为平衡度偏差e和平衡度偏差变化率ec。将二者经过分析计算得到对应的自平衡抽油机的控制输出量,构成平衡度的总控制查询表。Preferably, the balance of the
具体地,云计算单元2通过模糊控制算法分析计算后得到相对应的平衡控制信号u,并将其下发至井场抽油机1。云计算单元2将平衡控制信号u转换为电机的控制信号,通过控制继电器的吸合,控制自平衡抽油机的平衡调节回路,进而控制调平衡单元13调整摆臂式平衡臂的位置,进行数字化游梁式自平衡抽油机的平衡度调节,使数字化游梁式自平衡抽油机达到理想的平衡状态。Specifically, the
优选地,系统初始化时,接收上位监控平台的平衡度等数据以及自平衡抽油机的平衡度的控制信号,并对平衡度进行判断,若平衡度不在设定范围内,则调用函数,将控制信号值转换为脉冲控制信号输出,调用Forward、Reverse函数,控制固态继电器进行动作,进而控制平衡电机进行动作,平衡电机按需进行正反转以将平衡度控制在85%-115%之间。Preferably, when the system is initialized, data such as the balance degree of the upper monitoring platform and the control signal of the balance degree of the self-balancing pumping unit are received, and the balance degree is judged. If the balance degree is not within the set range, the function is called, and the The control signal value is converted into pulse control signal output, and the Forward and Reverse functions are called to control the solid state relay to act, and then control the balance motor to act. .
在曲柄整周运行阶段,抽油泵正常工作,电动机以额定转速运行;当抽油时间到达时,则进入曲柄摆动运行阶段,抽油泵停止工作,抽油杆以预设冲程上下运动,曲柄在指定范围内无冲击柔性往复摆动,摆动期间电机耗能为正常运转的10%,当摆动时间到达时,再循环进入整周运行阶段。During the whole cycle operation of the crank, the oil well pump works normally, and the motor runs at the rated speed; when the oil pumping time arrives, it enters the crank swing operation phase, the oil well pump stops working, the sucker rod moves up and down with the preset stroke, and the crank rotates at the specified stroke. There is no impact and flexible reciprocating swing within the range. During the swing, the energy consumption of the motor is 10% of the normal operation. When the swing time is reached, the recirculation enters the full cycle operation stage.
在曲柄整周运行阶段,控制系统控制电动机以额定转速工作。During the full cycle of the crank, the control system controls the motor to work at the rated speed.
在曲柄摆动运行阶段,以耗能最小为控制目标,同时要满足曲柄存在摆动迹象,即在曲柄摆动过程中,曲柄的摆动幅度是一个逐渐变化的,曲柄的摆动幅度可以是趋近于0°或360°。In the crank swing operation stage, the control goal is to minimize energy consumption, and at the same time, it is necessary to meet the signs of crank swing, that is, during the crank swing process, the crank swing amplitude is a gradual change, and the crank swing amplitude can be close to 0° or 360°.
对于摆动角度,首先根据光杆示功图计算油井的冲程损失,光杆运动长度小于冲程损失,满足抽油杆上下运动而抽油泵停止工作;曲柄旋转一周为360度,光杆完成一个周期的往复运行,根据光杆运动长度计算曲柄摆动角度。For the swing angle, first calculate the stroke loss of the oil well according to the indicator diagram of the polished rod. The motion length of the polished rod is less than the stroke loss, which satisfies the situation that the sucker rod moves up and down and the oil pump stops working; the crank rotates 360 degrees once, and the polished rod completes a cycle of reciprocating operation. Calculate the crank swing angle based on the polished rod motion length.
对于摆动最佳位置,由于每口井平衡状态不同,摆动过程中的最小功率值点不一定在光杆上死点位置,因此根据实时采集的电功率曲线对比摆动过程中的功率最小值点,确定最佳驱动位置。For the optimal swing position, due to the different balance states of each well, the minimum power value point during the swing process is not necessarily at the top dead center of the polished rod. best drive position.
电动机实际转速n的计算原理为:The calculation principle of the actual speed n of the motor is:
n=(1-s)60f/p。n=(1-s)60f/p.
其中,s为三相异步电机的转差率,p为电机的磁极对数,f为电动机定子电源频率,当p一定时,在转差率的浮动不大的情况下,对f进行调节,n与f的变化呈正相关,其中,变频器的作用主要是利用通断半导体器件作用于频率固定的交流电,将频率固定的交流电变成频率可调的交流电。Among them, s is the slip ratio of the three-phase asynchronous motor, p is the number of pole pairs of the motor, and f is the frequency of the motor stator power supply. The change of n and f is positively correlated, among them, the function of the frequency converter is mainly to use the on-off semiconductor device to act on the alternating current of fixed frequency, and change the alternating current of fixed frequency into alternating current of adjustable frequency.
时间从0到t1的期间为抽油机1的曲柄整周运行阶段,电机加速运行到转速为额定转速后开始减速到0,时间从t1到t2的期间为抽油机1的曲柄摆动运行阶段,电机开始加速直至达到某一设定值后减速,电机反向加速直至达到某一设定值后减速,如此反复,到达t2时刻时开始下一个运转周期。The period from 0 to t1 is the whole cycle operation stage of the crank of the
游梁式抽油机的曲柄做非整周有规则或无规则往复运动。有规则运动是指曲柄按照固定的摆幅与摆动周期做正反双向往复运动。无规则运动是指曲柄的摆幅在允许的范围内变化或曲柄的摆动周期变化。The crank of the beam pumping unit does a regular or irregular reciprocating motion in a non-full circle. Regular movement means that the crank reciprocates forward and reverse in both directions according to a fixed swing amplitude and swing period. Irregular motion means that the swing amplitude of the crank changes within the allowable range or the swing period of the crank changes.
抽油机1的上述运动方式具有以下优势:The above-mentioned movement mode of the
第一、由于死点为或接近曲柄的最小负荷点,因此曲柄绕死点做非整周有规则或无规则运动,能够降低驱动曲柄运动的电机负荷;First, since the dead point is at or close to the minimum load point of the crank, the crank does a irregular or irregular movement around the dead point, which can reduce the motor load driving the crank movement;
第二、在这种情况下,在悬点运行范围内,曲柄的摆幅较大,能够提供醒目的抽油机1正在运行的提示;Second, in this case, within the operating range of the suspension point, the swing of the crank is relatively large, which can provide an eye-catching reminder that the
第三、由于曲柄绕死点做非整周双向往复运动可以实现曲柄在单位转角下最短的悬点运行长度,因此更有利于实现对悬点位置的精确控制。Third, since the crank does a non-circumferential bidirectional reciprocating motion around the dead point, the crank can achieve the shortest suspension point running length per unit rotation angle, so it is more conducive to realize the precise control of the suspension point position.
在本申请中,将抽油机1在既不驱动又不制动的完全自由滑动条件下,能稳定停机的最终位置视为稳定平衡位置。当抽油机1偏离该位置时,只要有外力扰动,都将促使抽油机1返回到稳定平衡位置。抽油机1在稳定平衡位置时,地面机械部分的重力势能、井下液柱的重力势能以及井下杆管柱的弹性势能之和最小。上述对曲柄的稳定平衡位置的限定,可以实现曲柄往复运动所需的驱动功耗最小、需要提供反向制动力矩以保证曲柄和悬点运动不超出限定范围的几率最小,降低了电机的能耗和机械传动部件的疲劳与冲击程度。In the present application, the final position where the
进一步限定曲柄有规则或无规则运动:曲柄有规则或无规则运动包括具有间歇性特征的暂停。这种限定可以进一步降低驱动能耗、电机的能耗以及机械损耗。Further defining regular or irregular crank motion: Regular or irregular crank motion includes pauses with an intermittent character. This limitation can further reduce drive energy consumption, motor energy consumption and mechanical losses.
弹性静变形长度值随井下沉没压力的改变而变化,在现有生产设备条件下,由于无法实时采集井下沉没压力,因此在生产实践过程中,井下杆管柱的弹性静变形长度需要根据沉没压力的经验值获得,即井下杆管柱的弹性静变形长度为沉没压力经验值对应的井下杆管柱的弹性静变形长度值。The value of the elastic static deformation length changes with the change of the downhole subsidence pressure. Under the condition of the existing production equipment, since the downhole subsidence pressure cannot be collected in real time, in the production practice process, the elastic static deformation length of the downhole rod and pipe string needs to be determined according to the subsidence pressure. The empirical value of , that is, the static elastic deformation length of the downhole rod and pipe string is the value of the elastic static deformation length of the downhole rod and pipe string corresponding to the empirical value of the submerged pressure.
针对曲柄有规则运动:最典型的运动方式是按照相对固定的摆幅与摆动频率做正反双向往复运动。针对曲柄无规则运动:其既包括摆幅在允许的范围内变化和摆动频率变化的情况,还包括摆动过程中掺杂短暂停机的情况,这是因为停机状态属于速度为0的特殊运动。There is a regular movement for the crank: the most typical movement method is to do forward and reverse bidirectional reciprocating motion according to a relatively fixed swing amplitude and swing frequency. For crank random motion: it includes not only the situation where the swing amplitude changes within the allowable range and the swing frequency changes, but also the situation where a short stop is added during the swing process, because the stop state belongs to a special movement with a speed of 0.
实施例2Example 2
本实施例是对实施例1的进一步改进,重复的内容不再赘述。This embodiment is a further improvement to
灰色预测模型的基础是一阶单变量灰色预测模型,其主要是针对系统主变量自身的演化特征所构建的,通过对一阶微分和差分方程来分析系统主变量的变化规律。一阶单变量灰色预测模型建模的精度高,所需要的数据量小,适用于序列建模。抽油机井动液面变化的规律很好地满足了一阶单变量灰色预测模型的特性。The basis of the grey forecasting model is the first-order univariate grey forecasting model, which is mainly constructed for the evolution characteristics of the main variables of the system. The first-order univariate gray prediction model has high modeling accuracy and requires a small amount of data, which is suitable for sequence modeling. The law of dynamic fluid level change in pumping unit well satisfies the characteristics of the first-order univariate gray prediction model.
抽油机1冲次的降低是有一定限度的,对于“空抽”严重的油井,要考虑采用间抽控制,即“有油就抽,无油就停机”。对于这样的间抽井来说,在停抽足够的时间后再起抽时,动液面较高,泵效较高,反映到示功图上,表现为示功图面积饱满,接近理论示功图,因此示功图面积较大。随着泵抽时间的延续,井下供液速度赶不上抽油机1的抽汲速度,动液面逐渐下降,泵效逐渐降低,示功图变得干瘪,面积减小。当示功图面积减小到一定程度,并且变化不大时,油井供液已经严重不足,开始产生“空抽”现象,此时应及时停机,待井液回渗至较高的动液面时再适时开机,实现上述过程的关键是何时停抽,停抽时间是多少,即停抽点和停抽时间的确定。There is a certain limit to the reduction of 1 stroke of the pumping unit. For oil wells with serious "empty pumping", it is necessary to consider the use of indirect pumping control, that is, "pump when there is oil, and stop when there is no oil". For such an indirect pumping well, when the pumping is restarted after stopping the pumping for a sufficient time, the dynamic liquid level is higher and the pumping efficiency is higher, which is reflected on the indicator diagram, which shows that the area of the indicator diagram is full, which is close to the theoretical indicator diagram. , so the area of the indicator diagram is larger. With the continuation of the pumping time, the downhole liquid supply speed cannot catch up with the pumping speed of the
由于地质条件等因素的影响,井下工况的不确定性较大,如果固定满抽面积、停抽面积、停抽时长和抽油时长这四个参数,则随着抽油时间的延续(比如半年),这些参数可能己不再适合油井工况,因此这四个参数必须根据油井工况实现动态变化,此处:满抽面积(Sm),是指在停抽较长一段时间而使得井下续液量充足后,系统开机后的第一个10分钟内的示功图面积的平均值。停抽面积(St),是指当较长一段时间内示功图面积低于停抽面积(St)时,开始停抽。停抽时长(Ts)是指停抽的时间长度。抽油时长(Cs)是指停抽结束后,从重新开机抽油到再次停抽的时间长度。Due to the influence of geological conditions and other factors, the uncertainty of downhole working conditions is relatively large. half a year), these parameters may no longer be suitable for oil well conditions, so these four parameters must be dynamically changed according to oil well conditions. The average value of the area of the dynamometer chart within the first 10 minutes after the system is turned on after the amount of follow-up fluid is sufficient. The stop pumping area (St) means that when the area of the dynamometer diagram is lower than the pump stop area (St) for a long period of time, the pumping stop is started. The duration of stopping drawing (Ts) refers to the length of time for stopping drawing. The pumping time (Cs) refers to the time from restarting pumping to stopping pumping again after stopping pumping.
在控制系统首次投入生产运行时,根据油田实际生产资料,由人工设定满抽面积Sm、停抽面积St、停抽时长Ts和抽油时长Cs四个参数,例如设定满抽面积为50KN*m,停抽面积为18KN*m,停抽时长为2小时,抽油时长为1小时。起抽后,将第一个10分钟内的示功图面积平均值SAV与满抽面积比较,若第一个10分钟内的示功图面积平均值SAV大于满抽面积的70%,则在下个间抽周期将抽油时长增大△t,将停抽时长减小△t;若第一个10分钟内的示功图面积平均值SAV小于满抽面积的70%,则在下个间抽周期将抽油时长减小△t,将停抽时长增大△t;若第一个10分钟内的示功图面积平均值SAV等于满抽面积的70%,则维持原参数不变。此后,每10分钟进行一次示功图平均面积的计算,作为实测示功图面积S,当S≤St*(1+10%)时,则停抽,待停抽周期结束后,重新开机起抽。When the control system is put into production operation for the first time, according to the actual production data of the oilfield, four parameters of the full pumping area Sm, the stop pumping area St, the stop pumping time Ts and the pumping time Cs are manually set, for example, the full pumping area is set to 50KN *m, the stop pumping area is 18KN*m, the stop pumping time is 2 hours, and the pumping time is 1 hour. After starting the pumping, compare the average value S AV of the dynamometer area in the first 10 minutes with the full pumping area. If the average value S AV of the dynamometer area in the first 10 minutes is greater than 70% of the full pumping area, Then in the next interval pumping cycle, increase the pumping time by △t, and decrease the pumping stop time by △t; if the average value of the area of the indicator diagram in the first 10 minutes S AV is less than 70% of the full pumping area, the next Reduce the pumping time by △t and increase the stop pumping time by △t in each interval pumping cycle; if the average value of the area of the dynamometer chart within the first 10 minutes SAV is equal to 70% of the full pumping area, the original parameters will be maintained constant. After that, the average area of the dynamometer is calculated every 10 minutes as the measured dynamometer area S. When S≤St*(1+10%), the pumping will be stopped. smoke.
在每10分钟计算一次示功图面积的过程中,如果出现面积之差连续2个小时以上的变化均在10%以内时,即认为找到了新的停抽面积,以此更新数据St。如果每次开机初期的10分钟内的示功图面积的平均值连续两个小时以上均大于或等于满抽面积的110%时,即认为找到了新的满抽面积,以此更新数据Sm。至此,数据Sm、St、Ts和Cs得到了动态更新。In the process of calculating the area of the dynamometer diagram every 10 minutes, if the difference between the areas is within 10% for more than 2 consecutive hours, it is considered that a new area for stopping pumping has been found, and the data St is updated. If the average value of the area of the dynamometer within 10 minutes at the beginning of each startup is greater than or equal to 110% of the full pumping area for more than two consecutive hours, it is considered that a new full pumping area has been found, and the data Sm is updated accordingly. So far, the data Sm, St, Ts and Cs have been dynamically updated.
实施例3Example 3
在采油过程中主要控制有三个方面,分别为游梁式抽油机的远程监控、自平衡调节及冲次的自动调整。There are three main control aspects in the process of oil production, namely remote monitoring of beam pumping units, self-balancing adjustment and automatic adjustment of stroke times.
数字化游梁式自平衡抽油机智能控制系统主要包括数字化自平衡抽油机、数字化智能抽油机控制柜及上位后台监控设备。The intelligent control system of digital beam self-balancing pumping unit mainly includes digital self-balancing pumping unit, digital intelligent pumping unit control cabinet and upper background monitoring equipment.
首先,经过载荷、角位移传感器和三相电参采集模块采集游梁式抽油机的载荷信号、位移信号和三相电参数据,将采集到的数据存储到智能控制器的外部存储器中,将其上传至监控平台并利用算法分析、计算得到游梁式自平衡抽油机的平衡度、当前冲次等数据,将数据存储到数据库,然后将数据及控制信号下发至数字化智能控制器对游梁式自平衡抽油机进行平衡度调节控制等。First, the load signal, displacement signal and three-phase electrical parameter data of the beam pumping unit are collected through the load, angular displacement sensor and three-phase electrical parameter acquisition module, and the collected data is stored in the external memory of the intelligent controller. Upload it to the monitoring platform and use the algorithm to analyze and calculate the balance, current stroke and other data of the beam self-balancing pumping unit, store the data in the database, and then send the data and control signals to the digital intelligent controller Balance adjustment and control of beam type self-balancing pumping units, etc.
1、抽油机1远程监控,能够远程对抽油机1启停等进行操作,后台数据实时显示等。1. Remote monitoring of
2、冲次控制,根据采集到的载荷数据来计算游梁式抽油机泵效,进而来判断抽油机1的运行状态,对其冲次实时调节。2. Stroke time control, calculate the pumping efficiency of the beam pumping unit according to the collected load data, and then judge the running state of the
3、自平衡控制,需要采用智能控制算法结合智能控制系统,使抽油机1始终在最理想平衡度范围内运行。3. For self-balancing control, it is necessary to adopt intelligent control algorithm combined with intelligent control system, so that the
实施例4Example 4
本申请还提供一种游梁式抽油机智能间抽控制系统的控制方法,在抽油机1开始运行的情况下,采油调控方法可以包括以下步骤:The present application also provides a control method for an intelligent intermediate pumping control system for a beam pumping unit. When the
智能感知单元4采集抽油机1的三相电参数和各类传感器信号,并且通过通讯模块5将采集的数据上传至边缘计算单元3;The
边缘计算单元3对采集的数据信号进行预处理后进一步输送至云计算单元2;The
云计算单元2通过对接收到的数据进行分析,并且将得到的数据及控制信号下发到相应模块实现抽油机1的冲次调节、自平衡调节以及控制面板6的显示。The
优选地,云计算单元2是通过通讯模块5进行数据传输以及控制信号的下发。Preferably, the
上述的游梁式抽油机智能间抽控制系统的控制方法可以具备以下功能和优势:The above-mentioned control method of the intelligent intermediate pumping control system for the beam pumping unit can have the following functions and advantages:
(1)具备油井参数、电参数的实时采集和传输功能;(1) Real-time acquisition and transmission of oil well parameters and electrical parameters;
(2)具备接收上位机指令,实现抽油机1远程启停,语音提示和报警功能;(2) It has the functions of receiving the command of the upper computer, realizing the remote start and stop of the
(3)具备抽油机1平衡度的自动判定及调整功能。自动监测并实时显示抽油机1的平衡状况,可手动或自动将抽油机1调整到最佳的平衡状况,降低峰值电流,达到保护减速器和节能的目的;(3) It has the function of automatic determination and adjustment of the balance of the
(4)具备抽油机1最佳工作冲次的自动判定及调整功能。实时显示抽油机1的冲次。既可以手动无级调节冲次,也可以根据油井产液量大小,自动确定最佳冲次,在保证产液量的情况下,将冲次调整到最小,达到最佳节能效果;(4) It has the function of automatic determination and adjustment of the best working stroke of the
(5)具备抽油机1的智能间抽功能。对于间抽井,既能人工设定间抽制度,也能根据油井产液量变化趋势,自动制定最佳间抽制度,实现“有油就抽,无油就停”功能,在保证产液量的前提下,实现间抽井的有效节能;(5) It has the intelligent intermediate pumping function of the
(6)具备工频/变频自动切换功能。当变频器出现故障时,能自动切换到工频模式运行;(6) With power frequency/frequency conversion automatic switching function. When the inverter fails, it can automatically switch to the power frequency mode to run;
(7)具备软启动和过载保护功能。能有效降低启动惯性载荷,并结合最佳平衡度判定和调节技术,使抽油机1的装机功率普降一档,大幅降低井场电网容量。(7) With soft start and overload protection functions. It can effectively reduce the starting inertial load, and combined with the optimal balance judgment and adjustment technology, the installed power of the
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。在全文中,“优选地”所引导的特征仅为一种可选方式,不应理解为必须设置,故此申请人保留随时放弃或删除相关优选特征之权利。It should be noted that the above-mentioned specific embodiments are exemplary, and those skilled in the art can come up with various solutions inspired by the disclosure of the present invention, and these solutions also belong to the disclosure scope of the present invention and fall within the scope of the present invention. within the scope of protection of the invention. It should be understood by those skilled in the art that the description of the present invention and the accompanying drawings are illustrative rather than limiting to the claims. The protection scope of the present invention is defined by the claims and their equivalents. In the whole text, the features introduced by "preferably" are only an optional way, and should not be construed as a mandatory setting, so the applicant reserves the right to abandon or delete the relevant preferred features at any time.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210370875.5A CN114688009A (en) | 2022-04-07 | 2022-04-07 | Intelligent intermittent pumping control system of beam-pumping unit and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210370875.5A CN114688009A (en) | 2022-04-07 | 2022-04-07 | Intelligent intermittent pumping control system of beam-pumping unit and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114688009A true CN114688009A (en) | 2022-07-01 |
Family
ID=82143287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210370875.5A Pending CN114688009A (en) | 2022-04-07 | 2022-04-07 | Intelligent intermittent pumping control system of beam-pumping unit and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114688009A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115412375A (en) * | 2022-11-01 | 2022-11-29 | 山东省电子信息产品检验院(中国赛宝(山东)实验室) | Industrial Internet data protection system |
CN115750304A (en) * | 2022-11-22 | 2023-03-07 | 大庆宏富来电气设备制造有限公司 | Green energy oil pumping unit intelligent control system |
CN115774420A (en) * | 2022-12-14 | 2023-03-10 | 安徽物迅科技有限公司 | Near and remote control system and method for oil well lifting |
CN116624131A (en) * | 2023-07-24 | 2023-08-22 | 北京汉诺威自控技术有限公司 | Intelligent control method, device and equipment for oil pumping unit and storage medium |
CN117113127A (en) * | 2023-09-04 | 2023-11-24 | 大庆石油管理局有限公司 | Oil pumping well energy consumption analysis method based on K-means clustering |
CN119466687A (en) * | 2025-01-17 | 2025-02-18 | 西安众望能源科技有限公司 | Intelligent inter-pumping control method and system for oil and gas fields based on the national production of Hongmeng system |
CN119041884B (en) * | 2024-10-30 | 2025-03-21 | 西安众望能源科技有限公司 | A method and system for controlling the start and stop of oil pumping units based on RTU |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102094597A (en) * | 2010-12-05 | 2011-06-15 | 邱兵 | Automatic balance adjustment device for pumping unit by utilizing liquid counterweight rider |
CN103670341A (en) * | 2013-11-15 | 2014-03-26 | 河南信宇石油机械制造股份有限公司 | Digitalized energy-saving pumping unit based on wifi network cloud service |
CN103939058A (en) * | 2014-05-06 | 2014-07-23 | 西安石油大学 | Wind-solar storage combined beam-pumping unit intelligent balancing device |
CN105804699A (en) * | 2015-11-27 | 2016-07-27 | 哈尔滨索菲电气技术有限公司 | Beam-pumping unit dynamic variable stroke operation method based on crank non-full-circular movement |
CN110912487A (en) * | 2019-10-28 | 2020-03-24 | 北京信息科技大学 | Multi-stage pressure regulating energy-saving control method for dynamic balance regulation fusion of pumping unit |
CN111963114A (en) * | 2020-08-14 | 2020-11-20 | 中国石油大学(北京) | An intelligent application system and implementation method for pumping unit wells (groups) |
CN112360398A (en) * | 2020-11-25 | 2021-02-12 | 大庆世佳石油设备股份有限公司 | Beam-pumping unit servo drive system applying intermittent swing amplitude screen control technology |
CN112443297A (en) * | 2019-08-31 | 2021-03-05 | 李骥 | Internet + tower type intelligent pumping unit remote monitoring system |
CN112983364A (en) * | 2021-02-05 | 2021-06-18 | 中国石油天然气股份有限公司 | Device and method for controlling swinging interval pumping of crank of oil pumping unit |
-
2022
- 2022-04-07 CN CN202210370875.5A patent/CN114688009A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102094597A (en) * | 2010-12-05 | 2011-06-15 | 邱兵 | Automatic balance adjustment device for pumping unit by utilizing liquid counterweight rider |
CN103670341A (en) * | 2013-11-15 | 2014-03-26 | 河南信宇石油机械制造股份有限公司 | Digitalized energy-saving pumping unit based on wifi network cloud service |
CN103939058A (en) * | 2014-05-06 | 2014-07-23 | 西安石油大学 | Wind-solar storage combined beam-pumping unit intelligent balancing device |
CN105804699A (en) * | 2015-11-27 | 2016-07-27 | 哈尔滨索菲电气技术有限公司 | Beam-pumping unit dynamic variable stroke operation method based on crank non-full-circular movement |
CN112443297A (en) * | 2019-08-31 | 2021-03-05 | 李骥 | Internet + tower type intelligent pumping unit remote monitoring system |
CN110912487A (en) * | 2019-10-28 | 2020-03-24 | 北京信息科技大学 | Multi-stage pressure regulating energy-saving control method for dynamic balance regulation fusion of pumping unit |
CN111963114A (en) * | 2020-08-14 | 2020-11-20 | 中国石油大学(北京) | An intelligent application system and implementation method for pumping unit wells (groups) |
CN112360398A (en) * | 2020-11-25 | 2021-02-12 | 大庆世佳石油设备股份有限公司 | Beam-pumping unit servo drive system applying intermittent swing amplitude screen control technology |
CN112983364A (en) * | 2021-02-05 | 2021-06-18 | 中国石油天然气股份有限公司 | Device and method for controlling swinging interval pumping of crank of oil pumping unit |
Non-Patent Citations (1)
Title |
---|
张杰: "基于边缘计算的智能抽油机控制器研究与应用", 中国优秀硕士学位论文全文数据库, pages 019 - 36 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115412375A (en) * | 2022-11-01 | 2022-11-29 | 山东省电子信息产品检验院(中国赛宝(山东)实验室) | Industrial Internet data protection system |
WO2024061380A1 (en) * | 2022-11-01 | 2024-03-28 | 山东省信息技术产业发展研究院(中国赛宝(山东)实验室) | Industrial internet data protection system |
CN115750304A (en) * | 2022-11-22 | 2023-03-07 | 大庆宏富来电气设备制造有限公司 | Green energy oil pumping unit intelligent control system |
CN115774420A (en) * | 2022-12-14 | 2023-03-10 | 安徽物迅科技有限公司 | Near and remote control system and method for oil well lifting |
CN116624131A (en) * | 2023-07-24 | 2023-08-22 | 北京汉诺威自控技术有限公司 | Intelligent control method, device and equipment for oil pumping unit and storage medium |
CN116624131B (en) * | 2023-07-24 | 2023-10-10 | 北京汉诺威自控技术有限公司 | Intelligent control method, device and equipment for oil pumping unit and storage medium |
CN117113127A (en) * | 2023-09-04 | 2023-11-24 | 大庆石油管理局有限公司 | Oil pumping well energy consumption analysis method based on K-means clustering |
CN117113127B (en) * | 2023-09-04 | 2024-03-29 | 大庆石油管理局有限公司 | Oil pumping well energy consumption analysis method based on K-means clustering |
CN119041884B (en) * | 2024-10-30 | 2025-03-21 | 西安众望能源科技有限公司 | A method and system for controlling the start and stop of oil pumping units based on RTU |
CN119466687A (en) * | 2025-01-17 | 2025-02-18 | 西安众望能源科技有限公司 | Intelligent inter-pumping control method and system for oil and gas fields based on the national production of Hongmeng system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114688009A (en) | Intelligent intermittent pumping control system of beam-pumping unit and control method thereof | |
CN114941518A (en) | A kind of beam pumping unit non-stop oil extraction control method and system | |
CN106285572B (en) | Control device and its control method are taken out between a kind of pumping unit intelligence | |
CN111963116B (en) | An intelligent gas field system and method for adaptive and intelligent analysis and decision making | |
CN111963114B (en) | A kind of pumping unit well (group) intelligent application system and realization method | |
US8851860B1 (en) | Adaptive control of an oil or gas well surface-mounted hydraulic pumping system and method | |
CN107060695B (en) | Beam-pumping unit energy-saving control system and method | |
CN103984300B (en) | Method for frequency conversion and energy saving of oil pumping unit | |
CN113107432A (en) | A kind of automatic control method of pumping well | |
CN106948796A (en) | Pumping control device and method for pumping unit during non-stop | |
CN103488132A (en) | Automatic optimized parameter-tuning method based on indicator diagram | |
CN205158002U (en) | Beam -pumping unit control system based on best oil pumping speed or time discernment | |
CN102337866A (en) | Energy-saving control method and system used for oil sucking machine in oil field | |
CN108661899A (en) | A kind of motor speed optimization of profile method and device based on variable speed drives | |
WO2022182867A1 (en) | Rig power system efficiency optimization through image processing | |
CN112750283B (en) | Underground structure floating early warning system based on automatic pumping and drainage of water collecting well and working method thereof | |
Neely et al. | Experience with pumpoff control in the permian basin | |
RU2522565C1 (en) | Well operation method using pump set with variable-frequency drive and device for its implementation | |
CN116044350A (en) | Remote terminal unit control method for balance adjustment of oil pumping unit | |
CN100519985C (en) | Pendulum type balance intelligent control pumping unit | |
CN103670341A (en) | Digitalized energy-saving pumping unit based on wifi network cloud service | |
CN106321071A (en) | Method of parameter optimization of pump jack | |
CN202023738U (en) | Rotating speed intelligent control system for oil-immersed screw pump | |
CN206376832U (en) | Energy-saving control system of beam-pumping unit | |
CN113982538B (en) | Flexible frequency conversion and voltage regulation closed-loop energy-saving control system and method for beam-pumping unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220701 |